xref: /linux/fs/ecryptfs/crypto.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
28 #include <linux/fs.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include <linux/kernel.h>
40 #include "ecryptfs_kernel.h"
41 
42 #define DECRYPT		0
43 #define ENCRYPT		1
44 
45 /**
46  * ecryptfs_from_hex
47  * @dst: Buffer to take the bytes from src hex; must be at least of
48  *       size (src_size / 2)
49  * @src: Buffer to be converted from a hex string representation to raw value
50  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
51  */
52 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
53 {
54 	int x;
55 	char tmp[3] = { 0, };
56 
57 	for (x = 0; x < dst_size; x++) {
58 		tmp[0] = src[x * 2];
59 		tmp[1] = src[x * 2 + 1];
60 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
61 	}
62 }
63 
64 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
65 				char *src, int len, char *dst)
66 {
67 	SHASH_DESC_ON_STACK(desc, tfm);
68 	int err;
69 
70 	desc->tfm = tfm;
71 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
72 	err = crypto_shash_digest(desc, src, len, dst);
73 	shash_desc_zero(desc);
74 	return err;
75 }
76 
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
87 static int ecryptfs_calculate_md5(char *dst,
88 				  struct ecryptfs_crypt_stat *crypt_stat,
89 				  char *src, int len)
90 {
91 	struct crypto_shash *tfm;
92 	int rc = 0;
93 
94 	tfm = crypt_stat->hash_tfm;
95 	rc = ecryptfs_hash_digest(tfm, src, len, dst);
96 	if (rc) {
97 		printk(KERN_ERR
98 		       "%s: Error computing crypto hash; rc = [%d]\n",
99 		       __func__, rc);
100 		goto out;
101 	}
102 out:
103 	return rc;
104 }
105 
106 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
107 						  char *cipher_name,
108 						  char *chaining_modifier)
109 {
110 	int cipher_name_len = strlen(cipher_name);
111 	int chaining_modifier_len = strlen(chaining_modifier);
112 	int algified_name_len;
113 	int rc;
114 
115 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
116 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
117 	if (!(*algified_name)) {
118 		rc = -ENOMEM;
119 		goto out;
120 	}
121 	snprintf((*algified_name), algified_name_len, "%s(%s)",
122 		 chaining_modifier, cipher_name);
123 	rc = 0;
124 out:
125 	return rc;
126 }
127 
128 /**
129  * ecryptfs_derive_iv
130  * @iv: destination for the derived iv vale
131  * @crypt_stat: Pointer to crypt_stat struct for the current inode
132  * @offset: Offset of the extent whose IV we are to derive
133  *
134  * Generate the initialization vector from the given root IV and page
135  * offset.
136  *
137  * Returns zero on success; non-zero on error.
138  */
139 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
140 		       loff_t offset)
141 {
142 	int rc = 0;
143 	char dst[MD5_DIGEST_SIZE];
144 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
145 
146 	if (unlikely(ecryptfs_verbosity > 0)) {
147 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
148 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
149 	}
150 	/* TODO: It is probably secure to just cast the least
151 	 * significant bits of the root IV into an unsigned long and
152 	 * add the offset to that rather than go through all this
153 	 * hashing business. -Halcrow */
154 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
155 	memset((src + crypt_stat->iv_bytes), 0, 16);
156 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
157 	if (unlikely(ecryptfs_verbosity > 0)) {
158 		ecryptfs_printk(KERN_DEBUG, "source:\n");
159 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
160 	}
161 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
162 				    (crypt_stat->iv_bytes + 16));
163 	if (rc) {
164 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
165 				"MD5 while generating IV for a page\n");
166 		goto out;
167 	}
168 	memcpy(iv, dst, crypt_stat->iv_bytes);
169 	if (unlikely(ecryptfs_verbosity > 0)) {
170 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
171 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
172 	}
173 out:
174 	return rc;
175 }
176 
177 /**
178  * ecryptfs_init_crypt_stat
179  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
180  *
181  * Initialize the crypt_stat structure.
182  */
183 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
184 {
185 	struct crypto_shash *tfm;
186 	int rc;
187 
188 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
189 	if (IS_ERR(tfm)) {
190 		rc = PTR_ERR(tfm);
191 		ecryptfs_printk(KERN_ERR, "Error attempting to "
192 				"allocate crypto context; rc = [%d]\n",
193 				rc);
194 		return rc;
195 	}
196 
197 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
198 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
199 	mutex_init(&crypt_stat->keysig_list_mutex);
200 	mutex_init(&crypt_stat->cs_mutex);
201 	mutex_init(&crypt_stat->cs_tfm_mutex);
202 	crypt_stat->hash_tfm = tfm;
203 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
204 
205 	return 0;
206 }
207 
208 /**
209  * ecryptfs_destroy_crypt_stat
210  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
211  *
212  * Releases all memory associated with a crypt_stat struct.
213  */
214 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
215 {
216 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
217 
218 	crypto_free_skcipher(crypt_stat->tfm);
219 	crypto_free_shash(crypt_stat->hash_tfm);
220 	list_for_each_entry_safe(key_sig, key_sig_tmp,
221 				 &crypt_stat->keysig_list, crypt_stat_list) {
222 		list_del(&key_sig->crypt_stat_list);
223 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
224 	}
225 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227 
228 void ecryptfs_destroy_mount_crypt_stat(
229 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
232 
233 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
234 		return;
235 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
236 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
237 				 &mount_crypt_stat->global_auth_tok_list,
238 				 mount_crypt_stat_list) {
239 		list_del(&auth_tok->mount_crypt_stat_list);
240 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
241 			key_put(auth_tok->global_auth_tok_key);
242 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
243 	}
244 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
245 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
246 }
247 
248 /**
249  * virt_to_scatterlist
250  * @addr: Virtual address
251  * @size: Size of data; should be an even multiple of the block size
252  * @sg: Pointer to scatterlist array; set to NULL to obtain only
253  *      the number of scatterlist structs required in array
254  * @sg_size: Max array size
255  *
256  * Fills in a scatterlist array with page references for a passed
257  * virtual address.
258  *
259  * Returns the number of scatterlist structs in array used
260  */
261 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
262 			int sg_size)
263 {
264 	int i = 0;
265 	struct page *pg;
266 	int offset;
267 	int remainder_of_page;
268 
269 	sg_init_table(sg, sg_size);
270 
271 	while (size > 0 && i < sg_size) {
272 		pg = virt_to_page(addr);
273 		offset = offset_in_page(addr);
274 		sg_set_page(&sg[i], pg, 0, offset);
275 		remainder_of_page = PAGE_SIZE - offset;
276 		if (size >= remainder_of_page) {
277 			sg[i].length = remainder_of_page;
278 			addr += remainder_of_page;
279 			size -= remainder_of_page;
280 		} else {
281 			sg[i].length = size;
282 			addr += size;
283 			size = 0;
284 		}
285 		i++;
286 	}
287 	if (size > 0)
288 		return -ENOMEM;
289 	return i;
290 }
291 
292 struct extent_crypt_result {
293 	struct completion completion;
294 	int rc;
295 };
296 
297 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
298 {
299 	struct extent_crypt_result *ecr = req->data;
300 
301 	if (rc == -EINPROGRESS)
302 		return;
303 
304 	ecr->rc = rc;
305 	complete(&ecr->completion);
306 }
307 
308 /**
309  * crypt_scatterlist
310  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311  * @dst_sg: Destination of the data after performing the crypto operation
312  * @src_sg: Data to be encrypted or decrypted
313  * @size: Length of data
314  * @iv: IV to use
315  * @op: ENCRYPT or DECRYPT to indicate the desired operation
316  *
317  * Returns the number of bytes encrypted or decrypted; negative value on error
318  */
319 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
320 			     struct scatterlist *dst_sg,
321 			     struct scatterlist *src_sg, int size,
322 			     unsigned char *iv, int op)
323 {
324 	struct skcipher_request *req = NULL;
325 	struct extent_crypt_result ecr;
326 	int rc = 0;
327 
328 	BUG_ON(!crypt_stat || !crypt_stat->tfm
329 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
330 	if (unlikely(ecryptfs_verbosity > 0)) {
331 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
332 				crypt_stat->key_size);
333 		ecryptfs_dump_hex(crypt_stat->key,
334 				  crypt_stat->key_size);
335 	}
336 
337 	init_completion(&ecr.completion);
338 
339 	mutex_lock(&crypt_stat->cs_tfm_mutex);
340 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
341 	if (!req) {
342 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
343 		rc = -ENOMEM;
344 		goto out;
345 	}
346 
347 	skcipher_request_set_callback(req,
348 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
349 			extent_crypt_complete, &ecr);
350 	/* Consider doing this once, when the file is opened */
351 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
352 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
353 					    crypt_stat->key_size);
354 		if (rc) {
355 			ecryptfs_printk(KERN_ERR,
356 					"Error setting key; rc = [%d]\n",
357 					rc);
358 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
359 			rc = -EINVAL;
360 			goto out;
361 		}
362 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 	}
364 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
365 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
366 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
367 			     crypto_skcipher_decrypt(req);
368 	if (rc == -EINPROGRESS || rc == -EBUSY) {
369 		struct extent_crypt_result *ecr = req->base.data;
370 
371 		wait_for_completion(&ecr->completion);
372 		rc = ecr->rc;
373 		reinit_completion(&ecr->completion);
374 	}
375 out:
376 	skcipher_request_free(req);
377 	return rc;
378 }
379 
380 /**
381  * lower_offset_for_page
382  *
383  * Convert an eCryptfs page index into a lower byte offset
384  */
385 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
386 				    struct page *page)
387 {
388 	return ecryptfs_lower_header_size(crypt_stat) +
389 	       ((loff_t)page->index << PAGE_SHIFT);
390 }
391 
392 /**
393  * crypt_extent
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @dst_page: The page to write the result into
397  * @src_page: The page to read from
398  * @extent_offset: Page extent offset for use in generating IV
399  * @op: ENCRYPT or DECRYPT to indicate the desired operation
400  *
401  * Encrypts or decrypts one extent of data.
402  *
403  * Return zero on success; non-zero otherwise
404  */
405 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
406 			struct page *dst_page,
407 			struct page *src_page,
408 			unsigned long extent_offset, int op)
409 {
410 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
411 	loff_t extent_base;
412 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
413 	struct scatterlist src_sg, dst_sg;
414 	size_t extent_size = crypt_stat->extent_size;
415 	int rc;
416 
417 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
418 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
419 				(extent_base + extent_offset));
420 	if (rc) {
421 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
422 			"extent [0x%.16llx]; rc = [%d]\n",
423 			(unsigned long long)(extent_base + extent_offset), rc);
424 		goto out;
425 	}
426 
427 	sg_init_table(&src_sg, 1);
428 	sg_init_table(&dst_sg, 1);
429 
430 	sg_set_page(&src_sg, src_page, extent_size,
431 		    extent_offset * extent_size);
432 	sg_set_page(&dst_sg, dst_page, extent_size,
433 		    extent_offset * extent_size);
434 
435 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
436 			       extent_iv, op);
437 	if (rc < 0) {
438 		printk(KERN_ERR "%s: Error attempting to crypt page with "
439 		       "page_index = [%ld], extent_offset = [%ld]; "
440 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
441 		goto out;
442 	}
443 	rc = 0;
444 out:
445 	return rc;
446 }
447 
448 /**
449  * ecryptfs_encrypt_page
450  * @page: Page mapped from the eCryptfs inode for the file; contains
451  *        decrypted content that needs to be encrypted (to a temporary
452  *        page; not in place) and written out to the lower file
453  *
454  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
455  * that eCryptfs pages may straddle the lower pages -- for instance,
456  * if the file was created on a machine with an 8K page size
457  * (resulting in an 8K header), and then the file is copied onto a
458  * host with a 32K page size, then when reading page 0 of the eCryptfs
459  * file, 24K of page 0 of the lower file will be read and decrypted,
460  * and then 8K of page 1 of the lower file will be read and decrypted.
461  *
462  * Returns zero on success; negative on error
463  */
464 int ecryptfs_encrypt_page(struct page *page)
465 {
466 	struct inode *ecryptfs_inode;
467 	struct ecryptfs_crypt_stat *crypt_stat;
468 	char *enc_extent_virt;
469 	struct page *enc_extent_page = NULL;
470 	loff_t extent_offset;
471 	loff_t lower_offset;
472 	int rc = 0;
473 
474 	ecryptfs_inode = page->mapping->host;
475 	crypt_stat =
476 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
477 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
478 	enc_extent_page = alloc_page(GFP_USER);
479 	if (!enc_extent_page) {
480 		rc = -ENOMEM;
481 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
482 				"encrypted extent\n");
483 		goto out;
484 	}
485 
486 	for (extent_offset = 0;
487 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
488 	     extent_offset++) {
489 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
490 				  extent_offset, ENCRYPT);
491 		if (rc) {
492 			printk(KERN_ERR "%s: Error encrypting extent; "
493 			       "rc = [%d]\n", __func__, rc);
494 			goto out;
495 		}
496 	}
497 
498 	lower_offset = lower_offset_for_page(crypt_stat, page);
499 	enc_extent_virt = kmap(enc_extent_page);
500 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
501 				  PAGE_SIZE);
502 	kunmap(enc_extent_page);
503 	if (rc < 0) {
504 		ecryptfs_printk(KERN_ERR,
505 			"Error attempting to write lower page; rc = [%d]\n",
506 			rc);
507 		goto out;
508 	}
509 	rc = 0;
510 out:
511 	if (enc_extent_page) {
512 		__free_page(enc_extent_page);
513 	}
514 	return rc;
515 }
516 
517 /**
518  * ecryptfs_decrypt_page
519  * @page: Page mapped from the eCryptfs inode for the file; data read
520  *        and decrypted from the lower file will be written into this
521  *        page
522  *
523  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
524  * that eCryptfs pages may straddle the lower pages -- for instance,
525  * if the file was created on a machine with an 8K page size
526  * (resulting in an 8K header), and then the file is copied onto a
527  * host with a 32K page size, then when reading page 0 of the eCryptfs
528  * file, 24K of page 0 of the lower file will be read and decrypted,
529  * and then 8K of page 1 of the lower file will be read and decrypted.
530  *
531  * Returns zero on success; negative on error
532  */
533 int ecryptfs_decrypt_page(struct page *page)
534 {
535 	struct inode *ecryptfs_inode;
536 	struct ecryptfs_crypt_stat *crypt_stat;
537 	char *page_virt;
538 	unsigned long extent_offset;
539 	loff_t lower_offset;
540 	int rc = 0;
541 
542 	ecryptfs_inode = page->mapping->host;
543 	crypt_stat =
544 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
545 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
546 
547 	lower_offset = lower_offset_for_page(crypt_stat, page);
548 	page_virt = kmap(page);
549 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
550 				 ecryptfs_inode);
551 	kunmap(page);
552 	if (rc < 0) {
553 		ecryptfs_printk(KERN_ERR,
554 			"Error attempting to read lower page; rc = [%d]\n",
555 			rc);
556 		goto out;
557 	}
558 
559 	for (extent_offset = 0;
560 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
561 	     extent_offset++) {
562 		rc = crypt_extent(crypt_stat, page, page,
563 				  extent_offset, DECRYPT);
564 		if (rc) {
565 			printk(KERN_ERR "%s: Error encrypting extent; "
566 			       "rc = [%d]\n", __func__, rc);
567 			goto out;
568 		}
569 	}
570 out:
571 	return rc;
572 }
573 
574 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
575 
576 /**
577  * ecryptfs_init_crypt_ctx
578  * @crypt_stat: Uninitialized crypt stats structure
579  *
580  * Initialize the crypto context.
581  *
582  * TODO: Performance: Keep a cache of initialized cipher contexts;
583  * only init if needed
584  */
585 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
586 {
587 	char *full_alg_name;
588 	int rc = -EINVAL;
589 
590 	ecryptfs_printk(KERN_DEBUG,
591 			"Initializing cipher [%s]; strlen = [%d]; "
592 			"key_size_bits = [%zd]\n",
593 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
594 			crypt_stat->key_size << 3);
595 	mutex_lock(&crypt_stat->cs_tfm_mutex);
596 	if (crypt_stat->tfm) {
597 		rc = 0;
598 		goto out_unlock;
599 	}
600 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
601 						    crypt_stat->cipher, "cbc");
602 	if (rc)
603 		goto out_unlock;
604 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
605 	if (IS_ERR(crypt_stat->tfm)) {
606 		rc = PTR_ERR(crypt_stat->tfm);
607 		crypt_stat->tfm = NULL;
608 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
609 				"Error initializing cipher [%s]\n",
610 				full_alg_name);
611 		goto out_free;
612 	}
613 	crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
614 	rc = 0;
615 out_free:
616 	kfree(full_alg_name);
617 out_unlock:
618 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
619 	return rc;
620 }
621 
622 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
623 {
624 	int extent_size_tmp;
625 
626 	crypt_stat->extent_mask = 0xFFFFFFFF;
627 	crypt_stat->extent_shift = 0;
628 	if (crypt_stat->extent_size == 0)
629 		return;
630 	extent_size_tmp = crypt_stat->extent_size;
631 	while ((extent_size_tmp & 0x01) == 0) {
632 		extent_size_tmp >>= 1;
633 		crypt_stat->extent_mask <<= 1;
634 		crypt_stat->extent_shift++;
635 	}
636 }
637 
638 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
639 {
640 	/* Default values; may be overwritten as we are parsing the
641 	 * packets. */
642 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
643 	set_extent_mask_and_shift(crypt_stat);
644 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
645 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
646 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
647 	else {
648 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
649 			crypt_stat->metadata_size =
650 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
651 		else
652 			crypt_stat->metadata_size = PAGE_SIZE;
653 	}
654 }
655 
656 /**
657  * ecryptfs_compute_root_iv
658  * @crypt_stats
659  *
660  * On error, sets the root IV to all 0's.
661  */
662 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
663 {
664 	int rc = 0;
665 	char dst[MD5_DIGEST_SIZE];
666 
667 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
668 	BUG_ON(crypt_stat->iv_bytes <= 0);
669 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
670 		rc = -EINVAL;
671 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
672 				"cannot generate root IV\n");
673 		goto out;
674 	}
675 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
676 				    crypt_stat->key_size);
677 	if (rc) {
678 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
679 				"MD5 while generating root IV\n");
680 		goto out;
681 	}
682 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
683 out:
684 	if (rc) {
685 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
686 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
687 	}
688 	return rc;
689 }
690 
691 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
692 {
693 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
694 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
695 	ecryptfs_compute_root_iv(crypt_stat);
696 	if (unlikely(ecryptfs_verbosity > 0)) {
697 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
698 		ecryptfs_dump_hex(crypt_stat->key,
699 				  crypt_stat->key_size);
700 	}
701 }
702 
703 /**
704  * ecryptfs_copy_mount_wide_flags_to_inode_flags
705  * @crypt_stat: The inode's cryptographic context
706  * @mount_crypt_stat: The mount point's cryptographic context
707  *
708  * This function propagates the mount-wide flags to individual inode
709  * flags.
710  */
711 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
712 	struct ecryptfs_crypt_stat *crypt_stat,
713 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
714 {
715 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
716 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
717 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
718 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
719 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
720 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
721 		if (mount_crypt_stat->flags
722 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
723 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
724 		else if (mount_crypt_stat->flags
725 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
726 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
727 	}
728 }
729 
730 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
731 	struct ecryptfs_crypt_stat *crypt_stat,
732 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
733 {
734 	struct ecryptfs_global_auth_tok *global_auth_tok;
735 	int rc = 0;
736 
737 	mutex_lock(&crypt_stat->keysig_list_mutex);
738 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
739 
740 	list_for_each_entry(global_auth_tok,
741 			    &mount_crypt_stat->global_auth_tok_list,
742 			    mount_crypt_stat_list) {
743 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
744 			continue;
745 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
746 		if (rc) {
747 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
748 			goto out;
749 		}
750 	}
751 
752 out:
753 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
754 	mutex_unlock(&crypt_stat->keysig_list_mutex);
755 	return rc;
756 }
757 
758 /**
759  * ecryptfs_set_default_crypt_stat_vals
760  * @crypt_stat: The inode's cryptographic context
761  * @mount_crypt_stat: The mount point's cryptographic context
762  *
763  * Default values in the event that policy does not override them.
764  */
765 static void ecryptfs_set_default_crypt_stat_vals(
766 	struct ecryptfs_crypt_stat *crypt_stat,
767 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
768 {
769 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
770 						      mount_crypt_stat);
771 	ecryptfs_set_default_sizes(crypt_stat);
772 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
773 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
774 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
775 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
776 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
777 }
778 
779 /**
780  * ecryptfs_new_file_context
781  * @ecryptfs_inode: The eCryptfs inode
782  *
783  * If the crypto context for the file has not yet been established,
784  * this is where we do that.  Establishing a new crypto context
785  * involves the following decisions:
786  *  - What cipher to use?
787  *  - What set of authentication tokens to use?
788  * Here we just worry about getting enough information into the
789  * authentication tokens so that we know that they are available.
790  * We associate the available authentication tokens with the new file
791  * via the set of signatures in the crypt_stat struct.  Later, when
792  * the headers are actually written out, we may again defer to
793  * userspace to perform the encryption of the session key; for the
794  * foreseeable future, this will be the case with public key packets.
795  *
796  * Returns zero on success; non-zero otherwise
797  */
798 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
799 {
800 	struct ecryptfs_crypt_stat *crypt_stat =
801 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
802 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
803 	    &ecryptfs_superblock_to_private(
804 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
805 	int cipher_name_len;
806 	int rc = 0;
807 
808 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
809 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
810 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
811 						      mount_crypt_stat);
812 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
813 							 mount_crypt_stat);
814 	if (rc) {
815 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
816 		       "to the inode key sigs; rc = [%d]\n", rc);
817 		goto out;
818 	}
819 	cipher_name_len =
820 		strlen(mount_crypt_stat->global_default_cipher_name);
821 	memcpy(crypt_stat->cipher,
822 	       mount_crypt_stat->global_default_cipher_name,
823 	       cipher_name_len);
824 	crypt_stat->cipher[cipher_name_len] = '\0';
825 	crypt_stat->key_size =
826 		mount_crypt_stat->global_default_cipher_key_size;
827 	ecryptfs_generate_new_key(crypt_stat);
828 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
829 	if (rc)
830 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
831 				"context for cipher [%s]: rc = [%d]\n",
832 				crypt_stat->cipher, rc);
833 out:
834 	return rc;
835 }
836 
837 /**
838  * ecryptfs_validate_marker - check for the ecryptfs marker
839  * @data: The data block in which to check
840  *
841  * Returns zero if marker found; -EINVAL if not found
842  */
843 static int ecryptfs_validate_marker(char *data)
844 {
845 	u32 m_1, m_2;
846 
847 	m_1 = get_unaligned_be32(data);
848 	m_2 = get_unaligned_be32(data + 4);
849 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
850 		return 0;
851 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
852 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
853 			MAGIC_ECRYPTFS_MARKER);
854 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
855 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
856 	return -EINVAL;
857 }
858 
859 struct ecryptfs_flag_map_elem {
860 	u32 file_flag;
861 	u32 local_flag;
862 };
863 
864 /* Add support for additional flags by adding elements here. */
865 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
866 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
867 	{0x00000002, ECRYPTFS_ENCRYPTED},
868 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
869 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
870 };
871 
872 /**
873  * ecryptfs_process_flags
874  * @crypt_stat: The cryptographic context
875  * @page_virt: Source data to be parsed
876  * @bytes_read: Updated with the number of bytes read
877  *
878  * Returns zero on success; non-zero if the flag set is invalid
879  */
880 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
881 				  char *page_virt, int *bytes_read)
882 {
883 	int rc = 0;
884 	int i;
885 	u32 flags;
886 
887 	flags = get_unaligned_be32(page_virt);
888 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
889 		if (flags & ecryptfs_flag_map[i].file_flag) {
890 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
891 		} else
892 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
893 	/* Version is in top 8 bits of the 32-bit flag vector */
894 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
895 	(*bytes_read) = 4;
896 	return rc;
897 }
898 
899 /**
900  * write_ecryptfs_marker
901  * @page_virt: The pointer to in a page to begin writing the marker
902  * @written: Number of bytes written
903  *
904  * Marker = 0x3c81b7f5
905  */
906 static void write_ecryptfs_marker(char *page_virt, size_t *written)
907 {
908 	u32 m_1, m_2;
909 
910 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
911 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
912 	put_unaligned_be32(m_1, page_virt);
913 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
914 	put_unaligned_be32(m_2, page_virt);
915 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
916 }
917 
918 void ecryptfs_write_crypt_stat_flags(char *page_virt,
919 				     struct ecryptfs_crypt_stat *crypt_stat,
920 				     size_t *written)
921 {
922 	u32 flags = 0;
923 	int i;
924 
925 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
926 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
927 			flags |= ecryptfs_flag_map[i].file_flag;
928 	/* Version is in top 8 bits of the 32-bit flag vector */
929 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
930 	put_unaligned_be32(flags, page_virt);
931 	(*written) = 4;
932 }
933 
934 struct ecryptfs_cipher_code_str_map_elem {
935 	char cipher_str[16];
936 	u8 cipher_code;
937 };
938 
939 /* Add support for additional ciphers by adding elements here. The
940  * cipher_code is whatever OpenPGP applications use to identify the
941  * ciphers. List in order of probability. */
942 static struct ecryptfs_cipher_code_str_map_elem
943 ecryptfs_cipher_code_str_map[] = {
944 	{"aes",RFC2440_CIPHER_AES_128 },
945 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
946 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
947 	{"cast5", RFC2440_CIPHER_CAST_5},
948 	{"twofish", RFC2440_CIPHER_TWOFISH},
949 	{"cast6", RFC2440_CIPHER_CAST_6},
950 	{"aes", RFC2440_CIPHER_AES_192},
951 	{"aes", RFC2440_CIPHER_AES_256}
952 };
953 
954 /**
955  * ecryptfs_code_for_cipher_string
956  * @cipher_name: The string alias for the cipher
957  * @key_bytes: Length of key in bytes; used for AES code selection
958  *
959  * Returns zero on no match, or the cipher code on match
960  */
961 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
962 {
963 	int i;
964 	u8 code = 0;
965 	struct ecryptfs_cipher_code_str_map_elem *map =
966 		ecryptfs_cipher_code_str_map;
967 
968 	if (strcmp(cipher_name, "aes") == 0) {
969 		switch (key_bytes) {
970 		case 16:
971 			code = RFC2440_CIPHER_AES_128;
972 			break;
973 		case 24:
974 			code = RFC2440_CIPHER_AES_192;
975 			break;
976 		case 32:
977 			code = RFC2440_CIPHER_AES_256;
978 		}
979 	} else {
980 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
981 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
982 				code = map[i].cipher_code;
983 				break;
984 			}
985 	}
986 	return code;
987 }
988 
989 /**
990  * ecryptfs_cipher_code_to_string
991  * @str: Destination to write out the cipher name
992  * @cipher_code: The code to convert to cipher name string
993  *
994  * Returns zero on success
995  */
996 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
997 {
998 	int rc = 0;
999 	int i;
1000 
1001 	str[0] = '\0';
1002 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1003 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1004 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1005 	if (str[0] == '\0') {
1006 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1007 				"[%d]\n", cipher_code);
1008 		rc = -EINVAL;
1009 	}
1010 	return rc;
1011 }
1012 
1013 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1014 {
1015 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1016 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1017 	int rc;
1018 
1019 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1020 				 inode);
1021 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1022 		return rc >= 0 ? -EINVAL : rc;
1023 	rc = ecryptfs_validate_marker(marker);
1024 	if (!rc)
1025 		ecryptfs_i_size_init(file_size, inode);
1026 	return rc;
1027 }
1028 
1029 void
1030 ecryptfs_write_header_metadata(char *virt,
1031 			       struct ecryptfs_crypt_stat *crypt_stat,
1032 			       size_t *written)
1033 {
1034 	u32 header_extent_size;
1035 	u16 num_header_extents_at_front;
1036 
1037 	header_extent_size = (u32)crypt_stat->extent_size;
1038 	num_header_extents_at_front =
1039 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1040 	put_unaligned_be32(header_extent_size, virt);
1041 	virt += 4;
1042 	put_unaligned_be16(num_header_extents_at_front, virt);
1043 	(*written) = 6;
1044 }
1045 
1046 struct kmem_cache *ecryptfs_header_cache;
1047 
1048 /**
1049  * ecryptfs_write_headers_virt
1050  * @page_virt: The virtual address to write the headers to
1051  * @max: The size of memory allocated at page_virt
1052  * @size: Set to the number of bytes written by this function
1053  * @crypt_stat: The cryptographic context
1054  * @ecryptfs_dentry: The eCryptfs dentry
1055  *
1056  * Format version: 1
1057  *
1058  *   Header Extent:
1059  *     Octets 0-7:        Unencrypted file size (big-endian)
1060  *     Octets 8-15:       eCryptfs special marker
1061  *     Octets 16-19:      Flags
1062  *      Octet 16:         File format version number (between 0 and 255)
1063  *      Octets 17-18:     Reserved
1064  *      Octet 19:         Bit 1 (lsb): Reserved
1065  *                        Bit 2: Encrypted?
1066  *                        Bits 3-8: Reserved
1067  *     Octets 20-23:      Header extent size (big-endian)
1068  *     Octets 24-25:      Number of header extents at front of file
1069  *                        (big-endian)
1070  *     Octet  26:         Begin RFC 2440 authentication token packet set
1071  *   Data Extent 0:
1072  *     Lower data (CBC encrypted)
1073  *   Data Extent 1:
1074  *     Lower data (CBC encrypted)
1075  *   ...
1076  *
1077  * Returns zero on success
1078  */
1079 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1080 				       size_t *size,
1081 				       struct ecryptfs_crypt_stat *crypt_stat,
1082 				       struct dentry *ecryptfs_dentry)
1083 {
1084 	int rc;
1085 	size_t written;
1086 	size_t offset;
1087 
1088 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1089 	write_ecryptfs_marker((page_virt + offset), &written);
1090 	offset += written;
1091 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1092 					&written);
1093 	offset += written;
1094 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1095 				       &written);
1096 	offset += written;
1097 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1098 					      ecryptfs_dentry, &written,
1099 					      max - offset);
1100 	if (rc)
1101 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1102 				"set; rc = [%d]\n", rc);
1103 	if (size) {
1104 		offset += written;
1105 		*size = offset;
1106 	}
1107 	return rc;
1108 }
1109 
1110 static int
1111 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1112 				    char *virt, size_t virt_len)
1113 {
1114 	int rc;
1115 
1116 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1117 				  0, virt_len);
1118 	if (rc < 0)
1119 		printk(KERN_ERR "%s: Error attempting to write header "
1120 		       "information to lower file; rc = [%d]\n", __func__, rc);
1121 	else
1122 		rc = 0;
1123 	return rc;
1124 }
1125 
1126 static int
1127 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1128 				 struct inode *ecryptfs_inode,
1129 				 char *page_virt, size_t size)
1130 {
1131 	int rc;
1132 
1133 	rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1134 			       ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1135 	return rc;
1136 }
1137 
1138 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1139 					       unsigned int order)
1140 {
1141 	struct page *page;
1142 
1143 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1144 	if (page)
1145 		return (unsigned long) page_address(page);
1146 	return 0;
1147 }
1148 
1149 /**
1150  * ecryptfs_write_metadata
1151  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1152  * @ecryptfs_inode: The newly created eCryptfs inode
1153  *
1154  * Write the file headers out.  This will likely involve a userspace
1155  * callout, in which the session key is encrypted with one or more
1156  * public keys and/or the passphrase necessary to do the encryption is
1157  * retrieved via a prompt.  Exactly what happens at this point should
1158  * be policy-dependent.
1159  *
1160  * Returns zero on success; non-zero on error
1161  */
1162 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1163 			    struct inode *ecryptfs_inode)
1164 {
1165 	struct ecryptfs_crypt_stat *crypt_stat =
1166 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1167 	unsigned int order;
1168 	char *virt;
1169 	size_t virt_len;
1170 	size_t size = 0;
1171 	int rc = 0;
1172 
1173 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1174 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1175 			printk(KERN_ERR "Key is invalid; bailing out\n");
1176 			rc = -EINVAL;
1177 			goto out;
1178 		}
1179 	} else {
1180 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1181 		       __func__);
1182 		rc = -EINVAL;
1183 		goto out;
1184 	}
1185 	virt_len = crypt_stat->metadata_size;
1186 	order = get_order(virt_len);
1187 	/* Released in this function */
1188 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1189 	if (!virt) {
1190 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1191 		rc = -ENOMEM;
1192 		goto out;
1193 	}
1194 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1195 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1196 					 ecryptfs_dentry);
1197 	if (unlikely(rc)) {
1198 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1199 		       __func__, rc);
1200 		goto out_free;
1201 	}
1202 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1203 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1204 						      virt, size);
1205 	else
1206 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1207 							 virt_len);
1208 	if (rc) {
1209 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1210 		       "rc = [%d]\n", __func__, rc);
1211 		goto out_free;
1212 	}
1213 out_free:
1214 	free_pages((unsigned long)virt, order);
1215 out:
1216 	return rc;
1217 }
1218 
1219 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1220 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1221 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1222 				 char *virt, int *bytes_read,
1223 				 int validate_header_size)
1224 {
1225 	int rc = 0;
1226 	u32 header_extent_size;
1227 	u16 num_header_extents_at_front;
1228 
1229 	header_extent_size = get_unaligned_be32(virt);
1230 	virt += sizeof(__be32);
1231 	num_header_extents_at_front = get_unaligned_be16(virt);
1232 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1233 				     * (size_t)header_extent_size));
1234 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1235 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1236 	    && (crypt_stat->metadata_size
1237 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1238 		rc = -EINVAL;
1239 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1240 		       crypt_stat->metadata_size);
1241 	}
1242 	return rc;
1243 }
1244 
1245 /**
1246  * set_default_header_data
1247  * @crypt_stat: The cryptographic context
1248  *
1249  * For version 0 file format; this function is only for backwards
1250  * compatibility for files created with the prior versions of
1251  * eCryptfs.
1252  */
1253 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1254 {
1255 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1256 }
1257 
1258 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1259 {
1260 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1261 	struct ecryptfs_crypt_stat *crypt_stat;
1262 	u64 file_size;
1263 
1264 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1265 	mount_crypt_stat =
1266 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1267 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1268 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1269 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1270 			file_size += crypt_stat->metadata_size;
1271 	} else
1272 		file_size = get_unaligned_be64(page_virt);
1273 	i_size_write(inode, (loff_t)file_size);
1274 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1275 }
1276 
1277 /**
1278  * ecryptfs_read_headers_virt
1279  * @page_virt: The virtual address into which to read the headers
1280  * @crypt_stat: The cryptographic context
1281  * @ecryptfs_dentry: The eCryptfs dentry
1282  * @validate_header_size: Whether to validate the header size while reading
1283  *
1284  * Read/parse the header data. The header format is detailed in the
1285  * comment block for the ecryptfs_write_headers_virt() function.
1286  *
1287  * Returns zero on success
1288  */
1289 static int ecryptfs_read_headers_virt(char *page_virt,
1290 				      struct ecryptfs_crypt_stat *crypt_stat,
1291 				      struct dentry *ecryptfs_dentry,
1292 				      int validate_header_size)
1293 {
1294 	int rc = 0;
1295 	int offset;
1296 	int bytes_read;
1297 
1298 	ecryptfs_set_default_sizes(crypt_stat);
1299 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1300 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1301 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1302 	rc = ecryptfs_validate_marker(page_virt + offset);
1303 	if (rc)
1304 		goto out;
1305 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1306 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1307 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1308 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1309 				    &bytes_read);
1310 	if (rc) {
1311 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1312 		goto out;
1313 	}
1314 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1315 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1316 				"file version [%d] is supported by this "
1317 				"version of eCryptfs\n",
1318 				crypt_stat->file_version,
1319 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1320 		rc = -EINVAL;
1321 		goto out;
1322 	}
1323 	offset += bytes_read;
1324 	if (crypt_stat->file_version >= 1) {
1325 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1326 					   &bytes_read, validate_header_size);
1327 		if (rc) {
1328 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1329 					"metadata; rc = [%d]\n", rc);
1330 		}
1331 		offset += bytes_read;
1332 	} else
1333 		set_default_header_data(crypt_stat);
1334 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1335 				       ecryptfs_dentry);
1336 out:
1337 	return rc;
1338 }
1339 
1340 /**
1341  * ecryptfs_read_xattr_region
1342  * @page_virt: The vitual address into which to read the xattr data
1343  * @ecryptfs_inode: The eCryptfs inode
1344  *
1345  * Attempts to read the crypto metadata from the extended attribute
1346  * region of the lower file.
1347  *
1348  * Returns zero on success; non-zero on error
1349  */
1350 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1351 {
1352 	struct dentry *lower_dentry =
1353 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1354 	ssize_t size;
1355 	int rc = 0;
1356 
1357 	size = ecryptfs_getxattr_lower(lower_dentry,
1358 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1359 				       ECRYPTFS_XATTR_NAME,
1360 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1361 	if (size < 0) {
1362 		if (unlikely(ecryptfs_verbosity > 0))
1363 			printk(KERN_INFO "Error attempting to read the [%s] "
1364 			       "xattr from the lower file; return value = "
1365 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1366 		rc = -EINVAL;
1367 		goto out;
1368 	}
1369 out:
1370 	return rc;
1371 }
1372 
1373 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1374 					    struct inode *inode)
1375 {
1376 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1377 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1378 	int rc;
1379 
1380 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1381 				     ecryptfs_inode_to_lower(inode),
1382 				     ECRYPTFS_XATTR_NAME, file_size,
1383 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1384 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1385 		return rc >= 0 ? -EINVAL : rc;
1386 	rc = ecryptfs_validate_marker(marker);
1387 	if (!rc)
1388 		ecryptfs_i_size_init(file_size, inode);
1389 	return rc;
1390 }
1391 
1392 /**
1393  * ecryptfs_read_metadata
1394  *
1395  * Common entry point for reading file metadata. From here, we could
1396  * retrieve the header information from the header region of the file,
1397  * the xattr region of the file, or some other repository that is
1398  * stored separately from the file itself. The current implementation
1399  * supports retrieving the metadata information from the file contents
1400  * and from the xattr region.
1401  *
1402  * Returns zero if valid headers found and parsed; non-zero otherwise
1403  */
1404 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1405 {
1406 	int rc;
1407 	char *page_virt;
1408 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1409 	struct ecryptfs_crypt_stat *crypt_stat =
1410 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1411 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1412 		&ecryptfs_superblock_to_private(
1413 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1414 
1415 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1416 						      mount_crypt_stat);
1417 	/* Read the first page from the underlying file */
1418 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1419 	if (!page_virt) {
1420 		rc = -ENOMEM;
1421 		goto out;
1422 	}
1423 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1424 				 ecryptfs_inode);
1425 	if (rc >= 0)
1426 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1427 						ecryptfs_dentry,
1428 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1429 	if (rc) {
1430 		/* metadata is not in the file header, so try xattrs */
1431 		memset(page_virt, 0, PAGE_SIZE);
1432 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1433 		if (rc) {
1434 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1435 			       "file header region or xattr region, inode %lu\n",
1436 				ecryptfs_inode->i_ino);
1437 			rc = -EINVAL;
1438 			goto out;
1439 		}
1440 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1441 						ecryptfs_dentry,
1442 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1443 		if (rc) {
1444 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1445 			       "file xattr region either, inode %lu\n",
1446 				ecryptfs_inode->i_ino);
1447 			rc = -EINVAL;
1448 		}
1449 		if (crypt_stat->mount_crypt_stat->flags
1450 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1451 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1452 		} else {
1453 			printk(KERN_WARNING "Attempt to access file with "
1454 			       "crypto metadata only in the extended attribute "
1455 			       "region, but eCryptfs was mounted without "
1456 			       "xattr support enabled. eCryptfs will not treat "
1457 			       "this like an encrypted file, inode %lu\n",
1458 				ecryptfs_inode->i_ino);
1459 			rc = -EINVAL;
1460 		}
1461 	}
1462 out:
1463 	if (page_virt) {
1464 		memset(page_virt, 0, PAGE_SIZE);
1465 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1466 	}
1467 	return rc;
1468 }
1469 
1470 /**
1471  * ecryptfs_encrypt_filename - encrypt filename
1472  *
1473  * CBC-encrypts the filename. We do not want to encrypt the same
1474  * filename with the same key and IV, which may happen with hard
1475  * links, so we prepend random bits to each filename.
1476  *
1477  * Returns zero on success; non-zero otherwise
1478  */
1479 static int
1480 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1481 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1482 {
1483 	int rc = 0;
1484 
1485 	filename->encrypted_filename = NULL;
1486 	filename->encrypted_filename_size = 0;
1487 	if (mount_crypt_stat && (mount_crypt_stat->flags
1488 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1489 		size_t packet_size;
1490 		size_t remaining_bytes;
1491 
1492 		rc = ecryptfs_write_tag_70_packet(
1493 			NULL, NULL,
1494 			&filename->encrypted_filename_size,
1495 			mount_crypt_stat, NULL,
1496 			filename->filename_size);
1497 		if (rc) {
1498 			printk(KERN_ERR "%s: Error attempting to get packet "
1499 			       "size for tag 72; rc = [%d]\n", __func__,
1500 			       rc);
1501 			filename->encrypted_filename_size = 0;
1502 			goto out;
1503 		}
1504 		filename->encrypted_filename =
1505 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1506 		if (!filename->encrypted_filename) {
1507 			rc = -ENOMEM;
1508 			goto out;
1509 		}
1510 		remaining_bytes = filename->encrypted_filename_size;
1511 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1512 						  &remaining_bytes,
1513 						  &packet_size,
1514 						  mount_crypt_stat,
1515 						  filename->filename,
1516 						  filename->filename_size);
1517 		if (rc) {
1518 			printk(KERN_ERR "%s: Error attempting to generate "
1519 			       "tag 70 packet; rc = [%d]\n", __func__,
1520 			       rc);
1521 			kfree(filename->encrypted_filename);
1522 			filename->encrypted_filename = NULL;
1523 			filename->encrypted_filename_size = 0;
1524 			goto out;
1525 		}
1526 		filename->encrypted_filename_size = packet_size;
1527 	} else {
1528 		printk(KERN_ERR "%s: No support for requested filename "
1529 		       "encryption method in this release\n", __func__);
1530 		rc = -EOPNOTSUPP;
1531 		goto out;
1532 	}
1533 out:
1534 	return rc;
1535 }
1536 
1537 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1538 				  const char *name, size_t name_size)
1539 {
1540 	int rc = 0;
1541 
1542 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1543 	if (!(*copied_name)) {
1544 		rc = -ENOMEM;
1545 		goto out;
1546 	}
1547 	memcpy((void *)(*copied_name), (void *)name, name_size);
1548 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1549 						 * in printing out the
1550 						 * string in debug
1551 						 * messages */
1552 	(*copied_name_size) = name_size;
1553 out:
1554 	return rc;
1555 }
1556 
1557 /**
1558  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1559  * @key_tfm: Crypto context for key material, set by this function
1560  * @cipher_name: Name of the cipher
1561  * @key_size: Size of the key in bytes
1562  *
1563  * Returns zero on success. Any crypto_tfm structs allocated here
1564  * should be released by other functions, such as on a superblock put
1565  * event, regardless of whether this function succeeds for fails.
1566  */
1567 static int
1568 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1569 			    char *cipher_name, size_t *key_size)
1570 {
1571 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1572 	char *full_alg_name = NULL;
1573 	int rc;
1574 
1575 	*key_tfm = NULL;
1576 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1577 		rc = -EINVAL;
1578 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1579 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1580 		goto out;
1581 	}
1582 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1583 						    "ecb");
1584 	if (rc)
1585 		goto out;
1586 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1587 	if (IS_ERR(*key_tfm)) {
1588 		rc = PTR_ERR(*key_tfm);
1589 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1590 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1591 		goto out;
1592 	}
1593 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1594 	if (*key_size == 0)
1595 		*key_size = crypto_skcipher_default_keysize(*key_tfm);
1596 	get_random_bytes(dummy_key, *key_size);
1597 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1598 	if (rc) {
1599 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1600 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1601 		       rc);
1602 		rc = -EINVAL;
1603 		goto out;
1604 	}
1605 out:
1606 	kfree(full_alg_name);
1607 	return rc;
1608 }
1609 
1610 struct kmem_cache *ecryptfs_key_tfm_cache;
1611 static struct list_head key_tfm_list;
1612 struct mutex key_tfm_list_mutex;
1613 
1614 int __init ecryptfs_init_crypto(void)
1615 {
1616 	mutex_init(&key_tfm_list_mutex);
1617 	INIT_LIST_HEAD(&key_tfm_list);
1618 	return 0;
1619 }
1620 
1621 /**
1622  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1623  *
1624  * Called only at module unload time
1625  */
1626 int ecryptfs_destroy_crypto(void)
1627 {
1628 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1629 
1630 	mutex_lock(&key_tfm_list_mutex);
1631 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1632 				 key_tfm_list) {
1633 		list_del(&key_tfm->key_tfm_list);
1634 		crypto_free_skcipher(key_tfm->key_tfm);
1635 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1636 	}
1637 	mutex_unlock(&key_tfm_list_mutex);
1638 	return 0;
1639 }
1640 
1641 int
1642 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1643 			 size_t key_size)
1644 {
1645 	struct ecryptfs_key_tfm *tmp_tfm;
1646 	int rc = 0;
1647 
1648 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1649 
1650 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1651 	if (key_tfm)
1652 		(*key_tfm) = tmp_tfm;
1653 	if (!tmp_tfm) {
1654 		rc = -ENOMEM;
1655 		goto out;
1656 	}
1657 	mutex_init(&tmp_tfm->key_tfm_mutex);
1658 	strncpy(tmp_tfm->cipher_name, cipher_name,
1659 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1660 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1661 	tmp_tfm->key_size = key_size;
1662 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1663 					 tmp_tfm->cipher_name,
1664 					 &tmp_tfm->key_size);
1665 	if (rc) {
1666 		printk(KERN_ERR "Error attempting to initialize key TFM "
1667 		       "cipher with name = [%s]; rc = [%d]\n",
1668 		       tmp_tfm->cipher_name, rc);
1669 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1670 		if (key_tfm)
1671 			(*key_tfm) = NULL;
1672 		goto out;
1673 	}
1674 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1675 out:
1676 	return rc;
1677 }
1678 
1679 /**
1680  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1681  * @cipher_name: the name of the cipher to search for
1682  * @key_tfm: set to corresponding tfm if found
1683  *
1684  * Searches for cached key_tfm matching @cipher_name
1685  * Must be called with &key_tfm_list_mutex held
1686  * Returns 1 if found, with @key_tfm set
1687  * Returns 0 if not found, with @key_tfm set to NULL
1688  */
1689 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1690 {
1691 	struct ecryptfs_key_tfm *tmp_key_tfm;
1692 
1693 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1694 
1695 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1696 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1697 			if (key_tfm)
1698 				(*key_tfm) = tmp_key_tfm;
1699 			return 1;
1700 		}
1701 	}
1702 	if (key_tfm)
1703 		(*key_tfm) = NULL;
1704 	return 0;
1705 }
1706 
1707 /**
1708  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1709  *
1710  * @tfm: set to cached tfm found, or new tfm created
1711  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1712  * @cipher_name: the name of the cipher to search for and/or add
1713  *
1714  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1715  * Searches for cached item first, and creates new if not found.
1716  * Returns 0 on success, non-zero if adding new cipher failed
1717  */
1718 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1719 					       struct mutex **tfm_mutex,
1720 					       char *cipher_name)
1721 {
1722 	struct ecryptfs_key_tfm *key_tfm;
1723 	int rc = 0;
1724 
1725 	(*tfm) = NULL;
1726 	(*tfm_mutex) = NULL;
1727 
1728 	mutex_lock(&key_tfm_list_mutex);
1729 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1730 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1731 		if (rc) {
1732 			printk(KERN_ERR "Error adding new key_tfm to list; "
1733 					"rc = [%d]\n", rc);
1734 			goto out;
1735 		}
1736 	}
1737 	(*tfm) = key_tfm->key_tfm;
1738 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1739 out:
1740 	mutex_unlock(&key_tfm_list_mutex);
1741 	return rc;
1742 }
1743 
1744 /* 64 characters forming a 6-bit target field */
1745 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1746 						 "EFGHIJKLMNOPQRST"
1747 						 "UVWXYZabcdefghij"
1748 						 "klmnopqrstuvwxyz");
1749 
1750 /* We could either offset on every reverse map or just pad some 0x00's
1751  * at the front here */
1752 static const unsigned char filename_rev_map[256] = {
1753 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1754 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1755 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1756 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1757 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1758 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1759 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1760 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1761 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1762 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1763 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1764 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1765 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1766 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1767 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1768 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1769 };
1770 
1771 /**
1772  * ecryptfs_encode_for_filename
1773  * @dst: Destination location for encoded filename
1774  * @dst_size: Size of the encoded filename in bytes
1775  * @src: Source location for the filename to encode
1776  * @src_size: Size of the source in bytes
1777  */
1778 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1779 				  unsigned char *src, size_t src_size)
1780 {
1781 	size_t num_blocks;
1782 	size_t block_num = 0;
1783 	size_t dst_offset = 0;
1784 	unsigned char last_block[3];
1785 
1786 	if (src_size == 0) {
1787 		(*dst_size) = 0;
1788 		goto out;
1789 	}
1790 	num_blocks = (src_size / 3);
1791 	if ((src_size % 3) == 0) {
1792 		memcpy(last_block, (&src[src_size - 3]), 3);
1793 	} else {
1794 		num_blocks++;
1795 		last_block[2] = 0x00;
1796 		switch (src_size % 3) {
1797 		case 1:
1798 			last_block[0] = src[src_size - 1];
1799 			last_block[1] = 0x00;
1800 			break;
1801 		case 2:
1802 			last_block[0] = src[src_size - 2];
1803 			last_block[1] = src[src_size - 1];
1804 		}
1805 	}
1806 	(*dst_size) = (num_blocks * 4);
1807 	if (!dst)
1808 		goto out;
1809 	while (block_num < num_blocks) {
1810 		unsigned char *src_block;
1811 		unsigned char dst_block[4];
1812 
1813 		if (block_num == (num_blocks - 1))
1814 			src_block = last_block;
1815 		else
1816 			src_block = &src[block_num * 3];
1817 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1818 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1819 				| ((src_block[1] >> 4) & 0x0F));
1820 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1821 				| ((src_block[2] >> 6) & 0x03));
1822 		dst_block[3] = (src_block[2] & 0x3F);
1823 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1824 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1825 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1826 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1827 		block_num++;
1828 	}
1829 out:
1830 	return;
1831 }
1832 
1833 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1834 {
1835 	/* Not exact; conservatively long. Every block of 4
1836 	 * encoded characters decodes into a block of 3
1837 	 * decoded characters. This segment of code provides
1838 	 * the caller with the maximum amount of allocated
1839 	 * space that @dst will need to point to in a
1840 	 * subsequent call. */
1841 	return ((encoded_size + 1) * 3) / 4;
1842 }
1843 
1844 /**
1845  * ecryptfs_decode_from_filename
1846  * @dst: If NULL, this function only sets @dst_size and returns. If
1847  *       non-NULL, this function decodes the encoded octets in @src
1848  *       into the memory that @dst points to.
1849  * @dst_size: Set to the size of the decoded string.
1850  * @src: The encoded set of octets to decode.
1851  * @src_size: The size of the encoded set of octets to decode.
1852  */
1853 static void
1854 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1855 			      const unsigned char *src, size_t src_size)
1856 {
1857 	u8 current_bit_offset = 0;
1858 	size_t src_byte_offset = 0;
1859 	size_t dst_byte_offset = 0;
1860 
1861 	if (!dst) {
1862 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1863 		goto out;
1864 	}
1865 	while (src_byte_offset < src_size) {
1866 		unsigned char src_byte =
1867 				filename_rev_map[(int)src[src_byte_offset]];
1868 
1869 		switch (current_bit_offset) {
1870 		case 0:
1871 			dst[dst_byte_offset] = (src_byte << 2);
1872 			current_bit_offset = 6;
1873 			break;
1874 		case 6:
1875 			dst[dst_byte_offset++] |= (src_byte >> 4);
1876 			dst[dst_byte_offset] = ((src_byte & 0xF)
1877 						 << 4);
1878 			current_bit_offset = 4;
1879 			break;
1880 		case 4:
1881 			dst[dst_byte_offset++] |= (src_byte >> 2);
1882 			dst[dst_byte_offset] = (src_byte << 6);
1883 			current_bit_offset = 2;
1884 			break;
1885 		case 2:
1886 			dst[dst_byte_offset++] |= (src_byte);
1887 			current_bit_offset = 0;
1888 			break;
1889 		}
1890 		src_byte_offset++;
1891 	}
1892 	(*dst_size) = dst_byte_offset;
1893 out:
1894 	return;
1895 }
1896 
1897 /**
1898  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1899  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1900  * @name: The plaintext name
1901  * @length: The length of the plaintext
1902  * @encoded_name: The encypted name
1903  *
1904  * Encrypts and encodes a filename into something that constitutes a
1905  * valid filename for a filesystem, with printable characters.
1906  *
1907  * We assume that we have a properly initialized crypto context,
1908  * pointed to by crypt_stat->tfm.
1909  *
1910  * Returns zero on success; non-zero on otherwise
1911  */
1912 int ecryptfs_encrypt_and_encode_filename(
1913 	char **encoded_name,
1914 	size_t *encoded_name_size,
1915 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1916 	const char *name, size_t name_size)
1917 {
1918 	size_t encoded_name_no_prefix_size;
1919 	int rc = 0;
1920 
1921 	(*encoded_name) = NULL;
1922 	(*encoded_name_size) = 0;
1923 	if (mount_crypt_stat && (mount_crypt_stat->flags
1924 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1925 		struct ecryptfs_filename *filename;
1926 
1927 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1928 		if (!filename) {
1929 			rc = -ENOMEM;
1930 			goto out;
1931 		}
1932 		filename->filename = (char *)name;
1933 		filename->filename_size = name_size;
1934 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1935 		if (rc) {
1936 			printk(KERN_ERR "%s: Error attempting to encrypt "
1937 			       "filename; rc = [%d]\n", __func__, rc);
1938 			kfree(filename);
1939 			goto out;
1940 		}
1941 		ecryptfs_encode_for_filename(
1942 			NULL, &encoded_name_no_prefix_size,
1943 			filename->encrypted_filename,
1944 			filename->encrypted_filename_size);
1945 		if (mount_crypt_stat
1946 			&& (mount_crypt_stat->flags
1947 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1948 			(*encoded_name_size) =
1949 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1950 				 + encoded_name_no_prefix_size);
1951 		else
1952 			(*encoded_name_size) =
1953 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1954 				 + encoded_name_no_prefix_size);
1955 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1956 		if (!(*encoded_name)) {
1957 			rc = -ENOMEM;
1958 			kfree(filename->encrypted_filename);
1959 			kfree(filename);
1960 			goto out;
1961 		}
1962 		if (mount_crypt_stat
1963 			&& (mount_crypt_stat->flags
1964 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1965 			memcpy((*encoded_name),
1966 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1967 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1968 			ecryptfs_encode_for_filename(
1969 			    ((*encoded_name)
1970 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1971 			    &encoded_name_no_prefix_size,
1972 			    filename->encrypted_filename,
1973 			    filename->encrypted_filename_size);
1974 			(*encoded_name_size) =
1975 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1976 				 + encoded_name_no_prefix_size);
1977 			(*encoded_name)[(*encoded_name_size)] = '\0';
1978 		} else {
1979 			rc = -EOPNOTSUPP;
1980 		}
1981 		if (rc) {
1982 			printk(KERN_ERR "%s: Error attempting to encode "
1983 			       "encrypted filename; rc = [%d]\n", __func__,
1984 			       rc);
1985 			kfree((*encoded_name));
1986 			(*encoded_name) = NULL;
1987 			(*encoded_name_size) = 0;
1988 		}
1989 		kfree(filename->encrypted_filename);
1990 		kfree(filename);
1991 	} else {
1992 		rc = ecryptfs_copy_filename(encoded_name,
1993 					    encoded_name_size,
1994 					    name, name_size);
1995 	}
1996 out:
1997 	return rc;
1998 }
1999 
2000 /**
2001  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2002  * @plaintext_name: The plaintext name
2003  * @plaintext_name_size: The plaintext name size
2004  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2005  * @name: The filename in cipher text
2006  * @name_size: The cipher text name size
2007  *
2008  * Decrypts and decodes the filename.
2009  *
2010  * Returns zero on error; non-zero otherwise
2011  */
2012 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2013 					 size_t *plaintext_name_size,
2014 					 struct super_block *sb,
2015 					 const char *name, size_t name_size)
2016 {
2017 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2018 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2019 	char *decoded_name;
2020 	size_t decoded_name_size;
2021 	size_t packet_size;
2022 	int rc = 0;
2023 
2024 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2025 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2026 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2027 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2028 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2029 		const char *orig_name = name;
2030 		size_t orig_name_size = name_size;
2031 
2032 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2033 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2034 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2035 					      name, name_size);
2036 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2037 		if (!decoded_name) {
2038 			rc = -ENOMEM;
2039 			goto out;
2040 		}
2041 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2042 					      name, name_size);
2043 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2044 						  plaintext_name_size,
2045 						  &packet_size,
2046 						  mount_crypt_stat,
2047 						  decoded_name,
2048 						  decoded_name_size);
2049 		if (rc) {
2050 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2051 			       "from filename; copying through filename "
2052 			       "as-is\n", __func__);
2053 			rc = ecryptfs_copy_filename(plaintext_name,
2054 						    plaintext_name_size,
2055 						    orig_name, orig_name_size);
2056 			goto out_free;
2057 		}
2058 	} else {
2059 		rc = ecryptfs_copy_filename(plaintext_name,
2060 					    plaintext_name_size,
2061 					    name, name_size);
2062 		goto out;
2063 	}
2064 out_free:
2065 	kfree(decoded_name);
2066 out:
2067 	return rc;
2068 }
2069 
2070 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2071 
2072 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2073 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2074 {
2075 	struct crypto_skcipher *tfm;
2076 	struct mutex *tfm_mutex;
2077 	size_t cipher_blocksize;
2078 	int rc;
2079 
2080 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2081 		(*namelen) = lower_namelen;
2082 		return 0;
2083 	}
2084 
2085 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2086 			mount_crypt_stat->global_default_fn_cipher_name);
2087 	if (unlikely(rc)) {
2088 		(*namelen) = 0;
2089 		return rc;
2090 	}
2091 
2092 	mutex_lock(tfm_mutex);
2093 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2094 	mutex_unlock(tfm_mutex);
2095 
2096 	/* Return an exact amount for the common cases */
2097 	if (lower_namelen == NAME_MAX
2098 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2099 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2100 		return 0;
2101 	}
2102 
2103 	/* Return a safe estimate for the uncommon cases */
2104 	(*namelen) = lower_namelen;
2105 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2106 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2107 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2108 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2109 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2110 	/* Worst case is that the filename is padded nearly a full block size */
2111 	(*namelen) -= cipher_blocksize - 1;
2112 
2113 	if ((*namelen) < 0)
2114 		(*namelen) = 0;
2115 
2116 	return 0;
2117 }
2118