1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <linux/slab.h> 37 #include <asm/unaligned.h> 38 #include "ecryptfs_kernel.h" 39 40 static int 41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 42 struct page *dst_page, int dst_offset, 43 struct page *src_page, int src_offset, int size, 44 unsigned char *iv); 45 static int 46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 47 struct page *dst_page, int dst_offset, 48 struct page *src_page, int src_offset, int size, 49 unsigned char *iv); 50 51 /** 52 * ecryptfs_to_hex 53 * @dst: Buffer to take hex character representation of contents of 54 * src; must be at least of size (src_size * 2) 55 * @src: Buffer to be converted to a hex string respresentation 56 * @src_size: number of bytes to convert 57 */ 58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 59 { 60 int x; 61 62 for (x = 0; x < src_size; x++) 63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 64 } 65 66 /** 67 * ecryptfs_from_hex 68 * @dst: Buffer to take the bytes from src hex; must be at least of 69 * size (src_size / 2) 70 * @src: Buffer to be converted from a hex string respresentation to raw value 71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 72 */ 73 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 74 { 75 int x; 76 char tmp[3] = { 0, }; 77 78 for (x = 0; x < dst_size; x++) { 79 tmp[0] = src[x * 2]; 80 tmp[1] = src[x * 2 + 1]; 81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 82 } 83 } 84 85 /** 86 * ecryptfs_calculate_md5 - calculates the md5 of @src 87 * @dst: Pointer to 16 bytes of allocated memory 88 * @crypt_stat: Pointer to crypt_stat struct for the current inode 89 * @src: Data to be md5'd 90 * @len: Length of @src 91 * 92 * Uses the allocated crypto context that crypt_stat references to 93 * generate the MD5 sum of the contents of src. 94 */ 95 static int ecryptfs_calculate_md5(char *dst, 96 struct ecryptfs_crypt_stat *crypt_stat, 97 char *src, int len) 98 { 99 struct scatterlist sg; 100 struct hash_desc desc = { 101 .tfm = crypt_stat->hash_tfm, 102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 103 }; 104 int rc = 0; 105 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 107 sg_init_one(&sg, (u8 *)src, len); 108 if (!desc.tfm) { 109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 110 CRYPTO_ALG_ASYNC); 111 if (IS_ERR(desc.tfm)) { 112 rc = PTR_ERR(desc.tfm); 113 ecryptfs_printk(KERN_ERR, "Error attempting to " 114 "allocate crypto context; rc = [%d]\n", 115 rc); 116 goto out; 117 } 118 crypt_stat->hash_tfm = desc.tfm; 119 } 120 rc = crypto_hash_init(&desc); 121 if (rc) { 122 printk(KERN_ERR 123 "%s: Error initializing crypto hash; rc = [%d]\n", 124 __func__, rc); 125 goto out; 126 } 127 rc = crypto_hash_update(&desc, &sg, len); 128 if (rc) { 129 printk(KERN_ERR 130 "%s: Error updating crypto hash; rc = [%d]\n", 131 __func__, rc); 132 goto out; 133 } 134 rc = crypto_hash_final(&desc, dst); 135 if (rc) { 136 printk(KERN_ERR 137 "%s: Error finalizing crypto hash; rc = [%d]\n", 138 __func__, rc); 139 goto out; 140 } 141 out: 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 143 return rc; 144 } 145 146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 147 char *cipher_name, 148 char *chaining_modifier) 149 { 150 int cipher_name_len = strlen(cipher_name); 151 int chaining_modifier_len = strlen(chaining_modifier); 152 int algified_name_len; 153 int rc; 154 155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 157 if (!(*algified_name)) { 158 rc = -ENOMEM; 159 goto out; 160 } 161 snprintf((*algified_name), algified_name_len, "%s(%s)", 162 chaining_modifier, cipher_name); 163 rc = 0; 164 out: 165 return rc; 166 } 167 168 /** 169 * ecryptfs_derive_iv 170 * @iv: destination for the derived iv vale 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode 172 * @offset: Offset of the extent whose IV we are to derive 173 * 174 * Generate the initialization vector from the given root IV and page 175 * offset. 176 * 177 * Returns zero on success; non-zero on error. 178 */ 179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 180 loff_t offset) 181 { 182 int rc = 0; 183 char dst[MD5_DIGEST_SIZE]; 184 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 185 186 if (unlikely(ecryptfs_verbosity > 0)) { 187 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 189 } 190 /* TODO: It is probably secure to just cast the least 191 * significant bits of the root IV into an unsigned long and 192 * add the offset to that rather than go through all this 193 * hashing business. -Halcrow */ 194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 195 memset((src + crypt_stat->iv_bytes), 0, 16); 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 197 if (unlikely(ecryptfs_verbosity > 0)) { 198 ecryptfs_printk(KERN_DEBUG, "source:\n"); 199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 200 } 201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 202 (crypt_stat->iv_bytes + 16)); 203 if (rc) { 204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 205 "MD5 while generating IV for a page\n"); 206 goto out; 207 } 208 memcpy(iv, dst, crypt_stat->iv_bytes); 209 if (unlikely(ecryptfs_verbosity > 0)) { 210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 212 } 213 out: 214 return rc; 215 } 216 217 /** 218 * ecryptfs_init_crypt_stat 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 220 * 221 * Initialize the crypt_stat structure. 222 */ 223 void 224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 225 { 226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 227 INIT_LIST_HEAD(&crypt_stat->keysig_list); 228 mutex_init(&crypt_stat->keysig_list_mutex); 229 mutex_init(&crypt_stat->cs_mutex); 230 mutex_init(&crypt_stat->cs_tfm_mutex); 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 233 } 234 235 /** 236 * ecryptfs_destroy_crypt_stat 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 238 * 239 * Releases all memory associated with a crypt_stat struct. 240 */ 241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 242 { 243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 244 245 if (crypt_stat->tfm) 246 crypto_free_blkcipher(crypt_stat->tfm); 247 if (crypt_stat->hash_tfm) 248 crypto_free_hash(crypt_stat->hash_tfm); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 255 } 256 257 void ecryptfs_destroy_mount_crypt_stat( 258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 259 { 260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 261 262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 263 return; 264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 265 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 266 &mount_crypt_stat->global_auth_tok_list, 267 mount_crypt_stat_list) { 268 list_del(&auth_tok->mount_crypt_stat_list); 269 if (auth_tok->global_auth_tok_key 270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 271 key_put(auth_tok->global_auth_tok_key); 272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 273 } 274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 276 } 277 278 /** 279 * virt_to_scatterlist 280 * @addr: Virtual address 281 * @size: Size of data; should be an even multiple of the block size 282 * @sg: Pointer to scatterlist array; set to NULL to obtain only 283 * the number of scatterlist structs required in array 284 * @sg_size: Max array size 285 * 286 * Fills in a scatterlist array with page references for a passed 287 * virtual address. 288 * 289 * Returns the number of scatterlist structs in array used 290 */ 291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 292 int sg_size) 293 { 294 int i = 0; 295 struct page *pg; 296 int offset; 297 int remainder_of_page; 298 299 sg_init_table(sg, sg_size); 300 301 while (size > 0 && i < sg_size) { 302 pg = virt_to_page(addr); 303 offset = offset_in_page(addr); 304 if (sg) 305 sg_set_page(&sg[i], pg, 0, offset); 306 remainder_of_page = PAGE_CACHE_SIZE - offset; 307 if (size >= remainder_of_page) { 308 if (sg) 309 sg[i].length = remainder_of_page; 310 addr += remainder_of_page; 311 size -= remainder_of_page; 312 } else { 313 if (sg) 314 sg[i].length = size; 315 addr += size; 316 size = 0; 317 } 318 i++; 319 } 320 if (size > 0) 321 return -ENOMEM; 322 return i; 323 } 324 325 /** 326 * encrypt_scatterlist 327 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 328 * @dest_sg: Destination of encrypted data 329 * @src_sg: Data to be encrypted 330 * @size: Length of data to be encrypted 331 * @iv: iv to use during encryption 332 * 333 * Returns the number of bytes encrypted; negative value on error 334 */ 335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 336 struct scatterlist *dest_sg, 337 struct scatterlist *src_sg, int size, 338 unsigned char *iv) 339 { 340 struct blkcipher_desc desc = { 341 .tfm = crypt_stat->tfm, 342 .info = iv, 343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 344 }; 345 int rc = 0; 346 347 BUG_ON(!crypt_stat || !crypt_stat->tfm 348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 349 if (unlikely(ecryptfs_verbosity > 0)) { 350 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 351 crypt_stat->key_size); 352 ecryptfs_dump_hex(crypt_stat->key, 353 crypt_stat->key_size); 354 } 355 /* Consider doing this once, when the file is opened */ 356 mutex_lock(&crypt_stat->cs_tfm_mutex); 357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 359 crypt_stat->key_size); 360 crypt_stat->flags |= ECRYPTFS_KEY_SET; 361 } 362 if (rc) { 363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 364 rc); 365 mutex_unlock(&crypt_stat->cs_tfm_mutex); 366 rc = -EINVAL; 367 goto out; 368 } 369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 371 mutex_unlock(&crypt_stat->cs_tfm_mutex); 372 out: 373 return rc; 374 } 375 376 /** 377 * ecryptfs_lower_offset_for_extent 378 * 379 * Convert an eCryptfs page index into a lower byte offset 380 */ 381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 382 struct ecryptfs_crypt_stat *crypt_stat) 383 { 384 (*offset) = ecryptfs_lower_header_size(crypt_stat) 385 + (crypt_stat->extent_size * extent_num); 386 } 387 388 /** 389 * ecryptfs_encrypt_extent 390 * @enc_extent_page: Allocated page into which to encrypt the data in 391 * @page 392 * @crypt_stat: crypt_stat containing cryptographic context for the 393 * encryption operation 394 * @page: Page containing plaintext data extent to encrypt 395 * @extent_offset: Page extent offset for use in generating IV 396 * 397 * Encrypts one extent of data. 398 * 399 * Return zero on success; non-zero otherwise 400 */ 401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 402 struct ecryptfs_crypt_stat *crypt_stat, 403 struct page *page, 404 unsigned long extent_offset) 405 { 406 loff_t extent_base; 407 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 408 int rc; 409 410 extent_base = (((loff_t)page->index) 411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 413 (extent_base + extent_offset)); 414 if (rc) { 415 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 416 "extent [0x%.16llx]; rc = [%d]\n", 417 (unsigned long long)(extent_base + extent_offset), rc); 418 goto out; 419 } 420 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 421 page, (extent_offset 422 * crypt_stat->extent_size), 423 crypt_stat->extent_size, extent_iv); 424 if (rc < 0) { 425 printk(KERN_ERR "%s: Error attempting to encrypt page with " 426 "page->index = [%ld], extent_offset = [%ld]; " 427 "rc = [%d]\n", __func__, page->index, extent_offset, 428 rc); 429 goto out; 430 } 431 rc = 0; 432 out: 433 return rc; 434 } 435 436 /** 437 * ecryptfs_encrypt_page 438 * @page: Page mapped from the eCryptfs inode for the file; contains 439 * decrypted content that needs to be encrypted (to a temporary 440 * page; not in place) and written out to the lower file 441 * 442 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 443 * that eCryptfs pages may straddle the lower pages -- for instance, 444 * if the file was created on a machine with an 8K page size 445 * (resulting in an 8K header), and then the file is copied onto a 446 * host with a 32K page size, then when reading page 0 of the eCryptfs 447 * file, 24K of page 0 of the lower file will be read and decrypted, 448 * and then 8K of page 1 of the lower file will be read and decrypted. 449 * 450 * Returns zero on success; negative on error 451 */ 452 int ecryptfs_encrypt_page(struct page *page) 453 { 454 struct inode *ecryptfs_inode; 455 struct ecryptfs_crypt_stat *crypt_stat; 456 char *enc_extent_virt; 457 struct page *enc_extent_page = NULL; 458 loff_t extent_offset; 459 int rc = 0; 460 461 ecryptfs_inode = page->mapping->host; 462 crypt_stat = 463 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 464 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 465 enc_extent_page = alloc_page(GFP_USER); 466 if (!enc_extent_page) { 467 rc = -ENOMEM; 468 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 469 "encrypted extent\n"); 470 goto out; 471 } 472 enc_extent_virt = kmap(enc_extent_page); 473 for (extent_offset = 0; 474 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 475 extent_offset++) { 476 loff_t offset; 477 478 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 479 extent_offset); 480 if (rc) { 481 printk(KERN_ERR "%s: Error encrypting extent; " 482 "rc = [%d]\n", __func__, rc); 483 goto out; 484 } 485 ecryptfs_lower_offset_for_extent( 486 &offset, ((((loff_t)page->index) 487 * (PAGE_CACHE_SIZE 488 / crypt_stat->extent_size)) 489 + extent_offset), crypt_stat); 490 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 491 offset, crypt_stat->extent_size); 492 if (rc < 0) { 493 ecryptfs_printk(KERN_ERR, "Error attempting " 494 "to write lower page; rc = [%d]" 495 "\n", rc); 496 goto out; 497 } 498 } 499 rc = 0; 500 out: 501 if (enc_extent_page) { 502 kunmap(enc_extent_page); 503 __free_page(enc_extent_page); 504 } 505 return rc; 506 } 507 508 static int ecryptfs_decrypt_extent(struct page *page, 509 struct ecryptfs_crypt_stat *crypt_stat, 510 struct page *enc_extent_page, 511 unsigned long extent_offset) 512 { 513 loff_t extent_base; 514 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 515 int rc; 516 517 extent_base = (((loff_t)page->index) 518 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 519 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 520 (extent_base + extent_offset)); 521 if (rc) { 522 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 523 "extent [0x%.16llx]; rc = [%d]\n", 524 (unsigned long long)(extent_base + extent_offset), rc); 525 goto out; 526 } 527 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 528 (extent_offset 529 * crypt_stat->extent_size), 530 enc_extent_page, 0, 531 crypt_stat->extent_size, extent_iv); 532 if (rc < 0) { 533 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 534 "page->index = [%ld], extent_offset = [%ld]; " 535 "rc = [%d]\n", __func__, page->index, extent_offset, 536 rc); 537 goto out; 538 } 539 rc = 0; 540 out: 541 return rc; 542 } 543 544 /** 545 * ecryptfs_decrypt_page 546 * @page: Page mapped from the eCryptfs inode for the file; data read 547 * and decrypted from the lower file will be written into this 548 * page 549 * 550 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 551 * that eCryptfs pages may straddle the lower pages -- for instance, 552 * if the file was created on a machine with an 8K page size 553 * (resulting in an 8K header), and then the file is copied onto a 554 * host with a 32K page size, then when reading page 0 of the eCryptfs 555 * file, 24K of page 0 of the lower file will be read and decrypted, 556 * and then 8K of page 1 of the lower file will be read and decrypted. 557 * 558 * Returns zero on success; negative on error 559 */ 560 int ecryptfs_decrypt_page(struct page *page) 561 { 562 struct inode *ecryptfs_inode; 563 struct ecryptfs_crypt_stat *crypt_stat; 564 char *enc_extent_virt; 565 struct page *enc_extent_page = NULL; 566 unsigned long extent_offset; 567 int rc = 0; 568 569 ecryptfs_inode = page->mapping->host; 570 crypt_stat = 571 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 572 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 573 enc_extent_page = alloc_page(GFP_USER); 574 if (!enc_extent_page) { 575 rc = -ENOMEM; 576 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 577 "encrypted extent\n"); 578 goto out; 579 } 580 enc_extent_virt = kmap(enc_extent_page); 581 for (extent_offset = 0; 582 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 583 extent_offset++) { 584 loff_t offset; 585 586 ecryptfs_lower_offset_for_extent( 587 &offset, ((page->index * (PAGE_CACHE_SIZE 588 / crypt_stat->extent_size)) 589 + extent_offset), crypt_stat); 590 rc = ecryptfs_read_lower(enc_extent_virt, offset, 591 crypt_stat->extent_size, 592 ecryptfs_inode); 593 if (rc < 0) { 594 ecryptfs_printk(KERN_ERR, "Error attempting " 595 "to read lower page; rc = [%d]" 596 "\n", rc); 597 goto out; 598 } 599 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 600 extent_offset); 601 if (rc) { 602 printk(KERN_ERR "%s: Error encrypting extent; " 603 "rc = [%d]\n", __func__, rc); 604 goto out; 605 } 606 } 607 out: 608 if (enc_extent_page) { 609 kunmap(enc_extent_page); 610 __free_page(enc_extent_page); 611 } 612 return rc; 613 } 614 615 /** 616 * decrypt_scatterlist 617 * @crypt_stat: Cryptographic context 618 * @dest_sg: The destination scatterlist to decrypt into 619 * @src_sg: The source scatterlist to decrypt from 620 * @size: The number of bytes to decrypt 621 * @iv: The initialization vector to use for the decryption 622 * 623 * Returns the number of bytes decrypted; negative value on error 624 */ 625 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 626 struct scatterlist *dest_sg, 627 struct scatterlist *src_sg, int size, 628 unsigned char *iv) 629 { 630 struct blkcipher_desc desc = { 631 .tfm = crypt_stat->tfm, 632 .info = iv, 633 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 634 }; 635 int rc = 0; 636 637 /* Consider doing this once, when the file is opened */ 638 mutex_lock(&crypt_stat->cs_tfm_mutex); 639 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 640 crypt_stat->key_size); 641 if (rc) { 642 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 643 rc); 644 mutex_unlock(&crypt_stat->cs_tfm_mutex); 645 rc = -EINVAL; 646 goto out; 647 } 648 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 649 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 650 mutex_unlock(&crypt_stat->cs_tfm_mutex); 651 if (rc) { 652 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 653 rc); 654 goto out; 655 } 656 rc = size; 657 out: 658 return rc; 659 } 660 661 /** 662 * ecryptfs_encrypt_page_offset 663 * @crypt_stat: The cryptographic context 664 * @dst_page: The page to encrypt into 665 * @dst_offset: The offset in the page to encrypt into 666 * @src_page: The page to encrypt from 667 * @src_offset: The offset in the page to encrypt from 668 * @size: The number of bytes to encrypt 669 * @iv: The initialization vector to use for the encryption 670 * 671 * Returns the number of bytes encrypted 672 */ 673 static int 674 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 675 struct page *dst_page, int dst_offset, 676 struct page *src_page, int src_offset, int size, 677 unsigned char *iv) 678 { 679 struct scatterlist src_sg, dst_sg; 680 681 sg_init_table(&src_sg, 1); 682 sg_init_table(&dst_sg, 1); 683 684 sg_set_page(&src_sg, src_page, size, src_offset); 685 sg_set_page(&dst_sg, dst_page, size, dst_offset); 686 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 687 } 688 689 /** 690 * ecryptfs_decrypt_page_offset 691 * @crypt_stat: The cryptographic context 692 * @dst_page: The page to decrypt into 693 * @dst_offset: The offset in the page to decrypt into 694 * @src_page: The page to decrypt from 695 * @src_offset: The offset in the page to decrypt from 696 * @size: The number of bytes to decrypt 697 * @iv: The initialization vector to use for the decryption 698 * 699 * Returns the number of bytes decrypted 700 */ 701 static int 702 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 703 struct page *dst_page, int dst_offset, 704 struct page *src_page, int src_offset, int size, 705 unsigned char *iv) 706 { 707 struct scatterlist src_sg, dst_sg; 708 709 sg_init_table(&src_sg, 1); 710 sg_set_page(&src_sg, src_page, size, src_offset); 711 712 sg_init_table(&dst_sg, 1); 713 sg_set_page(&dst_sg, dst_page, size, dst_offset); 714 715 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 716 } 717 718 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 719 720 /** 721 * ecryptfs_init_crypt_ctx 722 * @crypt_stat: Uninitialized crypt stats structure 723 * 724 * Initialize the crypto context. 725 * 726 * TODO: Performance: Keep a cache of initialized cipher contexts; 727 * only init if needed 728 */ 729 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 730 { 731 char *full_alg_name; 732 int rc = -EINVAL; 733 734 if (!crypt_stat->cipher) { 735 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 736 goto out; 737 } 738 ecryptfs_printk(KERN_DEBUG, 739 "Initializing cipher [%s]; strlen = [%d]; " 740 "key_size_bits = [%zd]\n", 741 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 742 crypt_stat->key_size << 3); 743 if (crypt_stat->tfm) { 744 rc = 0; 745 goto out; 746 } 747 mutex_lock(&crypt_stat->cs_tfm_mutex); 748 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 749 crypt_stat->cipher, "cbc"); 750 if (rc) 751 goto out_unlock; 752 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 753 CRYPTO_ALG_ASYNC); 754 kfree(full_alg_name); 755 if (IS_ERR(crypt_stat->tfm)) { 756 rc = PTR_ERR(crypt_stat->tfm); 757 crypt_stat->tfm = NULL; 758 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 759 "Error initializing cipher [%s]\n", 760 crypt_stat->cipher); 761 goto out_unlock; 762 } 763 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 764 rc = 0; 765 out_unlock: 766 mutex_unlock(&crypt_stat->cs_tfm_mutex); 767 out: 768 return rc; 769 } 770 771 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 772 { 773 int extent_size_tmp; 774 775 crypt_stat->extent_mask = 0xFFFFFFFF; 776 crypt_stat->extent_shift = 0; 777 if (crypt_stat->extent_size == 0) 778 return; 779 extent_size_tmp = crypt_stat->extent_size; 780 while ((extent_size_tmp & 0x01) == 0) { 781 extent_size_tmp >>= 1; 782 crypt_stat->extent_mask <<= 1; 783 crypt_stat->extent_shift++; 784 } 785 } 786 787 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 788 { 789 /* Default values; may be overwritten as we are parsing the 790 * packets. */ 791 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 792 set_extent_mask_and_shift(crypt_stat); 793 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 794 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 795 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 796 else { 797 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 798 crypt_stat->metadata_size = 799 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 800 else 801 crypt_stat->metadata_size = PAGE_CACHE_SIZE; 802 } 803 } 804 805 /** 806 * ecryptfs_compute_root_iv 807 * @crypt_stats 808 * 809 * On error, sets the root IV to all 0's. 810 */ 811 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 812 { 813 int rc = 0; 814 char dst[MD5_DIGEST_SIZE]; 815 816 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 817 BUG_ON(crypt_stat->iv_bytes <= 0); 818 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 819 rc = -EINVAL; 820 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 821 "cannot generate root IV\n"); 822 goto out; 823 } 824 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 825 crypt_stat->key_size); 826 if (rc) { 827 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 828 "MD5 while generating root IV\n"); 829 goto out; 830 } 831 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 832 out: 833 if (rc) { 834 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 835 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 836 } 837 return rc; 838 } 839 840 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 841 { 842 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 843 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 844 ecryptfs_compute_root_iv(crypt_stat); 845 if (unlikely(ecryptfs_verbosity > 0)) { 846 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 847 ecryptfs_dump_hex(crypt_stat->key, 848 crypt_stat->key_size); 849 } 850 } 851 852 /** 853 * ecryptfs_copy_mount_wide_flags_to_inode_flags 854 * @crypt_stat: The inode's cryptographic context 855 * @mount_crypt_stat: The mount point's cryptographic context 856 * 857 * This function propagates the mount-wide flags to individual inode 858 * flags. 859 */ 860 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 861 struct ecryptfs_crypt_stat *crypt_stat, 862 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 863 { 864 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 865 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 866 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 867 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 868 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 869 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 870 if (mount_crypt_stat->flags 871 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 872 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 873 else if (mount_crypt_stat->flags 874 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 875 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 876 } 877 } 878 879 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 880 struct ecryptfs_crypt_stat *crypt_stat, 881 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 882 { 883 struct ecryptfs_global_auth_tok *global_auth_tok; 884 int rc = 0; 885 886 mutex_lock(&crypt_stat->keysig_list_mutex); 887 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 888 889 list_for_each_entry(global_auth_tok, 890 &mount_crypt_stat->global_auth_tok_list, 891 mount_crypt_stat_list) { 892 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 893 continue; 894 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 895 if (rc) { 896 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 897 goto out; 898 } 899 } 900 901 out: 902 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 903 mutex_unlock(&crypt_stat->keysig_list_mutex); 904 return rc; 905 } 906 907 /** 908 * ecryptfs_set_default_crypt_stat_vals 909 * @crypt_stat: The inode's cryptographic context 910 * @mount_crypt_stat: The mount point's cryptographic context 911 * 912 * Default values in the event that policy does not override them. 913 */ 914 static void ecryptfs_set_default_crypt_stat_vals( 915 struct ecryptfs_crypt_stat *crypt_stat, 916 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 917 { 918 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 919 mount_crypt_stat); 920 ecryptfs_set_default_sizes(crypt_stat); 921 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 922 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 923 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 924 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 925 crypt_stat->mount_crypt_stat = mount_crypt_stat; 926 } 927 928 /** 929 * ecryptfs_new_file_context 930 * @ecryptfs_inode: The eCryptfs inode 931 * 932 * If the crypto context for the file has not yet been established, 933 * this is where we do that. Establishing a new crypto context 934 * involves the following decisions: 935 * - What cipher to use? 936 * - What set of authentication tokens to use? 937 * Here we just worry about getting enough information into the 938 * authentication tokens so that we know that they are available. 939 * We associate the available authentication tokens with the new file 940 * via the set of signatures in the crypt_stat struct. Later, when 941 * the headers are actually written out, we may again defer to 942 * userspace to perform the encryption of the session key; for the 943 * foreseeable future, this will be the case with public key packets. 944 * 945 * Returns zero on success; non-zero otherwise 946 */ 947 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 948 { 949 struct ecryptfs_crypt_stat *crypt_stat = 950 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 951 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 952 &ecryptfs_superblock_to_private( 953 ecryptfs_inode->i_sb)->mount_crypt_stat; 954 int cipher_name_len; 955 int rc = 0; 956 957 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 958 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 960 mount_crypt_stat); 961 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 962 mount_crypt_stat); 963 if (rc) { 964 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 965 "to the inode key sigs; rc = [%d]\n", rc); 966 goto out; 967 } 968 cipher_name_len = 969 strlen(mount_crypt_stat->global_default_cipher_name); 970 memcpy(crypt_stat->cipher, 971 mount_crypt_stat->global_default_cipher_name, 972 cipher_name_len); 973 crypt_stat->cipher[cipher_name_len] = '\0'; 974 crypt_stat->key_size = 975 mount_crypt_stat->global_default_cipher_key_size; 976 ecryptfs_generate_new_key(crypt_stat); 977 rc = ecryptfs_init_crypt_ctx(crypt_stat); 978 if (rc) 979 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 980 "context for cipher [%s]: rc = [%d]\n", 981 crypt_stat->cipher, rc); 982 out: 983 return rc; 984 } 985 986 /** 987 * ecryptfs_validate_marker - check for the ecryptfs marker 988 * @data: The data block in which to check 989 * 990 * Returns zero if marker found; -EINVAL if not found 991 */ 992 static int ecryptfs_validate_marker(char *data) 993 { 994 u32 m_1, m_2; 995 996 m_1 = get_unaligned_be32(data); 997 m_2 = get_unaligned_be32(data + 4); 998 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 999 return 0; 1000 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1001 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1002 MAGIC_ECRYPTFS_MARKER); 1003 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1004 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1005 return -EINVAL; 1006 } 1007 1008 struct ecryptfs_flag_map_elem { 1009 u32 file_flag; 1010 u32 local_flag; 1011 }; 1012 1013 /* Add support for additional flags by adding elements here. */ 1014 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1015 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1016 {0x00000002, ECRYPTFS_ENCRYPTED}, 1017 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1018 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1019 }; 1020 1021 /** 1022 * ecryptfs_process_flags 1023 * @crypt_stat: The cryptographic context 1024 * @page_virt: Source data to be parsed 1025 * @bytes_read: Updated with the number of bytes read 1026 * 1027 * Returns zero on success; non-zero if the flag set is invalid 1028 */ 1029 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1030 char *page_virt, int *bytes_read) 1031 { 1032 int rc = 0; 1033 int i; 1034 u32 flags; 1035 1036 flags = get_unaligned_be32(page_virt); 1037 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1038 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1039 if (flags & ecryptfs_flag_map[i].file_flag) { 1040 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1041 } else 1042 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1043 /* Version is in top 8 bits of the 32-bit flag vector */ 1044 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1045 (*bytes_read) = 4; 1046 return rc; 1047 } 1048 1049 /** 1050 * write_ecryptfs_marker 1051 * @page_virt: The pointer to in a page to begin writing the marker 1052 * @written: Number of bytes written 1053 * 1054 * Marker = 0x3c81b7f5 1055 */ 1056 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1057 { 1058 u32 m_1, m_2; 1059 1060 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1061 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1062 put_unaligned_be32(m_1, page_virt); 1063 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1064 put_unaligned_be32(m_2, page_virt); 1065 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1066 } 1067 1068 void ecryptfs_write_crypt_stat_flags(char *page_virt, 1069 struct ecryptfs_crypt_stat *crypt_stat, 1070 size_t *written) 1071 { 1072 u32 flags = 0; 1073 int i; 1074 1075 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1076 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1077 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1078 flags |= ecryptfs_flag_map[i].file_flag; 1079 /* Version is in top 8 bits of the 32-bit flag vector */ 1080 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1081 put_unaligned_be32(flags, page_virt); 1082 (*written) = 4; 1083 } 1084 1085 struct ecryptfs_cipher_code_str_map_elem { 1086 char cipher_str[16]; 1087 u8 cipher_code; 1088 }; 1089 1090 /* Add support for additional ciphers by adding elements here. The 1091 * cipher_code is whatever OpenPGP applicatoins use to identify the 1092 * ciphers. List in order of probability. */ 1093 static struct ecryptfs_cipher_code_str_map_elem 1094 ecryptfs_cipher_code_str_map[] = { 1095 {"aes",RFC2440_CIPHER_AES_128 }, 1096 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1097 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1098 {"cast5", RFC2440_CIPHER_CAST_5}, 1099 {"twofish", RFC2440_CIPHER_TWOFISH}, 1100 {"cast6", RFC2440_CIPHER_CAST_6}, 1101 {"aes", RFC2440_CIPHER_AES_192}, 1102 {"aes", RFC2440_CIPHER_AES_256} 1103 }; 1104 1105 /** 1106 * ecryptfs_code_for_cipher_string 1107 * @cipher_name: The string alias for the cipher 1108 * @key_bytes: Length of key in bytes; used for AES code selection 1109 * 1110 * Returns zero on no match, or the cipher code on match 1111 */ 1112 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1113 { 1114 int i; 1115 u8 code = 0; 1116 struct ecryptfs_cipher_code_str_map_elem *map = 1117 ecryptfs_cipher_code_str_map; 1118 1119 if (strcmp(cipher_name, "aes") == 0) { 1120 switch (key_bytes) { 1121 case 16: 1122 code = RFC2440_CIPHER_AES_128; 1123 break; 1124 case 24: 1125 code = RFC2440_CIPHER_AES_192; 1126 break; 1127 case 32: 1128 code = RFC2440_CIPHER_AES_256; 1129 } 1130 } else { 1131 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1132 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1133 code = map[i].cipher_code; 1134 break; 1135 } 1136 } 1137 return code; 1138 } 1139 1140 /** 1141 * ecryptfs_cipher_code_to_string 1142 * @str: Destination to write out the cipher name 1143 * @cipher_code: The code to convert to cipher name string 1144 * 1145 * Returns zero on success 1146 */ 1147 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1148 { 1149 int rc = 0; 1150 int i; 1151 1152 str[0] = '\0'; 1153 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1154 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1155 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1156 if (str[0] == '\0') { 1157 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1158 "[%d]\n", cipher_code); 1159 rc = -EINVAL; 1160 } 1161 return rc; 1162 } 1163 1164 int ecryptfs_read_and_validate_header_region(struct inode *inode) 1165 { 1166 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1167 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1168 int rc; 1169 1170 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1171 inode); 1172 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1173 return rc >= 0 ? -EINVAL : rc; 1174 rc = ecryptfs_validate_marker(marker); 1175 if (!rc) 1176 ecryptfs_i_size_init(file_size, inode); 1177 return rc; 1178 } 1179 1180 void 1181 ecryptfs_write_header_metadata(char *virt, 1182 struct ecryptfs_crypt_stat *crypt_stat, 1183 size_t *written) 1184 { 1185 u32 header_extent_size; 1186 u16 num_header_extents_at_front; 1187 1188 header_extent_size = (u32)crypt_stat->extent_size; 1189 num_header_extents_at_front = 1190 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1191 put_unaligned_be32(header_extent_size, virt); 1192 virt += 4; 1193 put_unaligned_be16(num_header_extents_at_front, virt); 1194 (*written) = 6; 1195 } 1196 1197 struct kmem_cache *ecryptfs_header_cache; 1198 1199 /** 1200 * ecryptfs_write_headers_virt 1201 * @page_virt: The virtual address to write the headers to 1202 * @max: The size of memory allocated at page_virt 1203 * @size: Set to the number of bytes written by this function 1204 * @crypt_stat: The cryptographic context 1205 * @ecryptfs_dentry: The eCryptfs dentry 1206 * 1207 * Format version: 1 1208 * 1209 * Header Extent: 1210 * Octets 0-7: Unencrypted file size (big-endian) 1211 * Octets 8-15: eCryptfs special marker 1212 * Octets 16-19: Flags 1213 * Octet 16: File format version number (between 0 and 255) 1214 * Octets 17-18: Reserved 1215 * Octet 19: Bit 1 (lsb): Reserved 1216 * Bit 2: Encrypted? 1217 * Bits 3-8: Reserved 1218 * Octets 20-23: Header extent size (big-endian) 1219 * Octets 24-25: Number of header extents at front of file 1220 * (big-endian) 1221 * Octet 26: Begin RFC 2440 authentication token packet set 1222 * Data Extent 0: 1223 * Lower data (CBC encrypted) 1224 * Data Extent 1: 1225 * Lower data (CBC encrypted) 1226 * ... 1227 * 1228 * Returns zero on success 1229 */ 1230 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1231 size_t *size, 1232 struct ecryptfs_crypt_stat *crypt_stat, 1233 struct dentry *ecryptfs_dentry) 1234 { 1235 int rc; 1236 size_t written; 1237 size_t offset; 1238 1239 offset = ECRYPTFS_FILE_SIZE_BYTES; 1240 write_ecryptfs_marker((page_virt + offset), &written); 1241 offset += written; 1242 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1243 &written); 1244 offset += written; 1245 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1246 &written); 1247 offset += written; 1248 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1249 ecryptfs_dentry, &written, 1250 max - offset); 1251 if (rc) 1252 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1253 "set; rc = [%d]\n", rc); 1254 if (size) { 1255 offset += written; 1256 *size = offset; 1257 } 1258 return rc; 1259 } 1260 1261 static int 1262 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1263 char *virt, size_t virt_len) 1264 { 1265 int rc; 1266 1267 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1268 0, virt_len); 1269 if (rc < 0) 1270 printk(KERN_ERR "%s: Error attempting to write header " 1271 "information to lower file; rc = [%d]\n", __func__, rc); 1272 else 1273 rc = 0; 1274 return rc; 1275 } 1276 1277 static int 1278 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1279 char *page_virt, size_t size) 1280 { 1281 int rc; 1282 1283 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1284 size, 0); 1285 return rc; 1286 } 1287 1288 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1289 unsigned int order) 1290 { 1291 struct page *page; 1292 1293 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1294 if (page) 1295 return (unsigned long) page_address(page); 1296 return 0; 1297 } 1298 1299 /** 1300 * ecryptfs_write_metadata 1301 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1302 * @ecryptfs_inode: The newly created eCryptfs inode 1303 * 1304 * Write the file headers out. This will likely involve a userspace 1305 * callout, in which the session key is encrypted with one or more 1306 * public keys and/or the passphrase necessary to do the encryption is 1307 * retrieved via a prompt. Exactly what happens at this point should 1308 * be policy-dependent. 1309 * 1310 * Returns zero on success; non-zero on error 1311 */ 1312 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1313 struct inode *ecryptfs_inode) 1314 { 1315 struct ecryptfs_crypt_stat *crypt_stat = 1316 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1317 unsigned int order; 1318 char *virt; 1319 size_t virt_len; 1320 size_t size = 0; 1321 int rc = 0; 1322 1323 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1324 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1325 printk(KERN_ERR "Key is invalid; bailing out\n"); 1326 rc = -EINVAL; 1327 goto out; 1328 } 1329 } else { 1330 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1331 __func__); 1332 rc = -EINVAL; 1333 goto out; 1334 } 1335 virt_len = crypt_stat->metadata_size; 1336 order = get_order(virt_len); 1337 /* Released in this function */ 1338 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1339 if (!virt) { 1340 printk(KERN_ERR "%s: Out of memory\n", __func__); 1341 rc = -ENOMEM; 1342 goto out; 1343 } 1344 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1345 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1346 ecryptfs_dentry); 1347 if (unlikely(rc)) { 1348 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1349 __func__, rc); 1350 goto out_free; 1351 } 1352 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1353 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1354 size); 1355 else 1356 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1357 virt_len); 1358 if (rc) { 1359 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1360 "rc = [%d]\n", __func__, rc); 1361 goto out_free; 1362 } 1363 out_free: 1364 free_pages((unsigned long)virt, order); 1365 out: 1366 return rc; 1367 } 1368 1369 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1370 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1371 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1372 char *virt, int *bytes_read, 1373 int validate_header_size) 1374 { 1375 int rc = 0; 1376 u32 header_extent_size; 1377 u16 num_header_extents_at_front; 1378 1379 header_extent_size = get_unaligned_be32(virt); 1380 virt += sizeof(__be32); 1381 num_header_extents_at_front = get_unaligned_be16(virt); 1382 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1383 * (size_t)header_extent_size)); 1384 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1385 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1386 && (crypt_stat->metadata_size 1387 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1388 rc = -EINVAL; 1389 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1390 crypt_stat->metadata_size); 1391 } 1392 return rc; 1393 } 1394 1395 /** 1396 * set_default_header_data 1397 * @crypt_stat: The cryptographic context 1398 * 1399 * For version 0 file format; this function is only for backwards 1400 * compatibility for files created with the prior versions of 1401 * eCryptfs. 1402 */ 1403 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1404 { 1405 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1406 } 1407 1408 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1409 { 1410 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1411 struct ecryptfs_crypt_stat *crypt_stat; 1412 u64 file_size; 1413 1414 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1415 mount_crypt_stat = 1416 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1417 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1418 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1419 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1420 file_size += crypt_stat->metadata_size; 1421 } else 1422 file_size = get_unaligned_be64(page_virt); 1423 i_size_write(inode, (loff_t)file_size); 1424 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1425 } 1426 1427 /** 1428 * ecryptfs_read_headers_virt 1429 * @page_virt: The virtual address into which to read the headers 1430 * @crypt_stat: The cryptographic context 1431 * @ecryptfs_dentry: The eCryptfs dentry 1432 * @validate_header_size: Whether to validate the header size while reading 1433 * 1434 * Read/parse the header data. The header format is detailed in the 1435 * comment block for the ecryptfs_write_headers_virt() function. 1436 * 1437 * Returns zero on success 1438 */ 1439 static int ecryptfs_read_headers_virt(char *page_virt, 1440 struct ecryptfs_crypt_stat *crypt_stat, 1441 struct dentry *ecryptfs_dentry, 1442 int validate_header_size) 1443 { 1444 int rc = 0; 1445 int offset; 1446 int bytes_read; 1447 1448 ecryptfs_set_default_sizes(crypt_stat); 1449 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1450 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1451 offset = ECRYPTFS_FILE_SIZE_BYTES; 1452 rc = ecryptfs_validate_marker(page_virt + offset); 1453 if (rc) 1454 goto out; 1455 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1456 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode); 1457 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1458 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1459 &bytes_read); 1460 if (rc) { 1461 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1462 goto out; 1463 } 1464 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1465 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1466 "file version [%d] is supported by this " 1467 "version of eCryptfs\n", 1468 crypt_stat->file_version, 1469 ECRYPTFS_SUPPORTED_FILE_VERSION); 1470 rc = -EINVAL; 1471 goto out; 1472 } 1473 offset += bytes_read; 1474 if (crypt_stat->file_version >= 1) { 1475 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1476 &bytes_read, validate_header_size); 1477 if (rc) { 1478 ecryptfs_printk(KERN_WARNING, "Error reading header " 1479 "metadata; rc = [%d]\n", rc); 1480 } 1481 offset += bytes_read; 1482 } else 1483 set_default_header_data(crypt_stat); 1484 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1485 ecryptfs_dentry); 1486 out: 1487 return rc; 1488 } 1489 1490 /** 1491 * ecryptfs_read_xattr_region 1492 * @page_virt: The vitual address into which to read the xattr data 1493 * @ecryptfs_inode: The eCryptfs inode 1494 * 1495 * Attempts to read the crypto metadata from the extended attribute 1496 * region of the lower file. 1497 * 1498 * Returns zero on success; non-zero on error 1499 */ 1500 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1501 { 1502 struct dentry *lower_dentry = 1503 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1504 ssize_t size; 1505 int rc = 0; 1506 1507 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1508 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1509 if (size < 0) { 1510 if (unlikely(ecryptfs_verbosity > 0)) 1511 printk(KERN_INFO "Error attempting to read the [%s] " 1512 "xattr from the lower file; return value = " 1513 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1514 rc = -EINVAL; 1515 goto out; 1516 } 1517 out: 1518 return rc; 1519 } 1520 1521 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1522 struct inode *inode) 1523 { 1524 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1525 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1526 int rc; 1527 1528 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1529 ECRYPTFS_XATTR_NAME, file_size, 1530 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1531 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1532 return rc >= 0 ? -EINVAL : rc; 1533 rc = ecryptfs_validate_marker(marker); 1534 if (!rc) 1535 ecryptfs_i_size_init(file_size, inode); 1536 return rc; 1537 } 1538 1539 /** 1540 * ecryptfs_read_metadata 1541 * 1542 * Common entry point for reading file metadata. From here, we could 1543 * retrieve the header information from the header region of the file, 1544 * the xattr region of the file, or some other repostory that is 1545 * stored separately from the file itself. The current implementation 1546 * supports retrieving the metadata information from the file contents 1547 * and from the xattr region. 1548 * 1549 * Returns zero if valid headers found and parsed; non-zero otherwise 1550 */ 1551 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1552 { 1553 int rc; 1554 char *page_virt; 1555 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1556 struct ecryptfs_crypt_stat *crypt_stat = 1557 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1558 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1559 &ecryptfs_superblock_to_private( 1560 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1561 1562 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1563 mount_crypt_stat); 1564 /* Read the first page from the underlying file */ 1565 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1566 if (!page_virt) { 1567 rc = -ENOMEM; 1568 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1569 __func__); 1570 goto out; 1571 } 1572 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1573 ecryptfs_inode); 1574 if (rc >= 0) 1575 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1576 ecryptfs_dentry, 1577 ECRYPTFS_VALIDATE_HEADER_SIZE); 1578 if (rc) { 1579 /* metadata is not in the file header, so try xattrs */ 1580 memset(page_virt, 0, PAGE_CACHE_SIZE); 1581 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1582 if (rc) { 1583 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1584 "file header region or xattr region, inode %lu\n", 1585 ecryptfs_inode->i_ino); 1586 rc = -EINVAL; 1587 goto out; 1588 } 1589 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1590 ecryptfs_dentry, 1591 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1592 if (rc) { 1593 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1594 "file xattr region either, inode %lu\n", 1595 ecryptfs_inode->i_ino); 1596 rc = -EINVAL; 1597 } 1598 if (crypt_stat->mount_crypt_stat->flags 1599 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1600 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1601 } else { 1602 printk(KERN_WARNING "Attempt to access file with " 1603 "crypto metadata only in the extended attribute " 1604 "region, but eCryptfs was mounted without " 1605 "xattr support enabled. eCryptfs will not treat " 1606 "this like an encrypted file, inode %lu\n", 1607 ecryptfs_inode->i_ino); 1608 rc = -EINVAL; 1609 } 1610 } 1611 out: 1612 if (page_virt) { 1613 memset(page_virt, 0, PAGE_CACHE_SIZE); 1614 kmem_cache_free(ecryptfs_header_cache, page_virt); 1615 } 1616 return rc; 1617 } 1618 1619 /** 1620 * ecryptfs_encrypt_filename - encrypt filename 1621 * 1622 * CBC-encrypts the filename. We do not want to encrypt the same 1623 * filename with the same key and IV, which may happen with hard 1624 * links, so we prepend random bits to each filename. 1625 * 1626 * Returns zero on success; non-zero otherwise 1627 */ 1628 static int 1629 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1630 struct ecryptfs_crypt_stat *crypt_stat, 1631 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1632 { 1633 int rc = 0; 1634 1635 filename->encrypted_filename = NULL; 1636 filename->encrypted_filename_size = 0; 1637 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1638 || (mount_crypt_stat && (mount_crypt_stat->flags 1639 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1640 size_t packet_size; 1641 size_t remaining_bytes; 1642 1643 rc = ecryptfs_write_tag_70_packet( 1644 NULL, NULL, 1645 &filename->encrypted_filename_size, 1646 mount_crypt_stat, NULL, 1647 filename->filename_size); 1648 if (rc) { 1649 printk(KERN_ERR "%s: Error attempting to get packet " 1650 "size for tag 72; rc = [%d]\n", __func__, 1651 rc); 1652 filename->encrypted_filename_size = 0; 1653 goto out; 1654 } 1655 filename->encrypted_filename = 1656 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1657 if (!filename->encrypted_filename) { 1658 printk(KERN_ERR "%s: Out of memory whilst attempting " 1659 "to kmalloc [%zd] bytes\n", __func__, 1660 filename->encrypted_filename_size); 1661 rc = -ENOMEM; 1662 goto out; 1663 } 1664 remaining_bytes = filename->encrypted_filename_size; 1665 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1666 &remaining_bytes, 1667 &packet_size, 1668 mount_crypt_stat, 1669 filename->filename, 1670 filename->filename_size); 1671 if (rc) { 1672 printk(KERN_ERR "%s: Error attempting to generate " 1673 "tag 70 packet; rc = [%d]\n", __func__, 1674 rc); 1675 kfree(filename->encrypted_filename); 1676 filename->encrypted_filename = NULL; 1677 filename->encrypted_filename_size = 0; 1678 goto out; 1679 } 1680 filename->encrypted_filename_size = packet_size; 1681 } else { 1682 printk(KERN_ERR "%s: No support for requested filename " 1683 "encryption method in this release\n", __func__); 1684 rc = -EOPNOTSUPP; 1685 goto out; 1686 } 1687 out: 1688 return rc; 1689 } 1690 1691 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1692 const char *name, size_t name_size) 1693 { 1694 int rc = 0; 1695 1696 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1697 if (!(*copied_name)) { 1698 rc = -ENOMEM; 1699 goto out; 1700 } 1701 memcpy((void *)(*copied_name), (void *)name, name_size); 1702 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1703 * in printing out the 1704 * string in debug 1705 * messages */ 1706 (*copied_name_size) = name_size; 1707 out: 1708 return rc; 1709 } 1710 1711 /** 1712 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1713 * @key_tfm: Crypto context for key material, set by this function 1714 * @cipher_name: Name of the cipher 1715 * @key_size: Size of the key in bytes 1716 * 1717 * Returns zero on success. Any crypto_tfm structs allocated here 1718 * should be released by other functions, such as on a superblock put 1719 * event, regardless of whether this function succeeds for fails. 1720 */ 1721 static int 1722 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1723 char *cipher_name, size_t *key_size) 1724 { 1725 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1726 char *full_alg_name = NULL; 1727 int rc; 1728 1729 *key_tfm = NULL; 1730 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1731 rc = -EINVAL; 1732 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1733 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1734 goto out; 1735 } 1736 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1737 "ecb"); 1738 if (rc) 1739 goto out; 1740 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1741 if (IS_ERR(*key_tfm)) { 1742 rc = PTR_ERR(*key_tfm); 1743 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1744 "[%s]; rc = [%d]\n", full_alg_name, rc); 1745 goto out; 1746 } 1747 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1748 if (*key_size == 0) { 1749 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1750 1751 *key_size = alg->max_keysize; 1752 } 1753 get_random_bytes(dummy_key, *key_size); 1754 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1755 if (rc) { 1756 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1757 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1758 rc); 1759 rc = -EINVAL; 1760 goto out; 1761 } 1762 out: 1763 kfree(full_alg_name); 1764 return rc; 1765 } 1766 1767 struct kmem_cache *ecryptfs_key_tfm_cache; 1768 static struct list_head key_tfm_list; 1769 struct mutex key_tfm_list_mutex; 1770 1771 int __init ecryptfs_init_crypto(void) 1772 { 1773 mutex_init(&key_tfm_list_mutex); 1774 INIT_LIST_HEAD(&key_tfm_list); 1775 return 0; 1776 } 1777 1778 /** 1779 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1780 * 1781 * Called only at module unload time 1782 */ 1783 int ecryptfs_destroy_crypto(void) 1784 { 1785 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1786 1787 mutex_lock(&key_tfm_list_mutex); 1788 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1789 key_tfm_list) { 1790 list_del(&key_tfm->key_tfm_list); 1791 if (key_tfm->key_tfm) 1792 crypto_free_blkcipher(key_tfm->key_tfm); 1793 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1794 } 1795 mutex_unlock(&key_tfm_list_mutex); 1796 return 0; 1797 } 1798 1799 int 1800 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1801 size_t key_size) 1802 { 1803 struct ecryptfs_key_tfm *tmp_tfm; 1804 int rc = 0; 1805 1806 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1807 1808 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1809 if (key_tfm != NULL) 1810 (*key_tfm) = tmp_tfm; 1811 if (!tmp_tfm) { 1812 rc = -ENOMEM; 1813 printk(KERN_ERR "Error attempting to allocate from " 1814 "ecryptfs_key_tfm_cache\n"); 1815 goto out; 1816 } 1817 mutex_init(&tmp_tfm->key_tfm_mutex); 1818 strncpy(tmp_tfm->cipher_name, cipher_name, 1819 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1820 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1821 tmp_tfm->key_size = key_size; 1822 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1823 tmp_tfm->cipher_name, 1824 &tmp_tfm->key_size); 1825 if (rc) { 1826 printk(KERN_ERR "Error attempting to initialize key TFM " 1827 "cipher with name = [%s]; rc = [%d]\n", 1828 tmp_tfm->cipher_name, rc); 1829 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1830 if (key_tfm != NULL) 1831 (*key_tfm) = NULL; 1832 goto out; 1833 } 1834 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1835 out: 1836 return rc; 1837 } 1838 1839 /** 1840 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1841 * @cipher_name: the name of the cipher to search for 1842 * @key_tfm: set to corresponding tfm if found 1843 * 1844 * Searches for cached key_tfm matching @cipher_name 1845 * Must be called with &key_tfm_list_mutex held 1846 * Returns 1 if found, with @key_tfm set 1847 * Returns 0 if not found, with @key_tfm set to NULL 1848 */ 1849 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1850 { 1851 struct ecryptfs_key_tfm *tmp_key_tfm; 1852 1853 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1854 1855 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1856 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1857 if (key_tfm) 1858 (*key_tfm) = tmp_key_tfm; 1859 return 1; 1860 } 1861 } 1862 if (key_tfm) 1863 (*key_tfm) = NULL; 1864 return 0; 1865 } 1866 1867 /** 1868 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1869 * 1870 * @tfm: set to cached tfm found, or new tfm created 1871 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1872 * @cipher_name: the name of the cipher to search for and/or add 1873 * 1874 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1875 * Searches for cached item first, and creates new if not found. 1876 * Returns 0 on success, non-zero if adding new cipher failed 1877 */ 1878 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1879 struct mutex **tfm_mutex, 1880 char *cipher_name) 1881 { 1882 struct ecryptfs_key_tfm *key_tfm; 1883 int rc = 0; 1884 1885 (*tfm) = NULL; 1886 (*tfm_mutex) = NULL; 1887 1888 mutex_lock(&key_tfm_list_mutex); 1889 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1890 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1891 if (rc) { 1892 printk(KERN_ERR "Error adding new key_tfm to list; " 1893 "rc = [%d]\n", rc); 1894 goto out; 1895 } 1896 } 1897 (*tfm) = key_tfm->key_tfm; 1898 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1899 out: 1900 mutex_unlock(&key_tfm_list_mutex); 1901 return rc; 1902 } 1903 1904 /* 64 characters forming a 6-bit target field */ 1905 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1906 "EFGHIJKLMNOPQRST" 1907 "UVWXYZabcdefghij" 1908 "klmnopqrstuvwxyz"); 1909 1910 /* We could either offset on every reverse map or just pad some 0x00's 1911 * at the front here */ 1912 static const unsigned char filename_rev_map[256] = { 1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1916 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1917 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1918 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1919 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1920 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1921 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1922 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1923 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1924 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1925 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1926 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1927 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1928 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1929 }; 1930 1931 /** 1932 * ecryptfs_encode_for_filename 1933 * @dst: Destination location for encoded filename 1934 * @dst_size: Size of the encoded filename in bytes 1935 * @src: Source location for the filename to encode 1936 * @src_size: Size of the source in bytes 1937 */ 1938 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1939 unsigned char *src, size_t src_size) 1940 { 1941 size_t num_blocks; 1942 size_t block_num = 0; 1943 size_t dst_offset = 0; 1944 unsigned char last_block[3]; 1945 1946 if (src_size == 0) { 1947 (*dst_size) = 0; 1948 goto out; 1949 } 1950 num_blocks = (src_size / 3); 1951 if ((src_size % 3) == 0) { 1952 memcpy(last_block, (&src[src_size - 3]), 3); 1953 } else { 1954 num_blocks++; 1955 last_block[2] = 0x00; 1956 switch (src_size % 3) { 1957 case 1: 1958 last_block[0] = src[src_size - 1]; 1959 last_block[1] = 0x00; 1960 break; 1961 case 2: 1962 last_block[0] = src[src_size - 2]; 1963 last_block[1] = src[src_size - 1]; 1964 } 1965 } 1966 (*dst_size) = (num_blocks * 4); 1967 if (!dst) 1968 goto out; 1969 while (block_num < num_blocks) { 1970 unsigned char *src_block; 1971 unsigned char dst_block[4]; 1972 1973 if (block_num == (num_blocks - 1)) 1974 src_block = last_block; 1975 else 1976 src_block = &src[block_num * 3]; 1977 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1978 dst_block[1] = (((src_block[0] << 4) & 0x30) 1979 | ((src_block[1] >> 4) & 0x0F)); 1980 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1981 | ((src_block[2] >> 6) & 0x03)); 1982 dst_block[3] = (src_block[2] & 0x3F); 1983 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1984 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1985 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1986 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1987 block_num++; 1988 } 1989 out: 1990 return; 1991 } 1992 1993 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1994 { 1995 /* Not exact; conservatively long. Every block of 4 1996 * encoded characters decodes into a block of 3 1997 * decoded characters. This segment of code provides 1998 * the caller with the maximum amount of allocated 1999 * space that @dst will need to point to in a 2000 * subsequent call. */ 2001 return ((encoded_size + 1) * 3) / 4; 2002 } 2003 2004 /** 2005 * ecryptfs_decode_from_filename 2006 * @dst: If NULL, this function only sets @dst_size and returns. If 2007 * non-NULL, this function decodes the encoded octets in @src 2008 * into the memory that @dst points to. 2009 * @dst_size: Set to the size of the decoded string. 2010 * @src: The encoded set of octets to decode. 2011 * @src_size: The size of the encoded set of octets to decode. 2012 */ 2013 static void 2014 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2015 const unsigned char *src, size_t src_size) 2016 { 2017 u8 current_bit_offset = 0; 2018 size_t src_byte_offset = 0; 2019 size_t dst_byte_offset = 0; 2020 2021 if (dst == NULL) { 2022 (*dst_size) = ecryptfs_max_decoded_size(src_size); 2023 goto out; 2024 } 2025 while (src_byte_offset < src_size) { 2026 unsigned char src_byte = 2027 filename_rev_map[(int)src[src_byte_offset]]; 2028 2029 switch (current_bit_offset) { 2030 case 0: 2031 dst[dst_byte_offset] = (src_byte << 2); 2032 current_bit_offset = 6; 2033 break; 2034 case 6: 2035 dst[dst_byte_offset++] |= (src_byte >> 4); 2036 dst[dst_byte_offset] = ((src_byte & 0xF) 2037 << 4); 2038 current_bit_offset = 4; 2039 break; 2040 case 4: 2041 dst[dst_byte_offset++] |= (src_byte >> 2); 2042 dst[dst_byte_offset] = (src_byte << 6); 2043 current_bit_offset = 2; 2044 break; 2045 case 2: 2046 dst[dst_byte_offset++] |= (src_byte); 2047 dst[dst_byte_offset] = 0; 2048 current_bit_offset = 0; 2049 break; 2050 } 2051 src_byte_offset++; 2052 } 2053 (*dst_size) = dst_byte_offset; 2054 out: 2055 return; 2056 } 2057 2058 /** 2059 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2060 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2061 * @name: The plaintext name 2062 * @length: The length of the plaintext 2063 * @encoded_name: The encypted name 2064 * 2065 * Encrypts and encodes a filename into something that constitutes a 2066 * valid filename for a filesystem, with printable characters. 2067 * 2068 * We assume that we have a properly initialized crypto context, 2069 * pointed to by crypt_stat->tfm. 2070 * 2071 * Returns zero on success; non-zero on otherwise 2072 */ 2073 int ecryptfs_encrypt_and_encode_filename( 2074 char **encoded_name, 2075 size_t *encoded_name_size, 2076 struct ecryptfs_crypt_stat *crypt_stat, 2077 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2078 const char *name, size_t name_size) 2079 { 2080 size_t encoded_name_no_prefix_size; 2081 int rc = 0; 2082 2083 (*encoded_name) = NULL; 2084 (*encoded_name_size) = 0; 2085 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2086 || (mount_crypt_stat && (mount_crypt_stat->flags 2087 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2088 struct ecryptfs_filename *filename; 2089 2090 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2091 if (!filename) { 2092 printk(KERN_ERR "%s: Out of memory whilst attempting " 2093 "to kzalloc [%zd] bytes\n", __func__, 2094 sizeof(*filename)); 2095 rc = -ENOMEM; 2096 goto out; 2097 } 2098 filename->filename = (char *)name; 2099 filename->filename_size = name_size; 2100 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2101 mount_crypt_stat); 2102 if (rc) { 2103 printk(KERN_ERR "%s: Error attempting to encrypt " 2104 "filename; rc = [%d]\n", __func__, rc); 2105 kfree(filename); 2106 goto out; 2107 } 2108 ecryptfs_encode_for_filename( 2109 NULL, &encoded_name_no_prefix_size, 2110 filename->encrypted_filename, 2111 filename->encrypted_filename_size); 2112 if ((crypt_stat && (crypt_stat->flags 2113 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2114 || (mount_crypt_stat 2115 && (mount_crypt_stat->flags 2116 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2117 (*encoded_name_size) = 2118 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2119 + encoded_name_no_prefix_size); 2120 else 2121 (*encoded_name_size) = 2122 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2123 + encoded_name_no_prefix_size); 2124 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2125 if (!(*encoded_name)) { 2126 printk(KERN_ERR "%s: Out of memory whilst attempting " 2127 "to kzalloc [%zd] bytes\n", __func__, 2128 (*encoded_name_size)); 2129 rc = -ENOMEM; 2130 kfree(filename->encrypted_filename); 2131 kfree(filename); 2132 goto out; 2133 } 2134 if ((crypt_stat && (crypt_stat->flags 2135 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2136 || (mount_crypt_stat 2137 && (mount_crypt_stat->flags 2138 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2139 memcpy((*encoded_name), 2140 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2141 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2142 ecryptfs_encode_for_filename( 2143 ((*encoded_name) 2144 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2145 &encoded_name_no_prefix_size, 2146 filename->encrypted_filename, 2147 filename->encrypted_filename_size); 2148 (*encoded_name_size) = 2149 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2150 + encoded_name_no_prefix_size); 2151 (*encoded_name)[(*encoded_name_size)] = '\0'; 2152 } else { 2153 rc = -EOPNOTSUPP; 2154 } 2155 if (rc) { 2156 printk(KERN_ERR "%s: Error attempting to encode " 2157 "encrypted filename; rc = [%d]\n", __func__, 2158 rc); 2159 kfree((*encoded_name)); 2160 (*encoded_name) = NULL; 2161 (*encoded_name_size) = 0; 2162 } 2163 kfree(filename->encrypted_filename); 2164 kfree(filename); 2165 } else { 2166 rc = ecryptfs_copy_filename(encoded_name, 2167 encoded_name_size, 2168 name, name_size); 2169 } 2170 out: 2171 return rc; 2172 } 2173 2174 /** 2175 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2176 * @plaintext_name: The plaintext name 2177 * @plaintext_name_size: The plaintext name size 2178 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2179 * @name: The filename in cipher text 2180 * @name_size: The cipher text name size 2181 * 2182 * Decrypts and decodes the filename. 2183 * 2184 * Returns zero on error; non-zero otherwise 2185 */ 2186 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2187 size_t *plaintext_name_size, 2188 struct dentry *ecryptfs_dir_dentry, 2189 const char *name, size_t name_size) 2190 { 2191 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2192 &ecryptfs_superblock_to_private( 2193 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2194 char *decoded_name; 2195 size_t decoded_name_size; 2196 size_t packet_size; 2197 int rc = 0; 2198 2199 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2200 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2201 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2202 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2203 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2204 const char *orig_name = name; 2205 size_t orig_name_size = name_size; 2206 2207 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2208 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2209 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2210 name, name_size); 2211 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2212 if (!decoded_name) { 2213 printk(KERN_ERR "%s: Out of memory whilst attempting " 2214 "to kmalloc [%zd] bytes\n", __func__, 2215 decoded_name_size); 2216 rc = -ENOMEM; 2217 goto out; 2218 } 2219 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2220 name, name_size); 2221 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2222 plaintext_name_size, 2223 &packet_size, 2224 mount_crypt_stat, 2225 decoded_name, 2226 decoded_name_size); 2227 if (rc) { 2228 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2229 "from filename; copying through filename " 2230 "as-is\n", __func__); 2231 rc = ecryptfs_copy_filename(plaintext_name, 2232 plaintext_name_size, 2233 orig_name, orig_name_size); 2234 goto out_free; 2235 } 2236 } else { 2237 rc = ecryptfs_copy_filename(plaintext_name, 2238 plaintext_name_size, 2239 name, name_size); 2240 goto out; 2241 } 2242 out_free: 2243 kfree(decoded_name); 2244 out: 2245 return rc; 2246 } 2247 2248 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2249 2250 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2251 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2252 { 2253 struct blkcipher_desc desc; 2254 struct mutex *tfm_mutex; 2255 size_t cipher_blocksize; 2256 int rc; 2257 2258 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2259 (*namelen) = lower_namelen; 2260 return 0; 2261 } 2262 2263 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex, 2264 mount_crypt_stat->global_default_fn_cipher_name); 2265 if (unlikely(rc)) { 2266 (*namelen) = 0; 2267 return rc; 2268 } 2269 2270 mutex_lock(tfm_mutex); 2271 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm); 2272 mutex_unlock(tfm_mutex); 2273 2274 /* Return an exact amount for the common cases */ 2275 if (lower_namelen == NAME_MAX 2276 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2277 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2278 return 0; 2279 } 2280 2281 /* Return a safe estimate for the uncommon cases */ 2282 (*namelen) = lower_namelen; 2283 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2284 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2285 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2286 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2287 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2288 /* Worst case is that the filename is padded nearly a full block size */ 2289 (*namelen) -= cipher_blocksize - 1; 2290 2291 if ((*namelen) < 0) 2292 (*namelen) = 0; 2293 2294 return 0; 2295 } 2296