1 /****************************************************************************** 2 ******************************************************************************* 3 ** 4 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 5 ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 6 ** 7 ** This copyrighted material is made available to anyone wishing to use, 8 ** modify, copy, or redistribute it subject to the terms and conditions 9 ** of the GNU General Public License v.2. 10 ** 11 ******************************************************************************* 12 ******************************************************************************/ 13 14 #include "dlm_internal.h" 15 #include "lockspace.h" 16 #include "dir.h" 17 #include "config.h" 18 #include "ast.h" 19 #include "memory.h" 20 #include "rcom.h" 21 #include "lock.h" 22 #include "lowcomms.h" 23 #include "member.h" 24 #include "recover.h" 25 26 27 /* 28 * Recovery waiting routines: these functions wait for a particular reply from 29 * a remote node, or for the remote node to report a certain status. They need 30 * to abort if the lockspace is stopped indicating a node has failed (perhaps 31 * the one being waited for). 32 */ 33 34 /* 35 * Wait until given function returns non-zero or lockspace is stopped 36 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes). When another 37 * function thinks it could have completed the waited-on task, they should wake 38 * up ls_wait_general to get an immediate response rather than waiting for the 39 * timeout. This uses a timeout so it can check periodically if the wait 40 * should abort due to node failure (which doesn't cause a wake_up). 41 * This should only be called by the dlm_recoverd thread. 42 */ 43 44 int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls)) 45 { 46 int error = 0; 47 int rv; 48 49 while (1) { 50 rv = wait_event_timeout(ls->ls_wait_general, 51 testfn(ls) || dlm_recovery_stopped(ls), 52 dlm_config.ci_recover_timer * HZ); 53 if (rv) 54 break; 55 } 56 57 if (dlm_recovery_stopped(ls)) { 58 log_debug(ls, "dlm_wait_function aborted"); 59 error = -EINTR; 60 } 61 return error; 62 } 63 64 /* 65 * An efficient way for all nodes to wait for all others to have a certain 66 * status. The node with the lowest nodeid polls all the others for their 67 * status (wait_status_all) and all the others poll the node with the low id 68 * for its accumulated result (wait_status_low). When all nodes have set 69 * status flag X, then status flag X_ALL will be set on the low nodeid. 70 */ 71 72 uint32_t dlm_recover_status(struct dlm_ls *ls) 73 { 74 uint32_t status; 75 spin_lock(&ls->ls_recover_lock); 76 status = ls->ls_recover_status; 77 spin_unlock(&ls->ls_recover_lock); 78 return status; 79 } 80 81 static void _set_recover_status(struct dlm_ls *ls, uint32_t status) 82 { 83 ls->ls_recover_status |= status; 84 } 85 86 void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status) 87 { 88 spin_lock(&ls->ls_recover_lock); 89 _set_recover_status(ls, status); 90 spin_unlock(&ls->ls_recover_lock); 91 } 92 93 static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status, 94 int save_slots) 95 { 96 struct dlm_rcom *rc = ls->ls_recover_buf; 97 struct dlm_member *memb; 98 int error = 0, delay; 99 100 list_for_each_entry(memb, &ls->ls_nodes, list) { 101 delay = 0; 102 for (;;) { 103 if (dlm_recovery_stopped(ls)) { 104 error = -EINTR; 105 goto out; 106 } 107 108 error = dlm_rcom_status(ls, memb->nodeid, 0); 109 if (error) 110 goto out; 111 112 if (save_slots) 113 dlm_slot_save(ls, rc, memb); 114 115 if (rc->rc_result & wait_status) 116 break; 117 if (delay < 1000) 118 delay += 20; 119 msleep(delay); 120 } 121 } 122 out: 123 return error; 124 } 125 126 static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status, 127 uint32_t status_flags) 128 { 129 struct dlm_rcom *rc = ls->ls_recover_buf; 130 int error = 0, delay = 0, nodeid = ls->ls_low_nodeid; 131 132 for (;;) { 133 if (dlm_recovery_stopped(ls)) { 134 error = -EINTR; 135 goto out; 136 } 137 138 error = dlm_rcom_status(ls, nodeid, status_flags); 139 if (error) 140 break; 141 142 if (rc->rc_result & wait_status) 143 break; 144 if (delay < 1000) 145 delay += 20; 146 msleep(delay); 147 } 148 out: 149 return error; 150 } 151 152 static int wait_status(struct dlm_ls *ls, uint32_t status) 153 { 154 uint32_t status_all = status << 1; 155 int error; 156 157 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 158 error = wait_status_all(ls, status, 0); 159 if (!error) 160 dlm_set_recover_status(ls, status_all); 161 } else 162 error = wait_status_low(ls, status_all, 0); 163 164 return error; 165 } 166 167 int dlm_recover_members_wait(struct dlm_ls *ls) 168 { 169 struct dlm_member *memb; 170 struct dlm_slot *slots; 171 int num_slots, slots_size; 172 int error, rv; 173 uint32_t gen; 174 175 list_for_each_entry(memb, &ls->ls_nodes, list) { 176 memb->slot = -1; 177 memb->generation = 0; 178 } 179 180 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 181 error = wait_status_all(ls, DLM_RS_NODES, 1); 182 if (error) 183 goto out; 184 185 /* slots array is sparse, slots_size may be > num_slots */ 186 187 rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen); 188 if (!rv) { 189 spin_lock(&ls->ls_recover_lock); 190 _set_recover_status(ls, DLM_RS_NODES_ALL); 191 ls->ls_num_slots = num_slots; 192 ls->ls_slots_size = slots_size; 193 ls->ls_slots = slots; 194 ls->ls_generation = gen; 195 spin_unlock(&ls->ls_recover_lock); 196 } else { 197 dlm_set_recover_status(ls, DLM_RS_NODES_ALL); 198 } 199 } else { 200 error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS); 201 if (error) 202 goto out; 203 204 dlm_slots_copy_in(ls); 205 } 206 out: 207 return error; 208 } 209 210 int dlm_recover_directory_wait(struct dlm_ls *ls) 211 { 212 return wait_status(ls, DLM_RS_DIR); 213 } 214 215 int dlm_recover_locks_wait(struct dlm_ls *ls) 216 { 217 return wait_status(ls, DLM_RS_LOCKS); 218 } 219 220 int dlm_recover_done_wait(struct dlm_ls *ls) 221 { 222 return wait_status(ls, DLM_RS_DONE); 223 } 224 225 /* 226 * The recover_list contains all the rsb's for which we've requested the new 227 * master nodeid. As replies are returned from the resource directories the 228 * rsb's are removed from the list. When the list is empty we're done. 229 * 230 * The recover_list is later similarly used for all rsb's for which we've sent 231 * new lkb's and need to receive new corresponding lkid's. 232 * 233 * We use the address of the rsb struct as a simple local identifier for the 234 * rsb so we can match an rcom reply with the rsb it was sent for. 235 */ 236 237 static int recover_list_empty(struct dlm_ls *ls) 238 { 239 int empty; 240 241 spin_lock(&ls->ls_recover_list_lock); 242 empty = list_empty(&ls->ls_recover_list); 243 spin_unlock(&ls->ls_recover_list_lock); 244 245 return empty; 246 } 247 248 static void recover_list_add(struct dlm_rsb *r) 249 { 250 struct dlm_ls *ls = r->res_ls; 251 252 spin_lock(&ls->ls_recover_list_lock); 253 if (list_empty(&r->res_recover_list)) { 254 list_add_tail(&r->res_recover_list, &ls->ls_recover_list); 255 ls->ls_recover_list_count++; 256 dlm_hold_rsb(r); 257 } 258 spin_unlock(&ls->ls_recover_list_lock); 259 } 260 261 static void recover_list_del(struct dlm_rsb *r) 262 { 263 struct dlm_ls *ls = r->res_ls; 264 265 spin_lock(&ls->ls_recover_list_lock); 266 list_del_init(&r->res_recover_list); 267 ls->ls_recover_list_count--; 268 spin_unlock(&ls->ls_recover_list_lock); 269 270 dlm_put_rsb(r); 271 } 272 273 static void recover_list_clear(struct dlm_ls *ls) 274 { 275 struct dlm_rsb *r, *s; 276 277 spin_lock(&ls->ls_recover_list_lock); 278 list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) { 279 list_del_init(&r->res_recover_list); 280 r->res_recover_locks_count = 0; 281 dlm_put_rsb(r); 282 ls->ls_recover_list_count--; 283 } 284 285 if (ls->ls_recover_list_count != 0) { 286 log_error(ls, "warning: recover_list_count %d", 287 ls->ls_recover_list_count); 288 ls->ls_recover_list_count = 0; 289 } 290 spin_unlock(&ls->ls_recover_list_lock); 291 } 292 293 static int recover_idr_empty(struct dlm_ls *ls) 294 { 295 int empty = 1; 296 297 spin_lock(&ls->ls_recover_idr_lock); 298 if (ls->ls_recover_list_count) 299 empty = 0; 300 spin_unlock(&ls->ls_recover_idr_lock); 301 302 return empty; 303 } 304 305 static int recover_idr_add(struct dlm_rsb *r) 306 { 307 struct dlm_ls *ls = r->res_ls; 308 int rv, id; 309 310 rv = idr_pre_get(&ls->ls_recover_idr, GFP_NOFS); 311 if (!rv) 312 return -ENOMEM; 313 314 spin_lock(&ls->ls_recover_idr_lock); 315 if (r->res_id) { 316 spin_unlock(&ls->ls_recover_idr_lock); 317 return -1; 318 } 319 rv = idr_get_new_above(&ls->ls_recover_idr, r, 1, &id); 320 if (rv) { 321 spin_unlock(&ls->ls_recover_idr_lock); 322 return rv; 323 } 324 r->res_id = id; 325 ls->ls_recover_list_count++; 326 dlm_hold_rsb(r); 327 spin_unlock(&ls->ls_recover_idr_lock); 328 return 0; 329 } 330 331 static void recover_idr_del(struct dlm_rsb *r) 332 { 333 struct dlm_ls *ls = r->res_ls; 334 335 spin_lock(&ls->ls_recover_idr_lock); 336 idr_remove(&ls->ls_recover_idr, r->res_id); 337 r->res_id = 0; 338 ls->ls_recover_list_count--; 339 spin_unlock(&ls->ls_recover_idr_lock); 340 341 dlm_put_rsb(r); 342 } 343 344 static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id) 345 { 346 struct dlm_rsb *r; 347 348 spin_lock(&ls->ls_recover_idr_lock); 349 r = idr_find(&ls->ls_recover_idr, (int)id); 350 spin_unlock(&ls->ls_recover_idr_lock); 351 return r; 352 } 353 354 static int recover_idr_clear_rsb(int id, void *p, void *data) 355 { 356 struct dlm_ls *ls = data; 357 struct dlm_rsb *r = p; 358 359 r->res_id = 0; 360 r->res_recover_locks_count = 0; 361 ls->ls_recover_list_count--; 362 363 dlm_put_rsb(r); 364 return 0; 365 } 366 367 static void recover_idr_clear(struct dlm_ls *ls) 368 { 369 spin_lock(&ls->ls_recover_idr_lock); 370 idr_for_each(&ls->ls_recover_idr, recover_idr_clear_rsb, ls); 371 idr_remove_all(&ls->ls_recover_idr); 372 373 if (ls->ls_recover_list_count != 0) { 374 log_error(ls, "warning: recover_list_count %d", 375 ls->ls_recover_list_count); 376 ls->ls_recover_list_count = 0; 377 } 378 spin_unlock(&ls->ls_recover_idr_lock); 379 } 380 381 382 /* Master recovery: find new master node for rsb's that were 383 mastered on nodes that have been removed. 384 385 dlm_recover_masters 386 recover_master 387 dlm_send_rcom_lookup -> receive_rcom_lookup 388 dlm_dir_lookup 389 receive_rcom_lookup_reply <- 390 dlm_recover_master_reply 391 set_new_master 392 set_master_lkbs 393 set_lock_master 394 */ 395 396 /* 397 * Set the lock master for all LKBs in a lock queue 398 * If we are the new master of the rsb, we may have received new 399 * MSTCPY locks from other nodes already which we need to ignore 400 * when setting the new nodeid. 401 */ 402 403 static void set_lock_master(struct list_head *queue, int nodeid) 404 { 405 struct dlm_lkb *lkb; 406 407 list_for_each_entry(lkb, queue, lkb_statequeue) { 408 if (!(lkb->lkb_flags & DLM_IFL_MSTCPY)) { 409 lkb->lkb_nodeid = nodeid; 410 lkb->lkb_remid = 0; 411 } 412 } 413 } 414 415 static void set_master_lkbs(struct dlm_rsb *r) 416 { 417 set_lock_master(&r->res_grantqueue, r->res_nodeid); 418 set_lock_master(&r->res_convertqueue, r->res_nodeid); 419 set_lock_master(&r->res_waitqueue, r->res_nodeid); 420 } 421 422 /* 423 * Propagate the new master nodeid to locks 424 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider. 425 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which 426 * rsb's to consider. 427 */ 428 429 static void set_new_master(struct dlm_rsb *r) 430 { 431 set_master_lkbs(r); 432 rsb_set_flag(r, RSB_NEW_MASTER); 433 rsb_set_flag(r, RSB_NEW_MASTER2); 434 } 435 436 /* 437 * We do async lookups on rsb's that need new masters. The rsb's 438 * waiting for a lookup reply are kept on the recover_list. 439 * 440 * Another node recovering the master may have sent us a rcom lookup, 441 * and our dlm_master_lookup() set it as the new master, along with 442 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid 443 * equals our_nodeid below). 444 */ 445 446 static int recover_master(struct dlm_rsb *r, unsigned int *count) 447 { 448 struct dlm_ls *ls = r->res_ls; 449 int our_nodeid, dir_nodeid; 450 int is_removed = 0; 451 int error; 452 453 if (is_master(r)) 454 return 0; 455 456 is_removed = dlm_is_removed(ls, r->res_nodeid); 457 458 if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER)) 459 return 0; 460 461 our_nodeid = dlm_our_nodeid(); 462 dir_nodeid = dlm_dir_nodeid(r); 463 464 if (dir_nodeid == our_nodeid) { 465 if (is_removed) { 466 r->res_master_nodeid = our_nodeid; 467 r->res_nodeid = 0; 468 } 469 470 /* set master of lkbs to ourself when is_removed, or to 471 another new master which we set along with NEW_MASTER 472 in dlm_master_lookup */ 473 set_new_master(r); 474 error = 0; 475 } else { 476 recover_idr_add(r); 477 error = dlm_send_rcom_lookup(r, dir_nodeid); 478 } 479 480 (*count)++; 481 return error; 482 } 483 484 /* 485 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same. 486 * This is necessary because recovery can be started, aborted and restarted, 487 * causing the master nodeid to briefly change during the aborted recovery, and 488 * change back to the original value in the second recovery. The MSTCPY locks 489 * may or may not have been purged during the aborted recovery. Another node 490 * with an outstanding request in waiters list and a request reply saved in the 491 * requestqueue, cannot know whether it should ignore the reply and resend the 492 * request, or accept the reply and complete the request. It must do the 493 * former if the remote node purged MSTCPY locks, and it must do the later if 494 * the remote node did not. This is solved by always purging MSTCPY locks, in 495 * which case, the request reply would always be ignored and the request 496 * resent. 497 */ 498 499 static int recover_master_static(struct dlm_rsb *r, unsigned int *count) 500 { 501 int dir_nodeid = dlm_dir_nodeid(r); 502 int new_master = dir_nodeid; 503 504 if (dir_nodeid == dlm_our_nodeid()) 505 new_master = 0; 506 507 dlm_purge_mstcpy_locks(r); 508 r->res_master_nodeid = dir_nodeid; 509 r->res_nodeid = new_master; 510 set_new_master(r); 511 (*count)++; 512 return 0; 513 } 514 515 /* 516 * Go through local root resources and for each rsb which has a master which 517 * has departed, get the new master nodeid from the directory. The dir will 518 * assign mastery to the first node to look up the new master. That means 519 * we'll discover in this lookup if we're the new master of any rsb's. 520 * 521 * We fire off all the dir lookup requests individually and asynchronously to 522 * the correct dir node. 523 */ 524 525 int dlm_recover_masters(struct dlm_ls *ls) 526 { 527 struct dlm_rsb *r; 528 unsigned int total = 0; 529 unsigned int count = 0; 530 int nodir = dlm_no_directory(ls); 531 int error; 532 533 log_debug(ls, "dlm_recover_masters"); 534 535 down_read(&ls->ls_root_sem); 536 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 537 if (dlm_recovery_stopped(ls)) { 538 up_read(&ls->ls_root_sem); 539 error = -EINTR; 540 goto out; 541 } 542 543 lock_rsb(r); 544 if (nodir) 545 error = recover_master_static(r, &count); 546 else 547 error = recover_master(r, &count); 548 unlock_rsb(r); 549 cond_resched(); 550 total++; 551 552 if (error) { 553 up_read(&ls->ls_root_sem); 554 goto out; 555 } 556 } 557 up_read(&ls->ls_root_sem); 558 559 log_debug(ls, "dlm_recover_masters %u of %u", count, total); 560 561 error = dlm_wait_function(ls, &recover_idr_empty); 562 out: 563 if (error) 564 recover_idr_clear(ls); 565 return error; 566 } 567 568 int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc) 569 { 570 struct dlm_rsb *r; 571 int ret_nodeid, new_master; 572 573 r = recover_idr_find(ls, rc->rc_id); 574 if (!r) { 575 log_error(ls, "dlm_recover_master_reply no id %llx", 576 (unsigned long long)rc->rc_id); 577 goto out; 578 } 579 580 ret_nodeid = rc->rc_result; 581 582 if (ret_nodeid == dlm_our_nodeid()) 583 new_master = 0; 584 else 585 new_master = ret_nodeid; 586 587 lock_rsb(r); 588 r->res_master_nodeid = ret_nodeid; 589 r->res_nodeid = new_master; 590 set_new_master(r); 591 unlock_rsb(r); 592 recover_idr_del(r); 593 594 if (recover_idr_empty(ls)) 595 wake_up(&ls->ls_wait_general); 596 out: 597 return 0; 598 } 599 600 601 /* Lock recovery: rebuild the process-copy locks we hold on a 602 remastered rsb on the new rsb master. 603 604 dlm_recover_locks 605 recover_locks 606 recover_locks_queue 607 dlm_send_rcom_lock -> receive_rcom_lock 608 dlm_recover_master_copy 609 receive_rcom_lock_reply <- 610 dlm_recover_process_copy 611 */ 612 613 614 /* 615 * keep a count of the number of lkb's we send to the new master; when we get 616 * an equal number of replies then recovery for the rsb is done 617 */ 618 619 static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head) 620 { 621 struct dlm_lkb *lkb; 622 int error = 0; 623 624 list_for_each_entry(lkb, head, lkb_statequeue) { 625 error = dlm_send_rcom_lock(r, lkb); 626 if (error) 627 break; 628 r->res_recover_locks_count++; 629 } 630 631 return error; 632 } 633 634 static int recover_locks(struct dlm_rsb *r) 635 { 636 int error = 0; 637 638 lock_rsb(r); 639 640 DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r);); 641 642 error = recover_locks_queue(r, &r->res_grantqueue); 643 if (error) 644 goto out; 645 error = recover_locks_queue(r, &r->res_convertqueue); 646 if (error) 647 goto out; 648 error = recover_locks_queue(r, &r->res_waitqueue); 649 if (error) 650 goto out; 651 652 if (r->res_recover_locks_count) 653 recover_list_add(r); 654 else 655 rsb_clear_flag(r, RSB_NEW_MASTER); 656 out: 657 unlock_rsb(r); 658 return error; 659 } 660 661 int dlm_recover_locks(struct dlm_ls *ls) 662 { 663 struct dlm_rsb *r; 664 int error, count = 0; 665 666 down_read(&ls->ls_root_sem); 667 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 668 if (is_master(r)) { 669 rsb_clear_flag(r, RSB_NEW_MASTER); 670 continue; 671 } 672 673 if (!rsb_flag(r, RSB_NEW_MASTER)) 674 continue; 675 676 if (dlm_recovery_stopped(ls)) { 677 error = -EINTR; 678 up_read(&ls->ls_root_sem); 679 goto out; 680 } 681 682 error = recover_locks(r); 683 if (error) { 684 up_read(&ls->ls_root_sem); 685 goto out; 686 } 687 688 count += r->res_recover_locks_count; 689 } 690 up_read(&ls->ls_root_sem); 691 692 log_debug(ls, "dlm_recover_locks %d out", count); 693 694 error = dlm_wait_function(ls, &recover_list_empty); 695 out: 696 if (error) 697 recover_list_clear(ls); 698 return error; 699 } 700 701 void dlm_recovered_lock(struct dlm_rsb *r) 702 { 703 DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r);); 704 705 r->res_recover_locks_count--; 706 if (!r->res_recover_locks_count) { 707 rsb_clear_flag(r, RSB_NEW_MASTER); 708 recover_list_del(r); 709 } 710 711 if (recover_list_empty(r->res_ls)) 712 wake_up(&r->res_ls->ls_wait_general); 713 } 714 715 /* 716 * The lvb needs to be recovered on all master rsb's. This includes setting 717 * the VALNOTVALID flag if necessary, and determining the correct lvb contents 718 * based on the lvb's of the locks held on the rsb. 719 * 720 * RSB_VALNOTVALID is set in two cases: 721 * 722 * 1. we are master, but not new, and we purged an EX/PW lock held by a 723 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL) 724 * 725 * 2. we are a new master, and there are only NL/CR locks left. 726 * (We could probably improve this by only invaliding in this way when 727 * the previous master left uncleanly. VMS docs mention that.) 728 * 729 * The LVB contents are only considered for changing when this is a new master 730 * of the rsb (NEW_MASTER2). Then, the rsb's lvb is taken from any lkb with 731 * mode > CR. If no lkb's exist with mode above CR, the lvb contents are taken 732 * from the lkb with the largest lvb sequence number. 733 */ 734 735 static void recover_lvb(struct dlm_rsb *r) 736 { 737 struct dlm_lkb *lkb, *high_lkb = NULL; 738 uint32_t high_seq = 0; 739 int lock_lvb_exists = 0; 740 int big_lock_exists = 0; 741 int lvblen = r->res_ls->ls_lvblen; 742 743 if (!rsb_flag(r, RSB_NEW_MASTER2) && 744 rsb_flag(r, RSB_RECOVER_LVB_INVAL)) { 745 /* case 1 above */ 746 rsb_set_flag(r, RSB_VALNOTVALID); 747 return; 748 } 749 750 if (!rsb_flag(r, RSB_NEW_MASTER2)) 751 return; 752 753 /* we are the new master, so figure out if VALNOTVALID should 754 be set, and set the rsb lvb from the best lkb available. */ 755 756 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { 757 if (!(lkb->lkb_exflags & DLM_LKF_VALBLK)) 758 continue; 759 760 lock_lvb_exists = 1; 761 762 if (lkb->lkb_grmode > DLM_LOCK_CR) { 763 big_lock_exists = 1; 764 goto setflag; 765 } 766 767 if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) { 768 high_lkb = lkb; 769 high_seq = lkb->lkb_lvbseq; 770 } 771 } 772 773 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { 774 if (!(lkb->lkb_exflags & DLM_LKF_VALBLK)) 775 continue; 776 777 lock_lvb_exists = 1; 778 779 if (lkb->lkb_grmode > DLM_LOCK_CR) { 780 big_lock_exists = 1; 781 goto setflag; 782 } 783 784 if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) { 785 high_lkb = lkb; 786 high_seq = lkb->lkb_lvbseq; 787 } 788 } 789 790 setflag: 791 if (!lock_lvb_exists) 792 goto out; 793 794 /* lvb is invalidated if only NL/CR locks remain */ 795 if (!big_lock_exists) 796 rsb_set_flag(r, RSB_VALNOTVALID); 797 798 if (!r->res_lvbptr) { 799 r->res_lvbptr = dlm_allocate_lvb(r->res_ls); 800 if (!r->res_lvbptr) 801 goto out; 802 } 803 804 if (big_lock_exists) { 805 r->res_lvbseq = lkb->lkb_lvbseq; 806 memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen); 807 } else if (high_lkb) { 808 r->res_lvbseq = high_lkb->lkb_lvbseq; 809 memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen); 810 } else { 811 r->res_lvbseq = 0; 812 memset(r->res_lvbptr, 0, lvblen); 813 } 814 out: 815 return; 816 } 817 818 /* All master rsb's flagged RECOVER_CONVERT need to be looked at. The locks 819 converting PR->CW or CW->PR need to have their lkb_grmode set. */ 820 821 static void recover_conversion(struct dlm_rsb *r) 822 { 823 struct dlm_ls *ls = r->res_ls; 824 struct dlm_lkb *lkb; 825 int grmode = -1; 826 827 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { 828 if (lkb->lkb_grmode == DLM_LOCK_PR || 829 lkb->lkb_grmode == DLM_LOCK_CW) { 830 grmode = lkb->lkb_grmode; 831 break; 832 } 833 } 834 835 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { 836 if (lkb->lkb_grmode != DLM_LOCK_IV) 837 continue; 838 if (grmode == -1) { 839 log_debug(ls, "recover_conversion %x set gr to rq %d", 840 lkb->lkb_id, lkb->lkb_rqmode); 841 lkb->lkb_grmode = lkb->lkb_rqmode; 842 } else { 843 log_debug(ls, "recover_conversion %x set gr %d", 844 lkb->lkb_id, grmode); 845 lkb->lkb_grmode = grmode; 846 } 847 } 848 } 849 850 /* We've become the new master for this rsb and waiting/converting locks may 851 need to be granted in dlm_recover_grant() due to locks that may have 852 existed from a removed node. */ 853 854 static void recover_grant(struct dlm_rsb *r) 855 { 856 if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue)) 857 rsb_set_flag(r, RSB_RECOVER_GRANT); 858 } 859 860 void dlm_recover_rsbs(struct dlm_ls *ls) 861 { 862 struct dlm_rsb *r; 863 unsigned int count = 0; 864 865 down_read(&ls->ls_root_sem); 866 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 867 lock_rsb(r); 868 if (is_master(r)) { 869 if (rsb_flag(r, RSB_RECOVER_CONVERT)) 870 recover_conversion(r); 871 872 /* recover lvb before granting locks so the updated 873 lvb/VALNOTVALID is presented in the completion */ 874 recover_lvb(r); 875 876 if (rsb_flag(r, RSB_NEW_MASTER2)) 877 recover_grant(r); 878 count++; 879 } else { 880 rsb_clear_flag(r, RSB_VALNOTVALID); 881 } 882 rsb_clear_flag(r, RSB_RECOVER_CONVERT); 883 rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL); 884 rsb_clear_flag(r, RSB_NEW_MASTER2); 885 unlock_rsb(r); 886 } 887 up_read(&ls->ls_root_sem); 888 889 if (count) 890 log_debug(ls, "dlm_recover_rsbs %d done", count); 891 } 892 893 /* Create a single list of all root rsb's to be used during recovery */ 894 895 int dlm_create_root_list(struct dlm_ls *ls) 896 { 897 struct rb_node *n; 898 struct dlm_rsb *r; 899 int i, error = 0; 900 901 down_write(&ls->ls_root_sem); 902 if (!list_empty(&ls->ls_root_list)) { 903 log_error(ls, "root list not empty"); 904 error = -EINVAL; 905 goto out; 906 } 907 908 for (i = 0; i < ls->ls_rsbtbl_size; i++) { 909 spin_lock(&ls->ls_rsbtbl[i].lock); 910 for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) { 911 r = rb_entry(n, struct dlm_rsb, res_hashnode); 912 list_add(&r->res_root_list, &ls->ls_root_list); 913 dlm_hold_rsb(r); 914 } 915 916 if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss)) 917 log_error(ls, "dlm_create_root_list toss not empty"); 918 spin_unlock(&ls->ls_rsbtbl[i].lock); 919 } 920 out: 921 up_write(&ls->ls_root_sem); 922 return error; 923 } 924 925 void dlm_release_root_list(struct dlm_ls *ls) 926 { 927 struct dlm_rsb *r, *safe; 928 929 down_write(&ls->ls_root_sem); 930 list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) { 931 list_del_init(&r->res_root_list); 932 dlm_put_rsb(r); 933 } 934 up_write(&ls->ls_root_sem); 935 } 936 937 void dlm_clear_toss(struct dlm_ls *ls) 938 { 939 struct rb_node *n, *next; 940 struct dlm_rsb *r; 941 unsigned int count = 0; 942 int i; 943 944 for (i = 0; i < ls->ls_rsbtbl_size; i++) { 945 spin_lock(&ls->ls_rsbtbl[i].lock); 946 for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) { 947 next = rb_next(n); 948 r = rb_entry(n, struct dlm_rsb, res_hashnode); 949 rb_erase(n, &ls->ls_rsbtbl[i].toss); 950 dlm_free_rsb(r); 951 count++; 952 } 953 spin_unlock(&ls->ls_rsbtbl[i].lock); 954 } 955 956 if (count) 957 log_debug(ls, "dlm_clear_toss %u done", count); 958 } 959 960