1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /** 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 1997-2004 Erez Zadok 6 * Copyright (C) 2001-2004 Stony Brook University 7 * Copyright (C) 2004-2007 International Business Machines Corp. 8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com> 10 */ 11 12 #include <crypto/hash.h> 13 #include <crypto/skcipher.h> 14 #include <linux/fs.h> 15 #include <linux/mount.h> 16 #include <linux/pagemap.h> 17 #include <linux/random.h> 18 #include <linux/compiler.h> 19 #include <linux/key.h> 20 #include <linux/namei.h> 21 #include <linux/file.h> 22 #include <linux/scatterlist.h> 23 #include <linux/slab.h> 24 #include <asm/unaligned.h> 25 #include <linux/kernel.h> 26 #include <linux/xattr.h> 27 #include "ecryptfs_kernel.h" 28 29 #define DECRYPT 0 30 #define ENCRYPT 1 31 32 /** 33 * ecryptfs_from_hex 34 * @dst: Buffer to take the bytes from src hex; must be at least of 35 * size (src_size / 2) 36 * @src: Buffer to be converted from a hex string representation to raw value 37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 38 */ 39 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 40 { 41 int x; 42 char tmp[3] = { 0, }; 43 44 for (x = 0; x < dst_size; x++) { 45 tmp[0] = src[x * 2]; 46 tmp[1] = src[x * 2 + 1]; 47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 48 } 49 } 50 51 /** 52 * ecryptfs_calculate_md5 - calculates the md5 of @src 53 * @dst: Pointer to 16 bytes of allocated memory 54 * @crypt_stat: Pointer to crypt_stat struct for the current inode 55 * @src: Data to be md5'd 56 * @len: Length of @src 57 * 58 * Uses the allocated crypto context that crypt_stat references to 59 * generate the MD5 sum of the contents of src. 60 */ 61 static int ecryptfs_calculate_md5(char *dst, 62 struct ecryptfs_crypt_stat *crypt_stat, 63 char *src, int len) 64 { 65 int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst); 66 67 if (rc) { 68 printk(KERN_ERR 69 "%s: Error computing crypto hash; rc = [%d]\n", 70 __func__, rc); 71 goto out; 72 } 73 out: 74 return rc; 75 } 76 77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 78 char *cipher_name, 79 char *chaining_modifier) 80 { 81 int cipher_name_len = strlen(cipher_name); 82 int chaining_modifier_len = strlen(chaining_modifier); 83 int algified_name_len; 84 int rc; 85 86 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 87 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 88 if (!(*algified_name)) { 89 rc = -ENOMEM; 90 goto out; 91 } 92 snprintf((*algified_name), algified_name_len, "%s(%s)", 93 chaining_modifier, cipher_name); 94 rc = 0; 95 out: 96 return rc; 97 } 98 99 /** 100 * ecryptfs_derive_iv 101 * @iv: destination for the derived iv vale 102 * @crypt_stat: Pointer to crypt_stat struct for the current inode 103 * @offset: Offset of the extent whose IV we are to derive 104 * 105 * Generate the initialization vector from the given root IV and page 106 * offset. 107 * 108 * Returns zero on success; non-zero on error. 109 */ 110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 111 loff_t offset) 112 { 113 int rc = 0; 114 char dst[MD5_DIGEST_SIZE]; 115 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 116 117 if (unlikely(ecryptfs_verbosity > 0)) { 118 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 119 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 120 } 121 /* TODO: It is probably secure to just cast the least 122 * significant bits of the root IV into an unsigned long and 123 * add the offset to that rather than go through all this 124 * hashing business. -Halcrow */ 125 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 126 memset((src + crypt_stat->iv_bytes), 0, 16); 127 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 128 if (unlikely(ecryptfs_verbosity > 0)) { 129 ecryptfs_printk(KERN_DEBUG, "source:\n"); 130 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 131 } 132 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 133 (crypt_stat->iv_bytes + 16)); 134 if (rc) { 135 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 136 "MD5 while generating IV for a page\n"); 137 goto out; 138 } 139 memcpy(iv, dst, crypt_stat->iv_bytes); 140 if (unlikely(ecryptfs_verbosity > 0)) { 141 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 142 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 143 } 144 out: 145 return rc; 146 } 147 148 /** 149 * ecryptfs_init_crypt_stat 150 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 151 * 152 * Initialize the crypt_stat structure. 153 */ 154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 155 { 156 struct crypto_shash *tfm; 157 int rc; 158 159 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 160 if (IS_ERR(tfm)) { 161 rc = PTR_ERR(tfm); 162 ecryptfs_printk(KERN_ERR, "Error attempting to " 163 "allocate crypto context; rc = [%d]\n", 164 rc); 165 return rc; 166 } 167 168 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 169 INIT_LIST_HEAD(&crypt_stat->keysig_list); 170 mutex_init(&crypt_stat->keysig_list_mutex); 171 mutex_init(&crypt_stat->cs_mutex); 172 mutex_init(&crypt_stat->cs_tfm_mutex); 173 crypt_stat->hash_tfm = tfm; 174 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 175 176 return 0; 177 } 178 179 /** 180 * ecryptfs_destroy_crypt_stat 181 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 182 * 183 * Releases all memory associated with a crypt_stat struct. 184 */ 185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 186 { 187 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 188 189 crypto_free_skcipher(crypt_stat->tfm); 190 crypto_free_shash(crypt_stat->hash_tfm); 191 list_for_each_entry_safe(key_sig, key_sig_tmp, 192 &crypt_stat->keysig_list, crypt_stat_list) { 193 list_del(&key_sig->crypt_stat_list); 194 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 195 } 196 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 197 } 198 199 void ecryptfs_destroy_mount_crypt_stat( 200 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 201 { 202 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 203 204 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 205 return; 206 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 207 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 208 &mount_crypt_stat->global_auth_tok_list, 209 mount_crypt_stat_list) { 210 list_del(&auth_tok->mount_crypt_stat_list); 211 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 212 key_put(auth_tok->global_auth_tok_key); 213 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 214 } 215 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 216 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 217 } 218 219 /** 220 * virt_to_scatterlist 221 * @addr: Virtual address 222 * @size: Size of data; should be an even multiple of the block size 223 * @sg: Pointer to scatterlist array; set to NULL to obtain only 224 * the number of scatterlist structs required in array 225 * @sg_size: Max array size 226 * 227 * Fills in a scatterlist array with page references for a passed 228 * virtual address. 229 * 230 * Returns the number of scatterlist structs in array used 231 */ 232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 233 int sg_size) 234 { 235 int i = 0; 236 struct page *pg; 237 int offset; 238 int remainder_of_page; 239 240 sg_init_table(sg, sg_size); 241 242 while (size > 0 && i < sg_size) { 243 pg = virt_to_page(addr); 244 offset = offset_in_page(addr); 245 sg_set_page(&sg[i], pg, 0, offset); 246 remainder_of_page = PAGE_SIZE - offset; 247 if (size >= remainder_of_page) { 248 sg[i].length = remainder_of_page; 249 addr += remainder_of_page; 250 size -= remainder_of_page; 251 } else { 252 sg[i].length = size; 253 addr += size; 254 size = 0; 255 } 256 i++; 257 } 258 if (size > 0) 259 return -ENOMEM; 260 return i; 261 } 262 263 struct extent_crypt_result { 264 struct completion completion; 265 int rc; 266 }; 267 268 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 269 { 270 struct extent_crypt_result *ecr = req->data; 271 272 if (rc == -EINPROGRESS) 273 return; 274 275 ecr->rc = rc; 276 complete(&ecr->completion); 277 } 278 279 /** 280 * crypt_scatterlist 281 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 282 * @dst_sg: Destination of the data after performing the crypto operation 283 * @src_sg: Data to be encrypted or decrypted 284 * @size: Length of data 285 * @iv: IV to use 286 * @op: ENCRYPT or DECRYPT to indicate the desired operation 287 * 288 * Returns the number of bytes encrypted or decrypted; negative value on error 289 */ 290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 291 struct scatterlist *dst_sg, 292 struct scatterlist *src_sg, int size, 293 unsigned char *iv, int op) 294 { 295 struct skcipher_request *req = NULL; 296 struct extent_crypt_result ecr; 297 int rc = 0; 298 299 if (!crypt_stat || !crypt_stat->tfm 300 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)) 301 return -EINVAL; 302 303 if (unlikely(ecryptfs_verbosity > 0)) { 304 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 305 crypt_stat->key_size); 306 ecryptfs_dump_hex(crypt_stat->key, 307 crypt_stat->key_size); 308 } 309 310 init_completion(&ecr.completion); 311 312 mutex_lock(&crypt_stat->cs_tfm_mutex); 313 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 314 if (!req) { 315 mutex_unlock(&crypt_stat->cs_tfm_mutex); 316 rc = -ENOMEM; 317 goto out; 318 } 319 320 skcipher_request_set_callback(req, 321 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 322 extent_crypt_complete, &ecr); 323 /* Consider doing this once, when the file is opened */ 324 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 325 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 326 crypt_stat->key_size); 327 if (rc) { 328 ecryptfs_printk(KERN_ERR, 329 "Error setting key; rc = [%d]\n", 330 rc); 331 mutex_unlock(&crypt_stat->cs_tfm_mutex); 332 rc = -EINVAL; 333 goto out; 334 } 335 crypt_stat->flags |= ECRYPTFS_KEY_SET; 336 } 337 mutex_unlock(&crypt_stat->cs_tfm_mutex); 338 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 339 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 340 crypto_skcipher_decrypt(req); 341 if (rc == -EINPROGRESS || rc == -EBUSY) { 342 struct extent_crypt_result *ecr = req->base.data; 343 344 wait_for_completion(&ecr->completion); 345 rc = ecr->rc; 346 reinit_completion(&ecr->completion); 347 } 348 out: 349 skcipher_request_free(req); 350 return rc; 351 } 352 353 /** 354 * lower_offset_for_page 355 * 356 * Convert an eCryptfs page index into a lower byte offset 357 */ 358 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 359 struct page *page) 360 { 361 return ecryptfs_lower_header_size(crypt_stat) + 362 ((loff_t)page->index << PAGE_SHIFT); 363 } 364 365 /** 366 * crypt_extent 367 * @crypt_stat: crypt_stat containing cryptographic context for the 368 * encryption operation 369 * @dst_page: The page to write the result into 370 * @src_page: The page to read from 371 * @extent_offset: Page extent offset for use in generating IV 372 * @op: ENCRYPT or DECRYPT to indicate the desired operation 373 * 374 * Encrypts or decrypts one extent of data. 375 * 376 * Return zero on success; non-zero otherwise 377 */ 378 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 379 struct page *dst_page, 380 struct page *src_page, 381 unsigned long extent_offset, int op) 382 { 383 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 384 loff_t extent_base; 385 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 386 struct scatterlist src_sg, dst_sg; 387 size_t extent_size = crypt_stat->extent_size; 388 int rc; 389 390 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 391 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 392 (extent_base + extent_offset)); 393 if (rc) { 394 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 395 "extent [0x%.16llx]; rc = [%d]\n", 396 (unsigned long long)(extent_base + extent_offset), rc); 397 goto out; 398 } 399 400 sg_init_table(&src_sg, 1); 401 sg_init_table(&dst_sg, 1); 402 403 sg_set_page(&src_sg, src_page, extent_size, 404 extent_offset * extent_size); 405 sg_set_page(&dst_sg, dst_page, extent_size, 406 extent_offset * extent_size); 407 408 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 409 extent_iv, op); 410 if (rc < 0) { 411 printk(KERN_ERR "%s: Error attempting to crypt page with " 412 "page_index = [%ld], extent_offset = [%ld]; " 413 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 414 goto out; 415 } 416 rc = 0; 417 out: 418 return rc; 419 } 420 421 /** 422 * ecryptfs_encrypt_page 423 * @page: Page mapped from the eCryptfs inode for the file; contains 424 * decrypted content that needs to be encrypted (to a temporary 425 * page; not in place) and written out to the lower file 426 * 427 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 428 * that eCryptfs pages may straddle the lower pages -- for instance, 429 * if the file was created on a machine with an 8K page size 430 * (resulting in an 8K header), and then the file is copied onto a 431 * host with a 32K page size, then when reading page 0 of the eCryptfs 432 * file, 24K of page 0 of the lower file will be read and decrypted, 433 * and then 8K of page 1 of the lower file will be read and decrypted. 434 * 435 * Returns zero on success; negative on error 436 */ 437 int ecryptfs_encrypt_page(struct page *page) 438 { 439 struct inode *ecryptfs_inode; 440 struct ecryptfs_crypt_stat *crypt_stat; 441 char *enc_extent_virt; 442 struct page *enc_extent_page = NULL; 443 loff_t extent_offset; 444 loff_t lower_offset; 445 int rc = 0; 446 447 ecryptfs_inode = page->mapping->host; 448 crypt_stat = 449 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 450 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 451 enc_extent_page = alloc_page(GFP_USER); 452 if (!enc_extent_page) { 453 rc = -ENOMEM; 454 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 455 "encrypted extent\n"); 456 goto out; 457 } 458 459 for (extent_offset = 0; 460 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 461 extent_offset++) { 462 rc = crypt_extent(crypt_stat, enc_extent_page, page, 463 extent_offset, ENCRYPT); 464 if (rc) { 465 printk(KERN_ERR "%s: Error encrypting extent; " 466 "rc = [%d]\n", __func__, rc); 467 goto out; 468 } 469 } 470 471 lower_offset = lower_offset_for_page(crypt_stat, page); 472 enc_extent_virt = kmap(enc_extent_page); 473 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 474 PAGE_SIZE); 475 kunmap(enc_extent_page); 476 if (rc < 0) { 477 ecryptfs_printk(KERN_ERR, 478 "Error attempting to write lower page; rc = [%d]\n", 479 rc); 480 goto out; 481 } 482 rc = 0; 483 out: 484 if (enc_extent_page) { 485 __free_page(enc_extent_page); 486 } 487 return rc; 488 } 489 490 /** 491 * ecryptfs_decrypt_page 492 * @page: Page mapped from the eCryptfs inode for the file; data read 493 * and decrypted from the lower file will be written into this 494 * page 495 * 496 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 497 * that eCryptfs pages may straddle the lower pages -- for instance, 498 * if the file was created on a machine with an 8K page size 499 * (resulting in an 8K header), and then the file is copied onto a 500 * host with a 32K page size, then when reading page 0 of the eCryptfs 501 * file, 24K of page 0 of the lower file will be read and decrypted, 502 * and then 8K of page 1 of the lower file will be read and decrypted. 503 * 504 * Returns zero on success; negative on error 505 */ 506 int ecryptfs_decrypt_page(struct page *page) 507 { 508 struct inode *ecryptfs_inode; 509 struct ecryptfs_crypt_stat *crypt_stat; 510 char *page_virt; 511 unsigned long extent_offset; 512 loff_t lower_offset; 513 int rc = 0; 514 515 ecryptfs_inode = page->mapping->host; 516 crypt_stat = 517 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 518 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 519 520 lower_offset = lower_offset_for_page(crypt_stat, page); 521 page_virt = kmap(page); 522 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 523 ecryptfs_inode); 524 kunmap(page); 525 if (rc < 0) { 526 ecryptfs_printk(KERN_ERR, 527 "Error attempting to read lower page; rc = [%d]\n", 528 rc); 529 goto out; 530 } 531 532 for (extent_offset = 0; 533 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 534 extent_offset++) { 535 rc = crypt_extent(crypt_stat, page, page, 536 extent_offset, DECRYPT); 537 if (rc) { 538 printk(KERN_ERR "%s: Error encrypting extent; " 539 "rc = [%d]\n", __func__, rc); 540 goto out; 541 } 542 } 543 out: 544 return rc; 545 } 546 547 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 548 549 /** 550 * ecryptfs_init_crypt_ctx 551 * @crypt_stat: Uninitialized crypt stats structure 552 * 553 * Initialize the crypto context. 554 * 555 * TODO: Performance: Keep a cache of initialized cipher contexts; 556 * only init if needed 557 */ 558 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 559 { 560 char *full_alg_name; 561 int rc = -EINVAL; 562 563 ecryptfs_printk(KERN_DEBUG, 564 "Initializing cipher [%s]; strlen = [%d]; " 565 "key_size_bits = [%zd]\n", 566 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 567 crypt_stat->key_size << 3); 568 mutex_lock(&crypt_stat->cs_tfm_mutex); 569 if (crypt_stat->tfm) { 570 rc = 0; 571 goto out_unlock; 572 } 573 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 574 crypt_stat->cipher, "cbc"); 575 if (rc) 576 goto out_unlock; 577 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 578 if (IS_ERR(crypt_stat->tfm)) { 579 rc = PTR_ERR(crypt_stat->tfm); 580 crypt_stat->tfm = NULL; 581 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 582 "Error initializing cipher [%s]\n", 583 full_alg_name); 584 goto out_free; 585 } 586 crypto_skcipher_set_flags(crypt_stat->tfm, 587 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 588 rc = 0; 589 out_free: 590 kfree(full_alg_name); 591 out_unlock: 592 mutex_unlock(&crypt_stat->cs_tfm_mutex); 593 return rc; 594 } 595 596 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 597 { 598 int extent_size_tmp; 599 600 crypt_stat->extent_mask = 0xFFFFFFFF; 601 crypt_stat->extent_shift = 0; 602 if (crypt_stat->extent_size == 0) 603 return; 604 extent_size_tmp = crypt_stat->extent_size; 605 while ((extent_size_tmp & 0x01) == 0) { 606 extent_size_tmp >>= 1; 607 crypt_stat->extent_mask <<= 1; 608 crypt_stat->extent_shift++; 609 } 610 } 611 612 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 613 { 614 /* Default values; may be overwritten as we are parsing the 615 * packets. */ 616 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 617 set_extent_mask_and_shift(crypt_stat); 618 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 619 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 620 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 621 else { 622 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 623 crypt_stat->metadata_size = 624 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 625 else 626 crypt_stat->metadata_size = PAGE_SIZE; 627 } 628 } 629 630 /** 631 * ecryptfs_compute_root_iv 632 * @crypt_stats 633 * 634 * On error, sets the root IV to all 0's. 635 */ 636 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 637 { 638 int rc = 0; 639 char dst[MD5_DIGEST_SIZE]; 640 641 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 642 BUG_ON(crypt_stat->iv_bytes <= 0); 643 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 644 rc = -EINVAL; 645 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 646 "cannot generate root IV\n"); 647 goto out; 648 } 649 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 650 crypt_stat->key_size); 651 if (rc) { 652 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 653 "MD5 while generating root IV\n"); 654 goto out; 655 } 656 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 657 out: 658 if (rc) { 659 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 660 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 661 } 662 return rc; 663 } 664 665 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 666 { 667 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 668 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 669 ecryptfs_compute_root_iv(crypt_stat); 670 if (unlikely(ecryptfs_verbosity > 0)) { 671 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 672 ecryptfs_dump_hex(crypt_stat->key, 673 crypt_stat->key_size); 674 } 675 } 676 677 /** 678 * ecryptfs_copy_mount_wide_flags_to_inode_flags 679 * @crypt_stat: The inode's cryptographic context 680 * @mount_crypt_stat: The mount point's cryptographic context 681 * 682 * This function propagates the mount-wide flags to individual inode 683 * flags. 684 */ 685 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 686 struct ecryptfs_crypt_stat *crypt_stat, 687 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 688 { 689 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 690 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 691 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 692 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 693 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 694 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 695 if (mount_crypt_stat->flags 696 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 697 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 698 else if (mount_crypt_stat->flags 699 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 700 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 701 } 702 } 703 704 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 705 struct ecryptfs_crypt_stat *crypt_stat, 706 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 707 { 708 struct ecryptfs_global_auth_tok *global_auth_tok; 709 int rc = 0; 710 711 mutex_lock(&crypt_stat->keysig_list_mutex); 712 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 713 714 list_for_each_entry(global_auth_tok, 715 &mount_crypt_stat->global_auth_tok_list, 716 mount_crypt_stat_list) { 717 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 718 continue; 719 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 720 if (rc) { 721 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 722 goto out; 723 } 724 } 725 726 out: 727 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 728 mutex_unlock(&crypt_stat->keysig_list_mutex); 729 return rc; 730 } 731 732 /** 733 * ecryptfs_set_default_crypt_stat_vals 734 * @crypt_stat: The inode's cryptographic context 735 * @mount_crypt_stat: The mount point's cryptographic context 736 * 737 * Default values in the event that policy does not override them. 738 */ 739 static void ecryptfs_set_default_crypt_stat_vals( 740 struct ecryptfs_crypt_stat *crypt_stat, 741 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 742 { 743 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 744 mount_crypt_stat); 745 ecryptfs_set_default_sizes(crypt_stat); 746 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 747 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 748 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 749 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 750 crypt_stat->mount_crypt_stat = mount_crypt_stat; 751 } 752 753 /** 754 * ecryptfs_new_file_context 755 * @ecryptfs_inode: The eCryptfs inode 756 * 757 * If the crypto context for the file has not yet been established, 758 * this is where we do that. Establishing a new crypto context 759 * involves the following decisions: 760 * - What cipher to use? 761 * - What set of authentication tokens to use? 762 * Here we just worry about getting enough information into the 763 * authentication tokens so that we know that they are available. 764 * We associate the available authentication tokens with the new file 765 * via the set of signatures in the crypt_stat struct. Later, when 766 * the headers are actually written out, we may again defer to 767 * userspace to perform the encryption of the session key; for the 768 * foreseeable future, this will be the case with public key packets. 769 * 770 * Returns zero on success; non-zero otherwise 771 */ 772 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 773 { 774 struct ecryptfs_crypt_stat *crypt_stat = 775 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 776 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 777 &ecryptfs_superblock_to_private( 778 ecryptfs_inode->i_sb)->mount_crypt_stat; 779 int cipher_name_len; 780 int rc = 0; 781 782 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 783 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 784 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 785 mount_crypt_stat); 786 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 787 mount_crypt_stat); 788 if (rc) { 789 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 790 "to the inode key sigs; rc = [%d]\n", rc); 791 goto out; 792 } 793 cipher_name_len = 794 strlen(mount_crypt_stat->global_default_cipher_name); 795 memcpy(crypt_stat->cipher, 796 mount_crypt_stat->global_default_cipher_name, 797 cipher_name_len); 798 crypt_stat->cipher[cipher_name_len] = '\0'; 799 crypt_stat->key_size = 800 mount_crypt_stat->global_default_cipher_key_size; 801 ecryptfs_generate_new_key(crypt_stat); 802 rc = ecryptfs_init_crypt_ctx(crypt_stat); 803 if (rc) 804 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 805 "context for cipher [%s]: rc = [%d]\n", 806 crypt_stat->cipher, rc); 807 out: 808 return rc; 809 } 810 811 /** 812 * ecryptfs_validate_marker - check for the ecryptfs marker 813 * @data: The data block in which to check 814 * 815 * Returns zero if marker found; -EINVAL if not found 816 */ 817 static int ecryptfs_validate_marker(char *data) 818 { 819 u32 m_1, m_2; 820 821 m_1 = get_unaligned_be32(data); 822 m_2 = get_unaligned_be32(data + 4); 823 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 824 return 0; 825 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 826 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 827 MAGIC_ECRYPTFS_MARKER); 828 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 829 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 830 return -EINVAL; 831 } 832 833 struct ecryptfs_flag_map_elem { 834 u32 file_flag; 835 u32 local_flag; 836 }; 837 838 /* Add support for additional flags by adding elements here. */ 839 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 840 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 841 {0x00000002, ECRYPTFS_ENCRYPTED}, 842 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 843 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 844 }; 845 846 /** 847 * ecryptfs_process_flags 848 * @crypt_stat: The cryptographic context 849 * @page_virt: Source data to be parsed 850 * @bytes_read: Updated with the number of bytes read 851 */ 852 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 853 char *page_virt, int *bytes_read) 854 { 855 int i; 856 u32 flags; 857 858 flags = get_unaligned_be32(page_virt); 859 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 860 if (flags & ecryptfs_flag_map[i].file_flag) { 861 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 862 } else 863 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 864 /* Version is in top 8 bits of the 32-bit flag vector */ 865 crypt_stat->file_version = ((flags >> 24) & 0xFF); 866 (*bytes_read) = 4; 867 } 868 869 /** 870 * write_ecryptfs_marker 871 * @page_virt: The pointer to in a page to begin writing the marker 872 * @written: Number of bytes written 873 * 874 * Marker = 0x3c81b7f5 875 */ 876 static void write_ecryptfs_marker(char *page_virt, size_t *written) 877 { 878 u32 m_1, m_2; 879 880 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 881 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 882 put_unaligned_be32(m_1, page_virt); 883 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 884 put_unaligned_be32(m_2, page_virt); 885 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 886 } 887 888 void ecryptfs_write_crypt_stat_flags(char *page_virt, 889 struct ecryptfs_crypt_stat *crypt_stat, 890 size_t *written) 891 { 892 u32 flags = 0; 893 int i; 894 895 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 896 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 897 flags |= ecryptfs_flag_map[i].file_flag; 898 /* Version is in top 8 bits of the 32-bit flag vector */ 899 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 900 put_unaligned_be32(flags, page_virt); 901 (*written) = 4; 902 } 903 904 struct ecryptfs_cipher_code_str_map_elem { 905 char cipher_str[16]; 906 u8 cipher_code; 907 }; 908 909 /* Add support for additional ciphers by adding elements here. The 910 * cipher_code is whatever OpenPGP applications use to identify the 911 * ciphers. List in order of probability. */ 912 static struct ecryptfs_cipher_code_str_map_elem 913 ecryptfs_cipher_code_str_map[] = { 914 {"aes",RFC2440_CIPHER_AES_128 }, 915 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 916 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 917 {"cast5", RFC2440_CIPHER_CAST_5}, 918 {"twofish", RFC2440_CIPHER_TWOFISH}, 919 {"cast6", RFC2440_CIPHER_CAST_6}, 920 {"aes", RFC2440_CIPHER_AES_192}, 921 {"aes", RFC2440_CIPHER_AES_256} 922 }; 923 924 /** 925 * ecryptfs_code_for_cipher_string 926 * @cipher_name: The string alias for the cipher 927 * @key_bytes: Length of key in bytes; used for AES code selection 928 * 929 * Returns zero on no match, or the cipher code on match 930 */ 931 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 932 { 933 int i; 934 u8 code = 0; 935 struct ecryptfs_cipher_code_str_map_elem *map = 936 ecryptfs_cipher_code_str_map; 937 938 if (strcmp(cipher_name, "aes") == 0) { 939 switch (key_bytes) { 940 case 16: 941 code = RFC2440_CIPHER_AES_128; 942 break; 943 case 24: 944 code = RFC2440_CIPHER_AES_192; 945 break; 946 case 32: 947 code = RFC2440_CIPHER_AES_256; 948 } 949 } else { 950 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 951 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 952 code = map[i].cipher_code; 953 break; 954 } 955 } 956 return code; 957 } 958 959 /** 960 * ecryptfs_cipher_code_to_string 961 * @str: Destination to write out the cipher name 962 * @cipher_code: The code to convert to cipher name string 963 * 964 * Returns zero on success 965 */ 966 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 967 { 968 int rc = 0; 969 int i; 970 971 str[0] = '\0'; 972 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 973 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 974 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 975 if (str[0] == '\0') { 976 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 977 "[%d]\n", cipher_code); 978 rc = -EINVAL; 979 } 980 return rc; 981 } 982 983 int ecryptfs_read_and_validate_header_region(struct inode *inode) 984 { 985 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 986 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 987 int rc; 988 989 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 990 inode); 991 if (rc < 0) 992 return rc; 993 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 994 return -EINVAL; 995 rc = ecryptfs_validate_marker(marker); 996 if (!rc) 997 ecryptfs_i_size_init(file_size, inode); 998 return rc; 999 } 1000 1001 void 1002 ecryptfs_write_header_metadata(char *virt, 1003 struct ecryptfs_crypt_stat *crypt_stat, 1004 size_t *written) 1005 { 1006 u32 header_extent_size; 1007 u16 num_header_extents_at_front; 1008 1009 header_extent_size = (u32)crypt_stat->extent_size; 1010 num_header_extents_at_front = 1011 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1012 put_unaligned_be32(header_extent_size, virt); 1013 virt += 4; 1014 put_unaligned_be16(num_header_extents_at_front, virt); 1015 (*written) = 6; 1016 } 1017 1018 struct kmem_cache *ecryptfs_header_cache; 1019 1020 /** 1021 * ecryptfs_write_headers_virt 1022 * @page_virt: The virtual address to write the headers to 1023 * @max: The size of memory allocated at page_virt 1024 * @size: Set to the number of bytes written by this function 1025 * @crypt_stat: The cryptographic context 1026 * @ecryptfs_dentry: The eCryptfs dentry 1027 * 1028 * Format version: 1 1029 * 1030 * Header Extent: 1031 * Octets 0-7: Unencrypted file size (big-endian) 1032 * Octets 8-15: eCryptfs special marker 1033 * Octets 16-19: Flags 1034 * Octet 16: File format version number (between 0 and 255) 1035 * Octets 17-18: Reserved 1036 * Octet 19: Bit 1 (lsb): Reserved 1037 * Bit 2: Encrypted? 1038 * Bits 3-8: Reserved 1039 * Octets 20-23: Header extent size (big-endian) 1040 * Octets 24-25: Number of header extents at front of file 1041 * (big-endian) 1042 * Octet 26: Begin RFC 2440 authentication token packet set 1043 * Data Extent 0: 1044 * Lower data (CBC encrypted) 1045 * Data Extent 1: 1046 * Lower data (CBC encrypted) 1047 * ... 1048 * 1049 * Returns zero on success 1050 */ 1051 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1052 size_t *size, 1053 struct ecryptfs_crypt_stat *crypt_stat, 1054 struct dentry *ecryptfs_dentry) 1055 { 1056 int rc; 1057 size_t written; 1058 size_t offset; 1059 1060 offset = ECRYPTFS_FILE_SIZE_BYTES; 1061 write_ecryptfs_marker((page_virt + offset), &written); 1062 offset += written; 1063 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1064 &written); 1065 offset += written; 1066 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1067 &written); 1068 offset += written; 1069 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1070 ecryptfs_dentry, &written, 1071 max - offset); 1072 if (rc) 1073 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1074 "set; rc = [%d]\n", rc); 1075 if (size) { 1076 offset += written; 1077 *size = offset; 1078 } 1079 return rc; 1080 } 1081 1082 static int 1083 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1084 char *virt, size_t virt_len) 1085 { 1086 int rc; 1087 1088 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1089 0, virt_len); 1090 if (rc < 0) 1091 printk(KERN_ERR "%s: Error attempting to write header " 1092 "information to lower file; rc = [%d]\n", __func__, rc); 1093 else 1094 rc = 0; 1095 return rc; 1096 } 1097 1098 static int 1099 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1100 struct inode *ecryptfs_inode, 1101 char *page_virt, size_t size) 1102 { 1103 int rc; 1104 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 1105 struct inode *lower_inode = d_inode(lower_dentry); 1106 1107 if (!(lower_inode->i_opflags & IOP_XATTR)) { 1108 rc = -EOPNOTSUPP; 1109 goto out; 1110 } 1111 1112 inode_lock(lower_inode); 1113 rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME, 1114 page_virt, size, 0); 1115 if (!rc && ecryptfs_inode) 1116 fsstack_copy_attr_all(ecryptfs_inode, lower_inode); 1117 inode_unlock(lower_inode); 1118 out: 1119 return rc; 1120 } 1121 1122 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1123 unsigned int order) 1124 { 1125 struct page *page; 1126 1127 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1128 if (page) 1129 return (unsigned long) page_address(page); 1130 return 0; 1131 } 1132 1133 /** 1134 * ecryptfs_write_metadata 1135 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1136 * @ecryptfs_inode: The newly created eCryptfs inode 1137 * 1138 * Write the file headers out. This will likely involve a userspace 1139 * callout, in which the session key is encrypted with one or more 1140 * public keys and/or the passphrase necessary to do the encryption is 1141 * retrieved via a prompt. Exactly what happens at this point should 1142 * be policy-dependent. 1143 * 1144 * Returns zero on success; non-zero on error 1145 */ 1146 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1147 struct inode *ecryptfs_inode) 1148 { 1149 struct ecryptfs_crypt_stat *crypt_stat = 1150 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1151 unsigned int order; 1152 char *virt; 1153 size_t virt_len; 1154 size_t size = 0; 1155 int rc = 0; 1156 1157 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1158 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1159 printk(KERN_ERR "Key is invalid; bailing out\n"); 1160 rc = -EINVAL; 1161 goto out; 1162 } 1163 } else { 1164 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1165 __func__); 1166 rc = -EINVAL; 1167 goto out; 1168 } 1169 virt_len = crypt_stat->metadata_size; 1170 order = get_order(virt_len); 1171 /* Released in this function */ 1172 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1173 if (!virt) { 1174 printk(KERN_ERR "%s: Out of memory\n", __func__); 1175 rc = -ENOMEM; 1176 goto out; 1177 } 1178 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1179 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1180 ecryptfs_dentry); 1181 if (unlikely(rc)) { 1182 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1183 __func__, rc); 1184 goto out_free; 1185 } 1186 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1187 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1188 virt, size); 1189 else 1190 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1191 virt_len); 1192 if (rc) { 1193 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1194 "rc = [%d]\n", __func__, rc); 1195 goto out_free; 1196 } 1197 out_free: 1198 free_pages((unsigned long)virt, order); 1199 out: 1200 return rc; 1201 } 1202 1203 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1204 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1205 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1206 char *virt, int *bytes_read, 1207 int validate_header_size) 1208 { 1209 int rc = 0; 1210 u32 header_extent_size; 1211 u16 num_header_extents_at_front; 1212 1213 header_extent_size = get_unaligned_be32(virt); 1214 virt += sizeof(__be32); 1215 num_header_extents_at_front = get_unaligned_be16(virt); 1216 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1217 * (size_t)header_extent_size)); 1218 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1219 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1220 && (crypt_stat->metadata_size 1221 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1222 rc = -EINVAL; 1223 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1224 crypt_stat->metadata_size); 1225 } 1226 return rc; 1227 } 1228 1229 /** 1230 * set_default_header_data 1231 * @crypt_stat: The cryptographic context 1232 * 1233 * For version 0 file format; this function is only for backwards 1234 * compatibility for files created with the prior versions of 1235 * eCryptfs. 1236 */ 1237 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1238 { 1239 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1240 } 1241 1242 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1243 { 1244 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1245 struct ecryptfs_crypt_stat *crypt_stat; 1246 u64 file_size; 1247 1248 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1249 mount_crypt_stat = 1250 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1251 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1252 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1253 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1254 file_size += crypt_stat->metadata_size; 1255 } else 1256 file_size = get_unaligned_be64(page_virt); 1257 i_size_write(inode, (loff_t)file_size); 1258 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1259 } 1260 1261 /** 1262 * ecryptfs_read_headers_virt 1263 * @page_virt: The virtual address into which to read the headers 1264 * @crypt_stat: The cryptographic context 1265 * @ecryptfs_dentry: The eCryptfs dentry 1266 * @validate_header_size: Whether to validate the header size while reading 1267 * 1268 * Read/parse the header data. The header format is detailed in the 1269 * comment block for the ecryptfs_write_headers_virt() function. 1270 * 1271 * Returns zero on success 1272 */ 1273 static int ecryptfs_read_headers_virt(char *page_virt, 1274 struct ecryptfs_crypt_stat *crypt_stat, 1275 struct dentry *ecryptfs_dentry, 1276 int validate_header_size) 1277 { 1278 int rc = 0; 1279 int offset; 1280 int bytes_read; 1281 1282 ecryptfs_set_default_sizes(crypt_stat); 1283 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1284 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1285 offset = ECRYPTFS_FILE_SIZE_BYTES; 1286 rc = ecryptfs_validate_marker(page_virt + offset); 1287 if (rc) 1288 goto out; 1289 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1290 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1291 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1292 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read); 1293 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1294 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1295 "file version [%d] is supported by this " 1296 "version of eCryptfs\n", 1297 crypt_stat->file_version, 1298 ECRYPTFS_SUPPORTED_FILE_VERSION); 1299 rc = -EINVAL; 1300 goto out; 1301 } 1302 offset += bytes_read; 1303 if (crypt_stat->file_version >= 1) { 1304 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1305 &bytes_read, validate_header_size); 1306 if (rc) { 1307 ecryptfs_printk(KERN_WARNING, "Error reading header " 1308 "metadata; rc = [%d]\n", rc); 1309 } 1310 offset += bytes_read; 1311 } else 1312 set_default_header_data(crypt_stat); 1313 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1314 ecryptfs_dentry); 1315 out: 1316 return rc; 1317 } 1318 1319 /** 1320 * ecryptfs_read_xattr_region 1321 * @page_virt: The vitual address into which to read the xattr data 1322 * @ecryptfs_inode: The eCryptfs inode 1323 * 1324 * Attempts to read the crypto metadata from the extended attribute 1325 * region of the lower file. 1326 * 1327 * Returns zero on success; non-zero on error 1328 */ 1329 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1330 { 1331 struct dentry *lower_dentry = 1332 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1333 ssize_t size; 1334 int rc = 0; 1335 1336 size = ecryptfs_getxattr_lower(lower_dentry, 1337 ecryptfs_inode_to_lower(ecryptfs_inode), 1338 ECRYPTFS_XATTR_NAME, 1339 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1340 if (size < 0) { 1341 if (unlikely(ecryptfs_verbosity > 0)) 1342 printk(KERN_INFO "Error attempting to read the [%s] " 1343 "xattr from the lower file; return value = " 1344 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1345 rc = -EINVAL; 1346 goto out; 1347 } 1348 out: 1349 return rc; 1350 } 1351 1352 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1353 struct inode *inode) 1354 { 1355 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1356 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1357 int rc; 1358 1359 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1360 ecryptfs_inode_to_lower(inode), 1361 ECRYPTFS_XATTR_NAME, file_size, 1362 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1363 if (rc < 0) 1364 return rc; 1365 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1366 return -EINVAL; 1367 rc = ecryptfs_validate_marker(marker); 1368 if (!rc) 1369 ecryptfs_i_size_init(file_size, inode); 1370 return rc; 1371 } 1372 1373 /** 1374 * ecryptfs_read_metadata 1375 * 1376 * Common entry point for reading file metadata. From here, we could 1377 * retrieve the header information from the header region of the file, 1378 * the xattr region of the file, or some other repository that is 1379 * stored separately from the file itself. The current implementation 1380 * supports retrieving the metadata information from the file contents 1381 * and from the xattr region. 1382 * 1383 * Returns zero if valid headers found and parsed; non-zero otherwise 1384 */ 1385 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1386 { 1387 int rc; 1388 char *page_virt; 1389 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1390 struct ecryptfs_crypt_stat *crypt_stat = 1391 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1392 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1393 &ecryptfs_superblock_to_private( 1394 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1395 1396 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1397 mount_crypt_stat); 1398 /* Read the first page from the underlying file */ 1399 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1400 if (!page_virt) { 1401 rc = -ENOMEM; 1402 goto out; 1403 } 1404 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1405 ecryptfs_inode); 1406 if (rc >= 0) 1407 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1408 ecryptfs_dentry, 1409 ECRYPTFS_VALIDATE_HEADER_SIZE); 1410 if (rc) { 1411 /* metadata is not in the file header, so try xattrs */ 1412 memset(page_virt, 0, PAGE_SIZE); 1413 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1414 if (rc) { 1415 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1416 "file header region or xattr region, inode %lu\n", 1417 ecryptfs_inode->i_ino); 1418 rc = -EINVAL; 1419 goto out; 1420 } 1421 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1422 ecryptfs_dentry, 1423 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1424 if (rc) { 1425 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1426 "file xattr region either, inode %lu\n", 1427 ecryptfs_inode->i_ino); 1428 rc = -EINVAL; 1429 } 1430 if (crypt_stat->mount_crypt_stat->flags 1431 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1432 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1433 } else { 1434 printk(KERN_WARNING "Attempt to access file with " 1435 "crypto metadata only in the extended attribute " 1436 "region, but eCryptfs was mounted without " 1437 "xattr support enabled. eCryptfs will not treat " 1438 "this like an encrypted file, inode %lu\n", 1439 ecryptfs_inode->i_ino); 1440 rc = -EINVAL; 1441 } 1442 } 1443 out: 1444 if (page_virt) { 1445 memset(page_virt, 0, PAGE_SIZE); 1446 kmem_cache_free(ecryptfs_header_cache, page_virt); 1447 } 1448 return rc; 1449 } 1450 1451 /** 1452 * ecryptfs_encrypt_filename - encrypt filename 1453 * 1454 * CBC-encrypts the filename. We do not want to encrypt the same 1455 * filename with the same key and IV, which may happen with hard 1456 * links, so we prepend random bits to each filename. 1457 * 1458 * Returns zero on success; non-zero otherwise 1459 */ 1460 static int 1461 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1462 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1463 { 1464 int rc = 0; 1465 1466 filename->encrypted_filename = NULL; 1467 filename->encrypted_filename_size = 0; 1468 if (mount_crypt_stat && (mount_crypt_stat->flags 1469 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1470 size_t packet_size; 1471 size_t remaining_bytes; 1472 1473 rc = ecryptfs_write_tag_70_packet( 1474 NULL, NULL, 1475 &filename->encrypted_filename_size, 1476 mount_crypt_stat, NULL, 1477 filename->filename_size); 1478 if (rc) { 1479 printk(KERN_ERR "%s: Error attempting to get packet " 1480 "size for tag 72; rc = [%d]\n", __func__, 1481 rc); 1482 filename->encrypted_filename_size = 0; 1483 goto out; 1484 } 1485 filename->encrypted_filename = 1486 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1487 if (!filename->encrypted_filename) { 1488 rc = -ENOMEM; 1489 goto out; 1490 } 1491 remaining_bytes = filename->encrypted_filename_size; 1492 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1493 &remaining_bytes, 1494 &packet_size, 1495 mount_crypt_stat, 1496 filename->filename, 1497 filename->filename_size); 1498 if (rc) { 1499 printk(KERN_ERR "%s: Error attempting to generate " 1500 "tag 70 packet; rc = [%d]\n", __func__, 1501 rc); 1502 kfree(filename->encrypted_filename); 1503 filename->encrypted_filename = NULL; 1504 filename->encrypted_filename_size = 0; 1505 goto out; 1506 } 1507 filename->encrypted_filename_size = packet_size; 1508 } else { 1509 printk(KERN_ERR "%s: No support for requested filename " 1510 "encryption method in this release\n", __func__); 1511 rc = -EOPNOTSUPP; 1512 goto out; 1513 } 1514 out: 1515 return rc; 1516 } 1517 1518 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1519 const char *name, size_t name_size) 1520 { 1521 int rc = 0; 1522 1523 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1524 if (!(*copied_name)) { 1525 rc = -ENOMEM; 1526 goto out; 1527 } 1528 memcpy((void *)(*copied_name), (void *)name, name_size); 1529 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1530 * in printing out the 1531 * string in debug 1532 * messages */ 1533 (*copied_name_size) = name_size; 1534 out: 1535 return rc; 1536 } 1537 1538 /** 1539 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1540 * @key_tfm: Crypto context for key material, set by this function 1541 * @cipher_name: Name of the cipher 1542 * @key_size: Size of the key in bytes 1543 * 1544 * Returns zero on success. Any crypto_tfm structs allocated here 1545 * should be released by other functions, such as on a superblock put 1546 * event, regardless of whether this function succeeds for fails. 1547 */ 1548 static int 1549 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1550 char *cipher_name, size_t *key_size) 1551 { 1552 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1553 char *full_alg_name = NULL; 1554 int rc; 1555 1556 *key_tfm = NULL; 1557 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1558 rc = -EINVAL; 1559 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1560 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1561 goto out; 1562 } 1563 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1564 "ecb"); 1565 if (rc) 1566 goto out; 1567 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1568 if (IS_ERR(*key_tfm)) { 1569 rc = PTR_ERR(*key_tfm); 1570 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1571 "[%s]; rc = [%d]\n", full_alg_name, rc); 1572 goto out; 1573 } 1574 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1575 if (*key_size == 0) 1576 *key_size = crypto_skcipher_max_keysize(*key_tfm); 1577 get_random_bytes(dummy_key, *key_size); 1578 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1579 if (rc) { 1580 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1581 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1582 rc); 1583 rc = -EINVAL; 1584 goto out; 1585 } 1586 out: 1587 kfree(full_alg_name); 1588 return rc; 1589 } 1590 1591 struct kmem_cache *ecryptfs_key_tfm_cache; 1592 static struct list_head key_tfm_list; 1593 struct mutex key_tfm_list_mutex; 1594 1595 int __init ecryptfs_init_crypto(void) 1596 { 1597 mutex_init(&key_tfm_list_mutex); 1598 INIT_LIST_HEAD(&key_tfm_list); 1599 return 0; 1600 } 1601 1602 /** 1603 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1604 * 1605 * Called only at module unload time 1606 */ 1607 int ecryptfs_destroy_crypto(void) 1608 { 1609 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1610 1611 mutex_lock(&key_tfm_list_mutex); 1612 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1613 key_tfm_list) { 1614 list_del(&key_tfm->key_tfm_list); 1615 crypto_free_skcipher(key_tfm->key_tfm); 1616 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1617 } 1618 mutex_unlock(&key_tfm_list_mutex); 1619 return 0; 1620 } 1621 1622 int 1623 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1624 size_t key_size) 1625 { 1626 struct ecryptfs_key_tfm *tmp_tfm; 1627 int rc = 0; 1628 1629 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1630 1631 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1632 if (key_tfm) 1633 (*key_tfm) = tmp_tfm; 1634 if (!tmp_tfm) { 1635 rc = -ENOMEM; 1636 goto out; 1637 } 1638 mutex_init(&tmp_tfm->key_tfm_mutex); 1639 strncpy(tmp_tfm->cipher_name, cipher_name, 1640 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1641 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1642 tmp_tfm->key_size = key_size; 1643 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1644 tmp_tfm->cipher_name, 1645 &tmp_tfm->key_size); 1646 if (rc) { 1647 printk(KERN_ERR "Error attempting to initialize key TFM " 1648 "cipher with name = [%s]; rc = [%d]\n", 1649 tmp_tfm->cipher_name, rc); 1650 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1651 if (key_tfm) 1652 (*key_tfm) = NULL; 1653 goto out; 1654 } 1655 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1656 out: 1657 return rc; 1658 } 1659 1660 /** 1661 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1662 * @cipher_name: the name of the cipher to search for 1663 * @key_tfm: set to corresponding tfm if found 1664 * 1665 * Searches for cached key_tfm matching @cipher_name 1666 * Must be called with &key_tfm_list_mutex held 1667 * Returns 1 if found, with @key_tfm set 1668 * Returns 0 if not found, with @key_tfm set to NULL 1669 */ 1670 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1671 { 1672 struct ecryptfs_key_tfm *tmp_key_tfm; 1673 1674 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1675 1676 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1677 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1678 if (key_tfm) 1679 (*key_tfm) = tmp_key_tfm; 1680 return 1; 1681 } 1682 } 1683 if (key_tfm) 1684 (*key_tfm) = NULL; 1685 return 0; 1686 } 1687 1688 /** 1689 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1690 * 1691 * @tfm: set to cached tfm found, or new tfm created 1692 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1693 * @cipher_name: the name of the cipher to search for and/or add 1694 * 1695 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1696 * Searches for cached item first, and creates new if not found. 1697 * Returns 0 on success, non-zero if adding new cipher failed 1698 */ 1699 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1700 struct mutex **tfm_mutex, 1701 char *cipher_name) 1702 { 1703 struct ecryptfs_key_tfm *key_tfm; 1704 int rc = 0; 1705 1706 (*tfm) = NULL; 1707 (*tfm_mutex) = NULL; 1708 1709 mutex_lock(&key_tfm_list_mutex); 1710 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1711 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1712 if (rc) { 1713 printk(KERN_ERR "Error adding new key_tfm to list; " 1714 "rc = [%d]\n", rc); 1715 goto out; 1716 } 1717 } 1718 (*tfm) = key_tfm->key_tfm; 1719 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1720 out: 1721 mutex_unlock(&key_tfm_list_mutex); 1722 return rc; 1723 } 1724 1725 /* 64 characters forming a 6-bit target field */ 1726 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1727 "EFGHIJKLMNOPQRST" 1728 "UVWXYZabcdefghij" 1729 "klmnopqrstuvwxyz"); 1730 1731 /* We could either offset on every reverse map or just pad some 0x00's 1732 * at the front here */ 1733 static const unsigned char filename_rev_map[256] = { 1734 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1735 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1736 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1737 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1738 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1739 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1740 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1741 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1742 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1743 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1744 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1745 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1746 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1747 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1748 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1749 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1750 }; 1751 1752 /** 1753 * ecryptfs_encode_for_filename 1754 * @dst: Destination location for encoded filename 1755 * @dst_size: Size of the encoded filename in bytes 1756 * @src: Source location for the filename to encode 1757 * @src_size: Size of the source in bytes 1758 */ 1759 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1760 unsigned char *src, size_t src_size) 1761 { 1762 size_t num_blocks; 1763 size_t block_num = 0; 1764 size_t dst_offset = 0; 1765 unsigned char last_block[3]; 1766 1767 if (src_size == 0) { 1768 (*dst_size) = 0; 1769 goto out; 1770 } 1771 num_blocks = (src_size / 3); 1772 if ((src_size % 3) == 0) { 1773 memcpy(last_block, (&src[src_size - 3]), 3); 1774 } else { 1775 num_blocks++; 1776 last_block[2] = 0x00; 1777 switch (src_size % 3) { 1778 case 1: 1779 last_block[0] = src[src_size - 1]; 1780 last_block[1] = 0x00; 1781 break; 1782 case 2: 1783 last_block[0] = src[src_size - 2]; 1784 last_block[1] = src[src_size - 1]; 1785 } 1786 } 1787 (*dst_size) = (num_blocks * 4); 1788 if (!dst) 1789 goto out; 1790 while (block_num < num_blocks) { 1791 unsigned char *src_block; 1792 unsigned char dst_block[4]; 1793 1794 if (block_num == (num_blocks - 1)) 1795 src_block = last_block; 1796 else 1797 src_block = &src[block_num * 3]; 1798 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1799 dst_block[1] = (((src_block[0] << 4) & 0x30) 1800 | ((src_block[1] >> 4) & 0x0F)); 1801 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1802 | ((src_block[2] >> 6) & 0x03)); 1803 dst_block[3] = (src_block[2] & 0x3F); 1804 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1805 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1806 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1807 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1808 block_num++; 1809 } 1810 out: 1811 return; 1812 } 1813 1814 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1815 { 1816 /* Not exact; conservatively long. Every block of 4 1817 * encoded characters decodes into a block of 3 1818 * decoded characters. This segment of code provides 1819 * the caller with the maximum amount of allocated 1820 * space that @dst will need to point to in a 1821 * subsequent call. */ 1822 return ((encoded_size + 1) * 3) / 4; 1823 } 1824 1825 /** 1826 * ecryptfs_decode_from_filename 1827 * @dst: If NULL, this function only sets @dst_size and returns. If 1828 * non-NULL, this function decodes the encoded octets in @src 1829 * into the memory that @dst points to. 1830 * @dst_size: Set to the size of the decoded string. 1831 * @src: The encoded set of octets to decode. 1832 * @src_size: The size of the encoded set of octets to decode. 1833 */ 1834 static void 1835 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1836 const unsigned char *src, size_t src_size) 1837 { 1838 u8 current_bit_offset = 0; 1839 size_t src_byte_offset = 0; 1840 size_t dst_byte_offset = 0; 1841 1842 if (!dst) { 1843 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1844 goto out; 1845 } 1846 while (src_byte_offset < src_size) { 1847 unsigned char src_byte = 1848 filename_rev_map[(int)src[src_byte_offset]]; 1849 1850 switch (current_bit_offset) { 1851 case 0: 1852 dst[dst_byte_offset] = (src_byte << 2); 1853 current_bit_offset = 6; 1854 break; 1855 case 6: 1856 dst[dst_byte_offset++] |= (src_byte >> 4); 1857 dst[dst_byte_offset] = ((src_byte & 0xF) 1858 << 4); 1859 current_bit_offset = 4; 1860 break; 1861 case 4: 1862 dst[dst_byte_offset++] |= (src_byte >> 2); 1863 dst[dst_byte_offset] = (src_byte << 6); 1864 current_bit_offset = 2; 1865 break; 1866 case 2: 1867 dst[dst_byte_offset++] |= (src_byte); 1868 current_bit_offset = 0; 1869 break; 1870 } 1871 src_byte_offset++; 1872 } 1873 (*dst_size) = dst_byte_offset; 1874 out: 1875 return; 1876 } 1877 1878 /** 1879 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1880 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1881 * @name: The plaintext name 1882 * @length: The length of the plaintext 1883 * @encoded_name: The encypted name 1884 * 1885 * Encrypts and encodes a filename into something that constitutes a 1886 * valid filename for a filesystem, with printable characters. 1887 * 1888 * We assume that we have a properly initialized crypto context, 1889 * pointed to by crypt_stat->tfm. 1890 * 1891 * Returns zero on success; non-zero on otherwise 1892 */ 1893 int ecryptfs_encrypt_and_encode_filename( 1894 char **encoded_name, 1895 size_t *encoded_name_size, 1896 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1897 const char *name, size_t name_size) 1898 { 1899 size_t encoded_name_no_prefix_size; 1900 int rc = 0; 1901 1902 (*encoded_name) = NULL; 1903 (*encoded_name_size) = 0; 1904 if (mount_crypt_stat && (mount_crypt_stat->flags 1905 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1906 struct ecryptfs_filename *filename; 1907 1908 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1909 if (!filename) { 1910 rc = -ENOMEM; 1911 goto out; 1912 } 1913 filename->filename = (char *)name; 1914 filename->filename_size = name_size; 1915 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1916 if (rc) { 1917 printk(KERN_ERR "%s: Error attempting to encrypt " 1918 "filename; rc = [%d]\n", __func__, rc); 1919 kfree(filename); 1920 goto out; 1921 } 1922 ecryptfs_encode_for_filename( 1923 NULL, &encoded_name_no_prefix_size, 1924 filename->encrypted_filename, 1925 filename->encrypted_filename_size); 1926 if (mount_crypt_stat 1927 && (mount_crypt_stat->flags 1928 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1929 (*encoded_name_size) = 1930 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1931 + encoded_name_no_prefix_size); 1932 else 1933 (*encoded_name_size) = 1934 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1935 + encoded_name_no_prefix_size); 1936 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1937 if (!(*encoded_name)) { 1938 rc = -ENOMEM; 1939 kfree(filename->encrypted_filename); 1940 kfree(filename); 1941 goto out; 1942 } 1943 if (mount_crypt_stat 1944 && (mount_crypt_stat->flags 1945 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1946 memcpy((*encoded_name), 1947 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1948 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1949 ecryptfs_encode_for_filename( 1950 ((*encoded_name) 1951 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1952 &encoded_name_no_prefix_size, 1953 filename->encrypted_filename, 1954 filename->encrypted_filename_size); 1955 (*encoded_name_size) = 1956 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1957 + encoded_name_no_prefix_size); 1958 (*encoded_name)[(*encoded_name_size)] = '\0'; 1959 } else { 1960 rc = -EOPNOTSUPP; 1961 } 1962 if (rc) { 1963 printk(KERN_ERR "%s: Error attempting to encode " 1964 "encrypted filename; rc = [%d]\n", __func__, 1965 rc); 1966 kfree((*encoded_name)); 1967 (*encoded_name) = NULL; 1968 (*encoded_name_size) = 0; 1969 } 1970 kfree(filename->encrypted_filename); 1971 kfree(filename); 1972 } else { 1973 rc = ecryptfs_copy_filename(encoded_name, 1974 encoded_name_size, 1975 name, name_size); 1976 } 1977 out: 1978 return rc; 1979 } 1980 1981 static bool is_dot_dotdot(const char *name, size_t name_size) 1982 { 1983 if (name_size == 1 && name[0] == '.') 1984 return true; 1985 else if (name_size == 2 && name[0] == '.' && name[1] == '.') 1986 return true; 1987 1988 return false; 1989 } 1990 1991 /** 1992 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 1993 * @plaintext_name: The plaintext name 1994 * @plaintext_name_size: The plaintext name size 1995 * @ecryptfs_dir_dentry: eCryptfs directory dentry 1996 * @name: The filename in cipher text 1997 * @name_size: The cipher text name size 1998 * 1999 * Decrypts and decodes the filename. 2000 * 2001 * Returns zero on error; non-zero otherwise 2002 */ 2003 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2004 size_t *plaintext_name_size, 2005 struct super_block *sb, 2006 const char *name, size_t name_size) 2007 { 2008 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2009 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2010 char *decoded_name; 2011 size_t decoded_name_size; 2012 size_t packet_size; 2013 int rc = 0; 2014 2015 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 2016 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 2017 if (is_dot_dotdot(name, name_size)) { 2018 rc = ecryptfs_copy_filename(plaintext_name, 2019 plaintext_name_size, 2020 name, name_size); 2021 goto out; 2022 } 2023 2024 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 2025 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2026 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 2027 rc = -EINVAL; 2028 goto out; 2029 } 2030 2031 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2032 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2033 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2034 name, name_size); 2035 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2036 if (!decoded_name) { 2037 rc = -ENOMEM; 2038 goto out; 2039 } 2040 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2041 name, name_size); 2042 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2043 plaintext_name_size, 2044 &packet_size, 2045 mount_crypt_stat, 2046 decoded_name, 2047 decoded_name_size); 2048 if (rc) { 2049 ecryptfs_printk(KERN_DEBUG, 2050 "%s: Could not parse tag 70 packet from filename\n", 2051 __func__); 2052 goto out_free; 2053 } 2054 } else { 2055 rc = ecryptfs_copy_filename(plaintext_name, 2056 plaintext_name_size, 2057 name, name_size); 2058 goto out; 2059 } 2060 out_free: 2061 kfree(decoded_name); 2062 out: 2063 return rc; 2064 } 2065 2066 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2067 2068 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2069 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2070 { 2071 struct crypto_skcipher *tfm; 2072 struct mutex *tfm_mutex; 2073 size_t cipher_blocksize; 2074 int rc; 2075 2076 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2077 (*namelen) = lower_namelen; 2078 return 0; 2079 } 2080 2081 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2082 mount_crypt_stat->global_default_fn_cipher_name); 2083 if (unlikely(rc)) { 2084 (*namelen) = 0; 2085 return rc; 2086 } 2087 2088 mutex_lock(tfm_mutex); 2089 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2090 mutex_unlock(tfm_mutex); 2091 2092 /* Return an exact amount for the common cases */ 2093 if (lower_namelen == NAME_MAX 2094 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2095 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2096 return 0; 2097 } 2098 2099 /* Return a safe estimate for the uncommon cases */ 2100 (*namelen) = lower_namelen; 2101 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2102 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2103 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2104 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2105 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2106 /* Worst case is that the filename is padded nearly a full block size */ 2107 (*namelen) -= cipher_blocksize - 1; 2108 2109 if ((*namelen) < 0) 2110 (*namelen) = 0; 2111 2112 return 0; 2113 } 2114