1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <linux/slab.h> 37 #include <asm/unaligned.h> 38 #include "ecryptfs_kernel.h" 39 40 #define DECRYPT 0 41 #define ENCRYPT 1 42 43 /** 44 * ecryptfs_to_hex 45 * @dst: Buffer to take hex character representation of contents of 46 * src; must be at least of size (src_size * 2) 47 * @src: Buffer to be converted to a hex string respresentation 48 * @src_size: number of bytes to convert 49 */ 50 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 51 { 52 int x; 53 54 for (x = 0; x < src_size; x++) 55 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 56 } 57 58 /** 59 * ecryptfs_from_hex 60 * @dst: Buffer to take the bytes from src hex; must be at least of 61 * size (src_size / 2) 62 * @src: Buffer to be converted from a hex string respresentation to raw value 63 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 64 */ 65 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 66 { 67 int x; 68 char tmp[3] = { 0, }; 69 70 for (x = 0; x < dst_size; x++) { 71 tmp[0] = src[x * 2]; 72 tmp[1] = src[x * 2 + 1]; 73 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 74 } 75 } 76 77 /** 78 * ecryptfs_calculate_md5 - calculates the md5 of @src 79 * @dst: Pointer to 16 bytes of allocated memory 80 * @crypt_stat: Pointer to crypt_stat struct for the current inode 81 * @src: Data to be md5'd 82 * @len: Length of @src 83 * 84 * Uses the allocated crypto context that crypt_stat references to 85 * generate the MD5 sum of the contents of src. 86 */ 87 static int ecryptfs_calculate_md5(char *dst, 88 struct ecryptfs_crypt_stat *crypt_stat, 89 char *src, int len) 90 { 91 struct scatterlist sg; 92 struct hash_desc desc = { 93 .tfm = crypt_stat->hash_tfm, 94 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 95 }; 96 int rc = 0; 97 98 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 99 sg_init_one(&sg, (u8 *)src, len); 100 if (!desc.tfm) { 101 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 102 CRYPTO_ALG_ASYNC); 103 if (IS_ERR(desc.tfm)) { 104 rc = PTR_ERR(desc.tfm); 105 ecryptfs_printk(KERN_ERR, "Error attempting to " 106 "allocate crypto context; rc = [%d]\n", 107 rc); 108 goto out; 109 } 110 crypt_stat->hash_tfm = desc.tfm; 111 } 112 rc = crypto_hash_init(&desc); 113 if (rc) { 114 printk(KERN_ERR 115 "%s: Error initializing crypto hash; rc = [%d]\n", 116 __func__, rc); 117 goto out; 118 } 119 rc = crypto_hash_update(&desc, &sg, len); 120 if (rc) { 121 printk(KERN_ERR 122 "%s: Error updating crypto hash; rc = [%d]\n", 123 __func__, rc); 124 goto out; 125 } 126 rc = crypto_hash_final(&desc, dst); 127 if (rc) { 128 printk(KERN_ERR 129 "%s: Error finalizing crypto hash; rc = [%d]\n", 130 __func__, rc); 131 goto out; 132 } 133 out: 134 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 135 return rc; 136 } 137 138 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 139 char *cipher_name, 140 char *chaining_modifier) 141 { 142 int cipher_name_len = strlen(cipher_name); 143 int chaining_modifier_len = strlen(chaining_modifier); 144 int algified_name_len; 145 int rc; 146 147 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 148 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 149 if (!(*algified_name)) { 150 rc = -ENOMEM; 151 goto out; 152 } 153 snprintf((*algified_name), algified_name_len, "%s(%s)", 154 chaining_modifier, cipher_name); 155 rc = 0; 156 out: 157 return rc; 158 } 159 160 /** 161 * ecryptfs_derive_iv 162 * @iv: destination for the derived iv vale 163 * @crypt_stat: Pointer to crypt_stat struct for the current inode 164 * @offset: Offset of the extent whose IV we are to derive 165 * 166 * Generate the initialization vector from the given root IV and page 167 * offset. 168 * 169 * Returns zero on success; non-zero on error. 170 */ 171 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 172 loff_t offset) 173 { 174 int rc = 0; 175 char dst[MD5_DIGEST_SIZE]; 176 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 177 178 if (unlikely(ecryptfs_verbosity > 0)) { 179 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 180 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 181 } 182 /* TODO: It is probably secure to just cast the least 183 * significant bits of the root IV into an unsigned long and 184 * add the offset to that rather than go through all this 185 * hashing business. -Halcrow */ 186 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 187 memset((src + crypt_stat->iv_bytes), 0, 16); 188 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 189 if (unlikely(ecryptfs_verbosity > 0)) { 190 ecryptfs_printk(KERN_DEBUG, "source:\n"); 191 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 192 } 193 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 194 (crypt_stat->iv_bytes + 16)); 195 if (rc) { 196 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 197 "MD5 while generating IV for a page\n"); 198 goto out; 199 } 200 memcpy(iv, dst, crypt_stat->iv_bytes); 201 if (unlikely(ecryptfs_verbosity > 0)) { 202 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 203 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 204 } 205 out: 206 return rc; 207 } 208 209 /** 210 * ecryptfs_init_crypt_stat 211 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 212 * 213 * Initialize the crypt_stat structure. 214 */ 215 void 216 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 217 { 218 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 219 INIT_LIST_HEAD(&crypt_stat->keysig_list); 220 mutex_init(&crypt_stat->keysig_list_mutex); 221 mutex_init(&crypt_stat->cs_mutex); 222 mutex_init(&crypt_stat->cs_tfm_mutex); 223 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 224 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 225 } 226 227 /** 228 * ecryptfs_destroy_crypt_stat 229 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 230 * 231 * Releases all memory associated with a crypt_stat struct. 232 */ 233 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 234 { 235 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 236 237 if (crypt_stat->tfm) 238 crypto_free_ablkcipher(crypt_stat->tfm); 239 if (crypt_stat->hash_tfm) 240 crypto_free_hash(crypt_stat->hash_tfm); 241 list_for_each_entry_safe(key_sig, key_sig_tmp, 242 &crypt_stat->keysig_list, crypt_stat_list) { 243 list_del(&key_sig->crypt_stat_list); 244 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 245 } 246 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 247 } 248 249 void ecryptfs_destroy_mount_crypt_stat( 250 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 251 { 252 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 253 254 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 255 return; 256 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 257 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 258 &mount_crypt_stat->global_auth_tok_list, 259 mount_crypt_stat_list) { 260 list_del(&auth_tok->mount_crypt_stat_list); 261 if (auth_tok->global_auth_tok_key 262 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 263 key_put(auth_tok->global_auth_tok_key); 264 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 265 } 266 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 267 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 268 } 269 270 /** 271 * virt_to_scatterlist 272 * @addr: Virtual address 273 * @size: Size of data; should be an even multiple of the block size 274 * @sg: Pointer to scatterlist array; set to NULL to obtain only 275 * the number of scatterlist structs required in array 276 * @sg_size: Max array size 277 * 278 * Fills in a scatterlist array with page references for a passed 279 * virtual address. 280 * 281 * Returns the number of scatterlist structs in array used 282 */ 283 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 284 int sg_size) 285 { 286 int i = 0; 287 struct page *pg; 288 int offset; 289 int remainder_of_page; 290 291 sg_init_table(sg, sg_size); 292 293 while (size > 0 && i < sg_size) { 294 pg = virt_to_page(addr); 295 offset = offset_in_page(addr); 296 sg_set_page(&sg[i], pg, 0, offset); 297 remainder_of_page = PAGE_CACHE_SIZE - offset; 298 if (size >= remainder_of_page) { 299 sg[i].length = remainder_of_page; 300 addr += remainder_of_page; 301 size -= remainder_of_page; 302 } else { 303 sg[i].length = size; 304 addr += size; 305 size = 0; 306 } 307 i++; 308 } 309 if (size > 0) 310 return -ENOMEM; 311 return i; 312 } 313 314 struct extent_crypt_result { 315 struct completion completion; 316 int rc; 317 }; 318 319 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 320 { 321 struct extent_crypt_result *ecr = req->data; 322 323 if (rc == -EINPROGRESS) 324 return; 325 326 ecr->rc = rc; 327 complete(&ecr->completion); 328 } 329 330 /** 331 * crypt_scatterlist 332 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 333 * @dst_sg: Destination of the data after performing the crypto operation 334 * @src_sg: Data to be encrypted or decrypted 335 * @size: Length of data 336 * @iv: IV to use 337 * @op: ENCRYPT or DECRYPT to indicate the desired operation 338 * 339 * Returns the number of bytes encrypted or decrypted; negative value on error 340 */ 341 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 342 struct scatterlist *dst_sg, 343 struct scatterlist *src_sg, int size, 344 unsigned char *iv, int op) 345 { 346 struct ablkcipher_request *req = NULL; 347 struct extent_crypt_result ecr; 348 int rc = 0; 349 350 BUG_ON(!crypt_stat || !crypt_stat->tfm 351 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 352 if (unlikely(ecryptfs_verbosity > 0)) { 353 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 354 crypt_stat->key_size); 355 ecryptfs_dump_hex(crypt_stat->key, 356 crypt_stat->key_size); 357 } 358 359 init_completion(&ecr.completion); 360 361 mutex_lock(&crypt_stat->cs_tfm_mutex); 362 req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 363 if (!req) { 364 mutex_unlock(&crypt_stat->cs_tfm_mutex); 365 rc = -ENOMEM; 366 goto out; 367 } 368 369 ablkcipher_request_set_callback(req, 370 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 371 extent_crypt_complete, &ecr); 372 /* Consider doing this once, when the file is opened */ 373 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 374 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 375 crypt_stat->key_size); 376 if (rc) { 377 ecryptfs_printk(KERN_ERR, 378 "Error setting key; rc = [%d]\n", 379 rc); 380 mutex_unlock(&crypt_stat->cs_tfm_mutex); 381 rc = -EINVAL; 382 goto out; 383 } 384 crypt_stat->flags |= ECRYPTFS_KEY_SET; 385 } 386 mutex_unlock(&crypt_stat->cs_tfm_mutex); 387 ablkcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 388 rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) : 389 crypto_ablkcipher_decrypt(req); 390 if (rc == -EINPROGRESS || rc == -EBUSY) { 391 struct extent_crypt_result *ecr = req->base.data; 392 393 wait_for_completion(&ecr->completion); 394 rc = ecr->rc; 395 INIT_COMPLETION(ecr->completion); 396 } 397 out: 398 ablkcipher_request_free(req); 399 return rc; 400 } 401 402 /** 403 * lower_offset_for_page 404 * 405 * Convert an eCryptfs page index into a lower byte offset 406 */ 407 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 408 struct page *page) 409 { 410 return ecryptfs_lower_header_size(crypt_stat) + 411 (page->index << PAGE_CACHE_SHIFT); 412 } 413 414 /** 415 * crypt_extent 416 * @crypt_stat: crypt_stat containing cryptographic context for the 417 * encryption operation 418 * @dst_page: The page to write the result into 419 * @src_page: The page to read from 420 * @extent_offset: Page extent offset for use in generating IV 421 * @op: ENCRYPT or DECRYPT to indicate the desired operation 422 * 423 * Encrypts or decrypts one extent of data. 424 * 425 * Return zero on success; non-zero otherwise 426 */ 427 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 428 struct page *dst_page, 429 struct page *src_page, 430 unsigned long extent_offset, int op) 431 { 432 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 433 loff_t extent_base; 434 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 435 struct scatterlist src_sg, dst_sg; 436 size_t extent_size = crypt_stat->extent_size; 437 int rc; 438 439 extent_base = (((loff_t)page_index) * (PAGE_CACHE_SIZE / extent_size)); 440 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 441 (extent_base + extent_offset)); 442 if (rc) { 443 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 444 "extent [0x%.16llx]; rc = [%d]\n", 445 (unsigned long long)(extent_base + extent_offset), rc); 446 goto out; 447 } 448 449 sg_init_table(&src_sg, 1); 450 sg_init_table(&dst_sg, 1); 451 452 sg_set_page(&src_sg, src_page, extent_size, 453 extent_offset * extent_size); 454 sg_set_page(&dst_sg, dst_page, extent_size, 455 extent_offset * extent_size); 456 457 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 458 extent_iv, op); 459 if (rc < 0) { 460 printk(KERN_ERR "%s: Error attempting to crypt page with " 461 "page_index = [%ld], extent_offset = [%ld]; " 462 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 463 goto out; 464 } 465 rc = 0; 466 out: 467 return rc; 468 } 469 470 /** 471 * ecryptfs_encrypt_page 472 * @page: Page mapped from the eCryptfs inode for the file; contains 473 * decrypted content that needs to be encrypted (to a temporary 474 * page; not in place) and written out to the lower file 475 * 476 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 477 * that eCryptfs pages may straddle the lower pages -- for instance, 478 * if the file was created on a machine with an 8K page size 479 * (resulting in an 8K header), and then the file is copied onto a 480 * host with a 32K page size, then when reading page 0 of the eCryptfs 481 * file, 24K of page 0 of the lower file will be read and decrypted, 482 * and then 8K of page 1 of the lower file will be read and decrypted. 483 * 484 * Returns zero on success; negative on error 485 */ 486 int ecryptfs_encrypt_page(struct page *page) 487 { 488 struct inode *ecryptfs_inode; 489 struct ecryptfs_crypt_stat *crypt_stat; 490 char *enc_extent_virt; 491 struct page *enc_extent_page = NULL; 492 loff_t extent_offset; 493 loff_t lower_offset; 494 int rc = 0; 495 496 ecryptfs_inode = page->mapping->host; 497 crypt_stat = 498 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 499 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 500 enc_extent_page = alloc_page(GFP_USER); 501 if (!enc_extent_page) { 502 rc = -ENOMEM; 503 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 504 "encrypted extent\n"); 505 goto out; 506 } 507 508 for (extent_offset = 0; 509 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 510 extent_offset++) { 511 rc = crypt_extent(crypt_stat, enc_extent_page, page, 512 extent_offset, ENCRYPT); 513 if (rc) { 514 printk(KERN_ERR "%s: Error encrypting extent; " 515 "rc = [%d]\n", __func__, rc); 516 goto out; 517 } 518 } 519 520 lower_offset = lower_offset_for_page(crypt_stat, page); 521 enc_extent_virt = kmap(enc_extent_page); 522 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 523 PAGE_CACHE_SIZE); 524 kunmap(enc_extent_page); 525 if (rc < 0) { 526 ecryptfs_printk(KERN_ERR, 527 "Error attempting to write lower page; rc = [%d]\n", 528 rc); 529 goto out; 530 } 531 rc = 0; 532 out: 533 if (enc_extent_page) { 534 __free_page(enc_extent_page); 535 } 536 return rc; 537 } 538 539 /** 540 * ecryptfs_decrypt_page 541 * @page: Page mapped from the eCryptfs inode for the file; data read 542 * and decrypted from the lower file will be written into this 543 * page 544 * 545 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 546 * that eCryptfs pages may straddle the lower pages -- for instance, 547 * if the file was created on a machine with an 8K page size 548 * (resulting in an 8K header), and then the file is copied onto a 549 * host with a 32K page size, then when reading page 0 of the eCryptfs 550 * file, 24K of page 0 of the lower file will be read and decrypted, 551 * and then 8K of page 1 of the lower file will be read and decrypted. 552 * 553 * Returns zero on success; negative on error 554 */ 555 int ecryptfs_decrypt_page(struct page *page) 556 { 557 struct inode *ecryptfs_inode; 558 struct ecryptfs_crypt_stat *crypt_stat; 559 char *page_virt; 560 unsigned long extent_offset; 561 loff_t lower_offset; 562 int rc = 0; 563 564 ecryptfs_inode = page->mapping->host; 565 crypt_stat = 566 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 567 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 568 569 lower_offset = lower_offset_for_page(crypt_stat, page); 570 page_virt = kmap(page); 571 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE, 572 ecryptfs_inode); 573 kunmap(page); 574 if (rc < 0) { 575 ecryptfs_printk(KERN_ERR, 576 "Error attempting to read lower page; rc = [%d]\n", 577 rc); 578 goto out; 579 } 580 581 for (extent_offset = 0; 582 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 583 extent_offset++) { 584 rc = crypt_extent(crypt_stat, page, page, 585 extent_offset, DECRYPT); 586 if (rc) { 587 printk(KERN_ERR "%s: Error encrypting extent; " 588 "rc = [%d]\n", __func__, rc); 589 goto out; 590 } 591 } 592 out: 593 return rc; 594 } 595 596 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 597 598 /** 599 * ecryptfs_init_crypt_ctx 600 * @crypt_stat: Uninitialized crypt stats structure 601 * 602 * Initialize the crypto context. 603 * 604 * TODO: Performance: Keep a cache of initialized cipher contexts; 605 * only init if needed 606 */ 607 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 608 { 609 char *full_alg_name; 610 int rc = -EINVAL; 611 612 if (!crypt_stat->cipher) { 613 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 614 goto out; 615 } 616 ecryptfs_printk(KERN_DEBUG, 617 "Initializing cipher [%s]; strlen = [%d]; " 618 "key_size_bits = [%zd]\n", 619 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 620 crypt_stat->key_size << 3); 621 if (crypt_stat->tfm) { 622 rc = 0; 623 goto out; 624 } 625 mutex_lock(&crypt_stat->cs_tfm_mutex); 626 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 627 crypt_stat->cipher, "cbc"); 628 if (rc) 629 goto out_unlock; 630 crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0); 631 kfree(full_alg_name); 632 if (IS_ERR(crypt_stat->tfm)) { 633 rc = PTR_ERR(crypt_stat->tfm); 634 crypt_stat->tfm = NULL; 635 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 636 "Error initializing cipher [%s]\n", 637 crypt_stat->cipher); 638 goto out_unlock; 639 } 640 crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 641 rc = 0; 642 out_unlock: 643 mutex_unlock(&crypt_stat->cs_tfm_mutex); 644 out: 645 return rc; 646 } 647 648 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 649 { 650 int extent_size_tmp; 651 652 crypt_stat->extent_mask = 0xFFFFFFFF; 653 crypt_stat->extent_shift = 0; 654 if (crypt_stat->extent_size == 0) 655 return; 656 extent_size_tmp = crypt_stat->extent_size; 657 while ((extent_size_tmp & 0x01) == 0) { 658 extent_size_tmp >>= 1; 659 crypt_stat->extent_mask <<= 1; 660 crypt_stat->extent_shift++; 661 } 662 } 663 664 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 665 { 666 /* Default values; may be overwritten as we are parsing the 667 * packets. */ 668 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 669 set_extent_mask_and_shift(crypt_stat); 670 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 671 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 672 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 673 else { 674 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 675 crypt_stat->metadata_size = 676 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 677 else 678 crypt_stat->metadata_size = PAGE_CACHE_SIZE; 679 } 680 } 681 682 /** 683 * ecryptfs_compute_root_iv 684 * @crypt_stats 685 * 686 * On error, sets the root IV to all 0's. 687 */ 688 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 689 { 690 int rc = 0; 691 char dst[MD5_DIGEST_SIZE]; 692 693 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 694 BUG_ON(crypt_stat->iv_bytes <= 0); 695 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 696 rc = -EINVAL; 697 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 698 "cannot generate root IV\n"); 699 goto out; 700 } 701 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 702 crypt_stat->key_size); 703 if (rc) { 704 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 705 "MD5 while generating root IV\n"); 706 goto out; 707 } 708 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 709 out: 710 if (rc) { 711 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 712 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 713 } 714 return rc; 715 } 716 717 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 718 { 719 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 720 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 721 ecryptfs_compute_root_iv(crypt_stat); 722 if (unlikely(ecryptfs_verbosity > 0)) { 723 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 724 ecryptfs_dump_hex(crypt_stat->key, 725 crypt_stat->key_size); 726 } 727 } 728 729 /** 730 * ecryptfs_copy_mount_wide_flags_to_inode_flags 731 * @crypt_stat: The inode's cryptographic context 732 * @mount_crypt_stat: The mount point's cryptographic context 733 * 734 * This function propagates the mount-wide flags to individual inode 735 * flags. 736 */ 737 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 738 struct ecryptfs_crypt_stat *crypt_stat, 739 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 740 { 741 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 742 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 743 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 744 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 745 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 746 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 747 if (mount_crypt_stat->flags 748 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 749 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 750 else if (mount_crypt_stat->flags 751 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 752 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 753 } 754 } 755 756 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 757 struct ecryptfs_crypt_stat *crypt_stat, 758 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 759 { 760 struct ecryptfs_global_auth_tok *global_auth_tok; 761 int rc = 0; 762 763 mutex_lock(&crypt_stat->keysig_list_mutex); 764 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 765 766 list_for_each_entry(global_auth_tok, 767 &mount_crypt_stat->global_auth_tok_list, 768 mount_crypt_stat_list) { 769 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 770 continue; 771 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 772 if (rc) { 773 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 774 goto out; 775 } 776 } 777 778 out: 779 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 780 mutex_unlock(&crypt_stat->keysig_list_mutex); 781 return rc; 782 } 783 784 /** 785 * ecryptfs_set_default_crypt_stat_vals 786 * @crypt_stat: The inode's cryptographic context 787 * @mount_crypt_stat: The mount point's cryptographic context 788 * 789 * Default values in the event that policy does not override them. 790 */ 791 static void ecryptfs_set_default_crypt_stat_vals( 792 struct ecryptfs_crypt_stat *crypt_stat, 793 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 794 { 795 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 796 mount_crypt_stat); 797 ecryptfs_set_default_sizes(crypt_stat); 798 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 799 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 800 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 801 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 802 crypt_stat->mount_crypt_stat = mount_crypt_stat; 803 } 804 805 /** 806 * ecryptfs_new_file_context 807 * @ecryptfs_inode: The eCryptfs inode 808 * 809 * If the crypto context for the file has not yet been established, 810 * this is where we do that. Establishing a new crypto context 811 * involves the following decisions: 812 * - What cipher to use? 813 * - What set of authentication tokens to use? 814 * Here we just worry about getting enough information into the 815 * authentication tokens so that we know that they are available. 816 * We associate the available authentication tokens with the new file 817 * via the set of signatures in the crypt_stat struct. Later, when 818 * the headers are actually written out, we may again defer to 819 * userspace to perform the encryption of the session key; for the 820 * foreseeable future, this will be the case with public key packets. 821 * 822 * Returns zero on success; non-zero otherwise 823 */ 824 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 825 { 826 struct ecryptfs_crypt_stat *crypt_stat = 827 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 828 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 829 &ecryptfs_superblock_to_private( 830 ecryptfs_inode->i_sb)->mount_crypt_stat; 831 int cipher_name_len; 832 int rc = 0; 833 834 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 835 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 836 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 837 mount_crypt_stat); 838 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 839 mount_crypt_stat); 840 if (rc) { 841 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 842 "to the inode key sigs; rc = [%d]\n", rc); 843 goto out; 844 } 845 cipher_name_len = 846 strlen(mount_crypt_stat->global_default_cipher_name); 847 memcpy(crypt_stat->cipher, 848 mount_crypt_stat->global_default_cipher_name, 849 cipher_name_len); 850 crypt_stat->cipher[cipher_name_len] = '\0'; 851 crypt_stat->key_size = 852 mount_crypt_stat->global_default_cipher_key_size; 853 ecryptfs_generate_new_key(crypt_stat); 854 rc = ecryptfs_init_crypt_ctx(crypt_stat); 855 if (rc) 856 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 857 "context for cipher [%s]: rc = [%d]\n", 858 crypt_stat->cipher, rc); 859 out: 860 return rc; 861 } 862 863 /** 864 * ecryptfs_validate_marker - check for the ecryptfs marker 865 * @data: The data block in which to check 866 * 867 * Returns zero if marker found; -EINVAL if not found 868 */ 869 static int ecryptfs_validate_marker(char *data) 870 { 871 u32 m_1, m_2; 872 873 m_1 = get_unaligned_be32(data); 874 m_2 = get_unaligned_be32(data + 4); 875 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 876 return 0; 877 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 878 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 879 MAGIC_ECRYPTFS_MARKER); 880 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 881 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 882 return -EINVAL; 883 } 884 885 struct ecryptfs_flag_map_elem { 886 u32 file_flag; 887 u32 local_flag; 888 }; 889 890 /* Add support for additional flags by adding elements here. */ 891 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 892 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 893 {0x00000002, ECRYPTFS_ENCRYPTED}, 894 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 895 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 896 }; 897 898 /** 899 * ecryptfs_process_flags 900 * @crypt_stat: The cryptographic context 901 * @page_virt: Source data to be parsed 902 * @bytes_read: Updated with the number of bytes read 903 * 904 * Returns zero on success; non-zero if the flag set is invalid 905 */ 906 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 907 char *page_virt, int *bytes_read) 908 { 909 int rc = 0; 910 int i; 911 u32 flags; 912 913 flags = get_unaligned_be32(page_virt); 914 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 915 / sizeof(struct ecryptfs_flag_map_elem))); i++) 916 if (flags & ecryptfs_flag_map[i].file_flag) { 917 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 918 } else 919 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 920 /* Version is in top 8 bits of the 32-bit flag vector */ 921 crypt_stat->file_version = ((flags >> 24) & 0xFF); 922 (*bytes_read) = 4; 923 return rc; 924 } 925 926 /** 927 * write_ecryptfs_marker 928 * @page_virt: The pointer to in a page to begin writing the marker 929 * @written: Number of bytes written 930 * 931 * Marker = 0x3c81b7f5 932 */ 933 static void write_ecryptfs_marker(char *page_virt, size_t *written) 934 { 935 u32 m_1, m_2; 936 937 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 938 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 939 put_unaligned_be32(m_1, page_virt); 940 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 941 put_unaligned_be32(m_2, page_virt); 942 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 943 } 944 945 void ecryptfs_write_crypt_stat_flags(char *page_virt, 946 struct ecryptfs_crypt_stat *crypt_stat, 947 size_t *written) 948 { 949 u32 flags = 0; 950 int i; 951 952 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 953 / sizeof(struct ecryptfs_flag_map_elem))); i++) 954 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 955 flags |= ecryptfs_flag_map[i].file_flag; 956 /* Version is in top 8 bits of the 32-bit flag vector */ 957 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 958 put_unaligned_be32(flags, page_virt); 959 (*written) = 4; 960 } 961 962 struct ecryptfs_cipher_code_str_map_elem { 963 char cipher_str[16]; 964 u8 cipher_code; 965 }; 966 967 /* Add support for additional ciphers by adding elements here. The 968 * cipher_code is whatever OpenPGP applicatoins use to identify the 969 * ciphers. List in order of probability. */ 970 static struct ecryptfs_cipher_code_str_map_elem 971 ecryptfs_cipher_code_str_map[] = { 972 {"aes",RFC2440_CIPHER_AES_128 }, 973 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 974 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 975 {"cast5", RFC2440_CIPHER_CAST_5}, 976 {"twofish", RFC2440_CIPHER_TWOFISH}, 977 {"cast6", RFC2440_CIPHER_CAST_6}, 978 {"aes", RFC2440_CIPHER_AES_192}, 979 {"aes", RFC2440_CIPHER_AES_256} 980 }; 981 982 /** 983 * ecryptfs_code_for_cipher_string 984 * @cipher_name: The string alias for the cipher 985 * @key_bytes: Length of key in bytes; used for AES code selection 986 * 987 * Returns zero on no match, or the cipher code on match 988 */ 989 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 990 { 991 int i; 992 u8 code = 0; 993 struct ecryptfs_cipher_code_str_map_elem *map = 994 ecryptfs_cipher_code_str_map; 995 996 if (strcmp(cipher_name, "aes") == 0) { 997 switch (key_bytes) { 998 case 16: 999 code = RFC2440_CIPHER_AES_128; 1000 break; 1001 case 24: 1002 code = RFC2440_CIPHER_AES_192; 1003 break; 1004 case 32: 1005 code = RFC2440_CIPHER_AES_256; 1006 } 1007 } else { 1008 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1009 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1010 code = map[i].cipher_code; 1011 break; 1012 } 1013 } 1014 return code; 1015 } 1016 1017 /** 1018 * ecryptfs_cipher_code_to_string 1019 * @str: Destination to write out the cipher name 1020 * @cipher_code: The code to convert to cipher name string 1021 * 1022 * Returns zero on success 1023 */ 1024 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1025 { 1026 int rc = 0; 1027 int i; 1028 1029 str[0] = '\0'; 1030 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1031 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1032 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1033 if (str[0] == '\0') { 1034 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1035 "[%d]\n", cipher_code); 1036 rc = -EINVAL; 1037 } 1038 return rc; 1039 } 1040 1041 int ecryptfs_read_and_validate_header_region(struct inode *inode) 1042 { 1043 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1044 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1045 int rc; 1046 1047 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1048 inode); 1049 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1050 return rc >= 0 ? -EINVAL : rc; 1051 rc = ecryptfs_validate_marker(marker); 1052 if (!rc) 1053 ecryptfs_i_size_init(file_size, inode); 1054 return rc; 1055 } 1056 1057 void 1058 ecryptfs_write_header_metadata(char *virt, 1059 struct ecryptfs_crypt_stat *crypt_stat, 1060 size_t *written) 1061 { 1062 u32 header_extent_size; 1063 u16 num_header_extents_at_front; 1064 1065 header_extent_size = (u32)crypt_stat->extent_size; 1066 num_header_extents_at_front = 1067 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1068 put_unaligned_be32(header_extent_size, virt); 1069 virt += 4; 1070 put_unaligned_be16(num_header_extents_at_front, virt); 1071 (*written) = 6; 1072 } 1073 1074 struct kmem_cache *ecryptfs_header_cache; 1075 1076 /** 1077 * ecryptfs_write_headers_virt 1078 * @page_virt: The virtual address to write the headers to 1079 * @max: The size of memory allocated at page_virt 1080 * @size: Set to the number of bytes written by this function 1081 * @crypt_stat: The cryptographic context 1082 * @ecryptfs_dentry: The eCryptfs dentry 1083 * 1084 * Format version: 1 1085 * 1086 * Header Extent: 1087 * Octets 0-7: Unencrypted file size (big-endian) 1088 * Octets 8-15: eCryptfs special marker 1089 * Octets 16-19: Flags 1090 * Octet 16: File format version number (between 0 and 255) 1091 * Octets 17-18: Reserved 1092 * Octet 19: Bit 1 (lsb): Reserved 1093 * Bit 2: Encrypted? 1094 * Bits 3-8: Reserved 1095 * Octets 20-23: Header extent size (big-endian) 1096 * Octets 24-25: Number of header extents at front of file 1097 * (big-endian) 1098 * Octet 26: Begin RFC 2440 authentication token packet set 1099 * Data Extent 0: 1100 * Lower data (CBC encrypted) 1101 * Data Extent 1: 1102 * Lower data (CBC encrypted) 1103 * ... 1104 * 1105 * Returns zero on success 1106 */ 1107 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1108 size_t *size, 1109 struct ecryptfs_crypt_stat *crypt_stat, 1110 struct dentry *ecryptfs_dentry) 1111 { 1112 int rc; 1113 size_t written; 1114 size_t offset; 1115 1116 offset = ECRYPTFS_FILE_SIZE_BYTES; 1117 write_ecryptfs_marker((page_virt + offset), &written); 1118 offset += written; 1119 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1120 &written); 1121 offset += written; 1122 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1123 &written); 1124 offset += written; 1125 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1126 ecryptfs_dentry, &written, 1127 max - offset); 1128 if (rc) 1129 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1130 "set; rc = [%d]\n", rc); 1131 if (size) { 1132 offset += written; 1133 *size = offset; 1134 } 1135 return rc; 1136 } 1137 1138 static int 1139 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1140 char *virt, size_t virt_len) 1141 { 1142 int rc; 1143 1144 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1145 0, virt_len); 1146 if (rc < 0) 1147 printk(KERN_ERR "%s: Error attempting to write header " 1148 "information to lower file; rc = [%d]\n", __func__, rc); 1149 else 1150 rc = 0; 1151 return rc; 1152 } 1153 1154 static int 1155 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1156 char *page_virt, size_t size) 1157 { 1158 int rc; 1159 1160 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1161 size, 0); 1162 return rc; 1163 } 1164 1165 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1166 unsigned int order) 1167 { 1168 struct page *page; 1169 1170 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1171 if (page) 1172 return (unsigned long) page_address(page); 1173 return 0; 1174 } 1175 1176 /** 1177 * ecryptfs_write_metadata 1178 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1179 * @ecryptfs_inode: The newly created eCryptfs inode 1180 * 1181 * Write the file headers out. This will likely involve a userspace 1182 * callout, in which the session key is encrypted with one or more 1183 * public keys and/or the passphrase necessary to do the encryption is 1184 * retrieved via a prompt. Exactly what happens at this point should 1185 * be policy-dependent. 1186 * 1187 * Returns zero on success; non-zero on error 1188 */ 1189 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1190 struct inode *ecryptfs_inode) 1191 { 1192 struct ecryptfs_crypt_stat *crypt_stat = 1193 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1194 unsigned int order; 1195 char *virt; 1196 size_t virt_len; 1197 size_t size = 0; 1198 int rc = 0; 1199 1200 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1201 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1202 printk(KERN_ERR "Key is invalid; bailing out\n"); 1203 rc = -EINVAL; 1204 goto out; 1205 } 1206 } else { 1207 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1208 __func__); 1209 rc = -EINVAL; 1210 goto out; 1211 } 1212 virt_len = crypt_stat->metadata_size; 1213 order = get_order(virt_len); 1214 /* Released in this function */ 1215 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1216 if (!virt) { 1217 printk(KERN_ERR "%s: Out of memory\n", __func__); 1218 rc = -ENOMEM; 1219 goto out; 1220 } 1221 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1222 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1223 ecryptfs_dentry); 1224 if (unlikely(rc)) { 1225 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1226 __func__, rc); 1227 goto out_free; 1228 } 1229 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1230 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1231 size); 1232 else 1233 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1234 virt_len); 1235 if (rc) { 1236 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1237 "rc = [%d]\n", __func__, rc); 1238 goto out_free; 1239 } 1240 out_free: 1241 free_pages((unsigned long)virt, order); 1242 out: 1243 return rc; 1244 } 1245 1246 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1247 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1248 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1249 char *virt, int *bytes_read, 1250 int validate_header_size) 1251 { 1252 int rc = 0; 1253 u32 header_extent_size; 1254 u16 num_header_extents_at_front; 1255 1256 header_extent_size = get_unaligned_be32(virt); 1257 virt += sizeof(__be32); 1258 num_header_extents_at_front = get_unaligned_be16(virt); 1259 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1260 * (size_t)header_extent_size)); 1261 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1262 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1263 && (crypt_stat->metadata_size 1264 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1265 rc = -EINVAL; 1266 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1267 crypt_stat->metadata_size); 1268 } 1269 return rc; 1270 } 1271 1272 /** 1273 * set_default_header_data 1274 * @crypt_stat: The cryptographic context 1275 * 1276 * For version 0 file format; this function is only for backwards 1277 * compatibility for files created with the prior versions of 1278 * eCryptfs. 1279 */ 1280 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1281 { 1282 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1283 } 1284 1285 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1286 { 1287 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1288 struct ecryptfs_crypt_stat *crypt_stat; 1289 u64 file_size; 1290 1291 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1292 mount_crypt_stat = 1293 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1294 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1295 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1296 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1297 file_size += crypt_stat->metadata_size; 1298 } else 1299 file_size = get_unaligned_be64(page_virt); 1300 i_size_write(inode, (loff_t)file_size); 1301 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1302 } 1303 1304 /** 1305 * ecryptfs_read_headers_virt 1306 * @page_virt: The virtual address into which to read the headers 1307 * @crypt_stat: The cryptographic context 1308 * @ecryptfs_dentry: The eCryptfs dentry 1309 * @validate_header_size: Whether to validate the header size while reading 1310 * 1311 * Read/parse the header data. The header format is detailed in the 1312 * comment block for the ecryptfs_write_headers_virt() function. 1313 * 1314 * Returns zero on success 1315 */ 1316 static int ecryptfs_read_headers_virt(char *page_virt, 1317 struct ecryptfs_crypt_stat *crypt_stat, 1318 struct dentry *ecryptfs_dentry, 1319 int validate_header_size) 1320 { 1321 int rc = 0; 1322 int offset; 1323 int bytes_read; 1324 1325 ecryptfs_set_default_sizes(crypt_stat); 1326 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1327 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1328 offset = ECRYPTFS_FILE_SIZE_BYTES; 1329 rc = ecryptfs_validate_marker(page_virt + offset); 1330 if (rc) 1331 goto out; 1332 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1333 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode); 1334 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1335 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1336 &bytes_read); 1337 if (rc) { 1338 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1339 goto out; 1340 } 1341 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1342 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1343 "file version [%d] is supported by this " 1344 "version of eCryptfs\n", 1345 crypt_stat->file_version, 1346 ECRYPTFS_SUPPORTED_FILE_VERSION); 1347 rc = -EINVAL; 1348 goto out; 1349 } 1350 offset += bytes_read; 1351 if (crypt_stat->file_version >= 1) { 1352 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1353 &bytes_read, validate_header_size); 1354 if (rc) { 1355 ecryptfs_printk(KERN_WARNING, "Error reading header " 1356 "metadata; rc = [%d]\n", rc); 1357 } 1358 offset += bytes_read; 1359 } else 1360 set_default_header_data(crypt_stat); 1361 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1362 ecryptfs_dentry); 1363 out: 1364 return rc; 1365 } 1366 1367 /** 1368 * ecryptfs_read_xattr_region 1369 * @page_virt: The vitual address into which to read the xattr data 1370 * @ecryptfs_inode: The eCryptfs inode 1371 * 1372 * Attempts to read the crypto metadata from the extended attribute 1373 * region of the lower file. 1374 * 1375 * Returns zero on success; non-zero on error 1376 */ 1377 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1378 { 1379 struct dentry *lower_dentry = 1380 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1381 ssize_t size; 1382 int rc = 0; 1383 1384 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1385 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1386 if (size < 0) { 1387 if (unlikely(ecryptfs_verbosity > 0)) 1388 printk(KERN_INFO "Error attempting to read the [%s] " 1389 "xattr from the lower file; return value = " 1390 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1391 rc = -EINVAL; 1392 goto out; 1393 } 1394 out: 1395 return rc; 1396 } 1397 1398 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1399 struct inode *inode) 1400 { 1401 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1402 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1403 int rc; 1404 1405 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1406 ECRYPTFS_XATTR_NAME, file_size, 1407 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1408 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1409 return rc >= 0 ? -EINVAL : rc; 1410 rc = ecryptfs_validate_marker(marker); 1411 if (!rc) 1412 ecryptfs_i_size_init(file_size, inode); 1413 return rc; 1414 } 1415 1416 /** 1417 * ecryptfs_read_metadata 1418 * 1419 * Common entry point for reading file metadata. From here, we could 1420 * retrieve the header information from the header region of the file, 1421 * the xattr region of the file, or some other repostory that is 1422 * stored separately from the file itself. The current implementation 1423 * supports retrieving the metadata information from the file contents 1424 * and from the xattr region. 1425 * 1426 * Returns zero if valid headers found and parsed; non-zero otherwise 1427 */ 1428 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1429 { 1430 int rc; 1431 char *page_virt; 1432 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1433 struct ecryptfs_crypt_stat *crypt_stat = 1434 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1435 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1436 &ecryptfs_superblock_to_private( 1437 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1438 1439 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1440 mount_crypt_stat); 1441 /* Read the first page from the underlying file */ 1442 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1443 if (!page_virt) { 1444 rc = -ENOMEM; 1445 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1446 __func__); 1447 goto out; 1448 } 1449 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1450 ecryptfs_inode); 1451 if (rc >= 0) 1452 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1453 ecryptfs_dentry, 1454 ECRYPTFS_VALIDATE_HEADER_SIZE); 1455 if (rc) { 1456 /* metadata is not in the file header, so try xattrs */ 1457 memset(page_virt, 0, PAGE_CACHE_SIZE); 1458 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1459 if (rc) { 1460 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1461 "file header region or xattr region, inode %lu\n", 1462 ecryptfs_inode->i_ino); 1463 rc = -EINVAL; 1464 goto out; 1465 } 1466 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1467 ecryptfs_dentry, 1468 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1469 if (rc) { 1470 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1471 "file xattr region either, inode %lu\n", 1472 ecryptfs_inode->i_ino); 1473 rc = -EINVAL; 1474 } 1475 if (crypt_stat->mount_crypt_stat->flags 1476 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1477 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1478 } else { 1479 printk(KERN_WARNING "Attempt to access file with " 1480 "crypto metadata only in the extended attribute " 1481 "region, but eCryptfs was mounted without " 1482 "xattr support enabled. eCryptfs will not treat " 1483 "this like an encrypted file, inode %lu\n", 1484 ecryptfs_inode->i_ino); 1485 rc = -EINVAL; 1486 } 1487 } 1488 out: 1489 if (page_virt) { 1490 memset(page_virt, 0, PAGE_CACHE_SIZE); 1491 kmem_cache_free(ecryptfs_header_cache, page_virt); 1492 } 1493 return rc; 1494 } 1495 1496 /** 1497 * ecryptfs_encrypt_filename - encrypt filename 1498 * 1499 * CBC-encrypts the filename. We do not want to encrypt the same 1500 * filename with the same key and IV, which may happen with hard 1501 * links, so we prepend random bits to each filename. 1502 * 1503 * Returns zero on success; non-zero otherwise 1504 */ 1505 static int 1506 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1507 struct ecryptfs_crypt_stat *crypt_stat, 1508 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1509 { 1510 int rc = 0; 1511 1512 filename->encrypted_filename = NULL; 1513 filename->encrypted_filename_size = 0; 1514 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1515 || (mount_crypt_stat && (mount_crypt_stat->flags 1516 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1517 size_t packet_size; 1518 size_t remaining_bytes; 1519 1520 rc = ecryptfs_write_tag_70_packet( 1521 NULL, NULL, 1522 &filename->encrypted_filename_size, 1523 mount_crypt_stat, NULL, 1524 filename->filename_size); 1525 if (rc) { 1526 printk(KERN_ERR "%s: Error attempting to get packet " 1527 "size for tag 72; rc = [%d]\n", __func__, 1528 rc); 1529 filename->encrypted_filename_size = 0; 1530 goto out; 1531 } 1532 filename->encrypted_filename = 1533 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1534 if (!filename->encrypted_filename) { 1535 printk(KERN_ERR "%s: Out of memory whilst attempting " 1536 "to kmalloc [%zd] bytes\n", __func__, 1537 filename->encrypted_filename_size); 1538 rc = -ENOMEM; 1539 goto out; 1540 } 1541 remaining_bytes = filename->encrypted_filename_size; 1542 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1543 &remaining_bytes, 1544 &packet_size, 1545 mount_crypt_stat, 1546 filename->filename, 1547 filename->filename_size); 1548 if (rc) { 1549 printk(KERN_ERR "%s: Error attempting to generate " 1550 "tag 70 packet; rc = [%d]\n", __func__, 1551 rc); 1552 kfree(filename->encrypted_filename); 1553 filename->encrypted_filename = NULL; 1554 filename->encrypted_filename_size = 0; 1555 goto out; 1556 } 1557 filename->encrypted_filename_size = packet_size; 1558 } else { 1559 printk(KERN_ERR "%s: No support for requested filename " 1560 "encryption method in this release\n", __func__); 1561 rc = -EOPNOTSUPP; 1562 goto out; 1563 } 1564 out: 1565 return rc; 1566 } 1567 1568 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1569 const char *name, size_t name_size) 1570 { 1571 int rc = 0; 1572 1573 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1574 if (!(*copied_name)) { 1575 rc = -ENOMEM; 1576 goto out; 1577 } 1578 memcpy((void *)(*copied_name), (void *)name, name_size); 1579 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1580 * in printing out the 1581 * string in debug 1582 * messages */ 1583 (*copied_name_size) = name_size; 1584 out: 1585 return rc; 1586 } 1587 1588 /** 1589 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1590 * @key_tfm: Crypto context for key material, set by this function 1591 * @cipher_name: Name of the cipher 1592 * @key_size: Size of the key in bytes 1593 * 1594 * Returns zero on success. Any crypto_tfm structs allocated here 1595 * should be released by other functions, such as on a superblock put 1596 * event, regardless of whether this function succeeds for fails. 1597 */ 1598 static int 1599 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1600 char *cipher_name, size_t *key_size) 1601 { 1602 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1603 char *full_alg_name = NULL; 1604 int rc; 1605 1606 *key_tfm = NULL; 1607 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1608 rc = -EINVAL; 1609 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1610 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1611 goto out; 1612 } 1613 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1614 "ecb"); 1615 if (rc) 1616 goto out; 1617 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1618 if (IS_ERR(*key_tfm)) { 1619 rc = PTR_ERR(*key_tfm); 1620 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1621 "[%s]; rc = [%d]\n", full_alg_name, rc); 1622 goto out; 1623 } 1624 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1625 if (*key_size == 0) { 1626 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1627 1628 *key_size = alg->max_keysize; 1629 } 1630 get_random_bytes(dummy_key, *key_size); 1631 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1632 if (rc) { 1633 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1634 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1635 rc); 1636 rc = -EINVAL; 1637 goto out; 1638 } 1639 out: 1640 kfree(full_alg_name); 1641 return rc; 1642 } 1643 1644 struct kmem_cache *ecryptfs_key_tfm_cache; 1645 static struct list_head key_tfm_list; 1646 struct mutex key_tfm_list_mutex; 1647 1648 int __init ecryptfs_init_crypto(void) 1649 { 1650 mutex_init(&key_tfm_list_mutex); 1651 INIT_LIST_HEAD(&key_tfm_list); 1652 return 0; 1653 } 1654 1655 /** 1656 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1657 * 1658 * Called only at module unload time 1659 */ 1660 int ecryptfs_destroy_crypto(void) 1661 { 1662 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1663 1664 mutex_lock(&key_tfm_list_mutex); 1665 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1666 key_tfm_list) { 1667 list_del(&key_tfm->key_tfm_list); 1668 if (key_tfm->key_tfm) 1669 crypto_free_blkcipher(key_tfm->key_tfm); 1670 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1671 } 1672 mutex_unlock(&key_tfm_list_mutex); 1673 return 0; 1674 } 1675 1676 int 1677 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1678 size_t key_size) 1679 { 1680 struct ecryptfs_key_tfm *tmp_tfm; 1681 int rc = 0; 1682 1683 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1684 1685 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1686 if (key_tfm != NULL) 1687 (*key_tfm) = tmp_tfm; 1688 if (!tmp_tfm) { 1689 rc = -ENOMEM; 1690 printk(KERN_ERR "Error attempting to allocate from " 1691 "ecryptfs_key_tfm_cache\n"); 1692 goto out; 1693 } 1694 mutex_init(&tmp_tfm->key_tfm_mutex); 1695 strncpy(tmp_tfm->cipher_name, cipher_name, 1696 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1697 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1698 tmp_tfm->key_size = key_size; 1699 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1700 tmp_tfm->cipher_name, 1701 &tmp_tfm->key_size); 1702 if (rc) { 1703 printk(KERN_ERR "Error attempting to initialize key TFM " 1704 "cipher with name = [%s]; rc = [%d]\n", 1705 tmp_tfm->cipher_name, rc); 1706 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1707 if (key_tfm != NULL) 1708 (*key_tfm) = NULL; 1709 goto out; 1710 } 1711 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1712 out: 1713 return rc; 1714 } 1715 1716 /** 1717 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1718 * @cipher_name: the name of the cipher to search for 1719 * @key_tfm: set to corresponding tfm if found 1720 * 1721 * Searches for cached key_tfm matching @cipher_name 1722 * Must be called with &key_tfm_list_mutex held 1723 * Returns 1 if found, with @key_tfm set 1724 * Returns 0 if not found, with @key_tfm set to NULL 1725 */ 1726 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1727 { 1728 struct ecryptfs_key_tfm *tmp_key_tfm; 1729 1730 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1731 1732 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1733 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1734 if (key_tfm) 1735 (*key_tfm) = tmp_key_tfm; 1736 return 1; 1737 } 1738 } 1739 if (key_tfm) 1740 (*key_tfm) = NULL; 1741 return 0; 1742 } 1743 1744 /** 1745 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1746 * 1747 * @tfm: set to cached tfm found, or new tfm created 1748 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1749 * @cipher_name: the name of the cipher to search for and/or add 1750 * 1751 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1752 * Searches for cached item first, and creates new if not found. 1753 * Returns 0 on success, non-zero if adding new cipher failed 1754 */ 1755 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1756 struct mutex **tfm_mutex, 1757 char *cipher_name) 1758 { 1759 struct ecryptfs_key_tfm *key_tfm; 1760 int rc = 0; 1761 1762 (*tfm) = NULL; 1763 (*tfm_mutex) = NULL; 1764 1765 mutex_lock(&key_tfm_list_mutex); 1766 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1767 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1768 if (rc) { 1769 printk(KERN_ERR "Error adding new key_tfm to list; " 1770 "rc = [%d]\n", rc); 1771 goto out; 1772 } 1773 } 1774 (*tfm) = key_tfm->key_tfm; 1775 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1776 out: 1777 mutex_unlock(&key_tfm_list_mutex); 1778 return rc; 1779 } 1780 1781 /* 64 characters forming a 6-bit target field */ 1782 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1783 "EFGHIJKLMNOPQRST" 1784 "UVWXYZabcdefghij" 1785 "klmnopqrstuvwxyz"); 1786 1787 /* We could either offset on every reverse map or just pad some 0x00's 1788 * at the front here */ 1789 static const unsigned char filename_rev_map[256] = { 1790 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1791 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1792 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1793 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1794 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1795 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1796 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1797 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1798 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1799 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1800 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1801 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1802 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1803 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1804 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1805 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1806 }; 1807 1808 /** 1809 * ecryptfs_encode_for_filename 1810 * @dst: Destination location for encoded filename 1811 * @dst_size: Size of the encoded filename in bytes 1812 * @src: Source location for the filename to encode 1813 * @src_size: Size of the source in bytes 1814 */ 1815 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1816 unsigned char *src, size_t src_size) 1817 { 1818 size_t num_blocks; 1819 size_t block_num = 0; 1820 size_t dst_offset = 0; 1821 unsigned char last_block[3]; 1822 1823 if (src_size == 0) { 1824 (*dst_size) = 0; 1825 goto out; 1826 } 1827 num_blocks = (src_size / 3); 1828 if ((src_size % 3) == 0) { 1829 memcpy(last_block, (&src[src_size - 3]), 3); 1830 } else { 1831 num_blocks++; 1832 last_block[2] = 0x00; 1833 switch (src_size % 3) { 1834 case 1: 1835 last_block[0] = src[src_size - 1]; 1836 last_block[1] = 0x00; 1837 break; 1838 case 2: 1839 last_block[0] = src[src_size - 2]; 1840 last_block[1] = src[src_size - 1]; 1841 } 1842 } 1843 (*dst_size) = (num_blocks * 4); 1844 if (!dst) 1845 goto out; 1846 while (block_num < num_blocks) { 1847 unsigned char *src_block; 1848 unsigned char dst_block[4]; 1849 1850 if (block_num == (num_blocks - 1)) 1851 src_block = last_block; 1852 else 1853 src_block = &src[block_num * 3]; 1854 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1855 dst_block[1] = (((src_block[0] << 4) & 0x30) 1856 | ((src_block[1] >> 4) & 0x0F)); 1857 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1858 | ((src_block[2] >> 6) & 0x03)); 1859 dst_block[3] = (src_block[2] & 0x3F); 1860 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1861 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1862 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1863 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1864 block_num++; 1865 } 1866 out: 1867 return; 1868 } 1869 1870 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1871 { 1872 /* Not exact; conservatively long. Every block of 4 1873 * encoded characters decodes into a block of 3 1874 * decoded characters. This segment of code provides 1875 * the caller with the maximum amount of allocated 1876 * space that @dst will need to point to in a 1877 * subsequent call. */ 1878 return ((encoded_size + 1) * 3) / 4; 1879 } 1880 1881 /** 1882 * ecryptfs_decode_from_filename 1883 * @dst: If NULL, this function only sets @dst_size and returns. If 1884 * non-NULL, this function decodes the encoded octets in @src 1885 * into the memory that @dst points to. 1886 * @dst_size: Set to the size of the decoded string. 1887 * @src: The encoded set of octets to decode. 1888 * @src_size: The size of the encoded set of octets to decode. 1889 */ 1890 static void 1891 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1892 const unsigned char *src, size_t src_size) 1893 { 1894 u8 current_bit_offset = 0; 1895 size_t src_byte_offset = 0; 1896 size_t dst_byte_offset = 0; 1897 1898 if (dst == NULL) { 1899 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1900 goto out; 1901 } 1902 while (src_byte_offset < src_size) { 1903 unsigned char src_byte = 1904 filename_rev_map[(int)src[src_byte_offset]]; 1905 1906 switch (current_bit_offset) { 1907 case 0: 1908 dst[dst_byte_offset] = (src_byte << 2); 1909 current_bit_offset = 6; 1910 break; 1911 case 6: 1912 dst[dst_byte_offset++] |= (src_byte >> 4); 1913 dst[dst_byte_offset] = ((src_byte & 0xF) 1914 << 4); 1915 current_bit_offset = 4; 1916 break; 1917 case 4: 1918 dst[dst_byte_offset++] |= (src_byte >> 2); 1919 dst[dst_byte_offset] = (src_byte << 6); 1920 current_bit_offset = 2; 1921 break; 1922 case 2: 1923 dst[dst_byte_offset++] |= (src_byte); 1924 dst[dst_byte_offset] = 0; 1925 current_bit_offset = 0; 1926 break; 1927 } 1928 src_byte_offset++; 1929 } 1930 (*dst_size) = dst_byte_offset; 1931 out: 1932 return; 1933 } 1934 1935 /** 1936 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1937 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1938 * @name: The plaintext name 1939 * @length: The length of the plaintext 1940 * @encoded_name: The encypted name 1941 * 1942 * Encrypts and encodes a filename into something that constitutes a 1943 * valid filename for a filesystem, with printable characters. 1944 * 1945 * We assume that we have a properly initialized crypto context, 1946 * pointed to by crypt_stat->tfm. 1947 * 1948 * Returns zero on success; non-zero on otherwise 1949 */ 1950 int ecryptfs_encrypt_and_encode_filename( 1951 char **encoded_name, 1952 size_t *encoded_name_size, 1953 struct ecryptfs_crypt_stat *crypt_stat, 1954 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1955 const char *name, size_t name_size) 1956 { 1957 size_t encoded_name_no_prefix_size; 1958 int rc = 0; 1959 1960 (*encoded_name) = NULL; 1961 (*encoded_name_size) = 0; 1962 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 1963 || (mount_crypt_stat && (mount_crypt_stat->flags 1964 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 1965 struct ecryptfs_filename *filename; 1966 1967 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1968 if (!filename) { 1969 printk(KERN_ERR "%s: Out of memory whilst attempting " 1970 "to kzalloc [%zd] bytes\n", __func__, 1971 sizeof(*filename)); 1972 rc = -ENOMEM; 1973 goto out; 1974 } 1975 filename->filename = (char *)name; 1976 filename->filename_size = name_size; 1977 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 1978 mount_crypt_stat); 1979 if (rc) { 1980 printk(KERN_ERR "%s: Error attempting to encrypt " 1981 "filename; rc = [%d]\n", __func__, rc); 1982 kfree(filename); 1983 goto out; 1984 } 1985 ecryptfs_encode_for_filename( 1986 NULL, &encoded_name_no_prefix_size, 1987 filename->encrypted_filename, 1988 filename->encrypted_filename_size); 1989 if ((crypt_stat && (crypt_stat->flags 1990 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1991 || (mount_crypt_stat 1992 && (mount_crypt_stat->flags 1993 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 1994 (*encoded_name_size) = 1995 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1996 + encoded_name_no_prefix_size); 1997 else 1998 (*encoded_name_size) = 1999 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2000 + encoded_name_no_prefix_size); 2001 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2002 if (!(*encoded_name)) { 2003 printk(KERN_ERR "%s: Out of memory whilst attempting " 2004 "to kzalloc [%zd] bytes\n", __func__, 2005 (*encoded_name_size)); 2006 rc = -ENOMEM; 2007 kfree(filename->encrypted_filename); 2008 kfree(filename); 2009 goto out; 2010 } 2011 if ((crypt_stat && (crypt_stat->flags 2012 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2013 || (mount_crypt_stat 2014 && (mount_crypt_stat->flags 2015 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2016 memcpy((*encoded_name), 2017 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2018 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2019 ecryptfs_encode_for_filename( 2020 ((*encoded_name) 2021 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2022 &encoded_name_no_prefix_size, 2023 filename->encrypted_filename, 2024 filename->encrypted_filename_size); 2025 (*encoded_name_size) = 2026 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2027 + encoded_name_no_prefix_size); 2028 (*encoded_name)[(*encoded_name_size)] = '\0'; 2029 } else { 2030 rc = -EOPNOTSUPP; 2031 } 2032 if (rc) { 2033 printk(KERN_ERR "%s: Error attempting to encode " 2034 "encrypted filename; rc = [%d]\n", __func__, 2035 rc); 2036 kfree((*encoded_name)); 2037 (*encoded_name) = NULL; 2038 (*encoded_name_size) = 0; 2039 } 2040 kfree(filename->encrypted_filename); 2041 kfree(filename); 2042 } else { 2043 rc = ecryptfs_copy_filename(encoded_name, 2044 encoded_name_size, 2045 name, name_size); 2046 } 2047 out: 2048 return rc; 2049 } 2050 2051 /** 2052 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2053 * @plaintext_name: The plaintext name 2054 * @plaintext_name_size: The plaintext name size 2055 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2056 * @name: The filename in cipher text 2057 * @name_size: The cipher text name size 2058 * 2059 * Decrypts and decodes the filename. 2060 * 2061 * Returns zero on error; non-zero otherwise 2062 */ 2063 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2064 size_t *plaintext_name_size, 2065 struct super_block *sb, 2066 const char *name, size_t name_size) 2067 { 2068 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2069 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2070 char *decoded_name; 2071 size_t decoded_name_size; 2072 size_t packet_size; 2073 int rc = 0; 2074 2075 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2076 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2077 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2078 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2079 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2080 const char *orig_name = name; 2081 size_t orig_name_size = name_size; 2082 2083 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2084 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2085 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2086 name, name_size); 2087 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2088 if (!decoded_name) { 2089 printk(KERN_ERR "%s: Out of memory whilst attempting " 2090 "to kmalloc [%zd] bytes\n", __func__, 2091 decoded_name_size); 2092 rc = -ENOMEM; 2093 goto out; 2094 } 2095 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2096 name, name_size); 2097 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2098 plaintext_name_size, 2099 &packet_size, 2100 mount_crypt_stat, 2101 decoded_name, 2102 decoded_name_size); 2103 if (rc) { 2104 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2105 "from filename; copying through filename " 2106 "as-is\n", __func__); 2107 rc = ecryptfs_copy_filename(plaintext_name, 2108 plaintext_name_size, 2109 orig_name, orig_name_size); 2110 goto out_free; 2111 } 2112 } else { 2113 rc = ecryptfs_copy_filename(plaintext_name, 2114 plaintext_name_size, 2115 name, name_size); 2116 goto out; 2117 } 2118 out_free: 2119 kfree(decoded_name); 2120 out: 2121 return rc; 2122 } 2123 2124 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2125 2126 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2127 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2128 { 2129 struct blkcipher_desc desc; 2130 struct mutex *tfm_mutex; 2131 size_t cipher_blocksize; 2132 int rc; 2133 2134 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2135 (*namelen) = lower_namelen; 2136 return 0; 2137 } 2138 2139 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex, 2140 mount_crypt_stat->global_default_fn_cipher_name); 2141 if (unlikely(rc)) { 2142 (*namelen) = 0; 2143 return rc; 2144 } 2145 2146 mutex_lock(tfm_mutex); 2147 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm); 2148 mutex_unlock(tfm_mutex); 2149 2150 /* Return an exact amount for the common cases */ 2151 if (lower_namelen == NAME_MAX 2152 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2153 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2154 return 0; 2155 } 2156 2157 /* Return a safe estimate for the uncommon cases */ 2158 (*namelen) = lower_namelen; 2159 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2160 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2161 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2162 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2163 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2164 /* Worst case is that the filename is padded nearly a full block size */ 2165 (*namelen) -= cipher_blocksize - 1; 2166 2167 if ((*namelen) < 0) 2168 (*namelen) = 0; 2169 2170 return 0; 2171 } 2172