1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <crypto/hash.h> 27 #include <crypto/skcipher.h> 28 #include <linux/fs.h> 29 #include <linux/mount.h> 30 #include <linux/pagemap.h> 31 #include <linux/random.h> 32 #include <linux/compiler.h> 33 #include <linux/key.h> 34 #include <linux/namei.h> 35 #include <linux/file.h> 36 #include <linux/scatterlist.h> 37 #include <linux/slab.h> 38 #include <asm/unaligned.h> 39 #include <linux/kernel.h> 40 #include "ecryptfs_kernel.h" 41 42 #define DECRYPT 0 43 #define ENCRYPT 1 44 45 /** 46 * ecryptfs_from_hex 47 * @dst: Buffer to take the bytes from src hex; must be at least of 48 * size (src_size / 2) 49 * @src: Buffer to be converted from a hex string representation to raw value 50 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 51 */ 52 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 53 { 54 int x; 55 char tmp[3] = { 0, }; 56 57 for (x = 0; x < dst_size; x++) { 58 tmp[0] = src[x * 2]; 59 tmp[1] = src[x * 2 + 1]; 60 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 61 } 62 } 63 64 static int ecryptfs_hash_digest(struct crypto_shash *tfm, 65 char *src, int len, char *dst) 66 { 67 SHASH_DESC_ON_STACK(desc, tfm); 68 int err; 69 70 desc->tfm = tfm; 71 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 72 err = crypto_shash_digest(desc, src, len, dst); 73 shash_desc_zero(desc); 74 return err; 75 } 76 77 /** 78 * ecryptfs_calculate_md5 - calculates the md5 of @src 79 * @dst: Pointer to 16 bytes of allocated memory 80 * @crypt_stat: Pointer to crypt_stat struct for the current inode 81 * @src: Data to be md5'd 82 * @len: Length of @src 83 * 84 * Uses the allocated crypto context that crypt_stat references to 85 * generate the MD5 sum of the contents of src. 86 */ 87 static int ecryptfs_calculate_md5(char *dst, 88 struct ecryptfs_crypt_stat *crypt_stat, 89 char *src, int len) 90 { 91 struct crypto_shash *tfm; 92 int rc = 0; 93 94 tfm = crypt_stat->hash_tfm; 95 rc = ecryptfs_hash_digest(tfm, src, len, dst); 96 if (rc) { 97 printk(KERN_ERR 98 "%s: Error computing crypto hash; rc = [%d]\n", 99 __func__, rc); 100 goto out; 101 } 102 out: 103 return rc; 104 } 105 106 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 107 char *cipher_name, 108 char *chaining_modifier) 109 { 110 int cipher_name_len = strlen(cipher_name); 111 int chaining_modifier_len = strlen(chaining_modifier); 112 int algified_name_len; 113 int rc; 114 115 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 116 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 117 if (!(*algified_name)) { 118 rc = -ENOMEM; 119 goto out; 120 } 121 snprintf((*algified_name), algified_name_len, "%s(%s)", 122 chaining_modifier, cipher_name); 123 rc = 0; 124 out: 125 return rc; 126 } 127 128 /** 129 * ecryptfs_derive_iv 130 * @iv: destination for the derived iv vale 131 * @crypt_stat: Pointer to crypt_stat struct for the current inode 132 * @offset: Offset of the extent whose IV we are to derive 133 * 134 * Generate the initialization vector from the given root IV and page 135 * offset. 136 * 137 * Returns zero on success; non-zero on error. 138 */ 139 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 140 loff_t offset) 141 { 142 int rc = 0; 143 char dst[MD5_DIGEST_SIZE]; 144 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 145 146 if (unlikely(ecryptfs_verbosity > 0)) { 147 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 148 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 149 } 150 /* TODO: It is probably secure to just cast the least 151 * significant bits of the root IV into an unsigned long and 152 * add the offset to that rather than go through all this 153 * hashing business. -Halcrow */ 154 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 155 memset((src + crypt_stat->iv_bytes), 0, 16); 156 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 157 if (unlikely(ecryptfs_verbosity > 0)) { 158 ecryptfs_printk(KERN_DEBUG, "source:\n"); 159 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 160 } 161 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 162 (crypt_stat->iv_bytes + 16)); 163 if (rc) { 164 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 165 "MD5 while generating IV for a page\n"); 166 goto out; 167 } 168 memcpy(iv, dst, crypt_stat->iv_bytes); 169 if (unlikely(ecryptfs_verbosity > 0)) { 170 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 171 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 172 } 173 out: 174 return rc; 175 } 176 177 /** 178 * ecryptfs_init_crypt_stat 179 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 180 * 181 * Initialize the crypt_stat structure. 182 */ 183 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 184 { 185 struct crypto_shash *tfm; 186 int rc; 187 188 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 189 if (IS_ERR(tfm)) { 190 rc = PTR_ERR(tfm); 191 ecryptfs_printk(KERN_ERR, "Error attempting to " 192 "allocate crypto context; rc = [%d]\n", 193 rc); 194 return rc; 195 } 196 197 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 198 INIT_LIST_HEAD(&crypt_stat->keysig_list); 199 mutex_init(&crypt_stat->keysig_list_mutex); 200 mutex_init(&crypt_stat->cs_mutex); 201 mutex_init(&crypt_stat->cs_tfm_mutex); 202 crypt_stat->hash_tfm = tfm; 203 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 204 205 return 0; 206 } 207 208 /** 209 * ecryptfs_destroy_crypt_stat 210 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 211 * 212 * Releases all memory associated with a crypt_stat struct. 213 */ 214 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 215 { 216 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 217 218 crypto_free_skcipher(crypt_stat->tfm); 219 crypto_free_shash(crypt_stat->hash_tfm); 220 list_for_each_entry_safe(key_sig, key_sig_tmp, 221 &crypt_stat->keysig_list, crypt_stat_list) { 222 list_del(&key_sig->crypt_stat_list); 223 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 224 } 225 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 226 } 227 228 void ecryptfs_destroy_mount_crypt_stat( 229 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 230 { 231 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 232 233 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 234 return; 235 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 236 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 237 &mount_crypt_stat->global_auth_tok_list, 238 mount_crypt_stat_list) { 239 list_del(&auth_tok->mount_crypt_stat_list); 240 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 241 key_put(auth_tok->global_auth_tok_key); 242 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 243 } 244 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 245 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 246 } 247 248 /** 249 * virt_to_scatterlist 250 * @addr: Virtual address 251 * @size: Size of data; should be an even multiple of the block size 252 * @sg: Pointer to scatterlist array; set to NULL to obtain only 253 * the number of scatterlist structs required in array 254 * @sg_size: Max array size 255 * 256 * Fills in a scatterlist array with page references for a passed 257 * virtual address. 258 * 259 * Returns the number of scatterlist structs in array used 260 */ 261 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 262 int sg_size) 263 { 264 int i = 0; 265 struct page *pg; 266 int offset; 267 int remainder_of_page; 268 269 sg_init_table(sg, sg_size); 270 271 while (size > 0 && i < sg_size) { 272 pg = virt_to_page(addr); 273 offset = offset_in_page(addr); 274 sg_set_page(&sg[i], pg, 0, offset); 275 remainder_of_page = PAGE_SIZE - offset; 276 if (size >= remainder_of_page) { 277 sg[i].length = remainder_of_page; 278 addr += remainder_of_page; 279 size -= remainder_of_page; 280 } else { 281 sg[i].length = size; 282 addr += size; 283 size = 0; 284 } 285 i++; 286 } 287 if (size > 0) 288 return -ENOMEM; 289 return i; 290 } 291 292 struct extent_crypt_result { 293 struct completion completion; 294 int rc; 295 }; 296 297 static void extent_crypt_complete(struct crypto_async_request *req, int rc) 298 { 299 struct extent_crypt_result *ecr = req->data; 300 301 if (rc == -EINPROGRESS) 302 return; 303 304 ecr->rc = rc; 305 complete(&ecr->completion); 306 } 307 308 /** 309 * crypt_scatterlist 310 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 311 * @dst_sg: Destination of the data after performing the crypto operation 312 * @src_sg: Data to be encrypted or decrypted 313 * @size: Length of data 314 * @iv: IV to use 315 * @op: ENCRYPT or DECRYPT to indicate the desired operation 316 * 317 * Returns the number of bytes encrypted or decrypted; negative value on error 318 */ 319 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 320 struct scatterlist *dst_sg, 321 struct scatterlist *src_sg, int size, 322 unsigned char *iv, int op) 323 { 324 struct skcipher_request *req = NULL; 325 struct extent_crypt_result ecr; 326 int rc = 0; 327 328 BUG_ON(!crypt_stat || !crypt_stat->tfm 329 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 330 if (unlikely(ecryptfs_verbosity > 0)) { 331 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 332 crypt_stat->key_size); 333 ecryptfs_dump_hex(crypt_stat->key, 334 crypt_stat->key_size); 335 } 336 337 init_completion(&ecr.completion); 338 339 mutex_lock(&crypt_stat->cs_tfm_mutex); 340 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 341 if (!req) { 342 mutex_unlock(&crypt_stat->cs_tfm_mutex); 343 rc = -ENOMEM; 344 goto out; 345 } 346 347 skcipher_request_set_callback(req, 348 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 349 extent_crypt_complete, &ecr); 350 /* Consider doing this once, when the file is opened */ 351 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 352 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 353 crypt_stat->key_size); 354 if (rc) { 355 ecryptfs_printk(KERN_ERR, 356 "Error setting key; rc = [%d]\n", 357 rc); 358 mutex_unlock(&crypt_stat->cs_tfm_mutex); 359 rc = -EINVAL; 360 goto out; 361 } 362 crypt_stat->flags |= ECRYPTFS_KEY_SET; 363 } 364 mutex_unlock(&crypt_stat->cs_tfm_mutex); 365 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 366 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 367 crypto_skcipher_decrypt(req); 368 if (rc == -EINPROGRESS || rc == -EBUSY) { 369 struct extent_crypt_result *ecr = req->base.data; 370 371 wait_for_completion(&ecr->completion); 372 rc = ecr->rc; 373 reinit_completion(&ecr->completion); 374 } 375 out: 376 skcipher_request_free(req); 377 return rc; 378 } 379 380 /** 381 * lower_offset_for_page 382 * 383 * Convert an eCryptfs page index into a lower byte offset 384 */ 385 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 386 struct page *page) 387 { 388 return ecryptfs_lower_header_size(crypt_stat) + 389 ((loff_t)page->index << PAGE_SHIFT); 390 } 391 392 /** 393 * crypt_extent 394 * @crypt_stat: crypt_stat containing cryptographic context for the 395 * encryption operation 396 * @dst_page: The page to write the result into 397 * @src_page: The page to read from 398 * @extent_offset: Page extent offset for use in generating IV 399 * @op: ENCRYPT or DECRYPT to indicate the desired operation 400 * 401 * Encrypts or decrypts one extent of data. 402 * 403 * Return zero on success; non-zero otherwise 404 */ 405 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 406 struct page *dst_page, 407 struct page *src_page, 408 unsigned long extent_offset, int op) 409 { 410 pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; 411 loff_t extent_base; 412 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 413 struct scatterlist src_sg, dst_sg; 414 size_t extent_size = crypt_stat->extent_size; 415 int rc; 416 417 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 418 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 419 (extent_base + extent_offset)); 420 if (rc) { 421 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 422 "extent [0x%.16llx]; rc = [%d]\n", 423 (unsigned long long)(extent_base + extent_offset), rc); 424 goto out; 425 } 426 427 sg_init_table(&src_sg, 1); 428 sg_init_table(&dst_sg, 1); 429 430 sg_set_page(&src_sg, src_page, extent_size, 431 extent_offset * extent_size); 432 sg_set_page(&dst_sg, dst_page, extent_size, 433 extent_offset * extent_size); 434 435 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 436 extent_iv, op); 437 if (rc < 0) { 438 printk(KERN_ERR "%s: Error attempting to crypt page with " 439 "page_index = [%ld], extent_offset = [%ld]; " 440 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 441 goto out; 442 } 443 rc = 0; 444 out: 445 return rc; 446 } 447 448 /** 449 * ecryptfs_encrypt_page 450 * @page: Page mapped from the eCryptfs inode for the file; contains 451 * decrypted content that needs to be encrypted (to a temporary 452 * page; not in place) and written out to the lower file 453 * 454 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 455 * that eCryptfs pages may straddle the lower pages -- for instance, 456 * if the file was created on a machine with an 8K page size 457 * (resulting in an 8K header), and then the file is copied onto a 458 * host with a 32K page size, then when reading page 0 of the eCryptfs 459 * file, 24K of page 0 of the lower file will be read and decrypted, 460 * and then 8K of page 1 of the lower file will be read and decrypted. 461 * 462 * Returns zero on success; negative on error 463 */ 464 int ecryptfs_encrypt_page(struct page *page) 465 { 466 struct inode *ecryptfs_inode; 467 struct ecryptfs_crypt_stat *crypt_stat; 468 char *enc_extent_virt; 469 struct page *enc_extent_page = NULL; 470 loff_t extent_offset; 471 loff_t lower_offset; 472 int rc = 0; 473 474 ecryptfs_inode = page->mapping->host; 475 crypt_stat = 476 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 477 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 478 enc_extent_page = alloc_page(GFP_USER); 479 if (!enc_extent_page) { 480 rc = -ENOMEM; 481 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 482 "encrypted extent\n"); 483 goto out; 484 } 485 486 for (extent_offset = 0; 487 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 488 extent_offset++) { 489 rc = crypt_extent(crypt_stat, enc_extent_page, page, 490 extent_offset, ENCRYPT); 491 if (rc) { 492 printk(KERN_ERR "%s: Error encrypting extent; " 493 "rc = [%d]\n", __func__, rc); 494 goto out; 495 } 496 } 497 498 lower_offset = lower_offset_for_page(crypt_stat, page); 499 enc_extent_virt = kmap(enc_extent_page); 500 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 501 PAGE_SIZE); 502 kunmap(enc_extent_page); 503 if (rc < 0) { 504 ecryptfs_printk(KERN_ERR, 505 "Error attempting to write lower page; rc = [%d]\n", 506 rc); 507 goto out; 508 } 509 rc = 0; 510 out: 511 if (enc_extent_page) { 512 __free_page(enc_extent_page); 513 } 514 return rc; 515 } 516 517 /** 518 * ecryptfs_decrypt_page 519 * @page: Page mapped from the eCryptfs inode for the file; data read 520 * and decrypted from the lower file will be written into this 521 * page 522 * 523 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 524 * that eCryptfs pages may straddle the lower pages -- for instance, 525 * if the file was created on a machine with an 8K page size 526 * (resulting in an 8K header), and then the file is copied onto a 527 * host with a 32K page size, then when reading page 0 of the eCryptfs 528 * file, 24K of page 0 of the lower file will be read and decrypted, 529 * and then 8K of page 1 of the lower file will be read and decrypted. 530 * 531 * Returns zero on success; negative on error 532 */ 533 int ecryptfs_decrypt_page(struct page *page) 534 { 535 struct inode *ecryptfs_inode; 536 struct ecryptfs_crypt_stat *crypt_stat; 537 char *page_virt; 538 unsigned long extent_offset; 539 loff_t lower_offset; 540 int rc = 0; 541 542 ecryptfs_inode = page->mapping->host; 543 crypt_stat = 544 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 545 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 546 547 lower_offset = lower_offset_for_page(crypt_stat, page); 548 page_virt = kmap(page); 549 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 550 ecryptfs_inode); 551 kunmap(page); 552 if (rc < 0) { 553 ecryptfs_printk(KERN_ERR, 554 "Error attempting to read lower page; rc = [%d]\n", 555 rc); 556 goto out; 557 } 558 559 for (extent_offset = 0; 560 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 561 extent_offset++) { 562 rc = crypt_extent(crypt_stat, page, page, 563 extent_offset, DECRYPT); 564 if (rc) { 565 printk(KERN_ERR "%s: Error encrypting extent; " 566 "rc = [%d]\n", __func__, rc); 567 goto out; 568 } 569 } 570 out: 571 return rc; 572 } 573 574 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 575 576 /** 577 * ecryptfs_init_crypt_ctx 578 * @crypt_stat: Uninitialized crypt stats structure 579 * 580 * Initialize the crypto context. 581 * 582 * TODO: Performance: Keep a cache of initialized cipher contexts; 583 * only init if needed 584 */ 585 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 586 { 587 char *full_alg_name; 588 int rc = -EINVAL; 589 590 ecryptfs_printk(KERN_DEBUG, 591 "Initializing cipher [%s]; strlen = [%d]; " 592 "key_size_bits = [%zd]\n", 593 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 594 crypt_stat->key_size << 3); 595 mutex_lock(&crypt_stat->cs_tfm_mutex); 596 if (crypt_stat->tfm) { 597 rc = 0; 598 goto out_unlock; 599 } 600 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 601 crypt_stat->cipher, "cbc"); 602 if (rc) 603 goto out_unlock; 604 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 605 if (IS_ERR(crypt_stat->tfm)) { 606 rc = PTR_ERR(crypt_stat->tfm); 607 crypt_stat->tfm = NULL; 608 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 609 "Error initializing cipher [%s]\n", 610 full_alg_name); 611 goto out_free; 612 } 613 crypto_skcipher_set_flags(crypt_stat->tfm, 614 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 615 rc = 0; 616 out_free: 617 kfree(full_alg_name); 618 out_unlock: 619 mutex_unlock(&crypt_stat->cs_tfm_mutex); 620 return rc; 621 } 622 623 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 624 { 625 int extent_size_tmp; 626 627 crypt_stat->extent_mask = 0xFFFFFFFF; 628 crypt_stat->extent_shift = 0; 629 if (crypt_stat->extent_size == 0) 630 return; 631 extent_size_tmp = crypt_stat->extent_size; 632 while ((extent_size_tmp & 0x01) == 0) { 633 extent_size_tmp >>= 1; 634 crypt_stat->extent_mask <<= 1; 635 crypt_stat->extent_shift++; 636 } 637 } 638 639 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 640 { 641 /* Default values; may be overwritten as we are parsing the 642 * packets. */ 643 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 644 set_extent_mask_and_shift(crypt_stat); 645 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 646 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 647 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 648 else { 649 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 650 crypt_stat->metadata_size = 651 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 652 else 653 crypt_stat->metadata_size = PAGE_SIZE; 654 } 655 } 656 657 /** 658 * ecryptfs_compute_root_iv 659 * @crypt_stats 660 * 661 * On error, sets the root IV to all 0's. 662 */ 663 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 664 { 665 int rc = 0; 666 char dst[MD5_DIGEST_SIZE]; 667 668 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 669 BUG_ON(crypt_stat->iv_bytes <= 0); 670 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 671 rc = -EINVAL; 672 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 673 "cannot generate root IV\n"); 674 goto out; 675 } 676 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 677 crypt_stat->key_size); 678 if (rc) { 679 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 680 "MD5 while generating root IV\n"); 681 goto out; 682 } 683 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 684 out: 685 if (rc) { 686 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 687 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 688 } 689 return rc; 690 } 691 692 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 693 { 694 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 695 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 696 ecryptfs_compute_root_iv(crypt_stat); 697 if (unlikely(ecryptfs_verbosity > 0)) { 698 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 699 ecryptfs_dump_hex(crypt_stat->key, 700 crypt_stat->key_size); 701 } 702 } 703 704 /** 705 * ecryptfs_copy_mount_wide_flags_to_inode_flags 706 * @crypt_stat: The inode's cryptographic context 707 * @mount_crypt_stat: The mount point's cryptographic context 708 * 709 * This function propagates the mount-wide flags to individual inode 710 * flags. 711 */ 712 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 713 struct ecryptfs_crypt_stat *crypt_stat, 714 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 715 { 716 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 717 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 718 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 719 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 720 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 721 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 722 if (mount_crypt_stat->flags 723 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 724 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 725 else if (mount_crypt_stat->flags 726 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 727 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 728 } 729 } 730 731 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 732 struct ecryptfs_crypt_stat *crypt_stat, 733 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 734 { 735 struct ecryptfs_global_auth_tok *global_auth_tok; 736 int rc = 0; 737 738 mutex_lock(&crypt_stat->keysig_list_mutex); 739 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 740 741 list_for_each_entry(global_auth_tok, 742 &mount_crypt_stat->global_auth_tok_list, 743 mount_crypt_stat_list) { 744 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 745 continue; 746 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 747 if (rc) { 748 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 749 goto out; 750 } 751 } 752 753 out: 754 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 755 mutex_unlock(&crypt_stat->keysig_list_mutex); 756 return rc; 757 } 758 759 /** 760 * ecryptfs_set_default_crypt_stat_vals 761 * @crypt_stat: The inode's cryptographic context 762 * @mount_crypt_stat: The mount point's cryptographic context 763 * 764 * Default values in the event that policy does not override them. 765 */ 766 static void ecryptfs_set_default_crypt_stat_vals( 767 struct ecryptfs_crypt_stat *crypt_stat, 768 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 769 { 770 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 771 mount_crypt_stat); 772 ecryptfs_set_default_sizes(crypt_stat); 773 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 774 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 775 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 776 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 777 crypt_stat->mount_crypt_stat = mount_crypt_stat; 778 } 779 780 /** 781 * ecryptfs_new_file_context 782 * @ecryptfs_inode: The eCryptfs inode 783 * 784 * If the crypto context for the file has not yet been established, 785 * this is where we do that. Establishing a new crypto context 786 * involves the following decisions: 787 * - What cipher to use? 788 * - What set of authentication tokens to use? 789 * Here we just worry about getting enough information into the 790 * authentication tokens so that we know that they are available. 791 * We associate the available authentication tokens with the new file 792 * via the set of signatures in the crypt_stat struct. Later, when 793 * the headers are actually written out, we may again defer to 794 * userspace to perform the encryption of the session key; for the 795 * foreseeable future, this will be the case with public key packets. 796 * 797 * Returns zero on success; non-zero otherwise 798 */ 799 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 800 { 801 struct ecryptfs_crypt_stat *crypt_stat = 802 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 803 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 804 &ecryptfs_superblock_to_private( 805 ecryptfs_inode->i_sb)->mount_crypt_stat; 806 int cipher_name_len; 807 int rc = 0; 808 809 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 810 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 811 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 812 mount_crypt_stat); 813 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 814 mount_crypt_stat); 815 if (rc) { 816 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 817 "to the inode key sigs; rc = [%d]\n", rc); 818 goto out; 819 } 820 cipher_name_len = 821 strlen(mount_crypt_stat->global_default_cipher_name); 822 memcpy(crypt_stat->cipher, 823 mount_crypt_stat->global_default_cipher_name, 824 cipher_name_len); 825 crypt_stat->cipher[cipher_name_len] = '\0'; 826 crypt_stat->key_size = 827 mount_crypt_stat->global_default_cipher_key_size; 828 ecryptfs_generate_new_key(crypt_stat); 829 rc = ecryptfs_init_crypt_ctx(crypt_stat); 830 if (rc) 831 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 832 "context for cipher [%s]: rc = [%d]\n", 833 crypt_stat->cipher, rc); 834 out: 835 return rc; 836 } 837 838 /** 839 * ecryptfs_validate_marker - check for the ecryptfs marker 840 * @data: The data block in which to check 841 * 842 * Returns zero if marker found; -EINVAL if not found 843 */ 844 static int ecryptfs_validate_marker(char *data) 845 { 846 u32 m_1, m_2; 847 848 m_1 = get_unaligned_be32(data); 849 m_2 = get_unaligned_be32(data + 4); 850 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 851 return 0; 852 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 853 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 854 MAGIC_ECRYPTFS_MARKER); 855 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 856 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 857 return -EINVAL; 858 } 859 860 struct ecryptfs_flag_map_elem { 861 u32 file_flag; 862 u32 local_flag; 863 }; 864 865 /* Add support for additional flags by adding elements here. */ 866 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 867 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 868 {0x00000002, ECRYPTFS_ENCRYPTED}, 869 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 870 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 871 }; 872 873 /** 874 * ecryptfs_process_flags 875 * @crypt_stat: The cryptographic context 876 * @page_virt: Source data to be parsed 877 * @bytes_read: Updated with the number of bytes read 878 * 879 * Returns zero on success; non-zero if the flag set is invalid 880 */ 881 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 882 char *page_virt, int *bytes_read) 883 { 884 int rc = 0; 885 int i; 886 u32 flags; 887 888 flags = get_unaligned_be32(page_virt); 889 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 890 if (flags & ecryptfs_flag_map[i].file_flag) { 891 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 892 } else 893 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 894 /* Version is in top 8 bits of the 32-bit flag vector */ 895 crypt_stat->file_version = ((flags >> 24) & 0xFF); 896 (*bytes_read) = 4; 897 return rc; 898 } 899 900 /** 901 * write_ecryptfs_marker 902 * @page_virt: The pointer to in a page to begin writing the marker 903 * @written: Number of bytes written 904 * 905 * Marker = 0x3c81b7f5 906 */ 907 static void write_ecryptfs_marker(char *page_virt, size_t *written) 908 { 909 u32 m_1, m_2; 910 911 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 912 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 913 put_unaligned_be32(m_1, page_virt); 914 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 915 put_unaligned_be32(m_2, page_virt); 916 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 917 } 918 919 void ecryptfs_write_crypt_stat_flags(char *page_virt, 920 struct ecryptfs_crypt_stat *crypt_stat, 921 size_t *written) 922 { 923 u32 flags = 0; 924 int i; 925 926 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 927 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 928 flags |= ecryptfs_flag_map[i].file_flag; 929 /* Version is in top 8 bits of the 32-bit flag vector */ 930 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 931 put_unaligned_be32(flags, page_virt); 932 (*written) = 4; 933 } 934 935 struct ecryptfs_cipher_code_str_map_elem { 936 char cipher_str[16]; 937 u8 cipher_code; 938 }; 939 940 /* Add support for additional ciphers by adding elements here. The 941 * cipher_code is whatever OpenPGP applications use to identify the 942 * ciphers. List in order of probability. */ 943 static struct ecryptfs_cipher_code_str_map_elem 944 ecryptfs_cipher_code_str_map[] = { 945 {"aes",RFC2440_CIPHER_AES_128 }, 946 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 947 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 948 {"cast5", RFC2440_CIPHER_CAST_5}, 949 {"twofish", RFC2440_CIPHER_TWOFISH}, 950 {"cast6", RFC2440_CIPHER_CAST_6}, 951 {"aes", RFC2440_CIPHER_AES_192}, 952 {"aes", RFC2440_CIPHER_AES_256} 953 }; 954 955 /** 956 * ecryptfs_code_for_cipher_string 957 * @cipher_name: The string alias for the cipher 958 * @key_bytes: Length of key in bytes; used for AES code selection 959 * 960 * Returns zero on no match, or the cipher code on match 961 */ 962 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 963 { 964 int i; 965 u8 code = 0; 966 struct ecryptfs_cipher_code_str_map_elem *map = 967 ecryptfs_cipher_code_str_map; 968 969 if (strcmp(cipher_name, "aes") == 0) { 970 switch (key_bytes) { 971 case 16: 972 code = RFC2440_CIPHER_AES_128; 973 break; 974 case 24: 975 code = RFC2440_CIPHER_AES_192; 976 break; 977 case 32: 978 code = RFC2440_CIPHER_AES_256; 979 } 980 } else { 981 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 982 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 983 code = map[i].cipher_code; 984 break; 985 } 986 } 987 return code; 988 } 989 990 /** 991 * ecryptfs_cipher_code_to_string 992 * @str: Destination to write out the cipher name 993 * @cipher_code: The code to convert to cipher name string 994 * 995 * Returns zero on success 996 */ 997 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 998 { 999 int rc = 0; 1000 int i; 1001 1002 str[0] = '\0'; 1003 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1004 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1005 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1006 if (str[0] == '\0') { 1007 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1008 "[%d]\n", cipher_code); 1009 rc = -EINVAL; 1010 } 1011 return rc; 1012 } 1013 1014 int ecryptfs_read_and_validate_header_region(struct inode *inode) 1015 { 1016 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1017 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1018 int rc; 1019 1020 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1021 inode); 1022 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1023 return rc >= 0 ? -EINVAL : rc; 1024 rc = ecryptfs_validate_marker(marker); 1025 if (!rc) 1026 ecryptfs_i_size_init(file_size, inode); 1027 return rc; 1028 } 1029 1030 void 1031 ecryptfs_write_header_metadata(char *virt, 1032 struct ecryptfs_crypt_stat *crypt_stat, 1033 size_t *written) 1034 { 1035 u32 header_extent_size; 1036 u16 num_header_extents_at_front; 1037 1038 header_extent_size = (u32)crypt_stat->extent_size; 1039 num_header_extents_at_front = 1040 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1041 put_unaligned_be32(header_extent_size, virt); 1042 virt += 4; 1043 put_unaligned_be16(num_header_extents_at_front, virt); 1044 (*written) = 6; 1045 } 1046 1047 struct kmem_cache *ecryptfs_header_cache; 1048 1049 /** 1050 * ecryptfs_write_headers_virt 1051 * @page_virt: The virtual address to write the headers to 1052 * @max: The size of memory allocated at page_virt 1053 * @size: Set to the number of bytes written by this function 1054 * @crypt_stat: The cryptographic context 1055 * @ecryptfs_dentry: The eCryptfs dentry 1056 * 1057 * Format version: 1 1058 * 1059 * Header Extent: 1060 * Octets 0-7: Unencrypted file size (big-endian) 1061 * Octets 8-15: eCryptfs special marker 1062 * Octets 16-19: Flags 1063 * Octet 16: File format version number (between 0 and 255) 1064 * Octets 17-18: Reserved 1065 * Octet 19: Bit 1 (lsb): Reserved 1066 * Bit 2: Encrypted? 1067 * Bits 3-8: Reserved 1068 * Octets 20-23: Header extent size (big-endian) 1069 * Octets 24-25: Number of header extents at front of file 1070 * (big-endian) 1071 * Octet 26: Begin RFC 2440 authentication token packet set 1072 * Data Extent 0: 1073 * Lower data (CBC encrypted) 1074 * Data Extent 1: 1075 * Lower data (CBC encrypted) 1076 * ... 1077 * 1078 * Returns zero on success 1079 */ 1080 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1081 size_t *size, 1082 struct ecryptfs_crypt_stat *crypt_stat, 1083 struct dentry *ecryptfs_dentry) 1084 { 1085 int rc; 1086 size_t written; 1087 size_t offset; 1088 1089 offset = ECRYPTFS_FILE_SIZE_BYTES; 1090 write_ecryptfs_marker((page_virt + offset), &written); 1091 offset += written; 1092 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1093 &written); 1094 offset += written; 1095 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1096 &written); 1097 offset += written; 1098 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1099 ecryptfs_dentry, &written, 1100 max - offset); 1101 if (rc) 1102 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1103 "set; rc = [%d]\n", rc); 1104 if (size) { 1105 offset += written; 1106 *size = offset; 1107 } 1108 return rc; 1109 } 1110 1111 static int 1112 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1113 char *virt, size_t virt_len) 1114 { 1115 int rc; 1116 1117 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1118 0, virt_len); 1119 if (rc < 0) 1120 printk(KERN_ERR "%s: Error attempting to write header " 1121 "information to lower file; rc = [%d]\n", __func__, rc); 1122 else 1123 rc = 0; 1124 return rc; 1125 } 1126 1127 static int 1128 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1129 struct inode *ecryptfs_inode, 1130 char *page_virt, size_t size) 1131 { 1132 int rc; 1133 1134 rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode, 1135 ECRYPTFS_XATTR_NAME, page_virt, size, 0); 1136 return rc; 1137 } 1138 1139 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1140 unsigned int order) 1141 { 1142 struct page *page; 1143 1144 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1145 if (page) 1146 return (unsigned long) page_address(page); 1147 return 0; 1148 } 1149 1150 /** 1151 * ecryptfs_write_metadata 1152 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1153 * @ecryptfs_inode: The newly created eCryptfs inode 1154 * 1155 * Write the file headers out. This will likely involve a userspace 1156 * callout, in which the session key is encrypted with one or more 1157 * public keys and/or the passphrase necessary to do the encryption is 1158 * retrieved via a prompt. Exactly what happens at this point should 1159 * be policy-dependent. 1160 * 1161 * Returns zero on success; non-zero on error 1162 */ 1163 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1164 struct inode *ecryptfs_inode) 1165 { 1166 struct ecryptfs_crypt_stat *crypt_stat = 1167 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1168 unsigned int order; 1169 char *virt; 1170 size_t virt_len; 1171 size_t size = 0; 1172 int rc = 0; 1173 1174 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1175 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1176 printk(KERN_ERR "Key is invalid; bailing out\n"); 1177 rc = -EINVAL; 1178 goto out; 1179 } 1180 } else { 1181 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1182 __func__); 1183 rc = -EINVAL; 1184 goto out; 1185 } 1186 virt_len = crypt_stat->metadata_size; 1187 order = get_order(virt_len); 1188 /* Released in this function */ 1189 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1190 if (!virt) { 1191 printk(KERN_ERR "%s: Out of memory\n", __func__); 1192 rc = -ENOMEM; 1193 goto out; 1194 } 1195 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1196 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1197 ecryptfs_dentry); 1198 if (unlikely(rc)) { 1199 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1200 __func__, rc); 1201 goto out_free; 1202 } 1203 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1204 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1205 virt, size); 1206 else 1207 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1208 virt_len); 1209 if (rc) { 1210 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1211 "rc = [%d]\n", __func__, rc); 1212 goto out_free; 1213 } 1214 out_free: 1215 free_pages((unsigned long)virt, order); 1216 out: 1217 return rc; 1218 } 1219 1220 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1221 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1222 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1223 char *virt, int *bytes_read, 1224 int validate_header_size) 1225 { 1226 int rc = 0; 1227 u32 header_extent_size; 1228 u16 num_header_extents_at_front; 1229 1230 header_extent_size = get_unaligned_be32(virt); 1231 virt += sizeof(__be32); 1232 num_header_extents_at_front = get_unaligned_be16(virt); 1233 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1234 * (size_t)header_extent_size)); 1235 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1236 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1237 && (crypt_stat->metadata_size 1238 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1239 rc = -EINVAL; 1240 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1241 crypt_stat->metadata_size); 1242 } 1243 return rc; 1244 } 1245 1246 /** 1247 * set_default_header_data 1248 * @crypt_stat: The cryptographic context 1249 * 1250 * For version 0 file format; this function is only for backwards 1251 * compatibility for files created with the prior versions of 1252 * eCryptfs. 1253 */ 1254 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1255 { 1256 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1257 } 1258 1259 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1260 { 1261 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1262 struct ecryptfs_crypt_stat *crypt_stat; 1263 u64 file_size; 1264 1265 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1266 mount_crypt_stat = 1267 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1268 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1269 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1270 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1271 file_size += crypt_stat->metadata_size; 1272 } else 1273 file_size = get_unaligned_be64(page_virt); 1274 i_size_write(inode, (loff_t)file_size); 1275 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1276 } 1277 1278 /** 1279 * ecryptfs_read_headers_virt 1280 * @page_virt: The virtual address into which to read the headers 1281 * @crypt_stat: The cryptographic context 1282 * @ecryptfs_dentry: The eCryptfs dentry 1283 * @validate_header_size: Whether to validate the header size while reading 1284 * 1285 * Read/parse the header data. The header format is detailed in the 1286 * comment block for the ecryptfs_write_headers_virt() function. 1287 * 1288 * Returns zero on success 1289 */ 1290 static int ecryptfs_read_headers_virt(char *page_virt, 1291 struct ecryptfs_crypt_stat *crypt_stat, 1292 struct dentry *ecryptfs_dentry, 1293 int validate_header_size) 1294 { 1295 int rc = 0; 1296 int offset; 1297 int bytes_read; 1298 1299 ecryptfs_set_default_sizes(crypt_stat); 1300 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1301 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1302 offset = ECRYPTFS_FILE_SIZE_BYTES; 1303 rc = ecryptfs_validate_marker(page_virt + offset); 1304 if (rc) 1305 goto out; 1306 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1307 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1308 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1309 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1310 &bytes_read); 1311 if (rc) { 1312 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1313 goto out; 1314 } 1315 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1316 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1317 "file version [%d] is supported by this " 1318 "version of eCryptfs\n", 1319 crypt_stat->file_version, 1320 ECRYPTFS_SUPPORTED_FILE_VERSION); 1321 rc = -EINVAL; 1322 goto out; 1323 } 1324 offset += bytes_read; 1325 if (crypt_stat->file_version >= 1) { 1326 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1327 &bytes_read, validate_header_size); 1328 if (rc) { 1329 ecryptfs_printk(KERN_WARNING, "Error reading header " 1330 "metadata; rc = [%d]\n", rc); 1331 } 1332 offset += bytes_read; 1333 } else 1334 set_default_header_data(crypt_stat); 1335 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1336 ecryptfs_dentry); 1337 out: 1338 return rc; 1339 } 1340 1341 /** 1342 * ecryptfs_read_xattr_region 1343 * @page_virt: The vitual address into which to read the xattr data 1344 * @ecryptfs_inode: The eCryptfs inode 1345 * 1346 * Attempts to read the crypto metadata from the extended attribute 1347 * region of the lower file. 1348 * 1349 * Returns zero on success; non-zero on error 1350 */ 1351 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1352 { 1353 struct dentry *lower_dentry = 1354 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1355 ssize_t size; 1356 int rc = 0; 1357 1358 size = ecryptfs_getxattr_lower(lower_dentry, 1359 ecryptfs_inode_to_lower(ecryptfs_inode), 1360 ECRYPTFS_XATTR_NAME, 1361 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1362 if (size < 0) { 1363 if (unlikely(ecryptfs_verbosity > 0)) 1364 printk(KERN_INFO "Error attempting to read the [%s] " 1365 "xattr from the lower file; return value = " 1366 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1367 rc = -EINVAL; 1368 goto out; 1369 } 1370 out: 1371 return rc; 1372 } 1373 1374 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1375 struct inode *inode) 1376 { 1377 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1378 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1379 int rc; 1380 1381 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1382 ecryptfs_inode_to_lower(inode), 1383 ECRYPTFS_XATTR_NAME, file_size, 1384 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1385 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1386 return rc >= 0 ? -EINVAL : rc; 1387 rc = ecryptfs_validate_marker(marker); 1388 if (!rc) 1389 ecryptfs_i_size_init(file_size, inode); 1390 return rc; 1391 } 1392 1393 /** 1394 * ecryptfs_read_metadata 1395 * 1396 * Common entry point for reading file metadata. From here, we could 1397 * retrieve the header information from the header region of the file, 1398 * the xattr region of the file, or some other repository that is 1399 * stored separately from the file itself. The current implementation 1400 * supports retrieving the metadata information from the file contents 1401 * and from the xattr region. 1402 * 1403 * Returns zero if valid headers found and parsed; non-zero otherwise 1404 */ 1405 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1406 { 1407 int rc; 1408 char *page_virt; 1409 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1410 struct ecryptfs_crypt_stat *crypt_stat = 1411 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1412 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1413 &ecryptfs_superblock_to_private( 1414 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1415 1416 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1417 mount_crypt_stat); 1418 /* Read the first page from the underlying file */ 1419 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1420 if (!page_virt) { 1421 rc = -ENOMEM; 1422 goto out; 1423 } 1424 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1425 ecryptfs_inode); 1426 if (rc >= 0) 1427 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1428 ecryptfs_dentry, 1429 ECRYPTFS_VALIDATE_HEADER_SIZE); 1430 if (rc) { 1431 /* metadata is not in the file header, so try xattrs */ 1432 memset(page_virt, 0, PAGE_SIZE); 1433 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1434 if (rc) { 1435 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1436 "file header region or xattr region, inode %lu\n", 1437 ecryptfs_inode->i_ino); 1438 rc = -EINVAL; 1439 goto out; 1440 } 1441 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1442 ecryptfs_dentry, 1443 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1444 if (rc) { 1445 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1446 "file xattr region either, inode %lu\n", 1447 ecryptfs_inode->i_ino); 1448 rc = -EINVAL; 1449 } 1450 if (crypt_stat->mount_crypt_stat->flags 1451 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1452 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1453 } else { 1454 printk(KERN_WARNING "Attempt to access file with " 1455 "crypto metadata only in the extended attribute " 1456 "region, but eCryptfs was mounted without " 1457 "xattr support enabled. eCryptfs will not treat " 1458 "this like an encrypted file, inode %lu\n", 1459 ecryptfs_inode->i_ino); 1460 rc = -EINVAL; 1461 } 1462 } 1463 out: 1464 if (page_virt) { 1465 memset(page_virt, 0, PAGE_SIZE); 1466 kmem_cache_free(ecryptfs_header_cache, page_virt); 1467 } 1468 return rc; 1469 } 1470 1471 /** 1472 * ecryptfs_encrypt_filename - encrypt filename 1473 * 1474 * CBC-encrypts the filename. We do not want to encrypt the same 1475 * filename with the same key and IV, which may happen with hard 1476 * links, so we prepend random bits to each filename. 1477 * 1478 * Returns zero on success; non-zero otherwise 1479 */ 1480 static int 1481 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1482 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1483 { 1484 int rc = 0; 1485 1486 filename->encrypted_filename = NULL; 1487 filename->encrypted_filename_size = 0; 1488 if (mount_crypt_stat && (mount_crypt_stat->flags 1489 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1490 size_t packet_size; 1491 size_t remaining_bytes; 1492 1493 rc = ecryptfs_write_tag_70_packet( 1494 NULL, NULL, 1495 &filename->encrypted_filename_size, 1496 mount_crypt_stat, NULL, 1497 filename->filename_size); 1498 if (rc) { 1499 printk(KERN_ERR "%s: Error attempting to get packet " 1500 "size for tag 72; rc = [%d]\n", __func__, 1501 rc); 1502 filename->encrypted_filename_size = 0; 1503 goto out; 1504 } 1505 filename->encrypted_filename = 1506 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1507 if (!filename->encrypted_filename) { 1508 rc = -ENOMEM; 1509 goto out; 1510 } 1511 remaining_bytes = filename->encrypted_filename_size; 1512 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1513 &remaining_bytes, 1514 &packet_size, 1515 mount_crypt_stat, 1516 filename->filename, 1517 filename->filename_size); 1518 if (rc) { 1519 printk(KERN_ERR "%s: Error attempting to generate " 1520 "tag 70 packet; rc = [%d]\n", __func__, 1521 rc); 1522 kfree(filename->encrypted_filename); 1523 filename->encrypted_filename = NULL; 1524 filename->encrypted_filename_size = 0; 1525 goto out; 1526 } 1527 filename->encrypted_filename_size = packet_size; 1528 } else { 1529 printk(KERN_ERR "%s: No support for requested filename " 1530 "encryption method in this release\n", __func__); 1531 rc = -EOPNOTSUPP; 1532 goto out; 1533 } 1534 out: 1535 return rc; 1536 } 1537 1538 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1539 const char *name, size_t name_size) 1540 { 1541 int rc = 0; 1542 1543 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1544 if (!(*copied_name)) { 1545 rc = -ENOMEM; 1546 goto out; 1547 } 1548 memcpy((void *)(*copied_name), (void *)name, name_size); 1549 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1550 * in printing out the 1551 * string in debug 1552 * messages */ 1553 (*copied_name_size) = name_size; 1554 out: 1555 return rc; 1556 } 1557 1558 /** 1559 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1560 * @key_tfm: Crypto context for key material, set by this function 1561 * @cipher_name: Name of the cipher 1562 * @key_size: Size of the key in bytes 1563 * 1564 * Returns zero on success. Any crypto_tfm structs allocated here 1565 * should be released by other functions, such as on a superblock put 1566 * event, regardless of whether this function succeeds for fails. 1567 */ 1568 static int 1569 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1570 char *cipher_name, size_t *key_size) 1571 { 1572 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1573 char *full_alg_name = NULL; 1574 int rc; 1575 1576 *key_tfm = NULL; 1577 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1578 rc = -EINVAL; 1579 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1580 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1581 goto out; 1582 } 1583 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1584 "ecb"); 1585 if (rc) 1586 goto out; 1587 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1588 if (IS_ERR(*key_tfm)) { 1589 rc = PTR_ERR(*key_tfm); 1590 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1591 "[%s]; rc = [%d]\n", full_alg_name, rc); 1592 goto out; 1593 } 1594 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1595 if (*key_size == 0) 1596 *key_size = crypto_skcipher_default_keysize(*key_tfm); 1597 get_random_bytes(dummy_key, *key_size); 1598 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1599 if (rc) { 1600 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1601 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1602 rc); 1603 rc = -EINVAL; 1604 goto out; 1605 } 1606 out: 1607 kfree(full_alg_name); 1608 return rc; 1609 } 1610 1611 struct kmem_cache *ecryptfs_key_tfm_cache; 1612 static struct list_head key_tfm_list; 1613 struct mutex key_tfm_list_mutex; 1614 1615 int __init ecryptfs_init_crypto(void) 1616 { 1617 mutex_init(&key_tfm_list_mutex); 1618 INIT_LIST_HEAD(&key_tfm_list); 1619 return 0; 1620 } 1621 1622 /** 1623 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1624 * 1625 * Called only at module unload time 1626 */ 1627 int ecryptfs_destroy_crypto(void) 1628 { 1629 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1630 1631 mutex_lock(&key_tfm_list_mutex); 1632 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1633 key_tfm_list) { 1634 list_del(&key_tfm->key_tfm_list); 1635 crypto_free_skcipher(key_tfm->key_tfm); 1636 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1637 } 1638 mutex_unlock(&key_tfm_list_mutex); 1639 return 0; 1640 } 1641 1642 int 1643 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1644 size_t key_size) 1645 { 1646 struct ecryptfs_key_tfm *tmp_tfm; 1647 int rc = 0; 1648 1649 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1650 1651 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1652 if (key_tfm) 1653 (*key_tfm) = tmp_tfm; 1654 if (!tmp_tfm) { 1655 rc = -ENOMEM; 1656 goto out; 1657 } 1658 mutex_init(&tmp_tfm->key_tfm_mutex); 1659 strncpy(tmp_tfm->cipher_name, cipher_name, 1660 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1661 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1662 tmp_tfm->key_size = key_size; 1663 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1664 tmp_tfm->cipher_name, 1665 &tmp_tfm->key_size); 1666 if (rc) { 1667 printk(KERN_ERR "Error attempting to initialize key TFM " 1668 "cipher with name = [%s]; rc = [%d]\n", 1669 tmp_tfm->cipher_name, rc); 1670 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1671 if (key_tfm) 1672 (*key_tfm) = NULL; 1673 goto out; 1674 } 1675 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1676 out: 1677 return rc; 1678 } 1679 1680 /** 1681 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1682 * @cipher_name: the name of the cipher to search for 1683 * @key_tfm: set to corresponding tfm if found 1684 * 1685 * Searches for cached key_tfm matching @cipher_name 1686 * Must be called with &key_tfm_list_mutex held 1687 * Returns 1 if found, with @key_tfm set 1688 * Returns 0 if not found, with @key_tfm set to NULL 1689 */ 1690 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1691 { 1692 struct ecryptfs_key_tfm *tmp_key_tfm; 1693 1694 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1695 1696 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1697 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1698 if (key_tfm) 1699 (*key_tfm) = tmp_key_tfm; 1700 return 1; 1701 } 1702 } 1703 if (key_tfm) 1704 (*key_tfm) = NULL; 1705 return 0; 1706 } 1707 1708 /** 1709 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1710 * 1711 * @tfm: set to cached tfm found, or new tfm created 1712 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1713 * @cipher_name: the name of the cipher to search for and/or add 1714 * 1715 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1716 * Searches for cached item first, and creates new if not found. 1717 * Returns 0 on success, non-zero if adding new cipher failed 1718 */ 1719 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1720 struct mutex **tfm_mutex, 1721 char *cipher_name) 1722 { 1723 struct ecryptfs_key_tfm *key_tfm; 1724 int rc = 0; 1725 1726 (*tfm) = NULL; 1727 (*tfm_mutex) = NULL; 1728 1729 mutex_lock(&key_tfm_list_mutex); 1730 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1731 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1732 if (rc) { 1733 printk(KERN_ERR "Error adding new key_tfm to list; " 1734 "rc = [%d]\n", rc); 1735 goto out; 1736 } 1737 } 1738 (*tfm) = key_tfm->key_tfm; 1739 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1740 out: 1741 mutex_unlock(&key_tfm_list_mutex); 1742 return rc; 1743 } 1744 1745 /* 64 characters forming a 6-bit target field */ 1746 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1747 "EFGHIJKLMNOPQRST" 1748 "UVWXYZabcdefghij" 1749 "klmnopqrstuvwxyz"); 1750 1751 /* We could either offset on every reverse map or just pad some 0x00's 1752 * at the front here */ 1753 static const unsigned char filename_rev_map[256] = { 1754 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1755 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1756 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1757 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1758 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1759 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1760 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1761 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1762 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1763 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1764 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1765 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1766 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1767 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1768 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1769 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1770 }; 1771 1772 /** 1773 * ecryptfs_encode_for_filename 1774 * @dst: Destination location for encoded filename 1775 * @dst_size: Size of the encoded filename in bytes 1776 * @src: Source location for the filename to encode 1777 * @src_size: Size of the source in bytes 1778 */ 1779 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1780 unsigned char *src, size_t src_size) 1781 { 1782 size_t num_blocks; 1783 size_t block_num = 0; 1784 size_t dst_offset = 0; 1785 unsigned char last_block[3]; 1786 1787 if (src_size == 0) { 1788 (*dst_size) = 0; 1789 goto out; 1790 } 1791 num_blocks = (src_size / 3); 1792 if ((src_size % 3) == 0) { 1793 memcpy(last_block, (&src[src_size - 3]), 3); 1794 } else { 1795 num_blocks++; 1796 last_block[2] = 0x00; 1797 switch (src_size % 3) { 1798 case 1: 1799 last_block[0] = src[src_size - 1]; 1800 last_block[1] = 0x00; 1801 break; 1802 case 2: 1803 last_block[0] = src[src_size - 2]; 1804 last_block[1] = src[src_size - 1]; 1805 } 1806 } 1807 (*dst_size) = (num_blocks * 4); 1808 if (!dst) 1809 goto out; 1810 while (block_num < num_blocks) { 1811 unsigned char *src_block; 1812 unsigned char dst_block[4]; 1813 1814 if (block_num == (num_blocks - 1)) 1815 src_block = last_block; 1816 else 1817 src_block = &src[block_num * 3]; 1818 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1819 dst_block[1] = (((src_block[0] << 4) & 0x30) 1820 | ((src_block[1] >> 4) & 0x0F)); 1821 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1822 | ((src_block[2] >> 6) & 0x03)); 1823 dst_block[3] = (src_block[2] & 0x3F); 1824 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1825 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1826 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1827 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1828 block_num++; 1829 } 1830 out: 1831 return; 1832 } 1833 1834 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1835 { 1836 /* Not exact; conservatively long. Every block of 4 1837 * encoded characters decodes into a block of 3 1838 * decoded characters. This segment of code provides 1839 * the caller with the maximum amount of allocated 1840 * space that @dst will need to point to in a 1841 * subsequent call. */ 1842 return ((encoded_size + 1) * 3) / 4; 1843 } 1844 1845 /** 1846 * ecryptfs_decode_from_filename 1847 * @dst: If NULL, this function only sets @dst_size and returns. If 1848 * non-NULL, this function decodes the encoded octets in @src 1849 * into the memory that @dst points to. 1850 * @dst_size: Set to the size of the decoded string. 1851 * @src: The encoded set of octets to decode. 1852 * @src_size: The size of the encoded set of octets to decode. 1853 */ 1854 static void 1855 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1856 const unsigned char *src, size_t src_size) 1857 { 1858 u8 current_bit_offset = 0; 1859 size_t src_byte_offset = 0; 1860 size_t dst_byte_offset = 0; 1861 1862 if (!dst) { 1863 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1864 goto out; 1865 } 1866 while (src_byte_offset < src_size) { 1867 unsigned char src_byte = 1868 filename_rev_map[(int)src[src_byte_offset]]; 1869 1870 switch (current_bit_offset) { 1871 case 0: 1872 dst[dst_byte_offset] = (src_byte << 2); 1873 current_bit_offset = 6; 1874 break; 1875 case 6: 1876 dst[dst_byte_offset++] |= (src_byte >> 4); 1877 dst[dst_byte_offset] = ((src_byte & 0xF) 1878 << 4); 1879 current_bit_offset = 4; 1880 break; 1881 case 4: 1882 dst[dst_byte_offset++] |= (src_byte >> 2); 1883 dst[dst_byte_offset] = (src_byte << 6); 1884 current_bit_offset = 2; 1885 break; 1886 case 2: 1887 dst[dst_byte_offset++] |= (src_byte); 1888 current_bit_offset = 0; 1889 break; 1890 } 1891 src_byte_offset++; 1892 } 1893 (*dst_size) = dst_byte_offset; 1894 out: 1895 return; 1896 } 1897 1898 /** 1899 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1900 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1901 * @name: The plaintext name 1902 * @length: The length of the plaintext 1903 * @encoded_name: The encypted name 1904 * 1905 * Encrypts and encodes a filename into something that constitutes a 1906 * valid filename for a filesystem, with printable characters. 1907 * 1908 * We assume that we have a properly initialized crypto context, 1909 * pointed to by crypt_stat->tfm. 1910 * 1911 * Returns zero on success; non-zero on otherwise 1912 */ 1913 int ecryptfs_encrypt_and_encode_filename( 1914 char **encoded_name, 1915 size_t *encoded_name_size, 1916 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1917 const char *name, size_t name_size) 1918 { 1919 size_t encoded_name_no_prefix_size; 1920 int rc = 0; 1921 1922 (*encoded_name) = NULL; 1923 (*encoded_name_size) = 0; 1924 if (mount_crypt_stat && (mount_crypt_stat->flags 1925 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1926 struct ecryptfs_filename *filename; 1927 1928 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1929 if (!filename) { 1930 rc = -ENOMEM; 1931 goto out; 1932 } 1933 filename->filename = (char *)name; 1934 filename->filename_size = name_size; 1935 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1936 if (rc) { 1937 printk(KERN_ERR "%s: Error attempting to encrypt " 1938 "filename; rc = [%d]\n", __func__, rc); 1939 kfree(filename); 1940 goto out; 1941 } 1942 ecryptfs_encode_for_filename( 1943 NULL, &encoded_name_no_prefix_size, 1944 filename->encrypted_filename, 1945 filename->encrypted_filename_size); 1946 if (mount_crypt_stat 1947 && (mount_crypt_stat->flags 1948 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1949 (*encoded_name_size) = 1950 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1951 + encoded_name_no_prefix_size); 1952 else 1953 (*encoded_name_size) = 1954 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1955 + encoded_name_no_prefix_size); 1956 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1957 if (!(*encoded_name)) { 1958 rc = -ENOMEM; 1959 kfree(filename->encrypted_filename); 1960 kfree(filename); 1961 goto out; 1962 } 1963 if (mount_crypt_stat 1964 && (mount_crypt_stat->flags 1965 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1966 memcpy((*encoded_name), 1967 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1968 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1969 ecryptfs_encode_for_filename( 1970 ((*encoded_name) 1971 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1972 &encoded_name_no_prefix_size, 1973 filename->encrypted_filename, 1974 filename->encrypted_filename_size); 1975 (*encoded_name_size) = 1976 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1977 + encoded_name_no_prefix_size); 1978 (*encoded_name)[(*encoded_name_size)] = '\0'; 1979 } else { 1980 rc = -EOPNOTSUPP; 1981 } 1982 if (rc) { 1983 printk(KERN_ERR "%s: Error attempting to encode " 1984 "encrypted filename; rc = [%d]\n", __func__, 1985 rc); 1986 kfree((*encoded_name)); 1987 (*encoded_name) = NULL; 1988 (*encoded_name_size) = 0; 1989 } 1990 kfree(filename->encrypted_filename); 1991 kfree(filename); 1992 } else { 1993 rc = ecryptfs_copy_filename(encoded_name, 1994 encoded_name_size, 1995 name, name_size); 1996 } 1997 out: 1998 return rc; 1999 } 2000 2001 static bool is_dot_dotdot(const char *name, size_t name_size) 2002 { 2003 if (name_size == 1 && name[0] == '.') 2004 return true; 2005 else if (name_size == 2 && name[0] == '.' && name[1] == '.') 2006 return true; 2007 2008 return false; 2009 } 2010 2011 /** 2012 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2013 * @plaintext_name: The plaintext name 2014 * @plaintext_name_size: The plaintext name size 2015 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2016 * @name: The filename in cipher text 2017 * @name_size: The cipher text name size 2018 * 2019 * Decrypts and decodes the filename. 2020 * 2021 * Returns zero on error; non-zero otherwise 2022 */ 2023 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2024 size_t *plaintext_name_size, 2025 struct super_block *sb, 2026 const char *name, size_t name_size) 2027 { 2028 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2029 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 2030 char *decoded_name; 2031 size_t decoded_name_size; 2032 size_t packet_size; 2033 int rc = 0; 2034 2035 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 2036 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 2037 if (is_dot_dotdot(name, name_size)) { 2038 rc = ecryptfs_copy_filename(plaintext_name, 2039 plaintext_name_size, 2040 name, name_size); 2041 goto out; 2042 } 2043 2044 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 2045 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2046 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 2047 rc = -EINVAL; 2048 goto out; 2049 } 2050 2051 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2052 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2053 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2054 name, name_size); 2055 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2056 if (!decoded_name) { 2057 rc = -ENOMEM; 2058 goto out; 2059 } 2060 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2061 name, name_size); 2062 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2063 plaintext_name_size, 2064 &packet_size, 2065 mount_crypt_stat, 2066 decoded_name, 2067 decoded_name_size); 2068 if (rc) { 2069 ecryptfs_printk(KERN_DEBUG, 2070 "%s: Could not parse tag 70 packet from filename\n", 2071 __func__); 2072 goto out_free; 2073 } 2074 } else { 2075 rc = ecryptfs_copy_filename(plaintext_name, 2076 plaintext_name_size, 2077 name, name_size); 2078 goto out; 2079 } 2080 out_free: 2081 kfree(decoded_name); 2082 out: 2083 return rc; 2084 } 2085 2086 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2087 2088 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2089 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2090 { 2091 struct crypto_skcipher *tfm; 2092 struct mutex *tfm_mutex; 2093 size_t cipher_blocksize; 2094 int rc; 2095 2096 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2097 (*namelen) = lower_namelen; 2098 return 0; 2099 } 2100 2101 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2102 mount_crypt_stat->global_default_fn_cipher_name); 2103 if (unlikely(rc)) { 2104 (*namelen) = 0; 2105 return rc; 2106 } 2107 2108 mutex_lock(tfm_mutex); 2109 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2110 mutex_unlock(tfm_mutex); 2111 2112 /* Return an exact amount for the common cases */ 2113 if (lower_namelen == NAME_MAX 2114 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2115 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2116 return 0; 2117 } 2118 2119 /* Return a safe estimate for the uncommon cases */ 2120 (*namelen) = lower_namelen; 2121 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2122 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2123 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2124 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2125 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2126 /* Worst case is that the filename is padded nearly a full block size */ 2127 (*namelen) -= cipher_blocksize - 1; 2128 2129 if ((*namelen) < 0) 2130 (*namelen) = 0; 2131 2132 return 0; 2133 } 2134