xref: /linux/fs/ecryptfs/crypto.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 			     struct page *dst_page, int dst_offset,
43 			     struct page *src_page, int src_offset, int size,
44 			     unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 			     struct page *dst_page, int dst_offset,
48 			     struct page *src_page, int src_offset, int size,
49 			     unsigned char *iv);
50 
51 /**
52  * ecryptfs_to_hex
53  * @dst: Buffer to take hex character representation of contents of
54  *       src; must be at least of size (src_size * 2)
55  * @src: Buffer to be converted to a hex string respresentation
56  * @src_size: number of bytes to convert
57  */
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 {
60 	int x;
61 
62 	for (x = 0; x < src_size; x++)
63 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 }
65 
66 /**
67  * ecryptfs_from_hex
68  * @dst: Buffer to take the bytes from src hex; must be at least of
69  *       size (src_size / 2)
70  * @src: Buffer to be converted from a hex string respresentation to raw value
71  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72  */
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 {
75 	int x;
76 	char tmp[3] = { 0, };
77 
78 	for (x = 0; x < dst_size; x++) {
79 		tmp[0] = src[x * 2];
80 		tmp[1] = src[x * 2 + 1];
81 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 	}
83 }
84 
85 /**
86  * ecryptfs_calculate_md5 - calculates the md5 of @src
87  * @dst: Pointer to 16 bytes of allocated memory
88  * @crypt_stat: Pointer to crypt_stat struct for the current inode
89  * @src: Data to be md5'd
90  * @len: Length of @src
91  *
92  * Uses the allocated crypto context that crypt_stat references to
93  * generate the MD5 sum of the contents of src.
94  */
95 static int ecryptfs_calculate_md5(char *dst,
96 				  struct ecryptfs_crypt_stat *crypt_stat,
97 				  char *src, int len)
98 {
99 	struct scatterlist sg;
100 	struct hash_desc desc = {
101 		.tfm = crypt_stat->hash_tfm,
102 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 	};
104 	int rc = 0;
105 
106 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 	sg_init_one(&sg, (u8 *)src, len);
108 	if (!desc.tfm) {
109 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 					     CRYPTO_ALG_ASYNC);
111 		if (IS_ERR(desc.tfm)) {
112 			rc = PTR_ERR(desc.tfm);
113 			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 					"allocate crypto context; rc = [%d]\n",
115 					rc);
116 			goto out;
117 		}
118 		crypt_stat->hash_tfm = desc.tfm;
119 	}
120 	rc = crypto_hash_init(&desc);
121 	if (rc) {
122 		printk(KERN_ERR
123 		       "%s: Error initializing crypto hash; rc = [%d]\n",
124 		       __func__, rc);
125 		goto out;
126 	}
127 	rc = crypto_hash_update(&desc, &sg, len);
128 	if (rc) {
129 		printk(KERN_ERR
130 		       "%s: Error updating crypto hash; rc = [%d]\n",
131 		       __func__, rc);
132 		goto out;
133 	}
134 	rc = crypto_hash_final(&desc, dst);
135 	if (rc) {
136 		printk(KERN_ERR
137 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138 		       __func__, rc);
139 		goto out;
140 	}
141 out:
142 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 	return rc;
144 }
145 
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 						  char *cipher_name,
148 						  char *chaining_modifier)
149 {
150 	int cipher_name_len = strlen(cipher_name);
151 	int chaining_modifier_len = strlen(chaining_modifier);
152 	int algified_name_len;
153 	int rc;
154 
155 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 	if (!(*algified_name)) {
158 		rc = -ENOMEM;
159 		goto out;
160 	}
161 	snprintf((*algified_name), algified_name_len, "%s(%s)",
162 		 chaining_modifier, cipher_name);
163 	rc = 0;
164 out:
165 	return rc;
166 }
167 
168 /**
169  * ecryptfs_derive_iv
170  * @iv: destination for the derived iv vale
171  * @crypt_stat: Pointer to crypt_stat struct for the current inode
172  * @offset: Offset of the extent whose IV we are to derive
173  *
174  * Generate the initialization vector from the given root IV and page
175  * offset.
176  *
177  * Returns zero on success; non-zero on error.
178  */
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 		       loff_t offset)
181 {
182 	int rc = 0;
183 	char dst[MD5_DIGEST_SIZE];
184 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 
186 	if (unlikely(ecryptfs_verbosity > 0)) {
187 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 	}
190 	/* TODO: It is probably secure to just cast the least
191 	 * significant bits of the root IV into an unsigned long and
192 	 * add the offset to that rather than go through all this
193 	 * hashing business. -Halcrow */
194 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 	memset((src + crypt_stat->iv_bytes), 0, 16);
196 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 	if (unlikely(ecryptfs_verbosity > 0)) {
198 		ecryptfs_printk(KERN_DEBUG, "source:\n");
199 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 	}
201 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 				    (crypt_stat->iv_bytes + 16));
203 	if (rc) {
204 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 				"MD5 while generating IV for a page\n");
206 		goto out;
207 	}
208 	memcpy(iv, dst, crypt_stat->iv_bytes);
209 	if (unlikely(ecryptfs_verbosity > 0)) {
210 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 	}
213 out:
214 	return rc;
215 }
216 
217 /**
218  * ecryptfs_init_crypt_stat
219  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220  *
221  * Initialize the crypt_stat structure.
222  */
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 {
226 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 	mutex_init(&crypt_stat->keysig_list_mutex);
229 	mutex_init(&crypt_stat->cs_mutex);
230 	mutex_init(&crypt_stat->cs_tfm_mutex);
231 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 }
234 
235 /**
236  * ecryptfs_destroy_crypt_stat
237  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238  *
239  * Releases all memory associated with a crypt_stat struct.
240  */
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 {
243 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 
245 	if (crypt_stat->tfm)
246 		crypto_free_blkcipher(crypt_stat->tfm);
247 	if (crypt_stat->hash_tfm)
248 		crypto_free_hash(crypt_stat->hash_tfm);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256 
257 void ecryptfs_destroy_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 
262 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 		return;
264 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 				 &mount_crypt_stat->global_auth_tok_list,
267 				 mount_crypt_stat_list) {
268 		list_del(&auth_tok->mount_crypt_stat_list);
269 		if (auth_tok->global_auth_tok_key
270 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 			key_put(auth_tok->global_auth_tok_key);
272 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 	}
274 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276 }
277 
278 /**
279  * virt_to_scatterlist
280  * @addr: Virtual address
281  * @size: Size of data; should be an even multiple of the block size
282  * @sg: Pointer to scatterlist array; set to NULL to obtain only
283  *      the number of scatterlist structs required in array
284  * @sg_size: Max array size
285  *
286  * Fills in a scatterlist array with page references for a passed
287  * virtual address.
288  *
289  * Returns the number of scatterlist structs in array used
290  */
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 			int sg_size)
293 {
294 	int i = 0;
295 	struct page *pg;
296 	int offset;
297 	int remainder_of_page;
298 
299 	sg_init_table(sg, sg_size);
300 
301 	while (size > 0 && i < sg_size) {
302 		pg = virt_to_page(addr);
303 		offset = offset_in_page(addr);
304 		if (sg)
305 			sg_set_page(&sg[i], pg, 0, offset);
306 		remainder_of_page = PAGE_CACHE_SIZE - offset;
307 		if (size >= remainder_of_page) {
308 			if (sg)
309 				sg[i].length = remainder_of_page;
310 			addr += remainder_of_page;
311 			size -= remainder_of_page;
312 		} else {
313 			if (sg)
314 				sg[i].length = size;
315 			addr += size;
316 			size = 0;
317 		}
318 		i++;
319 	}
320 	if (size > 0)
321 		return -ENOMEM;
322 	return i;
323 }
324 
325 /**
326  * encrypt_scatterlist
327  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328  * @dest_sg: Destination of encrypted data
329  * @src_sg: Data to be encrypted
330  * @size: Length of data to be encrypted
331  * @iv: iv to use during encryption
332  *
333  * Returns the number of bytes encrypted; negative value on error
334  */
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 			       struct scatterlist *dest_sg,
337 			       struct scatterlist *src_sg, int size,
338 			       unsigned char *iv)
339 {
340 	struct blkcipher_desc desc = {
341 		.tfm = crypt_stat->tfm,
342 		.info = iv,
343 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 	};
345 	int rc = 0;
346 
347 	BUG_ON(!crypt_stat || !crypt_stat->tfm
348 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349 	if (unlikely(ecryptfs_verbosity > 0)) {
350 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
351 				crypt_stat->key_size);
352 		ecryptfs_dump_hex(crypt_stat->key,
353 				  crypt_stat->key_size);
354 	}
355 	/* Consider doing this once, when the file is opened */
356 	mutex_lock(&crypt_stat->cs_tfm_mutex);
357 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 					     crypt_stat->key_size);
360 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 	}
362 	if (rc) {
363 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 				rc);
365 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 		rc = -EINVAL;
367 		goto out;
368 	}
369 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
372 out:
373 	return rc;
374 }
375 
376 /**
377  * ecryptfs_lower_offset_for_extent
378  *
379  * Convert an eCryptfs page index into a lower byte offset
380  */
381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 					     struct ecryptfs_crypt_stat *crypt_stat)
383 {
384 	(*offset) = ecryptfs_lower_header_size(crypt_stat)
385 		    + (crypt_stat->extent_size * extent_num);
386 }
387 
388 /**
389  * ecryptfs_encrypt_extent
390  * @enc_extent_page: Allocated page into which to encrypt the data in
391  *                   @page
392  * @crypt_stat: crypt_stat containing cryptographic context for the
393  *              encryption operation
394  * @page: Page containing plaintext data extent to encrypt
395  * @extent_offset: Page extent offset for use in generating IV
396  *
397  * Encrypts one extent of data.
398  *
399  * Return zero on success; non-zero otherwise
400  */
401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 				   struct ecryptfs_crypt_stat *crypt_stat,
403 				   struct page *page,
404 				   unsigned long extent_offset)
405 {
406 	loff_t extent_base;
407 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 	int rc;
409 
410 	extent_base = (((loff_t)page->index)
411 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 				(extent_base + extent_offset));
414 	if (rc) {
415 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
416 			"extent [0x%.16llx]; rc = [%d]\n",
417 			(unsigned long long)(extent_base + extent_offset), rc);
418 		goto out;
419 	}
420 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
421 					  page, (extent_offset
422 						 * crypt_stat->extent_size),
423 					  crypt_stat->extent_size, extent_iv);
424 	if (rc < 0) {
425 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
426 		       "page->index = [%ld], extent_offset = [%ld]; "
427 		       "rc = [%d]\n", __func__, page->index, extent_offset,
428 		       rc);
429 		goto out;
430 	}
431 	rc = 0;
432 out:
433 	return rc;
434 }
435 
436 /**
437  * ecryptfs_encrypt_page
438  * @page: Page mapped from the eCryptfs inode for the file; contains
439  *        decrypted content that needs to be encrypted (to a temporary
440  *        page; not in place) and written out to the lower file
441  *
442  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
443  * that eCryptfs pages may straddle the lower pages -- for instance,
444  * if the file was created on a machine with an 8K page size
445  * (resulting in an 8K header), and then the file is copied onto a
446  * host with a 32K page size, then when reading page 0 of the eCryptfs
447  * file, 24K of page 0 of the lower file will be read and decrypted,
448  * and then 8K of page 1 of the lower file will be read and decrypted.
449  *
450  * Returns zero on success; negative on error
451  */
452 int ecryptfs_encrypt_page(struct page *page)
453 {
454 	struct inode *ecryptfs_inode;
455 	struct ecryptfs_crypt_stat *crypt_stat;
456 	char *enc_extent_virt;
457 	struct page *enc_extent_page = NULL;
458 	loff_t extent_offset;
459 	int rc = 0;
460 
461 	ecryptfs_inode = page->mapping->host;
462 	crypt_stat =
463 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
464 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
465 	enc_extent_page = alloc_page(GFP_USER);
466 	if (!enc_extent_page) {
467 		rc = -ENOMEM;
468 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
469 				"encrypted extent\n");
470 		goto out;
471 	}
472 	enc_extent_virt = kmap(enc_extent_page);
473 	for (extent_offset = 0;
474 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
475 	     extent_offset++) {
476 		loff_t offset;
477 
478 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
479 					     extent_offset);
480 		if (rc) {
481 			printk(KERN_ERR "%s: Error encrypting extent; "
482 			       "rc = [%d]\n", __func__, rc);
483 			goto out;
484 		}
485 		ecryptfs_lower_offset_for_extent(
486 			&offset, ((((loff_t)page->index)
487 				   * (PAGE_CACHE_SIZE
488 				      / crypt_stat->extent_size))
489 				  + extent_offset), crypt_stat);
490 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
491 					  offset, crypt_stat->extent_size);
492 		if (rc < 0) {
493 			ecryptfs_printk(KERN_ERR, "Error attempting "
494 					"to write lower page; rc = [%d]"
495 					"\n", rc);
496 			goto out;
497 		}
498 	}
499 	rc = 0;
500 out:
501 	if (enc_extent_page) {
502 		kunmap(enc_extent_page);
503 		__free_page(enc_extent_page);
504 	}
505 	return rc;
506 }
507 
508 static int ecryptfs_decrypt_extent(struct page *page,
509 				   struct ecryptfs_crypt_stat *crypt_stat,
510 				   struct page *enc_extent_page,
511 				   unsigned long extent_offset)
512 {
513 	loff_t extent_base;
514 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
515 	int rc;
516 
517 	extent_base = (((loff_t)page->index)
518 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
519 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
520 				(extent_base + extent_offset));
521 	if (rc) {
522 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
523 			"extent [0x%.16llx]; rc = [%d]\n",
524 			(unsigned long long)(extent_base + extent_offset), rc);
525 		goto out;
526 	}
527 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
528 					  (extent_offset
529 					   * crypt_stat->extent_size),
530 					  enc_extent_page, 0,
531 					  crypt_stat->extent_size, extent_iv);
532 	if (rc < 0) {
533 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
534 		       "page->index = [%ld], extent_offset = [%ld]; "
535 		       "rc = [%d]\n", __func__, page->index, extent_offset,
536 		       rc);
537 		goto out;
538 	}
539 	rc = 0;
540 out:
541 	return rc;
542 }
543 
544 /**
545  * ecryptfs_decrypt_page
546  * @page: Page mapped from the eCryptfs inode for the file; data read
547  *        and decrypted from the lower file will be written into this
548  *        page
549  *
550  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
551  * that eCryptfs pages may straddle the lower pages -- for instance,
552  * if the file was created on a machine with an 8K page size
553  * (resulting in an 8K header), and then the file is copied onto a
554  * host with a 32K page size, then when reading page 0 of the eCryptfs
555  * file, 24K of page 0 of the lower file will be read and decrypted,
556  * and then 8K of page 1 of the lower file will be read and decrypted.
557  *
558  * Returns zero on success; negative on error
559  */
560 int ecryptfs_decrypt_page(struct page *page)
561 {
562 	struct inode *ecryptfs_inode;
563 	struct ecryptfs_crypt_stat *crypt_stat;
564 	char *enc_extent_virt;
565 	struct page *enc_extent_page = NULL;
566 	unsigned long extent_offset;
567 	int rc = 0;
568 
569 	ecryptfs_inode = page->mapping->host;
570 	crypt_stat =
571 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
572 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
573 	enc_extent_page = alloc_page(GFP_USER);
574 	if (!enc_extent_page) {
575 		rc = -ENOMEM;
576 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
577 				"encrypted extent\n");
578 		goto out;
579 	}
580 	enc_extent_virt = kmap(enc_extent_page);
581 	for (extent_offset = 0;
582 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583 	     extent_offset++) {
584 		loff_t offset;
585 
586 		ecryptfs_lower_offset_for_extent(
587 			&offset, ((page->index * (PAGE_CACHE_SIZE
588 						  / crypt_stat->extent_size))
589 				  + extent_offset), crypt_stat);
590 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
591 					 crypt_stat->extent_size,
592 					 ecryptfs_inode);
593 		if (rc < 0) {
594 			ecryptfs_printk(KERN_ERR, "Error attempting "
595 					"to read lower page; rc = [%d]"
596 					"\n", rc);
597 			goto out;
598 		}
599 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
600 					     extent_offset);
601 		if (rc) {
602 			printk(KERN_ERR "%s: Error encrypting extent; "
603 			       "rc = [%d]\n", __func__, rc);
604 			goto out;
605 		}
606 	}
607 out:
608 	if (enc_extent_page) {
609 		kunmap(enc_extent_page);
610 		__free_page(enc_extent_page);
611 	}
612 	return rc;
613 }
614 
615 /**
616  * decrypt_scatterlist
617  * @crypt_stat: Cryptographic context
618  * @dest_sg: The destination scatterlist to decrypt into
619  * @src_sg: The source scatterlist to decrypt from
620  * @size: The number of bytes to decrypt
621  * @iv: The initialization vector to use for the decryption
622  *
623  * Returns the number of bytes decrypted; negative value on error
624  */
625 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
626 			       struct scatterlist *dest_sg,
627 			       struct scatterlist *src_sg, int size,
628 			       unsigned char *iv)
629 {
630 	struct blkcipher_desc desc = {
631 		.tfm = crypt_stat->tfm,
632 		.info = iv,
633 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
634 	};
635 	int rc = 0;
636 
637 	/* Consider doing this once, when the file is opened */
638 	mutex_lock(&crypt_stat->cs_tfm_mutex);
639 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
640 				     crypt_stat->key_size);
641 	if (rc) {
642 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
643 				rc);
644 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
645 		rc = -EINVAL;
646 		goto out;
647 	}
648 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
649 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
650 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
651 	if (rc) {
652 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
653 				rc);
654 		goto out;
655 	}
656 	rc = size;
657 out:
658 	return rc;
659 }
660 
661 /**
662  * ecryptfs_encrypt_page_offset
663  * @crypt_stat: The cryptographic context
664  * @dst_page: The page to encrypt into
665  * @dst_offset: The offset in the page to encrypt into
666  * @src_page: The page to encrypt from
667  * @src_offset: The offset in the page to encrypt from
668  * @size: The number of bytes to encrypt
669  * @iv: The initialization vector to use for the encryption
670  *
671  * Returns the number of bytes encrypted
672  */
673 static int
674 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
675 			     struct page *dst_page, int dst_offset,
676 			     struct page *src_page, int src_offset, int size,
677 			     unsigned char *iv)
678 {
679 	struct scatterlist src_sg, dst_sg;
680 
681 	sg_init_table(&src_sg, 1);
682 	sg_init_table(&dst_sg, 1);
683 
684 	sg_set_page(&src_sg, src_page, size, src_offset);
685 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
686 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
687 }
688 
689 /**
690  * ecryptfs_decrypt_page_offset
691  * @crypt_stat: The cryptographic context
692  * @dst_page: The page to decrypt into
693  * @dst_offset: The offset in the page to decrypt into
694  * @src_page: The page to decrypt from
695  * @src_offset: The offset in the page to decrypt from
696  * @size: The number of bytes to decrypt
697  * @iv: The initialization vector to use for the decryption
698  *
699  * Returns the number of bytes decrypted
700  */
701 static int
702 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
703 			     struct page *dst_page, int dst_offset,
704 			     struct page *src_page, int src_offset, int size,
705 			     unsigned char *iv)
706 {
707 	struct scatterlist src_sg, dst_sg;
708 
709 	sg_init_table(&src_sg, 1);
710 	sg_set_page(&src_sg, src_page, size, src_offset);
711 
712 	sg_init_table(&dst_sg, 1);
713 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
714 
715 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
716 }
717 
718 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
719 
720 /**
721  * ecryptfs_init_crypt_ctx
722  * @crypt_stat: Uninitialized crypt stats structure
723  *
724  * Initialize the crypto context.
725  *
726  * TODO: Performance: Keep a cache of initialized cipher contexts;
727  * only init if needed
728  */
729 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
730 {
731 	char *full_alg_name;
732 	int rc = -EINVAL;
733 
734 	if (!crypt_stat->cipher) {
735 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
736 		goto out;
737 	}
738 	ecryptfs_printk(KERN_DEBUG,
739 			"Initializing cipher [%s]; strlen = [%d]; "
740 			"key_size_bits = [%zd]\n",
741 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
742 			crypt_stat->key_size << 3);
743 	if (crypt_stat->tfm) {
744 		rc = 0;
745 		goto out;
746 	}
747 	mutex_lock(&crypt_stat->cs_tfm_mutex);
748 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
749 						    crypt_stat->cipher, "cbc");
750 	if (rc)
751 		goto out_unlock;
752 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
753 						 CRYPTO_ALG_ASYNC);
754 	kfree(full_alg_name);
755 	if (IS_ERR(crypt_stat->tfm)) {
756 		rc = PTR_ERR(crypt_stat->tfm);
757 		crypt_stat->tfm = NULL;
758 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
759 				"Error initializing cipher [%s]\n",
760 				crypt_stat->cipher);
761 		goto out_unlock;
762 	}
763 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
764 	rc = 0;
765 out_unlock:
766 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
767 out:
768 	return rc;
769 }
770 
771 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
772 {
773 	int extent_size_tmp;
774 
775 	crypt_stat->extent_mask = 0xFFFFFFFF;
776 	crypt_stat->extent_shift = 0;
777 	if (crypt_stat->extent_size == 0)
778 		return;
779 	extent_size_tmp = crypt_stat->extent_size;
780 	while ((extent_size_tmp & 0x01) == 0) {
781 		extent_size_tmp >>= 1;
782 		crypt_stat->extent_mask <<= 1;
783 		crypt_stat->extent_shift++;
784 	}
785 }
786 
787 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
788 {
789 	/* Default values; may be overwritten as we are parsing the
790 	 * packets. */
791 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
792 	set_extent_mask_and_shift(crypt_stat);
793 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
794 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
795 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
796 	else {
797 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
798 			crypt_stat->metadata_size =
799 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
800 		else
801 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
802 	}
803 }
804 
805 /**
806  * ecryptfs_compute_root_iv
807  * @crypt_stats
808  *
809  * On error, sets the root IV to all 0's.
810  */
811 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
812 {
813 	int rc = 0;
814 	char dst[MD5_DIGEST_SIZE];
815 
816 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
817 	BUG_ON(crypt_stat->iv_bytes <= 0);
818 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
819 		rc = -EINVAL;
820 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
821 				"cannot generate root IV\n");
822 		goto out;
823 	}
824 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
825 				    crypt_stat->key_size);
826 	if (rc) {
827 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
828 				"MD5 while generating root IV\n");
829 		goto out;
830 	}
831 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
832 out:
833 	if (rc) {
834 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
835 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
836 	}
837 	return rc;
838 }
839 
840 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
841 {
842 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
843 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
844 	ecryptfs_compute_root_iv(crypt_stat);
845 	if (unlikely(ecryptfs_verbosity > 0)) {
846 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
847 		ecryptfs_dump_hex(crypt_stat->key,
848 				  crypt_stat->key_size);
849 	}
850 }
851 
852 /**
853  * ecryptfs_copy_mount_wide_flags_to_inode_flags
854  * @crypt_stat: The inode's cryptographic context
855  * @mount_crypt_stat: The mount point's cryptographic context
856  *
857  * This function propagates the mount-wide flags to individual inode
858  * flags.
859  */
860 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
861 	struct ecryptfs_crypt_stat *crypt_stat,
862 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
863 {
864 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
865 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
866 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
867 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
868 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
869 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
870 		if (mount_crypt_stat->flags
871 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
872 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
873 		else if (mount_crypt_stat->flags
874 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
875 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
876 	}
877 }
878 
879 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
880 	struct ecryptfs_crypt_stat *crypt_stat,
881 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
882 {
883 	struct ecryptfs_global_auth_tok *global_auth_tok;
884 	int rc = 0;
885 
886 	mutex_lock(&crypt_stat->keysig_list_mutex);
887 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
888 
889 	list_for_each_entry(global_auth_tok,
890 			    &mount_crypt_stat->global_auth_tok_list,
891 			    mount_crypt_stat_list) {
892 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
893 			continue;
894 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
895 		if (rc) {
896 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
897 			goto out;
898 		}
899 	}
900 
901 out:
902 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
903 	mutex_unlock(&crypt_stat->keysig_list_mutex);
904 	return rc;
905 }
906 
907 /**
908  * ecryptfs_set_default_crypt_stat_vals
909  * @crypt_stat: The inode's cryptographic context
910  * @mount_crypt_stat: The mount point's cryptographic context
911  *
912  * Default values in the event that policy does not override them.
913  */
914 static void ecryptfs_set_default_crypt_stat_vals(
915 	struct ecryptfs_crypt_stat *crypt_stat,
916 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
917 {
918 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
919 						      mount_crypt_stat);
920 	ecryptfs_set_default_sizes(crypt_stat);
921 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
922 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
923 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
924 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
925 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
926 }
927 
928 /**
929  * ecryptfs_new_file_context
930  * @ecryptfs_inode: The eCryptfs inode
931  *
932  * If the crypto context for the file has not yet been established,
933  * this is where we do that.  Establishing a new crypto context
934  * involves the following decisions:
935  *  - What cipher to use?
936  *  - What set of authentication tokens to use?
937  * Here we just worry about getting enough information into the
938  * authentication tokens so that we know that they are available.
939  * We associate the available authentication tokens with the new file
940  * via the set of signatures in the crypt_stat struct.  Later, when
941  * the headers are actually written out, we may again defer to
942  * userspace to perform the encryption of the session key; for the
943  * foreseeable future, this will be the case with public key packets.
944  *
945  * Returns zero on success; non-zero otherwise
946  */
947 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
948 {
949 	struct ecryptfs_crypt_stat *crypt_stat =
950 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
951 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
952 	    &ecryptfs_superblock_to_private(
953 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
954 	int cipher_name_len;
955 	int rc = 0;
956 
957 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
958 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
959 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 						      mount_crypt_stat);
961 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
962 							 mount_crypt_stat);
963 	if (rc) {
964 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
965 		       "to the inode key sigs; rc = [%d]\n", rc);
966 		goto out;
967 	}
968 	cipher_name_len =
969 		strlen(mount_crypt_stat->global_default_cipher_name);
970 	memcpy(crypt_stat->cipher,
971 	       mount_crypt_stat->global_default_cipher_name,
972 	       cipher_name_len);
973 	crypt_stat->cipher[cipher_name_len] = '\0';
974 	crypt_stat->key_size =
975 		mount_crypt_stat->global_default_cipher_key_size;
976 	ecryptfs_generate_new_key(crypt_stat);
977 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
978 	if (rc)
979 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
980 				"context for cipher [%s]: rc = [%d]\n",
981 				crypt_stat->cipher, rc);
982 out:
983 	return rc;
984 }
985 
986 /**
987  * ecryptfs_validate_marker - check for the ecryptfs marker
988  * @data: The data block in which to check
989  *
990  * Returns zero if marker found; -EINVAL if not found
991  */
992 static int ecryptfs_validate_marker(char *data)
993 {
994 	u32 m_1, m_2;
995 
996 	m_1 = get_unaligned_be32(data);
997 	m_2 = get_unaligned_be32(data + 4);
998 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
999 		return 0;
1000 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1001 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1002 			MAGIC_ECRYPTFS_MARKER);
1003 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1004 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1005 	return -EINVAL;
1006 }
1007 
1008 struct ecryptfs_flag_map_elem {
1009 	u32 file_flag;
1010 	u32 local_flag;
1011 };
1012 
1013 /* Add support for additional flags by adding elements here. */
1014 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1015 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1016 	{0x00000002, ECRYPTFS_ENCRYPTED},
1017 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1018 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1019 };
1020 
1021 /**
1022  * ecryptfs_process_flags
1023  * @crypt_stat: The cryptographic context
1024  * @page_virt: Source data to be parsed
1025  * @bytes_read: Updated with the number of bytes read
1026  *
1027  * Returns zero on success; non-zero if the flag set is invalid
1028  */
1029 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1030 				  char *page_virt, int *bytes_read)
1031 {
1032 	int rc = 0;
1033 	int i;
1034 	u32 flags;
1035 
1036 	flags = get_unaligned_be32(page_virt);
1037 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1038 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1039 		if (flags & ecryptfs_flag_map[i].file_flag) {
1040 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1041 		} else
1042 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1043 	/* Version is in top 8 bits of the 32-bit flag vector */
1044 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1045 	(*bytes_read) = 4;
1046 	return rc;
1047 }
1048 
1049 /**
1050  * write_ecryptfs_marker
1051  * @page_virt: The pointer to in a page to begin writing the marker
1052  * @written: Number of bytes written
1053  *
1054  * Marker = 0x3c81b7f5
1055  */
1056 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1057 {
1058 	u32 m_1, m_2;
1059 
1060 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1061 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1062 	put_unaligned_be32(m_1, page_virt);
1063 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1064 	put_unaligned_be32(m_2, page_virt);
1065 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1066 }
1067 
1068 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1069 				     struct ecryptfs_crypt_stat *crypt_stat,
1070 				     size_t *written)
1071 {
1072 	u32 flags = 0;
1073 	int i;
1074 
1075 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1076 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1077 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1078 			flags |= ecryptfs_flag_map[i].file_flag;
1079 	/* Version is in top 8 bits of the 32-bit flag vector */
1080 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1081 	put_unaligned_be32(flags, page_virt);
1082 	(*written) = 4;
1083 }
1084 
1085 struct ecryptfs_cipher_code_str_map_elem {
1086 	char cipher_str[16];
1087 	u8 cipher_code;
1088 };
1089 
1090 /* Add support for additional ciphers by adding elements here. The
1091  * cipher_code is whatever OpenPGP applicatoins use to identify the
1092  * ciphers. List in order of probability. */
1093 static struct ecryptfs_cipher_code_str_map_elem
1094 ecryptfs_cipher_code_str_map[] = {
1095 	{"aes",RFC2440_CIPHER_AES_128 },
1096 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1097 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1098 	{"cast5", RFC2440_CIPHER_CAST_5},
1099 	{"twofish", RFC2440_CIPHER_TWOFISH},
1100 	{"cast6", RFC2440_CIPHER_CAST_6},
1101 	{"aes", RFC2440_CIPHER_AES_192},
1102 	{"aes", RFC2440_CIPHER_AES_256}
1103 };
1104 
1105 /**
1106  * ecryptfs_code_for_cipher_string
1107  * @cipher_name: The string alias for the cipher
1108  * @key_bytes: Length of key in bytes; used for AES code selection
1109  *
1110  * Returns zero on no match, or the cipher code on match
1111  */
1112 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1113 {
1114 	int i;
1115 	u8 code = 0;
1116 	struct ecryptfs_cipher_code_str_map_elem *map =
1117 		ecryptfs_cipher_code_str_map;
1118 
1119 	if (strcmp(cipher_name, "aes") == 0) {
1120 		switch (key_bytes) {
1121 		case 16:
1122 			code = RFC2440_CIPHER_AES_128;
1123 			break;
1124 		case 24:
1125 			code = RFC2440_CIPHER_AES_192;
1126 			break;
1127 		case 32:
1128 			code = RFC2440_CIPHER_AES_256;
1129 		}
1130 	} else {
1131 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1132 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1133 				code = map[i].cipher_code;
1134 				break;
1135 			}
1136 	}
1137 	return code;
1138 }
1139 
1140 /**
1141  * ecryptfs_cipher_code_to_string
1142  * @str: Destination to write out the cipher name
1143  * @cipher_code: The code to convert to cipher name string
1144  *
1145  * Returns zero on success
1146  */
1147 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1148 {
1149 	int rc = 0;
1150 	int i;
1151 
1152 	str[0] = '\0';
1153 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1154 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1155 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1156 	if (str[0] == '\0') {
1157 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1158 				"[%d]\n", cipher_code);
1159 		rc = -EINVAL;
1160 	}
1161 	return rc;
1162 }
1163 
1164 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1165 {
1166 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1167 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1168 	int rc;
1169 
1170 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1171 				 inode);
1172 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1173 		return rc >= 0 ? -EINVAL : rc;
1174 	rc = ecryptfs_validate_marker(marker);
1175 	if (!rc)
1176 		ecryptfs_i_size_init(file_size, inode);
1177 	return rc;
1178 }
1179 
1180 void
1181 ecryptfs_write_header_metadata(char *virt,
1182 			       struct ecryptfs_crypt_stat *crypt_stat,
1183 			       size_t *written)
1184 {
1185 	u32 header_extent_size;
1186 	u16 num_header_extents_at_front;
1187 
1188 	header_extent_size = (u32)crypt_stat->extent_size;
1189 	num_header_extents_at_front =
1190 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1191 	put_unaligned_be32(header_extent_size, virt);
1192 	virt += 4;
1193 	put_unaligned_be16(num_header_extents_at_front, virt);
1194 	(*written) = 6;
1195 }
1196 
1197 struct kmem_cache *ecryptfs_header_cache;
1198 
1199 /**
1200  * ecryptfs_write_headers_virt
1201  * @page_virt: The virtual address to write the headers to
1202  * @max: The size of memory allocated at page_virt
1203  * @size: Set to the number of bytes written by this function
1204  * @crypt_stat: The cryptographic context
1205  * @ecryptfs_dentry: The eCryptfs dentry
1206  *
1207  * Format version: 1
1208  *
1209  *   Header Extent:
1210  *     Octets 0-7:        Unencrypted file size (big-endian)
1211  *     Octets 8-15:       eCryptfs special marker
1212  *     Octets 16-19:      Flags
1213  *      Octet 16:         File format version number (between 0 and 255)
1214  *      Octets 17-18:     Reserved
1215  *      Octet 19:         Bit 1 (lsb): Reserved
1216  *                        Bit 2: Encrypted?
1217  *                        Bits 3-8: Reserved
1218  *     Octets 20-23:      Header extent size (big-endian)
1219  *     Octets 24-25:      Number of header extents at front of file
1220  *                        (big-endian)
1221  *     Octet  26:         Begin RFC 2440 authentication token packet set
1222  *   Data Extent 0:
1223  *     Lower data (CBC encrypted)
1224  *   Data Extent 1:
1225  *     Lower data (CBC encrypted)
1226  *   ...
1227  *
1228  * Returns zero on success
1229  */
1230 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1231 				       size_t *size,
1232 				       struct ecryptfs_crypt_stat *crypt_stat,
1233 				       struct dentry *ecryptfs_dentry)
1234 {
1235 	int rc;
1236 	size_t written;
1237 	size_t offset;
1238 
1239 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1240 	write_ecryptfs_marker((page_virt + offset), &written);
1241 	offset += written;
1242 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1243 					&written);
1244 	offset += written;
1245 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1246 				       &written);
1247 	offset += written;
1248 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1249 					      ecryptfs_dentry, &written,
1250 					      max - offset);
1251 	if (rc)
1252 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1253 				"set; rc = [%d]\n", rc);
1254 	if (size) {
1255 		offset += written;
1256 		*size = offset;
1257 	}
1258 	return rc;
1259 }
1260 
1261 static int
1262 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1263 				    char *virt, size_t virt_len)
1264 {
1265 	int rc;
1266 
1267 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1268 				  0, virt_len);
1269 	if (rc < 0)
1270 		printk(KERN_ERR "%s: Error attempting to write header "
1271 		       "information to lower file; rc = [%d]\n", __func__, rc);
1272 	else
1273 		rc = 0;
1274 	return rc;
1275 }
1276 
1277 static int
1278 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1279 				 char *page_virt, size_t size)
1280 {
1281 	int rc;
1282 
1283 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1284 			       size, 0);
1285 	return rc;
1286 }
1287 
1288 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1289 					       unsigned int order)
1290 {
1291 	struct page *page;
1292 
1293 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1294 	if (page)
1295 		return (unsigned long) page_address(page);
1296 	return 0;
1297 }
1298 
1299 /**
1300  * ecryptfs_write_metadata
1301  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1302  * @ecryptfs_inode: The newly created eCryptfs inode
1303  *
1304  * Write the file headers out.  This will likely involve a userspace
1305  * callout, in which the session key is encrypted with one or more
1306  * public keys and/or the passphrase necessary to do the encryption is
1307  * retrieved via a prompt.  Exactly what happens at this point should
1308  * be policy-dependent.
1309  *
1310  * Returns zero on success; non-zero on error
1311  */
1312 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1313 			    struct inode *ecryptfs_inode)
1314 {
1315 	struct ecryptfs_crypt_stat *crypt_stat =
1316 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1317 	unsigned int order;
1318 	char *virt;
1319 	size_t virt_len;
1320 	size_t size = 0;
1321 	int rc = 0;
1322 
1323 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1324 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1325 			printk(KERN_ERR "Key is invalid; bailing out\n");
1326 			rc = -EINVAL;
1327 			goto out;
1328 		}
1329 	} else {
1330 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1331 		       __func__);
1332 		rc = -EINVAL;
1333 		goto out;
1334 	}
1335 	virt_len = crypt_stat->metadata_size;
1336 	order = get_order(virt_len);
1337 	/* Released in this function */
1338 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1339 	if (!virt) {
1340 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1341 		rc = -ENOMEM;
1342 		goto out;
1343 	}
1344 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1345 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1346 					 ecryptfs_dentry);
1347 	if (unlikely(rc)) {
1348 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1349 		       __func__, rc);
1350 		goto out_free;
1351 	}
1352 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1353 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1354 						      size);
1355 	else
1356 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1357 							 virt_len);
1358 	if (rc) {
1359 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1360 		       "rc = [%d]\n", __func__, rc);
1361 		goto out_free;
1362 	}
1363 out_free:
1364 	free_pages((unsigned long)virt, order);
1365 out:
1366 	return rc;
1367 }
1368 
1369 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1370 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1371 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1372 				 char *virt, int *bytes_read,
1373 				 int validate_header_size)
1374 {
1375 	int rc = 0;
1376 	u32 header_extent_size;
1377 	u16 num_header_extents_at_front;
1378 
1379 	header_extent_size = get_unaligned_be32(virt);
1380 	virt += sizeof(__be32);
1381 	num_header_extents_at_front = get_unaligned_be16(virt);
1382 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1383 				     * (size_t)header_extent_size));
1384 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1385 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1386 	    && (crypt_stat->metadata_size
1387 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1388 		rc = -EINVAL;
1389 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1390 		       crypt_stat->metadata_size);
1391 	}
1392 	return rc;
1393 }
1394 
1395 /**
1396  * set_default_header_data
1397  * @crypt_stat: The cryptographic context
1398  *
1399  * For version 0 file format; this function is only for backwards
1400  * compatibility for files created with the prior versions of
1401  * eCryptfs.
1402  */
1403 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1404 {
1405 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1406 }
1407 
1408 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1409 {
1410 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1411 	struct ecryptfs_crypt_stat *crypt_stat;
1412 	u64 file_size;
1413 
1414 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1415 	mount_crypt_stat =
1416 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1417 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1418 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1419 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1420 			file_size += crypt_stat->metadata_size;
1421 	} else
1422 		file_size = get_unaligned_be64(page_virt);
1423 	i_size_write(inode, (loff_t)file_size);
1424 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1425 }
1426 
1427 /**
1428  * ecryptfs_read_headers_virt
1429  * @page_virt: The virtual address into which to read the headers
1430  * @crypt_stat: The cryptographic context
1431  * @ecryptfs_dentry: The eCryptfs dentry
1432  * @validate_header_size: Whether to validate the header size while reading
1433  *
1434  * Read/parse the header data. The header format is detailed in the
1435  * comment block for the ecryptfs_write_headers_virt() function.
1436  *
1437  * Returns zero on success
1438  */
1439 static int ecryptfs_read_headers_virt(char *page_virt,
1440 				      struct ecryptfs_crypt_stat *crypt_stat,
1441 				      struct dentry *ecryptfs_dentry,
1442 				      int validate_header_size)
1443 {
1444 	int rc = 0;
1445 	int offset;
1446 	int bytes_read;
1447 
1448 	ecryptfs_set_default_sizes(crypt_stat);
1449 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1450 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1451 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1452 	rc = ecryptfs_validate_marker(page_virt + offset);
1453 	if (rc)
1454 		goto out;
1455 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1456 		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1457 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1458 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1459 				    &bytes_read);
1460 	if (rc) {
1461 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1462 		goto out;
1463 	}
1464 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1465 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1466 				"file version [%d] is supported by this "
1467 				"version of eCryptfs\n",
1468 				crypt_stat->file_version,
1469 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1470 		rc = -EINVAL;
1471 		goto out;
1472 	}
1473 	offset += bytes_read;
1474 	if (crypt_stat->file_version >= 1) {
1475 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1476 					   &bytes_read, validate_header_size);
1477 		if (rc) {
1478 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1479 					"metadata; rc = [%d]\n", rc);
1480 		}
1481 		offset += bytes_read;
1482 	} else
1483 		set_default_header_data(crypt_stat);
1484 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1485 				       ecryptfs_dentry);
1486 out:
1487 	return rc;
1488 }
1489 
1490 /**
1491  * ecryptfs_read_xattr_region
1492  * @page_virt: The vitual address into which to read the xattr data
1493  * @ecryptfs_inode: The eCryptfs inode
1494  *
1495  * Attempts to read the crypto metadata from the extended attribute
1496  * region of the lower file.
1497  *
1498  * Returns zero on success; non-zero on error
1499  */
1500 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1501 {
1502 	struct dentry *lower_dentry =
1503 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1504 	ssize_t size;
1505 	int rc = 0;
1506 
1507 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1508 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1509 	if (size < 0) {
1510 		if (unlikely(ecryptfs_verbosity > 0))
1511 			printk(KERN_INFO "Error attempting to read the [%s] "
1512 			       "xattr from the lower file; return value = "
1513 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1514 		rc = -EINVAL;
1515 		goto out;
1516 	}
1517 out:
1518 	return rc;
1519 }
1520 
1521 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1522 					    struct inode *inode)
1523 {
1524 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1525 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1526 	int rc;
1527 
1528 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1529 				     ECRYPTFS_XATTR_NAME, file_size,
1530 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1531 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1532 		return rc >= 0 ? -EINVAL : rc;
1533 	rc = ecryptfs_validate_marker(marker);
1534 	if (!rc)
1535 		ecryptfs_i_size_init(file_size, inode);
1536 	return rc;
1537 }
1538 
1539 /**
1540  * ecryptfs_read_metadata
1541  *
1542  * Common entry point for reading file metadata. From here, we could
1543  * retrieve the header information from the header region of the file,
1544  * the xattr region of the file, or some other repostory that is
1545  * stored separately from the file itself. The current implementation
1546  * supports retrieving the metadata information from the file contents
1547  * and from the xattr region.
1548  *
1549  * Returns zero if valid headers found and parsed; non-zero otherwise
1550  */
1551 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1552 {
1553 	int rc;
1554 	char *page_virt;
1555 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1556 	struct ecryptfs_crypt_stat *crypt_stat =
1557 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1558 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1559 		&ecryptfs_superblock_to_private(
1560 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1561 
1562 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1563 						      mount_crypt_stat);
1564 	/* Read the first page from the underlying file */
1565 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1566 	if (!page_virt) {
1567 		rc = -ENOMEM;
1568 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1569 		       __func__);
1570 		goto out;
1571 	}
1572 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1573 				 ecryptfs_inode);
1574 	if (rc >= 0)
1575 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1576 						ecryptfs_dentry,
1577 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1578 	if (rc) {
1579 		/* metadata is not in the file header, so try xattrs */
1580 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1581 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1582 		if (rc) {
1583 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1584 			       "file header region or xattr region, inode %lu\n",
1585 				ecryptfs_inode->i_ino);
1586 			rc = -EINVAL;
1587 			goto out;
1588 		}
1589 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1590 						ecryptfs_dentry,
1591 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1592 		if (rc) {
1593 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1594 			       "file xattr region either, inode %lu\n",
1595 				ecryptfs_inode->i_ino);
1596 			rc = -EINVAL;
1597 		}
1598 		if (crypt_stat->mount_crypt_stat->flags
1599 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1600 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1601 		} else {
1602 			printk(KERN_WARNING "Attempt to access file with "
1603 			       "crypto metadata only in the extended attribute "
1604 			       "region, but eCryptfs was mounted without "
1605 			       "xattr support enabled. eCryptfs will not treat "
1606 			       "this like an encrypted file, inode %lu\n",
1607 				ecryptfs_inode->i_ino);
1608 			rc = -EINVAL;
1609 		}
1610 	}
1611 out:
1612 	if (page_virt) {
1613 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1614 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1615 	}
1616 	return rc;
1617 }
1618 
1619 /**
1620  * ecryptfs_encrypt_filename - encrypt filename
1621  *
1622  * CBC-encrypts the filename. We do not want to encrypt the same
1623  * filename with the same key and IV, which may happen with hard
1624  * links, so we prepend random bits to each filename.
1625  *
1626  * Returns zero on success; non-zero otherwise
1627  */
1628 static int
1629 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1630 			  struct ecryptfs_crypt_stat *crypt_stat,
1631 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1632 {
1633 	int rc = 0;
1634 
1635 	filename->encrypted_filename = NULL;
1636 	filename->encrypted_filename_size = 0;
1637 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1638 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1639 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1640 		size_t packet_size;
1641 		size_t remaining_bytes;
1642 
1643 		rc = ecryptfs_write_tag_70_packet(
1644 			NULL, NULL,
1645 			&filename->encrypted_filename_size,
1646 			mount_crypt_stat, NULL,
1647 			filename->filename_size);
1648 		if (rc) {
1649 			printk(KERN_ERR "%s: Error attempting to get packet "
1650 			       "size for tag 72; rc = [%d]\n", __func__,
1651 			       rc);
1652 			filename->encrypted_filename_size = 0;
1653 			goto out;
1654 		}
1655 		filename->encrypted_filename =
1656 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1657 		if (!filename->encrypted_filename) {
1658 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1659 			       "to kmalloc [%zd] bytes\n", __func__,
1660 			       filename->encrypted_filename_size);
1661 			rc = -ENOMEM;
1662 			goto out;
1663 		}
1664 		remaining_bytes = filename->encrypted_filename_size;
1665 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1666 						  &remaining_bytes,
1667 						  &packet_size,
1668 						  mount_crypt_stat,
1669 						  filename->filename,
1670 						  filename->filename_size);
1671 		if (rc) {
1672 			printk(KERN_ERR "%s: Error attempting to generate "
1673 			       "tag 70 packet; rc = [%d]\n", __func__,
1674 			       rc);
1675 			kfree(filename->encrypted_filename);
1676 			filename->encrypted_filename = NULL;
1677 			filename->encrypted_filename_size = 0;
1678 			goto out;
1679 		}
1680 		filename->encrypted_filename_size = packet_size;
1681 	} else {
1682 		printk(KERN_ERR "%s: No support for requested filename "
1683 		       "encryption method in this release\n", __func__);
1684 		rc = -EOPNOTSUPP;
1685 		goto out;
1686 	}
1687 out:
1688 	return rc;
1689 }
1690 
1691 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1692 				  const char *name, size_t name_size)
1693 {
1694 	int rc = 0;
1695 
1696 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1697 	if (!(*copied_name)) {
1698 		rc = -ENOMEM;
1699 		goto out;
1700 	}
1701 	memcpy((void *)(*copied_name), (void *)name, name_size);
1702 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1703 						 * in printing out the
1704 						 * string in debug
1705 						 * messages */
1706 	(*copied_name_size) = name_size;
1707 out:
1708 	return rc;
1709 }
1710 
1711 /**
1712  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1713  * @key_tfm: Crypto context for key material, set by this function
1714  * @cipher_name: Name of the cipher
1715  * @key_size: Size of the key in bytes
1716  *
1717  * Returns zero on success. Any crypto_tfm structs allocated here
1718  * should be released by other functions, such as on a superblock put
1719  * event, regardless of whether this function succeeds for fails.
1720  */
1721 static int
1722 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1723 			    char *cipher_name, size_t *key_size)
1724 {
1725 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1726 	char *full_alg_name = NULL;
1727 	int rc;
1728 
1729 	*key_tfm = NULL;
1730 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1731 		rc = -EINVAL;
1732 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1733 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1734 		goto out;
1735 	}
1736 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1737 						    "ecb");
1738 	if (rc)
1739 		goto out;
1740 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1741 	if (IS_ERR(*key_tfm)) {
1742 		rc = PTR_ERR(*key_tfm);
1743 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1744 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1745 		goto out;
1746 	}
1747 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1748 	if (*key_size == 0) {
1749 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1750 
1751 		*key_size = alg->max_keysize;
1752 	}
1753 	get_random_bytes(dummy_key, *key_size);
1754 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1755 	if (rc) {
1756 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1757 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1758 		       rc);
1759 		rc = -EINVAL;
1760 		goto out;
1761 	}
1762 out:
1763 	kfree(full_alg_name);
1764 	return rc;
1765 }
1766 
1767 struct kmem_cache *ecryptfs_key_tfm_cache;
1768 static struct list_head key_tfm_list;
1769 struct mutex key_tfm_list_mutex;
1770 
1771 int __init ecryptfs_init_crypto(void)
1772 {
1773 	mutex_init(&key_tfm_list_mutex);
1774 	INIT_LIST_HEAD(&key_tfm_list);
1775 	return 0;
1776 }
1777 
1778 /**
1779  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1780  *
1781  * Called only at module unload time
1782  */
1783 int ecryptfs_destroy_crypto(void)
1784 {
1785 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1786 
1787 	mutex_lock(&key_tfm_list_mutex);
1788 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1789 				 key_tfm_list) {
1790 		list_del(&key_tfm->key_tfm_list);
1791 		if (key_tfm->key_tfm)
1792 			crypto_free_blkcipher(key_tfm->key_tfm);
1793 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1794 	}
1795 	mutex_unlock(&key_tfm_list_mutex);
1796 	return 0;
1797 }
1798 
1799 int
1800 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1801 			 size_t key_size)
1802 {
1803 	struct ecryptfs_key_tfm *tmp_tfm;
1804 	int rc = 0;
1805 
1806 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1807 
1808 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1809 	if (key_tfm != NULL)
1810 		(*key_tfm) = tmp_tfm;
1811 	if (!tmp_tfm) {
1812 		rc = -ENOMEM;
1813 		printk(KERN_ERR "Error attempting to allocate from "
1814 		       "ecryptfs_key_tfm_cache\n");
1815 		goto out;
1816 	}
1817 	mutex_init(&tmp_tfm->key_tfm_mutex);
1818 	strncpy(tmp_tfm->cipher_name, cipher_name,
1819 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1820 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1821 	tmp_tfm->key_size = key_size;
1822 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1823 					 tmp_tfm->cipher_name,
1824 					 &tmp_tfm->key_size);
1825 	if (rc) {
1826 		printk(KERN_ERR "Error attempting to initialize key TFM "
1827 		       "cipher with name = [%s]; rc = [%d]\n",
1828 		       tmp_tfm->cipher_name, rc);
1829 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1830 		if (key_tfm != NULL)
1831 			(*key_tfm) = NULL;
1832 		goto out;
1833 	}
1834 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1835 out:
1836 	return rc;
1837 }
1838 
1839 /**
1840  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1841  * @cipher_name: the name of the cipher to search for
1842  * @key_tfm: set to corresponding tfm if found
1843  *
1844  * Searches for cached key_tfm matching @cipher_name
1845  * Must be called with &key_tfm_list_mutex held
1846  * Returns 1 if found, with @key_tfm set
1847  * Returns 0 if not found, with @key_tfm set to NULL
1848  */
1849 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1850 {
1851 	struct ecryptfs_key_tfm *tmp_key_tfm;
1852 
1853 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1854 
1855 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1856 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1857 			if (key_tfm)
1858 				(*key_tfm) = tmp_key_tfm;
1859 			return 1;
1860 		}
1861 	}
1862 	if (key_tfm)
1863 		(*key_tfm) = NULL;
1864 	return 0;
1865 }
1866 
1867 /**
1868  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1869  *
1870  * @tfm: set to cached tfm found, or new tfm created
1871  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1872  * @cipher_name: the name of the cipher to search for and/or add
1873  *
1874  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1875  * Searches for cached item first, and creates new if not found.
1876  * Returns 0 on success, non-zero if adding new cipher failed
1877  */
1878 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1879 					       struct mutex **tfm_mutex,
1880 					       char *cipher_name)
1881 {
1882 	struct ecryptfs_key_tfm *key_tfm;
1883 	int rc = 0;
1884 
1885 	(*tfm) = NULL;
1886 	(*tfm_mutex) = NULL;
1887 
1888 	mutex_lock(&key_tfm_list_mutex);
1889 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1890 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1891 		if (rc) {
1892 			printk(KERN_ERR "Error adding new key_tfm to list; "
1893 					"rc = [%d]\n", rc);
1894 			goto out;
1895 		}
1896 	}
1897 	(*tfm) = key_tfm->key_tfm;
1898 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1899 out:
1900 	mutex_unlock(&key_tfm_list_mutex);
1901 	return rc;
1902 }
1903 
1904 /* 64 characters forming a 6-bit target field */
1905 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1906 						 "EFGHIJKLMNOPQRST"
1907 						 "UVWXYZabcdefghij"
1908 						 "klmnopqrstuvwxyz");
1909 
1910 /* We could either offset on every reverse map or just pad some 0x00's
1911  * at the front here */
1912 static const unsigned char filename_rev_map[256] = {
1913 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1914 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1915 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1916 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1917 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1918 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1919 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1920 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1921 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1922 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1923 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1924 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1925 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1926 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1927 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1928 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1929 };
1930 
1931 /**
1932  * ecryptfs_encode_for_filename
1933  * @dst: Destination location for encoded filename
1934  * @dst_size: Size of the encoded filename in bytes
1935  * @src: Source location for the filename to encode
1936  * @src_size: Size of the source in bytes
1937  */
1938 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1939 				  unsigned char *src, size_t src_size)
1940 {
1941 	size_t num_blocks;
1942 	size_t block_num = 0;
1943 	size_t dst_offset = 0;
1944 	unsigned char last_block[3];
1945 
1946 	if (src_size == 0) {
1947 		(*dst_size) = 0;
1948 		goto out;
1949 	}
1950 	num_blocks = (src_size / 3);
1951 	if ((src_size % 3) == 0) {
1952 		memcpy(last_block, (&src[src_size - 3]), 3);
1953 	} else {
1954 		num_blocks++;
1955 		last_block[2] = 0x00;
1956 		switch (src_size % 3) {
1957 		case 1:
1958 			last_block[0] = src[src_size - 1];
1959 			last_block[1] = 0x00;
1960 			break;
1961 		case 2:
1962 			last_block[0] = src[src_size - 2];
1963 			last_block[1] = src[src_size - 1];
1964 		}
1965 	}
1966 	(*dst_size) = (num_blocks * 4);
1967 	if (!dst)
1968 		goto out;
1969 	while (block_num < num_blocks) {
1970 		unsigned char *src_block;
1971 		unsigned char dst_block[4];
1972 
1973 		if (block_num == (num_blocks - 1))
1974 			src_block = last_block;
1975 		else
1976 			src_block = &src[block_num * 3];
1977 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1978 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1979 				| ((src_block[1] >> 4) & 0x0F));
1980 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1981 				| ((src_block[2] >> 6) & 0x03));
1982 		dst_block[3] = (src_block[2] & 0x3F);
1983 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1984 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1985 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1986 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1987 		block_num++;
1988 	}
1989 out:
1990 	return;
1991 }
1992 
1993 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1994 {
1995 	/* Not exact; conservatively long. Every block of 4
1996 	 * encoded characters decodes into a block of 3
1997 	 * decoded characters. This segment of code provides
1998 	 * the caller with the maximum amount of allocated
1999 	 * space that @dst will need to point to in a
2000 	 * subsequent call. */
2001 	return ((encoded_size + 1) * 3) / 4;
2002 }
2003 
2004 /**
2005  * ecryptfs_decode_from_filename
2006  * @dst: If NULL, this function only sets @dst_size and returns. If
2007  *       non-NULL, this function decodes the encoded octets in @src
2008  *       into the memory that @dst points to.
2009  * @dst_size: Set to the size of the decoded string.
2010  * @src: The encoded set of octets to decode.
2011  * @src_size: The size of the encoded set of octets to decode.
2012  */
2013 static void
2014 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2015 			      const unsigned char *src, size_t src_size)
2016 {
2017 	u8 current_bit_offset = 0;
2018 	size_t src_byte_offset = 0;
2019 	size_t dst_byte_offset = 0;
2020 
2021 	if (dst == NULL) {
2022 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
2023 		goto out;
2024 	}
2025 	while (src_byte_offset < src_size) {
2026 		unsigned char src_byte =
2027 				filename_rev_map[(int)src[src_byte_offset]];
2028 
2029 		switch (current_bit_offset) {
2030 		case 0:
2031 			dst[dst_byte_offset] = (src_byte << 2);
2032 			current_bit_offset = 6;
2033 			break;
2034 		case 6:
2035 			dst[dst_byte_offset++] |= (src_byte >> 4);
2036 			dst[dst_byte_offset] = ((src_byte & 0xF)
2037 						 << 4);
2038 			current_bit_offset = 4;
2039 			break;
2040 		case 4:
2041 			dst[dst_byte_offset++] |= (src_byte >> 2);
2042 			dst[dst_byte_offset] = (src_byte << 6);
2043 			current_bit_offset = 2;
2044 			break;
2045 		case 2:
2046 			dst[dst_byte_offset++] |= (src_byte);
2047 			dst[dst_byte_offset] = 0;
2048 			current_bit_offset = 0;
2049 			break;
2050 		}
2051 		src_byte_offset++;
2052 	}
2053 	(*dst_size) = dst_byte_offset;
2054 out:
2055 	return;
2056 }
2057 
2058 /**
2059  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2060  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2061  * @name: The plaintext name
2062  * @length: The length of the plaintext
2063  * @encoded_name: The encypted name
2064  *
2065  * Encrypts and encodes a filename into something that constitutes a
2066  * valid filename for a filesystem, with printable characters.
2067  *
2068  * We assume that we have a properly initialized crypto context,
2069  * pointed to by crypt_stat->tfm.
2070  *
2071  * Returns zero on success; non-zero on otherwise
2072  */
2073 int ecryptfs_encrypt_and_encode_filename(
2074 	char **encoded_name,
2075 	size_t *encoded_name_size,
2076 	struct ecryptfs_crypt_stat *crypt_stat,
2077 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2078 	const char *name, size_t name_size)
2079 {
2080 	size_t encoded_name_no_prefix_size;
2081 	int rc = 0;
2082 
2083 	(*encoded_name) = NULL;
2084 	(*encoded_name_size) = 0;
2085 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2086 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2087 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2088 		struct ecryptfs_filename *filename;
2089 
2090 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2091 		if (!filename) {
2092 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2093 			       "to kzalloc [%zd] bytes\n", __func__,
2094 			       sizeof(*filename));
2095 			rc = -ENOMEM;
2096 			goto out;
2097 		}
2098 		filename->filename = (char *)name;
2099 		filename->filename_size = name_size;
2100 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2101 					       mount_crypt_stat);
2102 		if (rc) {
2103 			printk(KERN_ERR "%s: Error attempting to encrypt "
2104 			       "filename; rc = [%d]\n", __func__, rc);
2105 			kfree(filename);
2106 			goto out;
2107 		}
2108 		ecryptfs_encode_for_filename(
2109 			NULL, &encoded_name_no_prefix_size,
2110 			filename->encrypted_filename,
2111 			filename->encrypted_filename_size);
2112 		if ((crypt_stat && (crypt_stat->flags
2113 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2114 		    || (mount_crypt_stat
2115 			&& (mount_crypt_stat->flags
2116 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2117 			(*encoded_name_size) =
2118 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2119 				 + encoded_name_no_prefix_size);
2120 		else
2121 			(*encoded_name_size) =
2122 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2123 				 + encoded_name_no_prefix_size);
2124 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2125 		if (!(*encoded_name)) {
2126 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2127 			       "to kzalloc [%zd] bytes\n", __func__,
2128 			       (*encoded_name_size));
2129 			rc = -ENOMEM;
2130 			kfree(filename->encrypted_filename);
2131 			kfree(filename);
2132 			goto out;
2133 		}
2134 		if ((crypt_stat && (crypt_stat->flags
2135 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2136 		    || (mount_crypt_stat
2137 			&& (mount_crypt_stat->flags
2138 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2139 			memcpy((*encoded_name),
2140 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2141 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2142 			ecryptfs_encode_for_filename(
2143 			    ((*encoded_name)
2144 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2145 			    &encoded_name_no_prefix_size,
2146 			    filename->encrypted_filename,
2147 			    filename->encrypted_filename_size);
2148 			(*encoded_name_size) =
2149 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2150 				 + encoded_name_no_prefix_size);
2151 			(*encoded_name)[(*encoded_name_size)] = '\0';
2152 		} else {
2153 			rc = -EOPNOTSUPP;
2154 		}
2155 		if (rc) {
2156 			printk(KERN_ERR "%s: Error attempting to encode "
2157 			       "encrypted filename; rc = [%d]\n", __func__,
2158 			       rc);
2159 			kfree((*encoded_name));
2160 			(*encoded_name) = NULL;
2161 			(*encoded_name_size) = 0;
2162 		}
2163 		kfree(filename->encrypted_filename);
2164 		kfree(filename);
2165 	} else {
2166 		rc = ecryptfs_copy_filename(encoded_name,
2167 					    encoded_name_size,
2168 					    name, name_size);
2169 	}
2170 out:
2171 	return rc;
2172 }
2173 
2174 /**
2175  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2176  * @plaintext_name: The plaintext name
2177  * @plaintext_name_size: The plaintext name size
2178  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2179  * @name: The filename in cipher text
2180  * @name_size: The cipher text name size
2181  *
2182  * Decrypts and decodes the filename.
2183  *
2184  * Returns zero on error; non-zero otherwise
2185  */
2186 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2187 					 size_t *plaintext_name_size,
2188 					 struct dentry *ecryptfs_dir_dentry,
2189 					 const char *name, size_t name_size)
2190 {
2191 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2192 		&ecryptfs_superblock_to_private(
2193 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2194 	char *decoded_name;
2195 	size_t decoded_name_size;
2196 	size_t packet_size;
2197 	int rc = 0;
2198 
2199 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2200 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2201 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2202 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2203 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2204 		const char *orig_name = name;
2205 		size_t orig_name_size = name_size;
2206 
2207 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2208 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2209 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2210 					      name, name_size);
2211 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2212 		if (!decoded_name) {
2213 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2214 			       "to kmalloc [%zd] bytes\n", __func__,
2215 			       decoded_name_size);
2216 			rc = -ENOMEM;
2217 			goto out;
2218 		}
2219 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2220 					      name, name_size);
2221 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2222 						  plaintext_name_size,
2223 						  &packet_size,
2224 						  mount_crypt_stat,
2225 						  decoded_name,
2226 						  decoded_name_size);
2227 		if (rc) {
2228 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2229 			       "from filename; copying through filename "
2230 			       "as-is\n", __func__);
2231 			rc = ecryptfs_copy_filename(plaintext_name,
2232 						    plaintext_name_size,
2233 						    orig_name, orig_name_size);
2234 			goto out_free;
2235 		}
2236 	} else {
2237 		rc = ecryptfs_copy_filename(plaintext_name,
2238 					    plaintext_name_size,
2239 					    name, name_size);
2240 		goto out;
2241 	}
2242 out_free:
2243 	kfree(decoded_name);
2244 out:
2245 	return rc;
2246 }
2247 
2248 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2249 
2250 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2251 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2252 {
2253 	struct blkcipher_desc desc;
2254 	struct mutex *tfm_mutex;
2255 	size_t cipher_blocksize;
2256 	int rc;
2257 
2258 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2259 		(*namelen) = lower_namelen;
2260 		return 0;
2261 	}
2262 
2263 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2264 			mount_crypt_stat->global_default_fn_cipher_name);
2265 	if (unlikely(rc)) {
2266 		(*namelen) = 0;
2267 		return rc;
2268 	}
2269 
2270 	mutex_lock(tfm_mutex);
2271 	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2272 	mutex_unlock(tfm_mutex);
2273 
2274 	/* Return an exact amount for the common cases */
2275 	if (lower_namelen == NAME_MAX
2276 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2277 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2278 		return 0;
2279 	}
2280 
2281 	/* Return a safe estimate for the uncommon cases */
2282 	(*namelen) = lower_namelen;
2283 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2284 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2285 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2286 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2287 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2288 	/* Worst case is that the filename is padded nearly a full block size */
2289 	(*namelen) -= cipher_blocksize - 1;
2290 
2291 	if ((*namelen) < 0)
2292 		(*namelen) = 0;
2293 
2294 	return 0;
2295 }
2296