xref: /linux/fs/ecryptfs/crypto.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 #define DECRYPT		0
41 #define ENCRYPT		1
42 
43 /**
44  * ecryptfs_to_hex
45  * @dst: Buffer to take hex character representation of contents of
46  *       src; must be at least of size (src_size * 2)
47  * @src: Buffer to be converted to a hex string respresentation
48  * @src_size: number of bytes to convert
49  */
50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
51 {
52 	int x;
53 
54 	for (x = 0; x < src_size; x++)
55 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
56 }
57 
58 /**
59  * ecryptfs_from_hex
60  * @dst: Buffer to take the bytes from src hex; must be at least of
61  *       size (src_size / 2)
62  * @src: Buffer to be converted from a hex string respresentation to raw value
63  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
64  */
65 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
66 {
67 	int x;
68 	char tmp[3] = { 0, };
69 
70 	for (x = 0; x < dst_size; x++) {
71 		tmp[0] = src[x * 2];
72 		tmp[1] = src[x * 2 + 1];
73 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
74 	}
75 }
76 
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
87 static int ecryptfs_calculate_md5(char *dst,
88 				  struct ecryptfs_crypt_stat *crypt_stat,
89 				  char *src, int len)
90 {
91 	struct scatterlist sg;
92 	struct hash_desc desc = {
93 		.tfm = crypt_stat->hash_tfm,
94 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
95 	};
96 	int rc = 0;
97 
98 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
99 	sg_init_one(&sg, (u8 *)src, len);
100 	if (!desc.tfm) {
101 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
102 					     CRYPTO_ALG_ASYNC);
103 		if (IS_ERR(desc.tfm)) {
104 			rc = PTR_ERR(desc.tfm);
105 			ecryptfs_printk(KERN_ERR, "Error attempting to "
106 					"allocate crypto context; rc = [%d]\n",
107 					rc);
108 			goto out;
109 		}
110 		crypt_stat->hash_tfm = desc.tfm;
111 	}
112 	rc = crypto_hash_init(&desc);
113 	if (rc) {
114 		printk(KERN_ERR
115 		       "%s: Error initializing crypto hash; rc = [%d]\n",
116 		       __func__, rc);
117 		goto out;
118 	}
119 	rc = crypto_hash_update(&desc, &sg, len);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error updating crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_final(&desc, dst);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 out:
134 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
135 	return rc;
136 }
137 
138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
139 						  char *cipher_name,
140 						  char *chaining_modifier)
141 {
142 	int cipher_name_len = strlen(cipher_name);
143 	int chaining_modifier_len = strlen(chaining_modifier);
144 	int algified_name_len;
145 	int rc;
146 
147 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
148 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
149 	if (!(*algified_name)) {
150 		rc = -ENOMEM;
151 		goto out;
152 	}
153 	snprintf((*algified_name), algified_name_len, "%s(%s)",
154 		 chaining_modifier, cipher_name);
155 	rc = 0;
156 out:
157 	return rc;
158 }
159 
160 /**
161  * ecryptfs_derive_iv
162  * @iv: destination for the derived iv vale
163  * @crypt_stat: Pointer to crypt_stat struct for the current inode
164  * @offset: Offset of the extent whose IV we are to derive
165  *
166  * Generate the initialization vector from the given root IV and page
167  * offset.
168  *
169  * Returns zero on success; non-zero on error.
170  */
171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
172 		       loff_t offset)
173 {
174 	int rc = 0;
175 	char dst[MD5_DIGEST_SIZE];
176 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
177 
178 	if (unlikely(ecryptfs_verbosity > 0)) {
179 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
180 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
181 	}
182 	/* TODO: It is probably secure to just cast the least
183 	 * significant bits of the root IV into an unsigned long and
184 	 * add the offset to that rather than go through all this
185 	 * hashing business. -Halcrow */
186 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
187 	memset((src + crypt_stat->iv_bytes), 0, 16);
188 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
189 	if (unlikely(ecryptfs_verbosity > 0)) {
190 		ecryptfs_printk(KERN_DEBUG, "source:\n");
191 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
192 	}
193 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
194 				    (crypt_stat->iv_bytes + 16));
195 	if (rc) {
196 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
197 				"MD5 while generating IV for a page\n");
198 		goto out;
199 	}
200 	memcpy(iv, dst, crypt_stat->iv_bytes);
201 	if (unlikely(ecryptfs_verbosity > 0)) {
202 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
203 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
204 	}
205 out:
206 	return rc;
207 }
208 
209 /**
210  * ecryptfs_init_crypt_stat
211  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
212  *
213  * Initialize the crypt_stat structure.
214  */
215 void
216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
217 {
218 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
219 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
220 	mutex_init(&crypt_stat->keysig_list_mutex);
221 	mutex_init(&crypt_stat->cs_mutex);
222 	mutex_init(&crypt_stat->cs_tfm_mutex);
223 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
224 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
225 }
226 
227 /**
228  * ecryptfs_destroy_crypt_stat
229  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
230  *
231  * Releases all memory associated with a crypt_stat struct.
232  */
233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
234 {
235 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
236 
237 	if (crypt_stat->tfm)
238 		crypto_free_ablkcipher(crypt_stat->tfm);
239 	if (crypt_stat->hash_tfm)
240 		crypto_free_hash(crypt_stat->hash_tfm);
241 	list_for_each_entry_safe(key_sig, key_sig_tmp,
242 				 &crypt_stat->keysig_list, crypt_stat_list) {
243 		list_del(&key_sig->crypt_stat_list);
244 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
245 	}
246 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
247 }
248 
249 void ecryptfs_destroy_mount_crypt_stat(
250 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
251 {
252 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
253 
254 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
255 		return;
256 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
257 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
258 				 &mount_crypt_stat->global_auth_tok_list,
259 				 mount_crypt_stat_list) {
260 		list_del(&auth_tok->mount_crypt_stat_list);
261 		if (auth_tok->global_auth_tok_key
262 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
263 			key_put(auth_tok->global_auth_tok_key);
264 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
265 	}
266 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
267 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
268 }
269 
270 /**
271  * virt_to_scatterlist
272  * @addr: Virtual address
273  * @size: Size of data; should be an even multiple of the block size
274  * @sg: Pointer to scatterlist array; set to NULL to obtain only
275  *      the number of scatterlist structs required in array
276  * @sg_size: Max array size
277  *
278  * Fills in a scatterlist array with page references for a passed
279  * virtual address.
280  *
281  * Returns the number of scatterlist structs in array used
282  */
283 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
284 			int sg_size)
285 {
286 	int i = 0;
287 	struct page *pg;
288 	int offset;
289 	int remainder_of_page;
290 
291 	sg_init_table(sg, sg_size);
292 
293 	while (size > 0 && i < sg_size) {
294 		pg = virt_to_page(addr);
295 		offset = offset_in_page(addr);
296 		sg_set_page(&sg[i], pg, 0, offset);
297 		remainder_of_page = PAGE_CACHE_SIZE - offset;
298 		if (size >= remainder_of_page) {
299 			sg[i].length = remainder_of_page;
300 			addr += remainder_of_page;
301 			size -= remainder_of_page;
302 		} else {
303 			sg[i].length = size;
304 			addr += size;
305 			size = 0;
306 		}
307 		i++;
308 	}
309 	if (size > 0)
310 		return -ENOMEM;
311 	return i;
312 }
313 
314 struct extent_crypt_result {
315 	struct completion completion;
316 	int rc;
317 };
318 
319 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
320 {
321 	struct extent_crypt_result *ecr = req->data;
322 
323 	if (rc == -EINPROGRESS)
324 		return;
325 
326 	ecr->rc = rc;
327 	complete(&ecr->completion);
328 }
329 
330 /**
331  * crypt_scatterlist
332  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
333  * @dst_sg: Destination of the data after performing the crypto operation
334  * @src_sg: Data to be encrypted or decrypted
335  * @size: Length of data
336  * @iv: IV to use
337  * @op: ENCRYPT or DECRYPT to indicate the desired operation
338  *
339  * Returns the number of bytes encrypted or decrypted; negative value on error
340  */
341 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
342 			     struct scatterlist *dst_sg,
343 			     struct scatterlist *src_sg, int size,
344 			     unsigned char *iv, int op)
345 {
346 	struct ablkcipher_request *req = NULL;
347 	struct extent_crypt_result ecr;
348 	int rc = 0;
349 
350 	BUG_ON(!crypt_stat || !crypt_stat->tfm
351 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
352 	if (unlikely(ecryptfs_verbosity > 0)) {
353 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
354 				crypt_stat->key_size);
355 		ecryptfs_dump_hex(crypt_stat->key,
356 				  crypt_stat->key_size);
357 	}
358 
359 	init_completion(&ecr.completion);
360 
361 	mutex_lock(&crypt_stat->cs_tfm_mutex);
362 	req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
363 	if (!req) {
364 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
365 		rc = -ENOMEM;
366 		goto out;
367 	}
368 
369 	ablkcipher_request_set_callback(req,
370 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
371 			extent_crypt_complete, &ecr);
372 	/* Consider doing this once, when the file is opened */
373 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
374 		rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
375 					      crypt_stat->key_size);
376 		if (rc) {
377 			ecryptfs_printk(KERN_ERR,
378 					"Error setting key; rc = [%d]\n",
379 					rc);
380 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
381 			rc = -EINVAL;
382 			goto out;
383 		}
384 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
385 	}
386 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
387 	ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
388 	rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
389 			     crypto_ablkcipher_decrypt(req);
390 	if (rc == -EINPROGRESS || rc == -EBUSY) {
391 		struct extent_crypt_result *ecr = req->base.data;
392 
393 		wait_for_completion(&ecr->completion);
394 		rc = ecr->rc;
395 		INIT_COMPLETION(ecr->completion);
396 	}
397 out:
398 	ablkcipher_request_free(req);
399 	return rc;
400 }
401 
402 /**
403  * lower_offset_for_page
404  *
405  * Convert an eCryptfs page index into a lower byte offset
406  */
407 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
408 				    struct page *page)
409 {
410 	return ecryptfs_lower_header_size(crypt_stat) +
411 	       (page->index << PAGE_CACHE_SHIFT);
412 }
413 
414 /**
415  * crypt_extent
416  * @crypt_stat: crypt_stat containing cryptographic context for the
417  *              encryption operation
418  * @dst_page: The page to write the result into
419  * @src_page: The page to read from
420  * @extent_offset: Page extent offset for use in generating IV
421  * @op: ENCRYPT or DECRYPT to indicate the desired operation
422  *
423  * Encrypts or decrypts one extent of data.
424  *
425  * Return zero on success; non-zero otherwise
426  */
427 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
428 			struct page *dst_page,
429 			struct page *src_page,
430 			unsigned long extent_offset, int op)
431 {
432 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
433 	loff_t extent_base;
434 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
435 	struct scatterlist src_sg, dst_sg;
436 	size_t extent_size = crypt_stat->extent_size;
437 	int rc;
438 
439 	extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size));
440 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
441 				(extent_base + extent_offset));
442 	if (rc) {
443 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
444 			"extent [0x%.16llx]; rc = [%d]\n",
445 			(unsigned long long)(extent_base + extent_offset), rc);
446 		goto out;
447 	}
448 
449 	sg_init_table(&src_sg, 1);
450 	sg_init_table(&dst_sg, 1);
451 
452 	sg_set_page(&src_sg, src_page, extent_size,
453 		    extent_offset * extent_size);
454 	sg_set_page(&dst_sg, dst_page, extent_size,
455 		    extent_offset * extent_size);
456 
457 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
458 			       extent_iv, op);
459 	if (rc < 0) {
460 		printk(KERN_ERR "%s: Error attempting to crypt page with "
461 		       "page_index = [%ld], extent_offset = [%ld]; "
462 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
463 		goto out;
464 	}
465 	rc = 0;
466 out:
467 	return rc;
468 }
469 
470 /**
471  * ecryptfs_encrypt_page
472  * @page: Page mapped from the eCryptfs inode for the file; contains
473  *        decrypted content that needs to be encrypted (to a temporary
474  *        page; not in place) and written out to the lower file
475  *
476  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
477  * that eCryptfs pages may straddle the lower pages -- for instance,
478  * if the file was created on a machine with an 8K page size
479  * (resulting in an 8K header), and then the file is copied onto a
480  * host with a 32K page size, then when reading page 0 of the eCryptfs
481  * file, 24K of page 0 of the lower file will be read and decrypted,
482  * and then 8K of page 1 of the lower file will be read and decrypted.
483  *
484  * Returns zero on success; negative on error
485  */
486 int ecryptfs_encrypt_page(struct page *page)
487 {
488 	struct inode *ecryptfs_inode;
489 	struct ecryptfs_crypt_stat *crypt_stat;
490 	char *enc_extent_virt;
491 	struct page *enc_extent_page = NULL;
492 	loff_t extent_offset;
493 	loff_t lower_offset;
494 	int rc = 0;
495 
496 	ecryptfs_inode = page->mapping->host;
497 	crypt_stat =
498 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
499 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
500 	enc_extent_page = alloc_page(GFP_USER);
501 	if (!enc_extent_page) {
502 		rc = -ENOMEM;
503 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
504 				"encrypted extent\n");
505 		goto out;
506 	}
507 
508 	for (extent_offset = 0;
509 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
510 	     extent_offset++) {
511 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
512 				  extent_offset, ENCRYPT);
513 		if (rc) {
514 			printk(KERN_ERR "%s: Error encrypting extent; "
515 			       "rc = [%d]\n", __func__, rc);
516 			goto out;
517 		}
518 	}
519 
520 	lower_offset = lower_offset_for_page(crypt_stat, page);
521 	enc_extent_virt = kmap(enc_extent_page);
522 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
523 				  PAGE_CACHE_SIZE);
524 	kunmap(enc_extent_page);
525 	if (rc < 0) {
526 		ecryptfs_printk(KERN_ERR,
527 			"Error attempting to write lower page; rc = [%d]\n",
528 			rc);
529 		goto out;
530 	}
531 	rc = 0;
532 out:
533 	if (enc_extent_page) {
534 		__free_page(enc_extent_page);
535 	}
536 	return rc;
537 }
538 
539 /**
540  * ecryptfs_decrypt_page
541  * @page: Page mapped from the eCryptfs inode for the file; data read
542  *        and decrypted from the lower file will be written into this
543  *        page
544  *
545  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
546  * that eCryptfs pages may straddle the lower pages -- for instance,
547  * if the file was created on a machine with an 8K page size
548  * (resulting in an 8K header), and then the file is copied onto a
549  * host with a 32K page size, then when reading page 0 of the eCryptfs
550  * file, 24K of page 0 of the lower file will be read and decrypted,
551  * and then 8K of page 1 of the lower file will be read and decrypted.
552  *
553  * Returns zero on success; negative on error
554  */
555 int ecryptfs_decrypt_page(struct page *page)
556 {
557 	struct inode *ecryptfs_inode;
558 	struct ecryptfs_crypt_stat *crypt_stat;
559 	char *page_virt;
560 	unsigned long extent_offset;
561 	loff_t lower_offset;
562 	int rc = 0;
563 
564 	ecryptfs_inode = page->mapping->host;
565 	crypt_stat =
566 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
567 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
568 
569 	lower_offset = lower_offset_for_page(crypt_stat, page);
570 	page_virt = kmap(page);
571 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
572 				 ecryptfs_inode);
573 	kunmap(page);
574 	if (rc < 0) {
575 		ecryptfs_printk(KERN_ERR,
576 			"Error attempting to read lower page; rc = [%d]\n",
577 			rc);
578 		goto out;
579 	}
580 
581 	for (extent_offset = 0;
582 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583 	     extent_offset++) {
584 		rc = crypt_extent(crypt_stat, page, page,
585 				  extent_offset, DECRYPT);
586 		if (rc) {
587 			printk(KERN_ERR "%s: Error encrypting extent; "
588 			       "rc = [%d]\n", __func__, rc);
589 			goto out;
590 		}
591 	}
592 out:
593 	return rc;
594 }
595 
596 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
597 
598 /**
599  * ecryptfs_init_crypt_ctx
600  * @crypt_stat: Uninitialized crypt stats structure
601  *
602  * Initialize the crypto context.
603  *
604  * TODO: Performance: Keep a cache of initialized cipher contexts;
605  * only init if needed
606  */
607 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
608 {
609 	char *full_alg_name;
610 	int rc = -EINVAL;
611 
612 	if (!crypt_stat->cipher) {
613 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
614 		goto out;
615 	}
616 	ecryptfs_printk(KERN_DEBUG,
617 			"Initializing cipher [%s]; strlen = [%d]; "
618 			"key_size_bits = [%zd]\n",
619 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
620 			crypt_stat->key_size << 3);
621 	if (crypt_stat->tfm) {
622 		rc = 0;
623 		goto out;
624 	}
625 	mutex_lock(&crypt_stat->cs_tfm_mutex);
626 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
627 						    crypt_stat->cipher, "cbc");
628 	if (rc)
629 		goto out_unlock;
630 	crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
631 	kfree(full_alg_name);
632 	if (IS_ERR(crypt_stat->tfm)) {
633 		rc = PTR_ERR(crypt_stat->tfm);
634 		crypt_stat->tfm = NULL;
635 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
636 				"Error initializing cipher [%s]\n",
637 				crypt_stat->cipher);
638 		goto out_unlock;
639 	}
640 	crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
641 	rc = 0;
642 out_unlock:
643 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
644 out:
645 	return rc;
646 }
647 
648 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
649 {
650 	int extent_size_tmp;
651 
652 	crypt_stat->extent_mask = 0xFFFFFFFF;
653 	crypt_stat->extent_shift = 0;
654 	if (crypt_stat->extent_size == 0)
655 		return;
656 	extent_size_tmp = crypt_stat->extent_size;
657 	while ((extent_size_tmp & 0x01) == 0) {
658 		extent_size_tmp >>= 1;
659 		crypt_stat->extent_mask <<= 1;
660 		crypt_stat->extent_shift++;
661 	}
662 }
663 
664 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
665 {
666 	/* Default values; may be overwritten as we are parsing the
667 	 * packets. */
668 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
669 	set_extent_mask_and_shift(crypt_stat);
670 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
671 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
672 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
673 	else {
674 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
675 			crypt_stat->metadata_size =
676 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
677 		else
678 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
679 	}
680 }
681 
682 /**
683  * ecryptfs_compute_root_iv
684  * @crypt_stats
685  *
686  * On error, sets the root IV to all 0's.
687  */
688 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
689 {
690 	int rc = 0;
691 	char dst[MD5_DIGEST_SIZE];
692 
693 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
694 	BUG_ON(crypt_stat->iv_bytes <= 0);
695 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
696 		rc = -EINVAL;
697 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
698 				"cannot generate root IV\n");
699 		goto out;
700 	}
701 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
702 				    crypt_stat->key_size);
703 	if (rc) {
704 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
705 				"MD5 while generating root IV\n");
706 		goto out;
707 	}
708 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
709 out:
710 	if (rc) {
711 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
712 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
713 	}
714 	return rc;
715 }
716 
717 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
718 {
719 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
720 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
721 	ecryptfs_compute_root_iv(crypt_stat);
722 	if (unlikely(ecryptfs_verbosity > 0)) {
723 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
724 		ecryptfs_dump_hex(crypt_stat->key,
725 				  crypt_stat->key_size);
726 	}
727 }
728 
729 /**
730  * ecryptfs_copy_mount_wide_flags_to_inode_flags
731  * @crypt_stat: The inode's cryptographic context
732  * @mount_crypt_stat: The mount point's cryptographic context
733  *
734  * This function propagates the mount-wide flags to individual inode
735  * flags.
736  */
737 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
738 	struct ecryptfs_crypt_stat *crypt_stat,
739 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
740 {
741 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
742 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
743 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
744 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
745 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
746 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
747 		if (mount_crypt_stat->flags
748 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
749 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
750 		else if (mount_crypt_stat->flags
751 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
752 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
753 	}
754 }
755 
756 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
757 	struct ecryptfs_crypt_stat *crypt_stat,
758 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
759 {
760 	struct ecryptfs_global_auth_tok *global_auth_tok;
761 	int rc = 0;
762 
763 	mutex_lock(&crypt_stat->keysig_list_mutex);
764 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
765 
766 	list_for_each_entry(global_auth_tok,
767 			    &mount_crypt_stat->global_auth_tok_list,
768 			    mount_crypt_stat_list) {
769 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
770 			continue;
771 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
772 		if (rc) {
773 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
774 			goto out;
775 		}
776 	}
777 
778 out:
779 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
780 	mutex_unlock(&crypt_stat->keysig_list_mutex);
781 	return rc;
782 }
783 
784 /**
785  * ecryptfs_set_default_crypt_stat_vals
786  * @crypt_stat: The inode's cryptographic context
787  * @mount_crypt_stat: The mount point's cryptographic context
788  *
789  * Default values in the event that policy does not override them.
790  */
791 static void ecryptfs_set_default_crypt_stat_vals(
792 	struct ecryptfs_crypt_stat *crypt_stat,
793 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
794 {
795 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
796 						      mount_crypt_stat);
797 	ecryptfs_set_default_sizes(crypt_stat);
798 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
799 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
800 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
801 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
802 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
803 }
804 
805 /**
806  * ecryptfs_new_file_context
807  * @ecryptfs_inode: The eCryptfs inode
808  *
809  * If the crypto context for the file has not yet been established,
810  * this is where we do that.  Establishing a new crypto context
811  * involves the following decisions:
812  *  - What cipher to use?
813  *  - What set of authentication tokens to use?
814  * Here we just worry about getting enough information into the
815  * authentication tokens so that we know that they are available.
816  * We associate the available authentication tokens with the new file
817  * via the set of signatures in the crypt_stat struct.  Later, when
818  * the headers are actually written out, we may again defer to
819  * userspace to perform the encryption of the session key; for the
820  * foreseeable future, this will be the case with public key packets.
821  *
822  * Returns zero on success; non-zero otherwise
823  */
824 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
825 {
826 	struct ecryptfs_crypt_stat *crypt_stat =
827 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
828 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
829 	    &ecryptfs_superblock_to_private(
830 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
831 	int cipher_name_len;
832 	int rc = 0;
833 
834 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
835 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
836 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
837 						      mount_crypt_stat);
838 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
839 							 mount_crypt_stat);
840 	if (rc) {
841 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
842 		       "to the inode key sigs; rc = [%d]\n", rc);
843 		goto out;
844 	}
845 	cipher_name_len =
846 		strlen(mount_crypt_stat->global_default_cipher_name);
847 	memcpy(crypt_stat->cipher,
848 	       mount_crypt_stat->global_default_cipher_name,
849 	       cipher_name_len);
850 	crypt_stat->cipher[cipher_name_len] = '\0';
851 	crypt_stat->key_size =
852 		mount_crypt_stat->global_default_cipher_key_size;
853 	ecryptfs_generate_new_key(crypt_stat);
854 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
855 	if (rc)
856 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
857 				"context for cipher [%s]: rc = [%d]\n",
858 				crypt_stat->cipher, rc);
859 out:
860 	return rc;
861 }
862 
863 /**
864  * ecryptfs_validate_marker - check for the ecryptfs marker
865  * @data: The data block in which to check
866  *
867  * Returns zero if marker found; -EINVAL if not found
868  */
869 static int ecryptfs_validate_marker(char *data)
870 {
871 	u32 m_1, m_2;
872 
873 	m_1 = get_unaligned_be32(data);
874 	m_2 = get_unaligned_be32(data + 4);
875 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
876 		return 0;
877 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
878 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
879 			MAGIC_ECRYPTFS_MARKER);
880 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
881 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
882 	return -EINVAL;
883 }
884 
885 struct ecryptfs_flag_map_elem {
886 	u32 file_flag;
887 	u32 local_flag;
888 };
889 
890 /* Add support for additional flags by adding elements here. */
891 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
892 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
893 	{0x00000002, ECRYPTFS_ENCRYPTED},
894 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
895 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
896 };
897 
898 /**
899  * ecryptfs_process_flags
900  * @crypt_stat: The cryptographic context
901  * @page_virt: Source data to be parsed
902  * @bytes_read: Updated with the number of bytes read
903  *
904  * Returns zero on success; non-zero if the flag set is invalid
905  */
906 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
907 				  char *page_virt, int *bytes_read)
908 {
909 	int rc = 0;
910 	int i;
911 	u32 flags;
912 
913 	flags = get_unaligned_be32(page_virt);
914 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
915 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
916 		if (flags & ecryptfs_flag_map[i].file_flag) {
917 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
918 		} else
919 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
920 	/* Version is in top 8 bits of the 32-bit flag vector */
921 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
922 	(*bytes_read) = 4;
923 	return rc;
924 }
925 
926 /**
927  * write_ecryptfs_marker
928  * @page_virt: The pointer to in a page to begin writing the marker
929  * @written: Number of bytes written
930  *
931  * Marker = 0x3c81b7f5
932  */
933 static void write_ecryptfs_marker(char *page_virt, size_t *written)
934 {
935 	u32 m_1, m_2;
936 
937 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
938 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
939 	put_unaligned_be32(m_1, page_virt);
940 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
941 	put_unaligned_be32(m_2, page_virt);
942 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
943 }
944 
945 void ecryptfs_write_crypt_stat_flags(char *page_virt,
946 				     struct ecryptfs_crypt_stat *crypt_stat,
947 				     size_t *written)
948 {
949 	u32 flags = 0;
950 	int i;
951 
952 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
953 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
954 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
955 			flags |= ecryptfs_flag_map[i].file_flag;
956 	/* Version is in top 8 bits of the 32-bit flag vector */
957 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
958 	put_unaligned_be32(flags, page_virt);
959 	(*written) = 4;
960 }
961 
962 struct ecryptfs_cipher_code_str_map_elem {
963 	char cipher_str[16];
964 	u8 cipher_code;
965 };
966 
967 /* Add support for additional ciphers by adding elements here. The
968  * cipher_code is whatever OpenPGP applicatoins use to identify the
969  * ciphers. List in order of probability. */
970 static struct ecryptfs_cipher_code_str_map_elem
971 ecryptfs_cipher_code_str_map[] = {
972 	{"aes",RFC2440_CIPHER_AES_128 },
973 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
974 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
975 	{"cast5", RFC2440_CIPHER_CAST_5},
976 	{"twofish", RFC2440_CIPHER_TWOFISH},
977 	{"cast6", RFC2440_CIPHER_CAST_6},
978 	{"aes", RFC2440_CIPHER_AES_192},
979 	{"aes", RFC2440_CIPHER_AES_256}
980 };
981 
982 /**
983  * ecryptfs_code_for_cipher_string
984  * @cipher_name: The string alias for the cipher
985  * @key_bytes: Length of key in bytes; used for AES code selection
986  *
987  * Returns zero on no match, or the cipher code on match
988  */
989 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
990 {
991 	int i;
992 	u8 code = 0;
993 	struct ecryptfs_cipher_code_str_map_elem *map =
994 		ecryptfs_cipher_code_str_map;
995 
996 	if (strcmp(cipher_name, "aes") == 0) {
997 		switch (key_bytes) {
998 		case 16:
999 			code = RFC2440_CIPHER_AES_128;
1000 			break;
1001 		case 24:
1002 			code = RFC2440_CIPHER_AES_192;
1003 			break;
1004 		case 32:
1005 			code = RFC2440_CIPHER_AES_256;
1006 		}
1007 	} else {
1008 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1009 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1010 				code = map[i].cipher_code;
1011 				break;
1012 			}
1013 	}
1014 	return code;
1015 }
1016 
1017 /**
1018  * ecryptfs_cipher_code_to_string
1019  * @str: Destination to write out the cipher name
1020  * @cipher_code: The code to convert to cipher name string
1021  *
1022  * Returns zero on success
1023  */
1024 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1025 {
1026 	int rc = 0;
1027 	int i;
1028 
1029 	str[0] = '\0';
1030 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1031 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1032 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1033 	if (str[0] == '\0') {
1034 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1035 				"[%d]\n", cipher_code);
1036 		rc = -EINVAL;
1037 	}
1038 	return rc;
1039 }
1040 
1041 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1042 {
1043 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1044 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1045 	int rc;
1046 
1047 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1048 				 inode);
1049 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1050 		return rc >= 0 ? -EINVAL : rc;
1051 	rc = ecryptfs_validate_marker(marker);
1052 	if (!rc)
1053 		ecryptfs_i_size_init(file_size, inode);
1054 	return rc;
1055 }
1056 
1057 void
1058 ecryptfs_write_header_metadata(char *virt,
1059 			       struct ecryptfs_crypt_stat *crypt_stat,
1060 			       size_t *written)
1061 {
1062 	u32 header_extent_size;
1063 	u16 num_header_extents_at_front;
1064 
1065 	header_extent_size = (u32)crypt_stat->extent_size;
1066 	num_header_extents_at_front =
1067 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1068 	put_unaligned_be32(header_extent_size, virt);
1069 	virt += 4;
1070 	put_unaligned_be16(num_header_extents_at_front, virt);
1071 	(*written) = 6;
1072 }
1073 
1074 struct kmem_cache *ecryptfs_header_cache;
1075 
1076 /**
1077  * ecryptfs_write_headers_virt
1078  * @page_virt: The virtual address to write the headers to
1079  * @max: The size of memory allocated at page_virt
1080  * @size: Set to the number of bytes written by this function
1081  * @crypt_stat: The cryptographic context
1082  * @ecryptfs_dentry: The eCryptfs dentry
1083  *
1084  * Format version: 1
1085  *
1086  *   Header Extent:
1087  *     Octets 0-7:        Unencrypted file size (big-endian)
1088  *     Octets 8-15:       eCryptfs special marker
1089  *     Octets 16-19:      Flags
1090  *      Octet 16:         File format version number (between 0 and 255)
1091  *      Octets 17-18:     Reserved
1092  *      Octet 19:         Bit 1 (lsb): Reserved
1093  *                        Bit 2: Encrypted?
1094  *                        Bits 3-8: Reserved
1095  *     Octets 20-23:      Header extent size (big-endian)
1096  *     Octets 24-25:      Number of header extents at front of file
1097  *                        (big-endian)
1098  *     Octet  26:         Begin RFC 2440 authentication token packet set
1099  *   Data Extent 0:
1100  *     Lower data (CBC encrypted)
1101  *   Data Extent 1:
1102  *     Lower data (CBC encrypted)
1103  *   ...
1104  *
1105  * Returns zero on success
1106  */
1107 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1108 				       size_t *size,
1109 				       struct ecryptfs_crypt_stat *crypt_stat,
1110 				       struct dentry *ecryptfs_dentry)
1111 {
1112 	int rc;
1113 	size_t written;
1114 	size_t offset;
1115 
1116 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1117 	write_ecryptfs_marker((page_virt + offset), &written);
1118 	offset += written;
1119 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1120 					&written);
1121 	offset += written;
1122 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1123 				       &written);
1124 	offset += written;
1125 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1126 					      ecryptfs_dentry, &written,
1127 					      max - offset);
1128 	if (rc)
1129 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1130 				"set; rc = [%d]\n", rc);
1131 	if (size) {
1132 		offset += written;
1133 		*size = offset;
1134 	}
1135 	return rc;
1136 }
1137 
1138 static int
1139 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1140 				    char *virt, size_t virt_len)
1141 {
1142 	int rc;
1143 
1144 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1145 				  0, virt_len);
1146 	if (rc < 0)
1147 		printk(KERN_ERR "%s: Error attempting to write header "
1148 		       "information to lower file; rc = [%d]\n", __func__, rc);
1149 	else
1150 		rc = 0;
1151 	return rc;
1152 }
1153 
1154 static int
1155 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1156 				 char *page_virt, size_t size)
1157 {
1158 	int rc;
1159 
1160 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1161 			       size, 0);
1162 	return rc;
1163 }
1164 
1165 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1166 					       unsigned int order)
1167 {
1168 	struct page *page;
1169 
1170 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1171 	if (page)
1172 		return (unsigned long) page_address(page);
1173 	return 0;
1174 }
1175 
1176 /**
1177  * ecryptfs_write_metadata
1178  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1179  * @ecryptfs_inode: The newly created eCryptfs inode
1180  *
1181  * Write the file headers out.  This will likely involve a userspace
1182  * callout, in which the session key is encrypted with one or more
1183  * public keys and/or the passphrase necessary to do the encryption is
1184  * retrieved via a prompt.  Exactly what happens at this point should
1185  * be policy-dependent.
1186  *
1187  * Returns zero on success; non-zero on error
1188  */
1189 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1190 			    struct inode *ecryptfs_inode)
1191 {
1192 	struct ecryptfs_crypt_stat *crypt_stat =
1193 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1194 	unsigned int order;
1195 	char *virt;
1196 	size_t virt_len;
1197 	size_t size = 0;
1198 	int rc = 0;
1199 
1200 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1201 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1202 			printk(KERN_ERR "Key is invalid; bailing out\n");
1203 			rc = -EINVAL;
1204 			goto out;
1205 		}
1206 	} else {
1207 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1208 		       __func__);
1209 		rc = -EINVAL;
1210 		goto out;
1211 	}
1212 	virt_len = crypt_stat->metadata_size;
1213 	order = get_order(virt_len);
1214 	/* Released in this function */
1215 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1216 	if (!virt) {
1217 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1218 		rc = -ENOMEM;
1219 		goto out;
1220 	}
1221 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1222 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1223 					 ecryptfs_dentry);
1224 	if (unlikely(rc)) {
1225 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1226 		       __func__, rc);
1227 		goto out_free;
1228 	}
1229 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1230 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1231 						      size);
1232 	else
1233 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1234 							 virt_len);
1235 	if (rc) {
1236 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1237 		       "rc = [%d]\n", __func__, rc);
1238 		goto out_free;
1239 	}
1240 out_free:
1241 	free_pages((unsigned long)virt, order);
1242 out:
1243 	return rc;
1244 }
1245 
1246 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1247 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1248 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1249 				 char *virt, int *bytes_read,
1250 				 int validate_header_size)
1251 {
1252 	int rc = 0;
1253 	u32 header_extent_size;
1254 	u16 num_header_extents_at_front;
1255 
1256 	header_extent_size = get_unaligned_be32(virt);
1257 	virt += sizeof(__be32);
1258 	num_header_extents_at_front = get_unaligned_be16(virt);
1259 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1260 				     * (size_t)header_extent_size));
1261 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1262 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1263 	    && (crypt_stat->metadata_size
1264 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1265 		rc = -EINVAL;
1266 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1267 		       crypt_stat->metadata_size);
1268 	}
1269 	return rc;
1270 }
1271 
1272 /**
1273  * set_default_header_data
1274  * @crypt_stat: The cryptographic context
1275  *
1276  * For version 0 file format; this function is only for backwards
1277  * compatibility for files created with the prior versions of
1278  * eCryptfs.
1279  */
1280 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1281 {
1282 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1283 }
1284 
1285 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1286 {
1287 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1288 	struct ecryptfs_crypt_stat *crypt_stat;
1289 	u64 file_size;
1290 
1291 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1292 	mount_crypt_stat =
1293 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1294 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1295 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1296 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1297 			file_size += crypt_stat->metadata_size;
1298 	} else
1299 		file_size = get_unaligned_be64(page_virt);
1300 	i_size_write(inode, (loff_t)file_size);
1301 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1302 }
1303 
1304 /**
1305  * ecryptfs_read_headers_virt
1306  * @page_virt: The virtual address into which to read the headers
1307  * @crypt_stat: The cryptographic context
1308  * @ecryptfs_dentry: The eCryptfs dentry
1309  * @validate_header_size: Whether to validate the header size while reading
1310  *
1311  * Read/parse the header data. The header format is detailed in the
1312  * comment block for the ecryptfs_write_headers_virt() function.
1313  *
1314  * Returns zero on success
1315  */
1316 static int ecryptfs_read_headers_virt(char *page_virt,
1317 				      struct ecryptfs_crypt_stat *crypt_stat,
1318 				      struct dentry *ecryptfs_dentry,
1319 				      int validate_header_size)
1320 {
1321 	int rc = 0;
1322 	int offset;
1323 	int bytes_read;
1324 
1325 	ecryptfs_set_default_sizes(crypt_stat);
1326 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1327 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1328 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1329 	rc = ecryptfs_validate_marker(page_virt + offset);
1330 	if (rc)
1331 		goto out;
1332 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1333 		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1334 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1335 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1336 				    &bytes_read);
1337 	if (rc) {
1338 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1339 		goto out;
1340 	}
1341 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1342 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1343 				"file version [%d] is supported by this "
1344 				"version of eCryptfs\n",
1345 				crypt_stat->file_version,
1346 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1347 		rc = -EINVAL;
1348 		goto out;
1349 	}
1350 	offset += bytes_read;
1351 	if (crypt_stat->file_version >= 1) {
1352 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1353 					   &bytes_read, validate_header_size);
1354 		if (rc) {
1355 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1356 					"metadata; rc = [%d]\n", rc);
1357 		}
1358 		offset += bytes_read;
1359 	} else
1360 		set_default_header_data(crypt_stat);
1361 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1362 				       ecryptfs_dentry);
1363 out:
1364 	return rc;
1365 }
1366 
1367 /**
1368  * ecryptfs_read_xattr_region
1369  * @page_virt: The vitual address into which to read the xattr data
1370  * @ecryptfs_inode: The eCryptfs inode
1371  *
1372  * Attempts to read the crypto metadata from the extended attribute
1373  * region of the lower file.
1374  *
1375  * Returns zero on success; non-zero on error
1376  */
1377 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1378 {
1379 	struct dentry *lower_dentry =
1380 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1381 	ssize_t size;
1382 	int rc = 0;
1383 
1384 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1385 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1386 	if (size < 0) {
1387 		if (unlikely(ecryptfs_verbosity > 0))
1388 			printk(KERN_INFO "Error attempting to read the [%s] "
1389 			       "xattr from the lower file; return value = "
1390 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1391 		rc = -EINVAL;
1392 		goto out;
1393 	}
1394 out:
1395 	return rc;
1396 }
1397 
1398 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1399 					    struct inode *inode)
1400 {
1401 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1402 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1403 	int rc;
1404 
1405 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1406 				     ECRYPTFS_XATTR_NAME, file_size,
1407 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1408 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1409 		return rc >= 0 ? -EINVAL : rc;
1410 	rc = ecryptfs_validate_marker(marker);
1411 	if (!rc)
1412 		ecryptfs_i_size_init(file_size, inode);
1413 	return rc;
1414 }
1415 
1416 /**
1417  * ecryptfs_read_metadata
1418  *
1419  * Common entry point for reading file metadata. From here, we could
1420  * retrieve the header information from the header region of the file,
1421  * the xattr region of the file, or some other repostory that is
1422  * stored separately from the file itself. The current implementation
1423  * supports retrieving the metadata information from the file contents
1424  * and from the xattr region.
1425  *
1426  * Returns zero if valid headers found and parsed; non-zero otherwise
1427  */
1428 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1429 {
1430 	int rc;
1431 	char *page_virt;
1432 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1433 	struct ecryptfs_crypt_stat *crypt_stat =
1434 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1435 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1436 		&ecryptfs_superblock_to_private(
1437 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1438 
1439 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1440 						      mount_crypt_stat);
1441 	/* Read the first page from the underlying file */
1442 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1443 	if (!page_virt) {
1444 		rc = -ENOMEM;
1445 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1446 		       __func__);
1447 		goto out;
1448 	}
1449 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1450 				 ecryptfs_inode);
1451 	if (rc >= 0)
1452 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1453 						ecryptfs_dentry,
1454 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1455 	if (rc) {
1456 		/* metadata is not in the file header, so try xattrs */
1457 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1458 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1459 		if (rc) {
1460 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1461 			       "file header region or xattr region, inode %lu\n",
1462 				ecryptfs_inode->i_ino);
1463 			rc = -EINVAL;
1464 			goto out;
1465 		}
1466 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1467 						ecryptfs_dentry,
1468 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1469 		if (rc) {
1470 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1471 			       "file xattr region either, inode %lu\n",
1472 				ecryptfs_inode->i_ino);
1473 			rc = -EINVAL;
1474 		}
1475 		if (crypt_stat->mount_crypt_stat->flags
1476 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1477 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1478 		} else {
1479 			printk(KERN_WARNING "Attempt to access file with "
1480 			       "crypto metadata only in the extended attribute "
1481 			       "region, but eCryptfs was mounted without "
1482 			       "xattr support enabled. eCryptfs will not treat "
1483 			       "this like an encrypted file, inode %lu\n",
1484 				ecryptfs_inode->i_ino);
1485 			rc = -EINVAL;
1486 		}
1487 	}
1488 out:
1489 	if (page_virt) {
1490 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1491 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1492 	}
1493 	return rc;
1494 }
1495 
1496 /**
1497  * ecryptfs_encrypt_filename - encrypt filename
1498  *
1499  * CBC-encrypts the filename. We do not want to encrypt the same
1500  * filename with the same key and IV, which may happen with hard
1501  * links, so we prepend random bits to each filename.
1502  *
1503  * Returns zero on success; non-zero otherwise
1504  */
1505 static int
1506 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1507 			  struct ecryptfs_crypt_stat *crypt_stat,
1508 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1509 {
1510 	int rc = 0;
1511 
1512 	filename->encrypted_filename = NULL;
1513 	filename->encrypted_filename_size = 0;
1514 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1515 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1516 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1517 		size_t packet_size;
1518 		size_t remaining_bytes;
1519 
1520 		rc = ecryptfs_write_tag_70_packet(
1521 			NULL, NULL,
1522 			&filename->encrypted_filename_size,
1523 			mount_crypt_stat, NULL,
1524 			filename->filename_size);
1525 		if (rc) {
1526 			printk(KERN_ERR "%s: Error attempting to get packet "
1527 			       "size for tag 72; rc = [%d]\n", __func__,
1528 			       rc);
1529 			filename->encrypted_filename_size = 0;
1530 			goto out;
1531 		}
1532 		filename->encrypted_filename =
1533 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1534 		if (!filename->encrypted_filename) {
1535 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1536 			       "to kmalloc [%zd] bytes\n", __func__,
1537 			       filename->encrypted_filename_size);
1538 			rc = -ENOMEM;
1539 			goto out;
1540 		}
1541 		remaining_bytes = filename->encrypted_filename_size;
1542 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1543 						  &remaining_bytes,
1544 						  &packet_size,
1545 						  mount_crypt_stat,
1546 						  filename->filename,
1547 						  filename->filename_size);
1548 		if (rc) {
1549 			printk(KERN_ERR "%s: Error attempting to generate "
1550 			       "tag 70 packet; rc = [%d]\n", __func__,
1551 			       rc);
1552 			kfree(filename->encrypted_filename);
1553 			filename->encrypted_filename = NULL;
1554 			filename->encrypted_filename_size = 0;
1555 			goto out;
1556 		}
1557 		filename->encrypted_filename_size = packet_size;
1558 	} else {
1559 		printk(KERN_ERR "%s: No support for requested filename "
1560 		       "encryption method in this release\n", __func__);
1561 		rc = -EOPNOTSUPP;
1562 		goto out;
1563 	}
1564 out:
1565 	return rc;
1566 }
1567 
1568 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1569 				  const char *name, size_t name_size)
1570 {
1571 	int rc = 0;
1572 
1573 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1574 	if (!(*copied_name)) {
1575 		rc = -ENOMEM;
1576 		goto out;
1577 	}
1578 	memcpy((void *)(*copied_name), (void *)name, name_size);
1579 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1580 						 * in printing out the
1581 						 * string in debug
1582 						 * messages */
1583 	(*copied_name_size) = name_size;
1584 out:
1585 	return rc;
1586 }
1587 
1588 /**
1589  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1590  * @key_tfm: Crypto context for key material, set by this function
1591  * @cipher_name: Name of the cipher
1592  * @key_size: Size of the key in bytes
1593  *
1594  * Returns zero on success. Any crypto_tfm structs allocated here
1595  * should be released by other functions, such as on a superblock put
1596  * event, regardless of whether this function succeeds for fails.
1597  */
1598 static int
1599 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1600 			    char *cipher_name, size_t *key_size)
1601 {
1602 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1603 	char *full_alg_name = NULL;
1604 	int rc;
1605 
1606 	*key_tfm = NULL;
1607 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1608 		rc = -EINVAL;
1609 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1610 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1611 		goto out;
1612 	}
1613 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1614 						    "ecb");
1615 	if (rc)
1616 		goto out;
1617 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1618 	if (IS_ERR(*key_tfm)) {
1619 		rc = PTR_ERR(*key_tfm);
1620 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1621 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1622 		goto out;
1623 	}
1624 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1625 	if (*key_size == 0) {
1626 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1627 
1628 		*key_size = alg->max_keysize;
1629 	}
1630 	get_random_bytes(dummy_key, *key_size);
1631 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1632 	if (rc) {
1633 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1634 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1635 		       rc);
1636 		rc = -EINVAL;
1637 		goto out;
1638 	}
1639 out:
1640 	kfree(full_alg_name);
1641 	return rc;
1642 }
1643 
1644 struct kmem_cache *ecryptfs_key_tfm_cache;
1645 static struct list_head key_tfm_list;
1646 struct mutex key_tfm_list_mutex;
1647 
1648 int __init ecryptfs_init_crypto(void)
1649 {
1650 	mutex_init(&key_tfm_list_mutex);
1651 	INIT_LIST_HEAD(&key_tfm_list);
1652 	return 0;
1653 }
1654 
1655 /**
1656  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1657  *
1658  * Called only at module unload time
1659  */
1660 int ecryptfs_destroy_crypto(void)
1661 {
1662 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1663 
1664 	mutex_lock(&key_tfm_list_mutex);
1665 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1666 				 key_tfm_list) {
1667 		list_del(&key_tfm->key_tfm_list);
1668 		if (key_tfm->key_tfm)
1669 			crypto_free_blkcipher(key_tfm->key_tfm);
1670 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1671 	}
1672 	mutex_unlock(&key_tfm_list_mutex);
1673 	return 0;
1674 }
1675 
1676 int
1677 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1678 			 size_t key_size)
1679 {
1680 	struct ecryptfs_key_tfm *tmp_tfm;
1681 	int rc = 0;
1682 
1683 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1684 
1685 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1686 	if (key_tfm != NULL)
1687 		(*key_tfm) = tmp_tfm;
1688 	if (!tmp_tfm) {
1689 		rc = -ENOMEM;
1690 		printk(KERN_ERR "Error attempting to allocate from "
1691 		       "ecryptfs_key_tfm_cache\n");
1692 		goto out;
1693 	}
1694 	mutex_init(&tmp_tfm->key_tfm_mutex);
1695 	strncpy(tmp_tfm->cipher_name, cipher_name,
1696 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1697 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1698 	tmp_tfm->key_size = key_size;
1699 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1700 					 tmp_tfm->cipher_name,
1701 					 &tmp_tfm->key_size);
1702 	if (rc) {
1703 		printk(KERN_ERR "Error attempting to initialize key TFM "
1704 		       "cipher with name = [%s]; rc = [%d]\n",
1705 		       tmp_tfm->cipher_name, rc);
1706 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1707 		if (key_tfm != NULL)
1708 			(*key_tfm) = NULL;
1709 		goto out;
1710 	}
1711 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1712 out:
1713 	return rc;
1714 }
1715 
1716 /**
1717  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1718  * @cipher_name: the name of the cipher to search for
1719  * @key_tfm: set to corresponding tfm if found
1720  *
1721  * Searches for cached key_tfm matching @cipher_name
1722  * Must be called with &key_tfm_list_mutex held
1723  * Returns 1 if found, with @key_tfm set
1724  * Returns 0 if not found, with @key_tfm set to NULL
1725  */
1726 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1727 {
1728 	struct ecryptfs_key_tfm *tmp_key_tfm;
1729 
1730 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1731 
1732 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1733 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1734 			if (key_tfm)
1735 				(*key_tfm) = tmp_key_tfm;
1736 			return 1;
1737 		}
1738 	}
1739 	if (key_tfm)
1740 		(*key_tfm) = NULL;
1741 	return 0;
1742 }
1743 
1744 /**
1745  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1746  *
1747  * @tfm: set to cached tfm found, or new tfm created
1748  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1749  * @cipher_name: the name of the cipher to search for and/or add
1750  *
1751  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1752  * Searches for cached item first, and creates new if not found.
1753  * Returns 0 on success, non-zero if adding new cipher failed
1754  */
1755 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1756 					       struct mutex **tfm_mutex,
1757 					       char *cipher_name)
1758 {
1759 	struct ecryptfs_key_tfm *key_tfm;
1760 	int rc = 0;
1761 
1762 	(*tfm) = NULL;
1763 	(*tfm_mutex) = NULL;
1764 
1765 	mutex_lock(&key_tfm_list_mutex);
1766 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1767 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1768 		if (rc) {
1769 			printk(KERN_ERR "Error adding new key_tfm to list; "
1770 					"rc = [%d]\n", rc);
1771 			goto out;
1772 		}
1773 	}
1774 	(*tfm) = key_tfm->key_tfm;
1775 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1776 out:
1777 	mutex_unlock(&key_tfm_list_mutex);
1778 	return rc;
1779 }
1780 
1781 /* 64 characters forming a 6-bit target field */
1782 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1783 						 "EFGHIJKLMNOPQRST"
1784 						 "UVWXYZabcdefghij"
1785 						 "klmnopqrstuvwxyz");
1786 
1787 /* We could either offset on every reverse map or just pad some 0x00's
1788  * at the front here */
1789 static const unsigned char filename_rev_map[256] = {
1790 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1791 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1792 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1793 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1794 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1795 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1796 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1797 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1798 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1799 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1800 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1801 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1802 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1803 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1804 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1805 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1806 };
1807 
1808 /**
1809  * ecryptfs_encode_for_filename
1810  * @dst: Destination location for encoded filename
1811  * @dst_size: Size of the encoded filename in bytes
1812  * @src: Source location for the filename to encode
1813  * @src_size: Size of the source in bytes
1814  */
1815 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1816 				  unsigned char *src, size_t src_size)
1817 {
1818 	size_t num_blocks;
1819 	size_t block_num = 0;
1820 	size_t dst_offset = 0;
1821 	unsigned char last_block[3];
1822 
1823 	if (src_size == 0) {
1824 		(*dst_size) = 0;
1825 		goto out;
1826 	}
1827 	num_blocks = (src_size / 3);
1828 	if ((src_size % 3) == 0) {
1829 		memcpy(last_block, (&src[src_size - 3]), 3);
1830 	} else {
1831 		num_blocks++;
1832 		last_block[2] = 0x00;
1833 		switch (src_size % 3) {
1834 		case 1:
1835 			last_block[0] = src[src_size - 1];
1836 			last_block[1] = 0x00;
1837 			break;
1838 		case 2:
1839 			last_block[0] = src[src_size - 2];
1840 			last_block[1] = src[src_size - 1];
1841 		}
1842 	}
1843 	(*dst_size) = (num_blocks * 4);
1844 	if (!dst)
1845 		goto out;
1846 	while (block_num < num_blocks) {
1847 		unsigned char *src_block;
1848 		unsigned char dst_block[4];
1849 
1850 		if (block_num == (num_blocks - 1))
1851 			src_block = last_block;
1852 		else
1853 			src_block = &src[block_num * 3];
1854 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1855 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1856 				| ((src_block[1] >> 4) & 0x0F));
1857 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1858 				| ((src_block[2] >> 6) & 0x03));
1859 		dst_block[3] = (src_block[2] & 0x3F);
1860 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1861 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1862 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1863 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1864 		block_num++;
1865 	}
1866 out:
1867 	return;
1868 }
1869 
1870 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1871 {
1872 	/* Not exact; conservatively long. Every block of 4
1873 	 * encoded characters decodes into a block of 3
1874 	 * decoded characters. This segment of code provides
1875 	 * the caller with the maximum amount of allocated
1876 	 * space that @dst will need to point to in a
1877 	 * subsequent call. */
1878 	return ((encoded_size + 1) * 3) / 4;
1879 }
1880 
1881 /**
1882  * ecryptfs_decode_from_filename
1883  * @dst: If NULL, this function only sets @dst_size and returns. If
1884  *       non-NULL, this function decodes the encoded octets in @src
1885  *       into the memory that @dst points to.
1886  * @dst_size: Set to the size of the decoded string.
1887  * @src: The encoded set of octets to decode.
1888  * @src_size: The size of the encoded set of octets to decode.
1889  */
1890 static void
1891 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1892 			      const unsigned char *src, size_t src_size)
1893 {
1894 	u8 current_bit_offset = 0;
1895 	size_t src_byte_offset = 0;
1896 	size_t dst_byte_offset = 0;
1897 
1898 	if (dst == NULL) {
1899 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1900 		goto out;
1901 	}
1902 	while (src_byte_offset < src_size) {
1903 		unsigned char src_byte =
1904 				filename_rev_map[(int)src[src_byte_offset]];
1905 
1906 		switch (current_bit_offset) {
1907 		case 0:
1908 			dst[dst_byte_offset] = (src_byte << 2);
1909 			current_bit_offset = 6;
1910 			break;
1911 		case 6:
1912 			dst[dst_byte_offset++] |= (src_byte >> 4);
1913 			dst[dst_byte_offset] = ((src_byte & 0xF)
1914 						 << 4);
1915 			current_bit_offset = 4;
1916 			break;
1917 		case 4:
1918 			dst[dst_byte_offset++] |= (src_byte >> 2);
1919 			dst[dst_byte_offset] = (src_byte << 6);
1920 			current_bit_offset = 2;
1921 			break;
1922 		case 2:
1923 			dst[dst_byte_offset++] |= (src_byte);
1924 			dst[dst_byte_offset] = 0;
1925 			current_bit_offset = 0;
1926 			break;
1927 		}
1928 		src_byte_offset++;
1929 	}
1930 	(*dst_size) = dst_byte_offset;
1931 out:
1932 	return;
1933 }
1934 
1935 /**
1936  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1937  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1938  * @name: The plaintext name
1939  * @length: The length of the plaintext
1940  * @encoded_name: The encypted name
1941  *
1942  * Encrypts and encodes a filename into something that constitutes a
1943  * valid filename for a filesystem, with printable characters.
1944  *
1945  * We assume that we have a properly initialized crypto context,
1946  * pointed to by crypt_stat->tfm.
1947  *
1948  * Returns zero on success; non-zero on otherwise
1949  */
1950 int ecryptfs_encrypt_and_encode_filename(
1951 	char **encoded_name,
1952 	size_t *encoded_name_size,
1953 	struct ecryptfs_crypt_stat *crypt_stat,
1954 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1955 	const char *name, size_t name_size)
1956 {
1957 	size_t encoded_name_no_prefix_size;
1958 	int rc = 0;
1959 
1960 	(*encoded_name) = NULL;
1961 	(*encoded_name_size) = 0;
1962 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
1963 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1964 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
1965 		struct ecryptfs_filename *filename;
1966 
1967 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1968 		if (!filename) {
1969 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1970 			       "to kzalloc [%zd] bytes\n", __func__,
1971 			       sizeof(*filename));
1972 			rc = -ENOMEM;
1973 			goto out;
1974 		}
1975 		filename->filename = (char *)name;
1976 		filename->filename_size = name_size;
1977 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
1978 					       mount_crypt_stat);
1979 		if (rc) {
1980 			printk(KERN_ERR "%s: Error attempting to encrypt "
1981 			       "filename; rc = [%d]\n", __func__, rc);
1982 			kfree(filename);
1983 			goto out;
1984 		}
1985 		ecryptfs_encode_for_filename(
1986 			NULL, &encoded_name_no_prefix_size,
1987 			filename->encrypted_filename,
1988 			filename->encrypted_filename_size);
1989 		if ((crypt_stat && (crypt_stat->flags
1990 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1991 		    || (mount_crypt_stat
1992 			&& (mount_crypt_stat->flags
1993 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
1994 			(*encoded_name_size) =
1995 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1996 				 + encoded_name_no_prefix_size);
1997 		else
1998 			(*encoded_name_size) =
1999 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2000 				 + encoded_name_no_prefix_size);
2001 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2002 		if (!(*encoded_name)) {
2003 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2004 			       "to kzalloc [%zd] bytes\n", __func__,
2005 			       (*encoded_name_size));
2006 			rc = -ENOMEM;
2007 			kfree(filename->encrypted_filename);
2008 			kfree(filename);
2009 			goto out;
2010 		}
2011 		if ((crypt_stat && (crypt_stat->flags
2012 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2013 		    || (mount_crypt_stat
2014 			&& (mount_crypt_stat->flags
2015 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2016 			memcpy((*encoded_name),
2017 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2018 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2019 			ecryptfs_encode_for_filename(
2020 			    ((*encoded_name)
2021 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2022 			    &encoded_name_no_prefix_size,
2023 			    filename->encrypted_filename,
2024 			    filename->encrypted_filename_size);
2025 			(*encoded_name_size) =
2026 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2027 				 + encoded_name_no_prefix_size);
2028 			(*encoded_name)[(*encoded_name_size)] = '\0';
2029 		} else {
2030 			rc = -EOPNOTSUPP;
2031 		}
2032 		if (rc) {
2033 			printk(KERN_ERR "%s: Error attempting to encode "
2034 			       "encrypted filename; rc = [%d]\n", __func__,
2035 			       rc);
2036 			kfree((*encoded_name));
2037 			(*encoded_name) = NULL;
2038 			(*encoded_name_size) = 0;
2039 		}
2040 		kfree(filename->encrypted_filename);
2041 		kfree(filename);
2042 	} else {
2043 		rc = ecryptfs_copy_filename(encoded_name,
2044 					    encoded_name_size,
2045 					    name, name_size);
2046 	}
2047 out:
2048 	return rc;
2049 }
2050 
2051 /**
2052  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2053  * @plaintext_name: The plaintext name
2054  * @plaintext_name_size: The plaintext name size
2055  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2056  * @name: The filename in cipher text
2057  * @name_size: The cipher text name size
2058  *
2059  * Decrypts and decodes the filename.
2060  *
2061  * Returns zero on error; non-zero otherwise
2062  */
2063 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2064 					 size_t *plaintext_name_size,
2065 					 struct super_block *sb,
2066 					 const char *name, size_t name_size)
2067 {
2068 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2069 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2070 	char *decoded_name;
2071 	size_t decoded_name_size;
2072 	size_t packet_size;
2073 	int rc = 0;
2074 
2075 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2076 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2077 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2078 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2079 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2080 		const char *orig_name = name;
2081 		size_t orig_name_size = name_size;
2082 
2083 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2084 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2085 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2086 					      name, name_size);
2087 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2088 		if (!decoded_name) {
2089 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2090 			       "to kmalloc [%zd] bytes\n", __func__,
2091 			       decoded_name_size);
2092 			rc = -ENOMEM;
2093 			goto out;
2094 		}
2095 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2096 					      name, name_size);
2097 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2098 						  plaintext_name_size,
2099 						  &packet_size,
2100 						  mount_crypt_stat,
2101 						  decoded_name,
2102 						  decoded_name_size);
2103 		if (rc) {
2104 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2105 			       "from filename; copying through filename "
2106 			       "as-is\n", __func__);
2107 			rc = ecryptfs_copy_filename(plaintext_name,
2108 						    plaintext_name_size,
2109 						    orig_name, orig_name_size);
2110 			goto out_free;
2111 		}
2112 	} else {
2113 		rc = ecryptfs_copy_filename(plaintext_name,
2114 					    plaintext_name_size,
2115 					    name, name_size);
2116 		goto out;
2117 	}
2118 out_free:
2119 	kfree(decoded_name);
2120 out:
2121 	return rc;
2122 }
2123 
2124 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2125 
2126 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2127 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2128 {
2129 	struct blkcipher_desc desc;
2130 	struct mutex *tfm_mutex;
2131 	size_t cipher_blocksize;
2132 	int rc;
2133 
2134 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2135 		(*namelen) = lower_namelen;
2136 		return 0;
2137 	}
2138 
2139 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2140 			mount_crypt_stat->global_default_fn_cipher_name);
2141 	if (unlikely(rc)) {
2142 		(*namelen) = 0;
2143 		return rc;
2144 	}
2145 
2146 	mutex_lock(tfm_mutex);
2147 	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2148 	mutex_unlock(tfm_mutex);
2149 
2150 	/* Return an exact amount for the common cases */
2151 	if (lower_namelen == NAME_MAX
2152 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2153 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2154 		return 0;
2155 	}
2156 
2157 	/* Return a safe estimate for the uncommon cases */
2158 	(*namelen) = lower_namelen;
2159 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2160 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2161 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2162 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2163 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2164 	/* Worst case is that the filename is padded nearly a full block size */
2165 	(*namelen) -= cipher_blocksize - 1;
2166 
2167 	if ((*namelen) < 0)
2168 		(*namelen) = 0;
2169 
2170 	return 0;
2171 }
2172