xref: /linux/fs/ecryptfs/crypto.c (revision 132db93572821ec2fdf81e354cc40f558faf7e4f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *   		Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11 
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28 
29 #define DECRYPT		0
30 #define ENCRYPT		1
31 
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41 	int x;
42 	char tmp[3] = { 0, };
43 
44 	for (x = 0; x < dst_size; x++) {
45 		tmp[0] = src[x * 2];
46 		tmp[1] = src[x * 2 + 1];
47 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 	}
49 }
50 
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
61 static int ecryptfs_calculate_md5(char *dst,
62 				  struct ecryptfs_crypt_stat *crypt_stat,
63 				  char *src, int len)
64 {
65 	int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66 
67 	if (rc) {
68 		printk(KERN_ERR
69 		       "%s: Error computing crypto hash; rc = [%d]\n",
70 		       __func__, rc);
71 		goto out;
72 	}
73 out:
74 	return rc;
75 }
76 
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78 						  char *cipher_name,
79 						  char *chaining_modifier)
80 {
81 	int cipher_name_len = strlen(cipher_name);
82 	int chaining_modifier_len = strlen(chaining_modifier);
83 	int algified_name_len;
84 	int rc;
85 
86 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88 	if (!(*algified_name)) {
89 		rc = -ENOMEM;
90 		goto out;
91 	}
92 	snprintf((*algified_name), algified_name_len, "%s(%s)",
93 		 chaining_modifier, cipher_name);
94 	rc = 0;
95 out:
96 	return rc;
97 }
98 
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111 		       loff_t offset)
112 {
113 	int rc = 0;
114 	char dst[MD5_DIGEST_SIZE];
115 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
116 
117 	if (unlikely(ecryptfs_verbosity > 0)) {
118 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120 	}
121 	/* TODO: It is probably secure to just cast the least
122 	 * significant bits of the root IV into an unsigned long and
123 	 * add the offset to that rather than go through all this
124 	 * hashing business. -Halcrow */
125 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126 	memset((src + crypt_stat->iv_bytes), 0, 16);
127 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128 	if (unlikely(ecryptfs_verbosity > 0)) {
129 		ecryptfs_printk(KERN_DEBUG, "source:\n");
130 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131 	}
132 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133 				    (crypt_stat->iv_bytes + 16));
134 	if (rc) {
135 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136 				"MD5 while generating IV for a page\n");
137 		goto out;
138 	}
139 	memcpy(iv, dst, crypt_stat->iv_bytes);
140 	if (unlikely(ecryptfs_verbosity > 0)) {
141 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143 	}
144 out:
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156 	struct crypto_shash *tfm;
157 	int rc;
158 
159 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160 	if (IS_ERR(tfm)) {
161 		rc = PTR_ERR(tfm);
162 		ecryptfs_printk(KERN_ERR, "Error attempting to "
163 				"allocate crypto context; rc = [%d]\n",
164 				rc);
165 		return rc;
166 	}
167 
168 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
170 	mutex_init(&crypt_stat->keysig_list_mutex);
171 	mutex_init(&crypt_stat->cs_mutex);
172 	mutex_init(&crypt_stat->cs_tfm_mutex);
173 	crypt_stat->hash_tfm = tfm;
174 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175 
176 	return 0;
177 }
178 
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188 
189 	crypto_free_skcipher(crypt_stat->tfm);
190 	crypto_free_shash(crypt_stat->hash_tfm);
191 	list_for_each_entry_safe(key_sig, key_sig_tmp,
192 				 &crypt_stat->keysig_list, crypt_stat_list) {
193 		list_del(&key_sig->crypt_stat_list);
194 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195 	}
196 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198 
199 void ecryptfs_destroy_mount_crypt_stat(
200 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203 
204 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205 		return;
206 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208 				 &mount_crypt_stat->global_auth_tok_list,
209 				 mount_crypt_stat_list) {
210 		list_del(&auth_tok->mount_crypt_stat_list);
211 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212 			key_put(auth_tok->global_auth_tok_key);
213 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214 	}
215 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218 
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233 			int sg_size)
234 {
235 	int i = 0;
236 	struct page *pg;
237 	int offset;
238 	int remainder_of_page;
239 
240 	sg_init_table(sg, sg_size);
241 
242 	while (size > 0 && i < sg_size) {
243 		pg = virt_to_page(addr);
244 		offset = offset_in_page(addr);
245 		sg_set_page(&sg[i], pg, 0, offset);
246 		remainder_of_page = PAGE_SIZE - offset;
247 		if (size >= remainder_of_page) {
248 			sg[i].length = remainder_of_page;
249 			addr += remainder_of_page;
250 			size -= remainder_of_page;
251 		} else {
252 			sg[i].length = size;
253 			addr += size;
254 			size = 0;
255 		}
256 		i++;
257 	}
258 	if (size > 0)
259 		return -ENOMEM;
260 	return i;
261 }
262 
263 struct extent_crypt_result {
264 	struct completion completion;
265 	int rc;
266 };
267 
268 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
269 {
270 	struct extent_crypt_result *ecr = req->data;
271 
272 	if (rc == -EINPROGRESS)
273 		return;
274 
275 	ecr->rc = rc;
276 	complete(&ecr->completion);
277 }
278 
279 /**
280  * crypt_scatterlist
281  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
282  * @dst_sg: Destination of the data after performing the crypto operation
283  * @src_sg: Data to be encrypted or decrypted
284  * @size: Length of data
285  * @iv: IV to use
286  * @op: ENCRYPT or DECRYPT to indicate the desired operation
287  *
288  * Returns the number of bytes encrypted or decrypted; negative value on error
289  */
290 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
291 			     struct scatterlist *dst_sg,
292 			     struct scatterlist *src_sg, int size,
293 			     unsigned char *iv, int op)
294 {
295 	struct skcipher_request *req = NULL;
296 	struct extent_crypt_result ecr;
297 	int rc = 0;
298 
299 	if (!crypt_stat || !crypt_stat->tfm
300 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED))
301 		return -EINVAL;
302 
303 	if (unlikely(ecryptfs_verbosity > 0)) {
304 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
305 				crypt_stat->key_size);
306 		ecryptfs_dump_hex(crypt_stat->key,
307 				  crypt_stat->key_size);
308 	}
309 
310 	init_completion(&ecr.completion);
311 
312 	mutex_lock(&crypt_stat->cs_tfm_mutex);
313 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
314 	if (!req) {
315 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
316 		rc = -ENOMEM;
317 		goto out;
318 	}
319 
320 	skcipher_request_set_callback(req,
321 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
322 			extent_crypt_complete, &ecr);
323 	/* Consider doing this once, when the file is opened */
324 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
325 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
326 					    crypt_stat->key_size);
327 		if (rc) {
328 			ecryptfs_printk(KERN_ERR,
329 					"Error setting key; rc = [%d]\n",
330 					rc);
331 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
332 			rc = -EINVAL;
333 			goto out;
334 		}
335 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
336 	}
337 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
338 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
339 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
340 			     crypto_skcipher_decrypt(req);
341 	if (rc == -EINPROGRESS || rc == -EBUSY) {
342 		struct extent_crypt_result *ecr = req->base.data;
343 
344 		wait_for_completion(&ecr->completion);
345 		rc = ecr->rc;
346 		reinit_completion(&ecr->completion);
347 	}
348 out:
349 	skcipher_request_free(req);
350 	return rc;
351 }
352 
353 /**
354  * lower_offset_for_page
355  *
356  * Convert an eCryptfs page index into a lower byte offset
357  */
358 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
359 				    struct page *page)
360 {
361 	return ecryptfs_lower_header_size(crypt_stat) +
362 	       ((loff_t)page->index << PAGE_SHIFT);
363 }
364 
365 /**
366  * crypt_extent
367  * @crypt_stat: crypt_stat containing cryptographic context for the
368  *              encryption operation
369  * @dst_page: The page to write the result into
370  * @src_page: The page to read from
371  * @extent_offset: Page extent offset for use in generating IV
372  * @op: ENCRYPT or DECRYPT to indicate the desired operation
373  *
374  * Encrypts or decrypts one extent of data.
375  *
376  * Return zero on success; non-zero otherwise
377  */
378 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
379 			struct page *dst_page,
380 			struct page *src_page,
381 			unsigned long extent_offset, int op)
382 {
383 	pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
384 	loff_t extent_base;
385 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
386 	struct scatterlist src_sg, dst_sg;
387 	size_t extent_size = crypt_stat->extent_size;
388 	int rc;
389 
390 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
391 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
392 				(extent_base + extent_offset));
393 	if (rc) {
394 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
395 			"extent [0x%.16llx]; rc = [%d]\n",
396 			(unsigned long long)(extent_base + extent_offset), rc);
397 		goto out;
398 	}
399 
400 	sg_init_table(&src_sg, 1);
401 	sg_init_table(&dst_sg, 1);
402 
403 	sg_set_page(&src_sg, src_page, extent_size,
404 		    extent_offset * extent_size);
405 	sg_set_page(&dst_sg, dst_page, extent_size,
406 		    extent_offset * extent_size);
407 
408 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
409 			       extent_iv, op);
410 	if (rc < 0) {
411 		printk(KERN_ERR "%s: Error attempting to crypt page with "
412 		       "page_index = [%ld], extent_offset = [%ld]; "
413 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
414 		goto out;
415 	}
416 	rc = 0;
417 out:
418 	return rc;
419 }
420 
421 /**
422  * ecryptfs_encrypt_page
423  * @page: Page mapped from the eCryptfs inode for the file; contains
424  *        decrypted content that needs to be encrypted (to a temporary
425  *        page; not in place) and written out to the lower file
426  *
427  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
428  * that eCryptfs pages may straddle the lower pages -- for instance,
429  * if the file was created on a machine with an 8K page size
430  * (resulting in an 8K header), and then the file is copied onto a
431  * host with a 32K page size, then when reading page 0 of the eCryptfs
432  * file, 24K of page 0 of the lower file will be read and decrypted,
433  * and then 8K of page 1 of the lower file will be read and decrypted.
434  *
435  * Returns zero on success; negative on error
436  */
437 int ecryptfs_encrypt_page(struct page *page)
438 {
439 	struct inode *ecryptfs_inode;
440 	struct ecryptfs_crypt_stat *crypt_stat;
441 	char *enc_extent_virt;
442 	struct page *enc_extent_page = NULL;
443 	loff_t extent_offset;
444 	loff_t lower_offset;
445 	int rc = 0;
446 
447 	ecryptfs_inode = page->mapping->host;
448 	crypt_stat =
449 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
450 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
451 	enc_extent_page = alloc_page(GFP_USER);
452 	if (!enc_extent_page) {
453 		rc = -ENOMEM;
454 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
455 				"encrypted extent\n");
456 		goto out;
457 	}
458 
459 	for (extent_offset = 0;
460 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
461 	     extent_offset++) {
462 		rc = crypt_extent(crypt_stat, enc_extent_page, page,
463 				  extent_offset, ENCRYPT);
464 		if (rc) {
465 			printk(KERN_ERR "%s: Error encrypting extent; "
466 			       "rc = [%d]\n", __func__, rc);
467 			goto out;
468 		}
469 	}
470 
471 	lower_offset = lower_offset_for_page(crypt_stat, page);
472 	enc_extent_virt = kmap(enc_extent_page);
473 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
474 				  PAGE_SIZE);
475 	kunmap(enc_extent_page);
476 	if (rc < 0) {
477 		ecryptfs_printk(KERN_ERR,
478 			"Error attempting to write lower page; rc = [%d]\n",
479 			rc);
480 		goto out;
481 	}
482 	rc = 0;
483 out:
484 	if (enc_extent_page) {
485 		__free_page(enc_extent_page);
486 	}
487 	return rc;
488 }
489 
490 /**
491  * ecryptfs_decrypt_page
492  * @page: Page mapped from the eCryptfs inode for the file; data read
493  *        and decrypted from the lower file will be written into this
494  *        page
495  *
496  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
497  * that eCryptfs pages may straddle the lower pages -- for instance,
498  * if the file was created on a machine with an 8K page size
499  * (resulting in an 8K header), and then the file is copied onto a
500  * host with a 32K page size, then when reading page 0 of the eCryptfs
501  * file, 24K of page 0 of the lower file will be read and decrypted,
502  * and then 8K of page 1 of the lower file will be read and decrypted.
503  *
504  * Returns zero on success; negative on error
505  */
506 int ecryptfs_decrypt_page(struct page *page)
507 {
508 	struct inode *ecryptfs_inode;
509 	struct ecryptfs_crypt_stat *crypt_stat;
510 	char *page_virt;
511 	unsigned long extent_offset;
512 	loff_t lower_offset;
513 	int rc = 0;
514 
515 	ecryptfs_inode = page->mapping->host;
516 	crypt_stat =
517 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
518 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
519 
520 	lower_offset = lower_offset_for_page(crypt_stat, page);
521 	page_virt = kmap(page);
522 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
523 				 ecryptfs_inode);
524 	kunmap(page);
525 	if (rc < 0) {
526 		ecryptfs_printk(KERN_ERR,
527 			"Error attempting to read lower page; rc = [%d]\n",
528 			rc);
529 		goto out;
530 	}
531 
532 	for (extent_offset = 0;
533 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
534 	     extent_offset++) {
535 		rc = crypt_extent(crypt_stat, page, page,
536 				  extent_offset, DECRYPT);
537 		if (rc) {
538 			printk(KERN_ERR "%s: Error encrypting extent; "
539 			       "rc = [%d]\n", __func__, rc);
540 			goto out;
541 		}
542 	}
543 out:
544 	return rc;
545 }
546 
547 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
548 
549 /**
550  * ecryptfs_init_crypt_ctx
551  * @crypt_stat: Uninitialized crypt stats structure
552  *
553  * Initialize the crypto context.
554  *
555  * TODO: Performance: Keep a cache of initialized cipher contexts;
556  * only init if needed
557  */
558 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
559 {
560 	char *full_alg_name;
561 	int rc = -EINVAL;
562 
563 	ecryptfs_printk(KERN_DEBUG,
564 			"Initializing cipher [%s]; strlen = [%d]; "
565 			"key_size_bits = [%zd]\n",
566 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
567 			crypt_stat->key_size << 3);
568 	mutex_lock(&crypt_stat->cs_tfm_mutex);
569 	if (crypt_stat->tfm) {
570 		rc = 0;
571 		goto out_unlock;
572 	}
573 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
574 						    crypt_stat->cipher, "cbc");
575 	if (rc)
576 		goto out_unlock;
577 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
578 	if (IS_ERR(crypt_stat->tfm)) {
579 		rc = PTR_ERR(crypt_stat->tfm);
580 		crypt_stat->tfm = NULL;
581 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
582 				"Error initializing cipher [%s]\n",
583 				full_alg_name);
584 		goto out_free;
585 	}
586 	crypto_skcipher_set_flags(crypt_stat->tfm,
587 				  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
588 	rc = 0;
589 out_free:
590 	kfree(full_alg_name);
591 out_unlock:
592 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
593 	return rc;
594 }
595 
596 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
597 {
598 	int extent_size_tmp;
599 
600 	crypt_stat->extent_mask = 0xFFFFFFFF;
601 	crypt_stat->extent_shift = 0;
602 	if (crypt_stat->extent_size == 0)
603 		return;
604 	extent_size_tmp = crypt_stat->extent_size;
605 	while ((extent_size_tmp & 0x01) == 0) {
606 		extent_size_tmp >>= 1;
607 		crypt_stat->extent_mask <<= 1;
608 		crypt_stat->extent_shift++;
609 	}
610 }
611 
612 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
613 {
614 	/* Default values; may be overwritten as we are parsing the
615 	 * packets. */
616 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
617 	set_extent_mask_and_shift(crypt_stat);
618 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
619 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
620 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
621 	else {
622 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
623 			crypt_stat->metadata_size =
624 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
625 		else
626 			crypt_stat->metadata_size = PAGE_SIZE;
627 	}
628 }
629 
630 /**
631  * ecryptfs_compute_root_iv
632  * @crypt_stats
633  *
634  * On error, sets the root IV to all 0's.
635  */
636 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
637 {
638 	int rc = 0;
639 	char dst[MD5_DIGEST_SIZE];
640 
641 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
642 	BUG_ON(crypt_stat->iv_bytes <= 0);
643 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
644 		rc = -EINVAL;
645 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
646 				"cannot generate root IV\n");
647 		goto out;
648 	}
649 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
650 				    crypt_stat->key_size);
651 	if (rc) {
652 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
653 				"MD5 while generating root IV\n");
654 		goto out;
655 	}
656 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
657 out:
658 	if (rc) {
659 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
660 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
661 	}
662 	return rc;
663 }
664 
665 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
666 {
667 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
668 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
669 	ecryptfs_compute_root_iv(crypt_stat);
670 	if (unlikely(ecryptfs_verbosity > 0)) {
671 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
672 		ecryptfs_dump_hex(crypt_stat->key,
673 				  crypt_stat->key_size);
674 	}
675 }
676 
677 /**
678  * ecryptfs_copy_mount_wide_flags_to_inode_flags
679  * @crypt_stat: The inode's cryptographic context
680  * @mount_crypt_stat: The mount point's cryptographic context
681  *
682  * This function propagates the mount-wide flags to individual inode
683  * flags.
684  */
685 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
686 	struct ecryptfs_crypt_stat *crypt_stat,
687 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
688 {
689 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
690 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
691 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
692 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
693 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
694 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
695 		if (mount_crypt_stat->flags
696 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
697 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
698 		else if (mount_crypt_stat->flags
699 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
700 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
701 	}
702 }
703 
704 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
705 	struct ecryptfs_crypt_stat *crypt_stat,
706 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
707 {
708 	struct ecryptfs_global_auth_tok *global_auth_tok;
709 	int rc = 0;
710 
711 	mutex_lock(&crypt_stat->keysig_list_mutex);
712 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
713 
714 	list_for_each_entry(global_auth_tok,
715 			    &mount_crypt_stat->global_auth_tok_list,
716 			    mount_crypt_stat_list) {
717 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
718 			continue;
719 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
720 		if (rc) {
721 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
722 			goto out;
723 		}
724 	}
725 
726 out:
727 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
728 	mutex_unlock(&crypt_stat->keysig_list_mutex);
729 	return rc;
730 }
731 
732 /**
733  * ecryptfs_set_default_crypt_stat_vals
734  * @crypt_stat: The inode's cryptographic context
735  * @mount_crypt_stat: The mount point's cryptographic context
736  *
737  * Default values in the event that policy does not override them.
738  */
739 static void ecryptfs_set_default_crypt_stat_vals(
740 	struct ecryptfs_crypt_stat *crypt_stat,
741 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
742 {
743 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
744 						      mount_crypt_stat);
745 	ecryptfs_set_default_sizes(crypt_stat);
746 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
747 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
748 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
749 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
750 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
751 }
752 
753 /**
754  * ecryptfs_new_file_context
755  * @ecryptfs_inode: The eCryptfs inode
756  *
757  * If the crypto context for the file has not yet been established,
758  * this is where we do that.  Establishing a new crypto context
759  * involves the following decisions:
760  *  - What cipher to use?
761  *  - What set of authentication tokens to use?
762  * Here we just worry about getting enough information into the
763  * authentication tokens so that we know that they are available.
764  * We associate the available authentication tokens with the new file
765  * via the set of signatures in the crypt_stat struct.  Later, when
766  * the headers are actually written out, we may again defer to
767  * userspace to perform the encryption of the session key; for the
768  * foreseeable future, this will be the case with public key packets.
769  *
770  * Returns zero on success; non-zero otherwise
771  */
772 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
773 {
774 	struct ecryptfs_crypt_stat *crypt_stat =
775 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
776 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
777 	    &ecryptfs_superblock_to_private(
778 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
779 	int cipher_name_len;
780 	int rc = 0;
781 
782 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
783 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
784 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
785 						      mount_crypt_stat);
786 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
787 							 mount_crypt_stat);
788 	if (rc) {
789 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
790 		       "to the inode key sigs; rc = [%d]\n", rc);
791 		goto out;
792 	}
793 	cipher_name_len =
794 		strlen(mount_crypt_stat->global_default_cipher_name);
795 	memcpy(crypt_stat->cipher,
796 	       mount_crypt_stat->global_default_cipher_name,
797 	       cipher_name_len);
798 	crypt_stat->cipher[cipher_name_len] = '\0';
799 	crypt_stat->key_size =
800 		mount_crypt_stat->global_default_cipher_key_size;
801 	ecryptfs_generate_new_key(crypt_stat);
802 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
803 	if (rc)
804 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
805 				"context for cipher [%s]: rc = [%d]\n",
806 				crypt_stat->cipher, rc);
807 out:
808 	return rc;
809 }
810 
811 /**
812  * ecryptfs_validate_marker - check for the ecryptfs marker
813  * @data: The data block in which to check
814  *
815  * Returns zero if marker found; -EINVAL if not found
816  */
817 static int ecryptfs_validate_marker(char *data)
818 {
819 	u32 m_1, m_2;
820 
821 	m_1 = get_unaligned_be32(data);
822 	m_2 = get_unaligned_be32(data + 4);
823 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
824 		return 0;
825 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
826 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
827 			MAGIC_ECRYPTFS_MARKER);
828 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
829 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
830 	return -EINVAL;
831 }
832 
833 struct ecryptfs_flag_map_elem {
834 	u32 file_flag;
835 	u32 local_flag;
836 };
837 
838 /* Add support for additional flags by adding elements here. */
839 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
840 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
841 	{0x00000002, ECRYPTFS_ENCRYPTED},
842 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
843 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
844 };
845 
846 /**
847  * ecryptfs_process_flags
848  * @crypt_stat: The cryptographic context
849  * @page_virt: Source data to be parsed
850  * @bytes_read: Updated with the number of bytes read
851  */
852 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
853 				  char *page_virt, int *bytes_read)
854 {
855 	int i;
856 	u32 flags;
857 
858 	flags = get_unaligned_be32(page_virt);
859 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
860 		if (flags & ecryptfs_flag_map[i].file_flag) {
861 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
862 		} else
863 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
864 	/* Version is in top 8 bits of the 32-bit flag vector */
865 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
866 	(*bytes_read) = 4;
867 }
868 
869 /**
870  * write_ecryptfs_marker
871  * @page_virt: The pointer to in a page to begin writing the marker
872  * @written: Number of bytes written
873  *
874  * Marker = 0x3c81b7f5
875  */
876 static void write_ecryptfs_marker(char *page_virt, size_t *written)
877 {
878 	u32 m_1, m_2;
879 
880 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
881 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
882 	put_unaligned_be32(m_1, page_virt);
883 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
884 	put_unaligned_be32(m_2, page_virt);
885 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
886 }
887 
888 void ecryptfs_write_crypt_stat_flags(char *page_virt,
889 				     struct ecryptfs_crypt_stat *crypt_stat,
890 				     size_t *written)
891 {
892 	u32 flags = 0;
893 	int i;
894 
895 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
896 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
897 			flags |= ecryptfs_flag_map[i].file_flag;
898 	/* Version is in top 8 bits of the 32-bit flag vector */
899 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
900 	put_unaligned_be32(flags, page_virt);
901 	(*written) = 4;
902 }
903 
904 struct ecryptfs_cipher_code_str_map_elem {
905 	char cipher_str[16];
906 	u8 cipher_code;
907 };
908 
909 /* Add support for additional ciphers by adding elements here. The
910  * cipher_code is whatever OpenPGP applications use to identify the
911  * ciphers. List in order of probability. */
912 static struct ecryptfs_cipher_code_str_map_elem
913 ecryptfs_cipher_code_str_map[] = {
914 	{"aes",RFC2440_CIPHER_AES_128 },
915 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
916 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
917 	{"cast5", RFC2440_CIPHER_CAST_5},
918 	{"twofish", RFC2440_CIPHER_TWOFISH},
919 	{"cast6", RFC2440_CIPHER_CAST_6},
920 	{"aes", RFC2440_CIPHER_AES_192},
921 	{"aes", RFC2440_CIPHER_AES_256}
922 };
923 
924 /**
925  * ecryptfs_code_for_cipher_string
926  * @cipher_name: The string alias for the cipher
927  * @key_bytes: Length of key in bytes; used for AES code selection
928  *
929  * Returns zero on no match, or the cipher code on match
930  */
931 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
932 {
933 	int i;
934 	u8 code = 0;
935 	struct ecryptfs_cipher_code_str_map_elem *map =
936 		ecryptfs_cipher_code_str_map;
937 
938 	if (strcmp(cipher_name, "aes") == 0) {
939 		switch (key_bytes) {
940 		case 16:
941 			code = RFC2440_CIPHER_AES_128;
942 			break;
943 		case 24:
944 			code = RFC2440_CIPHER_AES_192;
945 			break;
946 		case 32:
947 			code = RFC2440_CIPHER_AES_256;
948 		}
949 	} else {
950 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
951 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
952 				code = map[i].cipher_code;
953 				break;
954 			}
955 	}
956 	return code;
957 }
958 
959 /**
960  * ecryptfs_cipher_code_to_string
961  * @str: Destination to write out the cipher name
962  * @cipher_code: The code to convert to cipher name string
963  *
964  * Returns zero on success
965  */
966 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
967 {
968 	int rc = 0;
969 	int i;
970 
971 	str[0] = '\0';
972 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
973 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
974 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
975 	if (str[0] == '\0') {
976 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
977 				"[%d]\n", cipher_code);
978 		rc = -EINVAL;
979 	}
980 	return rc;
981 }
982 
983 int ecryptfs_read_and_validate_header_region(struct inode *inode)
984 {
985 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
986 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
987 	int rc;
988 
989 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
990 				 inode);
991 	if (rc < 0)
992 		return rc;
993 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
994 		return -EINVAL;
995 	rc = ecryptfs_validate_marker(marker);
996 	if (!rc)
997 		ecryptfs_i_size_init(file_size, inode);
998 	return rc;
999 }
1000 
1001 void
1002 ecryptfs_write_header_metadata(char *virt,
1003 			       struct ecryptfs_crypt_stat *crypt_stat,
1004 			       size_t *written)
1005 {
1006 	u32 header_extent_size;
1007 	u16 num_header_extents_at_front;
1008 
1009 	header_extent_size = (u32)crypt_stat->extent_size;
1010 	num_header_extents_at_front =
1011 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1012 	put_unaligned_be32(header_extent_size, virt);
1013 	virt += 4;
1014 	put_unaligned_be16(num_header_extents_at_front, virt);
1015 	(*written) = 6;
1016 }
1017 
1018 struct kmem_cache *ecryptfs_header_cache;
1019 
1020 /**
1021  * ecryptfs_write_headers_virt
1022  * @page_virt: The virtual address to write the headers to
1023  * @max: The size of memory allocated at page_virt
1024  * @size: Set to the number of bytes written by this function
1025  * @crypt_stat: The cryptographic context
1026  * @ecryptfs_dentry: The eCryptfs dentry
1027  *
1028  * Format version: 1
1029  *
1030  *   Header Extent:
1031  *     Octets 0-7:        Unencrypted file size (big-endian)
1032  *     Octets 8-15:       eCryptfs special marker
1033  *     Octets 16-19:      Flags
1034  *      Octet 16:         File format version number (between 0 and 255)
1035  *      Octets 17-18:     Reserved
1036  *      Octet 19:         Bit 1 (lsb): Reserved
1037  *                        Bit 2: Encrypted?
1038  *                        Bits 3-8: Reserved
1039  *     Octets 20-23:      Header extent size (big-endian)
1040  *     Octets 24-25:      Number of header extents at front of file
1041  *                        (big-endian)
1042  *     Octet  26:         Begin RFC 2440 authentication token packet set
1043  *   Data Extent 0:
1044  *     Lower data (CBC encrypted)
1045  *   Data Extent 1:
1046  *     Lower data (CBC encrypted)
1047  *   ...
1048  *
1049  * Returns zero on success
1050  */
1051 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1052 				       size_t *size,
1053 				       struct ecryptfs_crypt_stat *crypt_stat,
1054 				       struct dentry *ecryptfs_dentry)
1055 {
1056 	int rc;
1057 	size_t written;
1058 	size_t offset;
1059 
1060 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1061 	write_ecryptfs_marker((page_virt + offset), &written);
1062 	offset += written;
1063 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1064 					&written);
1065 	offset += written;
1066 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1067 				       &written);
1068 	offset += written;
1069 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1070 					      ecryptfs_dentry, &written,
1071 					      max - offset);
1072 	if (rc)
1073 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1074 				"set; rc = [%d]\n", rc);
1075 	if (size) {
1076 		offset += written;
1077 		*size = offset;
1078 	}
1079 	return rc;
1080 }
1081 
1082 static int
1083 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1084 				    char *virt, size_t virt_len)
1085 {
1086 	int rc;
1087 
1088 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1089 				  0, virt_len);
1090 	if (rc < 0)
1091 		printk(KERN_ERR "%s: Error attempting to write header "
1092 		       "information to lower file; rc = [%d]\n", __func__, rc);
1093 	else
1094 		rc = 0;
1095 	return rc;
1096 }
1097 
1098 static int
1099 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1100 				 struct inode *ecryptfs_inode,
1101 				 char *page_virt, size_t size)
1102 {
1103 	int rc;
1104 	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1105 	struct inode *lower_inode = d_inode(lower_dentry);
1106 
1107 	if (!(lower_inode->i_opflags & IOP_XATTR)) {
1108 		rc = -EOPNOTSUPP;
1109 		goto out;
1110 	}
1111 
1112 	inode_lock(lower_inode);
1113 	rc = __vfs_setxattr(lower_dentry, lower_inode, ECRYPTFS_XATTR_NAME,
1114 			    page_virt, size, 0);
1115 	if (!rc && ecryptfs_inode)
1116 		fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1117 	inode_unlock(lower_inode);
1118 out:
1119 	return rc;
1120 }
1121 
1122 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1123 					       unsigned int order)
1124 {
1125 	struct page *page;
1126 
1127 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1128 	if (page)
1129 		return (unsigned long) page_address(page);
1130 	return 0;
1131 }
1132 
1133 /**
1134  * ecryptfs_write_metadata
1135  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1136  * @ecryptfs_inode: The newly created eCryptfs inode
1137  *
1138  * Write the file headers out.  This will likely involve a userspace
1139  * callout, in which the session key is encrypted with one or more
1140  * public keys and/or the passphrase necessary to do the encryption is
1141  * retrieved via a prompt.  Exactly what happens at this point should
1142  * be policy-dependent.
1143  *
1144  * Returns zero on success; non-zero on error
1145  */
1146 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1147 			    struct inode *ecryptfs_inode)
1148 {
1149 	struct ecryptfs_crypt_stat *crypt_stat =
1150 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1151 	unsigned int order;
1152 	char *virt;
1153 	size_t virt_len;
1154 	size_t size = 0;
1155 	int rc = 0;
1156 
1157 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1158 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1159 			printk(KERN_ERR "Key is invalid; bailing out\n");
1160 			rc = -EINVAL;
1161 			goto out;
1162 		}
1163 	} else {
1164 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1165 		       __func__);
1166 		rc = -EINVAL;
1167 		goto out;
1168 	}
1169 	virt_len = crypt_stat->metadata_size;
1170 	order = get_order(virt_len);
1171 	/* Released in this function */
1172 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1173 	if (!virt) {
1174 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1175 		rc = -ENOMEM;
1176 		goto out;
1177 	}
1178 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1179 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1180 					 ecryptfs_dentry);
1181 	if (unlikely(rc)) {
1182 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1183 		       __func__, rc);
1184 		goto out_free;
1185 	}
1186 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1187 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1188 						      virt, size);
1189 	else
1190 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1191 							 virt_len);
1192 	if (rc) {
1193 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1194 		       "rc = [%d]\n", __func__, rc);
1195 		goto out_free;
1196 	}
1197 out_free:
1198 	free_pages((unsigned long)virt, order);
1199 out:
1200 	return rc;
1201 }
1202 
1203 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1204 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1205 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1206 				 char *virt, int *bytes_read,
1207 				 int validate_header_size)
1208 {
1209 	int rc = 0;
1210 	u32 header_extent_size;
1211 	u16 num_header_extents_at_front;
1212 
1213 	header_extent_size = get_unaligned_be32(virt);
1214 	virt += sizeof(__be32);
1215 	num_header_extents_at_front = get_unaligned_be16(virt);
1216 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1217 				     * (size_t)header_extent_size));
1218 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1219 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1220 	    && (crypt_stat->metadata_size
1221 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1222 		rc = -EINVAL;
1223 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1224 		       crypt_stat->metadata_size);
1225 	}
1226 	return rc;
1227 }
1228 
1229 /**
1230  * set_default_header_data
1231  * @crypt_stat: The cryptographic context
1232  *
1233  * For version 0 file format; this function is only for backwards
1234  * compatibility for files created with the prior versions of
1235  * eCryptfs.
1236  */
1237 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1238 {
1239 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1240 }
1241 
1242 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1243 {
1244 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1245 	struct ecryptfs_crypt_stat *crypt_stat;
1246 	u64 file_size;
1247 
1248 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1249 	mount_crypt_stat =
1250 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1251 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1252 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1253 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1254 			file_size += crypt_stat->metadata_size;
1255 	} else
1256 		file_size = get_unaligned_be64(page_virt);
1257 	i_size_write(inode, (loff_t)file_size);
1258 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1259 }
1260 
1261 /**
1262  * ecryptfs_read_headers_virt
1263  * @page_virt: The virtual address into which to read the headers
1264  * @crypt_stat: The cryptographic context
1265  * @ecryptfs_dentry: The eCryptfs dentry
1266  * @validate_header_size: Whether to validate the header size while reading
1267  *
1268  * Read/parse the header data. The header format is detailed in the
1269  * comment block for the ecryptfs_write_headers_virt() function.
1270  *
1271  * Returns zero on success
1272  */
1273 static int ecryptfs_read_headers_virt(char *page_virt,
1274 				      struct ecryptfs_crypt_stat *crypt_stat,
1275 				      struct dentry *ecryptfs_dentry,
1276 				      int validate_header_size)
1277 {
1278 	int rc = 0;
1279 	int offset;
1280 	int bytes_read;
1281 
1282 	ecryptfs_set_default_sizes(crypt_stat);
1283 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1284 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1285 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1286 	rc = ecryptfs_validate_marker(page_virt + offset);
1287 	if (rc)
1288 		goto out;
1289 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1290 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1291 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1292 	ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1293 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1294 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1295 				"file version [%d] is supported by this "
1296 				"version of eCryptfs\n",
1297 				crypt_stat->file_version,
1298 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1299 		rc = -EINVAL;
1300 		goto out;
1301 	}
1302 	offset += bytes_read;
1303 	if (crypt_stat->file_version >= 1) {
1304 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1305 					   &bytes_read, validate_header_size);
1306 		if (rc) {
1307 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1308 					"metadata; rc = [%d]\n", rc);
1309 		}
1310 		offset += bytes_read;
1311 	} else
1312 		set_default_header_data(crypt_stat);
1313 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1314 				       ecryptfs_dentry);
1315 out:
1316 	return rc;
1317 }
1318 
1319 /**
1320  * ecryptfs_read_xattr_region
1321  * @page_virt: The vitual address into which to read the xattr data
1322  * @ecryptfs_inode: The eCryptfs inode
1323  *
1324  * Attempts to read the crypto metadata from the extended attribute
1325  * region of the lower file.
1326  *
1327  * Returns zero on success; non-zero on error
1328  */
1329 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1330 {
1331 	struct dentry *lower_dentry =
1332 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1333 	ssize_t size;
1334 	int rc = 0;
1335 
1336 	size = ecryptfs_getxattr_lower(lower_dentry,
1337 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1338 				       ECRYPTFS_XATTR_NAME,
1339 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1340 	if (size < 0) {
1341 		if (unlikely(ecryptfs_verbosity > 0))
1342 			printk(KERN_INFO "Error attempting to read the [%s] "
1343 			       "xattr from the lower file; return value = "
1344 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1345 		rc = -EINVAL;
1346 		goto out;
1347 	}
1348 out:
1349 	return rc;
1350 }
1351 
1352 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1353 					    struct inode *inode)
1354 {
1355 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1356 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1357 	int rc;
1358 
1359 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1360 				     ecryptfs_inode_to_lower(inode),
1361 				     ECRYPTFS_XATTR_NAME, file_size,
1362 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1363 	if (rc < 0)
1364 		return rc;
1365 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1366 		return -EINVAL;
1367 	rc = ecryptfs_validate_marker(marker);
1368 	if (!rc)
1369 		ecryptfs_i_size_init(file_size, inode);
1370 	return rc;
1371 }
1372 
1373 /**
1374  * ecryptfs_read_metadata
1375  *
1376  * Common entry point for reading file metadata. From here, we could
1377  * retrieve the header information from the header region of the file,
1378  * the xattr region of the file, or some other repository that is
1379  * stored separately from the file itself. The current implementation
1380  * supports retrieving the metadata information from the file contents
1381  * and from the xattr region.
1382  *
1383  * Returns zero if valid headers found and parsed; non-zero otherwise
1384  */
1385 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1386 {
1387 	int rc;
1388 	char *page_virt;
1389 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1390 	struct ecryptfs_crypt_stat *crypt_stat =
1391 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1392 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1393 		&ecryptfs_superblock_to_private(
1394 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1395 
1396 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1397 						      mount_crypt_stat);
1398 	/* Read the first page from the underlying file */
1399 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1400 	if (!page_virt) {
1401 		rc = -ENOMEM;
1402 		goto out;
1403 	}
1404 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1405 				 ecryptfs_inode);
1406 	if (rc >= 0)
1407 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1408 						ecryptfs_dentry,
1409 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1410 	if (rc) {
1411 		/* metadata is not in the file header, so try xattrs */
1412 		memset(page_virt, 0, PAGE_SIZE);
1413 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1414 		if (rc) {
1415 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1416 			       "file header region or xattr region, inode %lu\n",
1417 				ecryptfs_inode->i_ino);
1418 			rc = -EINVAL;
1419 			goto out;
1420 		}
1421 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1422 						ecryptfs_dentry,
1423 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1424 		if (rc) {
1425 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1426 			       "file xattr region either, inode %lu\n",
1427 				ecryptfs_inode->i_ino);
1428 			rc = -EINVAL;
1429 		}
1430 		if (crypt_stat->mount_crypt_stat->flags
1431 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1432 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1433 		} else {
1434 			printk(KERN_WARNING "Attempt to access file with "
1435 			       "crypto metadata only in the extended attribute "
1436 			       "region, but eCryptfs was mounted without "
1437 			       "xattr support enabled. eCryptfs will not treat "
1438 			       "this like an encrypted file, inode %lu\n",
1439 				ecryptfs_inode->i_ino);
1440 			rc = -EINVAL;
1441 		}
1442 	}
1443 out:
1444 	if (page_virt) {
1445 		memset(page_virt, 0, PAGE_SIZE);
1446 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1447 	}
1448 	return rc;
1449 }
1450 
1451 /**
1452  * ecryptfs_encrypt_filename - encrypt filename
1453  *
1454  * CBC-encrypts the filename. We do not want to encrypt the same
1455  * filename with the same key and IV, which may happen with hard
1456  * links, so we prepend random bits to each filename.
1457  *
1458  * Returns zero on success; non-zero otherwise
1459  */
1460 static int
1461 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1462 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1463 {
1464 	int rc = 0;
1465 
1466 	filename->encrypted_filename = NULL;
1467 	filename->encrypted_filename_size = 0;
1468 	if (mount_crypt_stat && (mount_crypt_stat->flags
1469 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1470 		size_t packet_size;
1471 		size_t remaining_bytes;
1472 
1473 		rc = ecryptfs_write_tag_70_packet(
1474 			NULL, NULL,
1475 			&filename->encrypted_filename_size,
1476 			mount_crypt_stat, NULL,
1477 			filename->filename_size);
1478 		if (rc) {
1479 			printk(KERN_ERR "%s: Error attempting to get packet "
1480 			       "size for tag 72; rc = [%d]\n", __func__,
1481 			       rc);
1482 			filename->encrypted_filename_size = 0;
1483 			goto out;
1484 		}
1485 		filename->encrypted_filename =
1486 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1487 		if (!filename->encrypted_filename) {
1488 			rc = -ENOMEM;
1489 			goto out;
1490 		}
1491 		remaining_bytes = filename->encrypted_filename_size;
1492 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1493 						  &remaining_bytes,
1494 						  &packet_size,
1495 						  mount_crypt_stat,
1496 						  filename->filename,
1497 						  filename->filename_size);
1498 		if (rc) {
1499 			printk(KERN_ERR "%s: Error attempting to generate "
1500 			       "tag 70 packet; rc = [%d]\n", __func__,
1501 			       rc);
1502 			kfree(filename->encrypted_filename);
1503 			filename->encrypted_filename = NULL;
1504 			filename->encrypted_filename_size = 0;
1505 			goto out;
1506 		}
1507 		filename->encrypted_filename_size = packet_size;
1508 	} else {
1509 		printk(KERN_ERR "%s: No support for requested filename "
1510 		       "encryption method in this release\n", __func__);
1511 		rc = -EOPNOTSUPP;
1512 		goto out;
1513 	}
1514 out:
1515 	return rc;
1516 }
1517 
1518 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1519 				  const char *name, size_t name_size)
1520 {
1521 	int rc = 0;
1522 
1523 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1524 	if (!(*copied_name)) {
1525 		rc = -ENOMEM;
1526 		goto out;
1527 	}
1528 	memcpy((void *)(*copied_name), (void *)name, name_size);
1529 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1530 						 * in printing out the
1531 						 * string in debug
1532 						 * messages */
1533 	(*copied_name_size) = name_size;
1534 out:
1535 	return rc;
1536 }
1537 
1538 /**
1539  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1540  * @key_tfm: Crypto context for key material, set by this function
1541  * @cipher_name: Name of the cipher
1542  * @key_size: Size of the key in bytes
1543  *
1544  * Returns zero on success. Any crypto_tfm structs allocated here
1545  * should be released by other functions, such as on a superblock put
1546  * event, regardless of whether this function succeeds for fails.
1547  */
1548 static int
1549 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1550 			    char *cipher_name, size_t *key_size)
1551 {
1552 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1553 	char *full_alg_name = NULL;
1554 	int rc;
1555 
1556 	*key_tfm = NULL;
1557 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1558 		rc = -EINVAL;
1559 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1560 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1561 		goto out;
1562 	}
1563 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1564 						    "ecb");
1565 	if (rc)
1566 		goto out;
1567 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1568 	if (IS_ERR(*key_tfm)) {
1569 		rc = PTR_ERR(*key_tfm);
1570 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1571 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1572 		goto out;
1573 	}
1574 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1575 	if (*key_size == 0)
1576 		*key_size = crypto_skcipher_max_keysize(*key_tfm);
1577 	get_random_bytes(dummy_key, *key_size);
1578 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1579 	if (rc) {
1580 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1581 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1582 		       rc);
1583 		rc = -EINVAL;
1584 		goto out;
1585 	}
1586 out:
1587 	kfree(full_alg_name);
1588 	return rc;
1589 }
1590 
1591 struct kmem_cache *ecryptfs_key_tfm_cache;
1592 static struct list_head key_tfm_list;
1593 struct mutex key_tfm_list_mutex;
1594 
1595 int __init ecryptfs_init_crypto(void)
1596 {
1597 	mutex_init(&key_tfm_list_mutex);
1598 	INIT_LIST_HEAD(&key_tfm_list);
1599 	return 0;
1600 }
1601 
1602 /**
1603  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1604  *
1605  * Called only at module unload time
1606  */
1607 int ecryptfs_destroy_crypto(void)
1608 {
1609 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1610 
1611 	mutex_lock(&key_tfm_list_mutex);
1612 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1613 				 key_tfm_list) {
1614 		list_del(&key_tfm->key_tfm_list);
1615 		crypto_free_skcipher(key_tfm->key_tfm);
1616 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1617 	}
1618 	mutex_unlock(&key_tfm_list_mutex);
1619 	return 0;
1620 }
1621 
1622 int
1623 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1624 			 size_t key_size)
1625 {
1626 	struct ecryptfs_key_tfm *tmp_tfm;
1627 	int rc = 0;
1628 
1629 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1630 
1631 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1632 	if (key_tfm)
1633 		(*key_tfm) = tmp_tfm;
1634 	if (!tmp_tfm) {
1635 		rc = -ENOMEM;
1636 		goto out;
1637 	}
1638 	mutex_init(&tmp_tfm->key_tfm_mutex);
1639 	strncpy(tmp_tfm->cipher_name, cipher_name,
1640 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1641 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1642 	tmp_tfm->key_size = key_size;
1643 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1644 					 tmp_tfm->cipher_name,
1645 					 &tmp_tfm->key_size);
1646 	if (rc) {
1647 		printk(KERN_ERR "Error attempting to initialize key TFM "
1648 		       "cipher with name = [%s]; rc = [%d]\n",
1649 		       tmp_tfm->cipher_name, rc);
1650 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1651 		if (key_tfm)
1652 			(*key_tfm) = NULL;
1653 		goto out;
1654 	}
1655 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1656 out:
1657 	return rc;
1658 }
1659 
1660 /**
1661  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1662  * @cipher_name: the name of the cipher to search for
1663  * @key_tfm: set to corresponding tfm if found
1664  *
1665  * Searches for cached key_tfm matching @cipher_name
1666  * Must be called with &key_tfm_list_mutex held
1667  * Returns 1 if found, with @key_tfm set
1668  * Returns 0 if not found, with @key_tfm set to NULL
1669  */
1670 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1671 {
1672 	struct ecryptfs_key_tfm *tmp_key_tfm;
1673 
1674 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1675 
1676 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1677 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1678 			if (key_tfm)
1679 				(*key_tfm) = tmp_key_tfm;
1680 			return 1;
1681 		}
1682 	}
1683 	if (key_tfm)
1684 		(*key_tfm) = NULL;
1685 	return 0;
1686 }
1687 
1688 /**
1689  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1690  *
1691  * @tfm: set to cached tfm found, or new tfm created
1692  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1693  * @cipher_name: the name of the cipher to search for and/or add
1694  *
1695  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1696  * Searches for cached item first, and creates new if not found.
1697  * Returns 0 on success, non-zero if adding new cipher failed
1698  */
1699 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1700 					       struct mutex **tfm_mutex,
1701 					       char *cipher_name)
1702 {
1703 	struct ecryptfs_key_tfm *key_tfm;
1704 	int rc = 0;
1705 
1706 	(*tfm) = NULL;
1707 	(*tfm_mutex) = NULL;
1708 
1709 	mutex_lock(&key_tfm_list_mutex);
1710 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1711 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1712 		if (rc) {
1713 			printk(KERN_ERR "Error adding new key_tfm to list; "
1714 					"rc = [%d]\n", rc);
1715 			goto out;
1716 		}
1717 	}
1718 	(*tfm) = key_tfm->key_tfm;
1719 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1720 out:
1721 	mutex_unlock(&key_tfm_list_mutex);
1722 	return rc;
1723 }
1724 
1725 /* 64 characters forming a 6-bit target field */
1726 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1727 						 "EFGHIJKLMNOPQRST"
1728 						 "UVWXYZabcdefghij"
1729 						 "klmnopqrstuvwxyz");
1730 
1731 /* We could either offset on every reverse map or just pad some 0x00's
1732  * at the front here */
1733 static const unsigned char filename_rev_map[256] = {
1734 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1735 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1736 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1737 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1738 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1739 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1740 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1741 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1742 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1743 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1744 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1745 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1746 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1747 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1748 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1749 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1750 };
1751 
1752 /**
1753  * ecryptfs_encode_for_filename
1754  * @dst: Destination location for encoded filename
1755  * @dst_size: Size of the encoded filename in bytes
1756  * @src: Source location for the filename to encode
1757  * @src_size: Size of the source in bytes
1758  */
1759 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1760 				  unsigned char *src, size_t src_size)
1761 {
1762 	size_t num_blocks;
1763 	size_t block_num = 0;
1764 	size_t dst_offset = 0;
1765 	unsigned char last_block[3];
1766 
1767 	if (src_size == 0) {
1768 		(*dst_size) = 0;
1769 		goto out;
1770 	}
1771 	num_blocks = (src_size / 3);
1772 	if ((src_size % 3) == 0) {
1773 		memcpy(last_block, (&src[src_size - 3]), 3);
1774 	} else {
1775 		num_blocks++;
1776 		last_block[2] = 0x00;
1777 		switch (src_size % 3) {
1778 		case 1:
1779 			last_block[0] = src[src_size - 1];
1780 			last_block[1] = 0x00;
1781 			break;
1782 		case 2:
1783 			last_block[0] = src[src_size - 2];
1784 			last_block[1] = src[src_size - 1];
1785 		}
1786 	}
1787 	(*dst_size) = (num_blocks * 4);
1788 	if (!dst)
1789 		goto out;
1790 	while (block_num < num_blocks) {
1791 		unsigned char *src_block;
1792 		unsigned char dst_block[4];
1793 
1794 		if (block_num == (num_blocks - 1))
1795 			src_block = last_block;
1796 		else
1797 			src_block = &src[block_num * 3];
1798 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1799 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1800 				| ((src_block[1] >> 4) & 0x0F));
1801 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1802 				| ((src_block[2] >> 6) & 0x03));
1803 		dst_block[3] = (src_block[2] & 0x3F);
1804 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1805 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1806 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1807 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1808 		block_num++;
1809 	}
1810 out:
1811 	return;
1812 }
1813 
1814 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1815 {
1816 	/* Not exact; conservatively long. Every block of 4
1817 	 * encoded characters decodes into a block of 3
1818 	 * decoded characters. This segment of code provides
1819 	 * the caller with the maximum amount of allocated
1820 	 * space that @dst will need to point to in a
1821 	 * subsequent call. */
1822 	return ((encoded_size + 1) * 3) / 4;
1823 }
1824 
1825 /**
1826  * ecryptfs_decode_from_filename
1827  * @dst: If NULL, this function only sets @dst_size and returns. If
1828  *       non-NULL, this function decodes the encoded octets in @src
1829  *       into the memory that @dst points to.
1830  * @dst_size: Set to the size of the decoded string.
1831  * @src: The encoded set of octets to decode.
1832  * @src_size: The size of the encoded set of octets to decode.
1833  */
1834 static void
1835 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1836 			      const unsigned char *src, size_t src_size)
1837 {
1838 	u8 current_bit_offset = 0;
1839 	size_t src_byte_offset = 0;
1840 	size_t dst_byte_offset = 0;
1841 
1842 	if (!dst) {
1843 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1844 		goto out;
1845 	}
1846 	while (src_byte_offset < src_size) {
1847 		unsigned char src_byte =
1848 				filename_rev_map[(int)src[src_byte_offset]];
1849 
1850 		switch (current_bit_offset) {
1851 		case 0:
1852 			dst[dst_byte_offset] = (src_byte << 2);
1853 			current_bit_offset = 6;
1854 			break;
1855 		case 6:
1856 			dst[dst_byte_offset++] |= (src_byte >> 4);
1857 			dst[dst_byte_offset] = ((src_byte & 0xF)
1858 						 << 4);
1859 			current_bit_offset = 4;
1860 			break;
1861 		case 4:
1862 			dst[dst_byte_offset++] |= (src_byte >> 2);
1863 			dst[dst_byte_offset] = (src_byte << 6);
1864 			current_bit_offset = 2;
1865 			break;
1866 		case 2:
1867 			dst[dst_byte_offset++] |= (src_byte);
1868 			current_bit_offset = 0;
1869 			break;
1870 		}
1871 		src_byte_offset++;
1872 	}
1873 	(*dst_size) = dst_byte_offset;
1874 out:
1875 	return;
1876 }
1877 
1878 /**
1879  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1880  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1881  * @name: The plaintext name
1882  * @length: The length of the plaintext
1883  * @encoded_name: The encypted name
1884  *
1885  * Encrypts and encodes a filename into something that constitutes a
1886  * valid filename for a filesystem, with printable characters.
1887  *
1888  * We assume that we have a properly initialized crypto context,
1889  * pointed to by crypt_stat->tfm.
1890  *
1891  * Returns zero on success; non-zero on otherwise
1892  */
1893 int ecryptfs_encrypt_and_encode_filename(
1894 	char **encoded_name,
1895 	size_t *encoded_name_size,
1896 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1897 	const char *name, size_t name_size)
1898 {
1899 	size_t encoded_name_no_prefix_size;
1900 	int rc = 0;
1901 
1902 	(*encoded_name) = NULL;
1903 	(*encoded_name_size) = 0;
1904 	if (mount_crypt_stat && (mount_crypt_stat->flags
1905 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1906 		struct ecryptfs_filename *filename;
1907 
1908 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1909 		if (!filename) {
1910 			rc = -ENOMEM;
1911 			goto out;
1912 		}
1913 		filename->filename = (char *)name;
1914 		filename->filename_size = name_size;
1915 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1916 		if (rc) {
1917 			printk(KERN_ERR "%s: Error attempting to encrypt "
1918 			       "filename; rc = [%d]\n", __func__, rc);
1919 			kfree(filename);
1920 			goto out;
1921 		}
1922 		ecryptfs_encode_for_filename(
1923 			NULL, &encoded_name_no_prefix_size,
1924 			filename->encrypted_filename,
1925 			filename->encrypted_filename_size);
1926 		if (mount_crypt_stat
1927 			&& (mount_crypt_stat->flags
1928 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1929 			(*encoded_name_size) =
1930 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1931 				 + encoded_name_no_prefix_size);
1932 		else
1933 			(*encoded_name_size) =
1934 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1935 				 + encoded_name_no_prefix_size);
1936 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1937 		if (!(*encoded_name)) {
1938 			rc = -ENOMEM;
1939 			kfree(filename->encrypted_filename);
1940 			kfree(filename);
1941 			goto out;
1942 		}
1943 		if (mount_crypt_stat
1944 			&& (mount_crypt_stat->flags
1945 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1946 			memcpy((*encoded_name),
1947 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1948 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1949 			ecryptfs_encode_for_filename(
1950 			    ((*encoded_name)
1951 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1952 			    &encoded_name_no_prefix_size,
1953 			    filename->encrypted_filename,
1954 			    filename->encrypted_filename_size);
1955 			(*encoded_name_size) =
1956 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1957 				 + encoded_name_no_prefix_size);
1958 			(*encoded_name)[(*encoded_name_size)] = '\0';
1959 		} else {
1960 			rc = -EOPNOTSUPP;
1961 		}
1962 		if (rc) {
1963 			printk(KERN_ERR "%s: Error attempting to encode "
1964 			       "encrypted filename; rc = [%d]\n", __func__,
1965 			       rc);
1966 			kfree((*encoded_name));
1967 			(*encoded_name) = NULL;
1968 			(*encoded_name_size) = 0;
1969 		}
1970 		kfree(filename->encrypted_filename);
1971 		kfree(filename);
1972 	} else {
1973 		rc = ecryptfs_copy_filename(encoded_name,
1974 					    encoded_name_size,
1975 					    name, name_size);
1976 	}
1977 out:
1978 	return rc;
1979 }
1980 
1981 static bool is_dot_dotdot(const char *name, size_t name_size)
1982 {
1983 	if (name_size == 1 && name[0] == '.')
1984 		return true;
1985 	else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1986 		return true;
1987 
1988 	return false;
1989 }
1990 
1991 /**
1992  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1993  * @plaintext_name: The plaintext name
1994  * @plaintext_name_size: The plaintext name size
1995  * @ecryptfs_dir_dentry: eCryptfs directory dentry
1996  * @name: The filename in cipher text
1997  * @name_size: The cipher text name size
1998  *
1999  * Decrypts and decodes the filename.
2000  *
2001  * Returns zero on error; non-zero otherwise
2002  */
2003 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2004 					 size_t *plaintext_name_size,
2005 					 struct super_block *sb,
2006 					 const char *name, size_t name_size)
2007 {
2008 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2009 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2010 	char *decoded_name;
2011 	size_t decoded_name_size;
2012 	size_t packet_size;
2013 	int rc = 0;
2014 
2015 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2016 	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2017 		if (is_dot_dotdot(name, name_size)) {
2018 			rc = ecryptfs_copy_filename(plaintext_name,
2019 						    plaintext_name_size,
2020 						    name, name_size);
2021 			goto out;
2022 		}
2023 
2024 		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2025 		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2026 			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2027 			rc = -EINVAL;
2028 			goto out;
2029 		}
2030 
2031 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2032 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2033 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2034 					      name, name_size);
2035 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2036 		if (!decoded_name) {
2037 			rc = -ENOMEM;
2038 			goto out;
2039 		}
2040 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2041 					      name, name_size);
2042 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2043 						  plaintext_name_size,
2044 						  &packet_size,
2045 						  mount_crypt_stat,
2046 						  decoded_name,
2047 						  decoded_name_size);
2048 		if (rc) {
2049 			ecryptfs_printk(KERN_DEBUG,
2050 					"%s: Could not parse tag 70 packet from filename\n",
2051 					__func__);
2052 			goto out_free;
2053 		}
2054 	} else {
2055 		rc = ecryptfs_copy_filename(plaintext_name,
2056 					    plaintext_name_size,
2057 					    name, name_size);
2058 		goto out;
2059 	}
2060 out_free:
2061 	kfree(decoded_name);
2062 out:
2063 	return rc;
2064 }
2065 
2066 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2067 
2068 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2069 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2070 {
2071 	struct crypto_skcipher *tfm;
2072 	struct mutex *tfm_mutex;
2073 	size_t cipher_blocksize;
2074 	int rc;
2075 
2076 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2077 		(*namelen) = lower_namelen;
2078 		return 0;
2079 	}
2080 
2081 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2082 			mount_crypt_stat->global_default_fn_cipher_name);
2083 	if (unlikely(rc)) {
2084 		(*namelen) = 0;
2085 		return rc;
2086 	}
2087 
2088 	mutex_lock(tfm_mutex);
2089 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2090 	mutex_unlock(tfm_mutex);
2091 
2092 	/* Return an exact amount for the common cases */
2093 	if (lower_namelen == NAME_MAX
2094 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2095 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2096 		return 0;
2097 	}
2098 
2099 	/* Return a safe estimate for the uncommon cases */
2100 	(*namelen) = lower_namelen;
2101 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2102 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2103 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2104 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2105 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2106 	/* Worst case is that the filename is padded nearly a full block size */
2107 	(*namelen) -= cipher_blocksize - 1;
2108 
2109 	if ((*namelen) < 0)
2110 		(*namelen) = 0;
2111 
2112 	return 0;
2113 }
2114