1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 #include "dlm_internal.h" 13 #include "lockspace.h" 14 #include "dir.h" 15 #include "config.h" 16 #include "ast.h" 17 #include "memory.h" 18 #include "rcom.h" 19 #include "lock.h" 20 #include "lowcomms.h" 21 #include "member.h" 22 #include "recover.h" 23 24 25 /* 26 * Recovery waiting routines: these functions wait for a particular reply from 27 * a remote node, or for the remote node to report a certain status. They need 28 * to abort if the lockspace is stopped indicating a node has failed (perhaps 29 * the one being waited for). 30 */ 31 32 /* 33 * Wait until given function returns non-zero or lockspace is stopped 34 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes). When another 35 * function thinks it could have completed the waited-on task, they should wake 36 * up ls_wait_general to get an immediate response rather than waiting for the 37 * timeout. This uses a timeout so it can check periodically if the wait 38 * should abort due to node failure (which doesn't cause a wake_up). 39 * This should only be called by the dlm_recoverd thread. 40 */ 41 42 int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls)) 43 { 44 int error = 0; 45 int rv; 46 47 while (1) { 48 rv = wait_event_timeout(ls->ls_wait_general, 49 testfn(ls) || dlm_recovery_stopped(ls), 50 dlm_config.ci_recover_timer * HZ); 51 if (rv) 52 break; 53 if (test_bit(LSFL_RCOM_WAIT, &ls->ls_flags)) { 54 log_debug(ls, "dlm_wait_function timed out"); 55 return -ETIMEDOUT; 56 } 57 } 58 59 if (dlm_recovery_stopped(ls)) { 60 log_debug(ls, "dlm_wait_function aborted"); 61 error = -EINTR; 62 } 63 return error; 64 } 65 66 /* 67 * An efficient way for all nodes to wait for all others to have a certain 68 * status. The node with the lowest nodeid polls all the others for their 69 * status (wait_status_all) and all the others poll the node with the low id 70 * for its accumulated result (wait_status_low). When all nodes have set 71 * status flag X, then status flag X_ALL will be set on the low nodeid. 72 */ 73 74 uint32_t dlm_recover_status(struct dlm_ls *ls) 75 { 76 uint32_t status; 77 spin_lock(&ls->ls_recover_lock); 78 status = ls->ls_recover_status; 79 spin_unlock(&ls->ls_recover_lock); 80 return status; 81 } 82 83 static void _set_recover_status(struct dlm_ls *ls, uint32_t status) 84 { 85 ls->ls_recover_status |= status; 86 } 87 88 void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status) 89 { 90 spin_lock(&ls->ls_recover_lock); 91 _set_recover_status(ls, status); 92 spin_unlock(&ls->ls_recover_lock); 93 } 94 95 static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status, 96 int save_slots) 97 { 98 struct dlm_rcom *rc = ls->ls_recover_buf; 99 struct dlm_member *memb; 100 int error = 0, delay; 101 102 list_for_each_entry(memb, &ls->ls_nodes, list) { 103 delay = 0; 104 for (;;) { 105 if (dlm_recovery_stopped(ls)) { 106 error = -EINTR; 107 goto out; 108 } 109 110 error = dlm_rcom_status(ls, memb->nodeid, 0); 111 if (error) 112 goto out; 113 114 if (save_slots) 115 dlm_slot_save(ls, rc, memb); 116 117 if (le32_to_cpu(rc->rc_result) & wait_status) 118 break; 119 if (delay < 1000) 120 delay += 20; 121 msleep(delay); 122 } 123 } 124 out: 125 return error; 126 } 127 128 static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status, 129 uint32_t status_flags) 130 { 131 struct dlm_rcom *rc = ls->ls_recover_buf; 132 int error = 0, delay = 0, nodeid = ls->ls_low_nodeid; 133 134 for (;;) { 135 if (dlm_recovery_stopped(ls)) { 136 error = -EINTR; 137 goto out; 138 } 139 140 error = dlm_rcom_status(ls, nodeid, status_flags); 141 if (error) 142 break; 143 144 if (le32_to_cpu(rc->rc_result) & wait_status) 145 break; 146 if (delay < 1000) 147 delay += 20; 148 msleep(delay); 149 } 150 out: 151 return error; 152 } 153 154 static int wait_status(struct dlm_ls *ls, uint32_t status) 155 { 156 uint32_t status_all = status << 1; 157 int error; 158 159 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 160 error = wait_status_all(ls, status, 0); 161 if (!error) 162 dlm_set_recover_status(ls, status_all); 163 } else 164 error = wait_status_low(ls, status_all, 0); 165 166 return error; 167 } 168 169 int dlm_recover_members_wait(struct dlm_ls *ls) 170 { 171 struct dlm_member *memb; 172 struct dlm_slot *slots; 173 int num_slots, slots_size; 174 int error, rv; 175 uint32_t gen; 176 177 list_for_each_entry(memb, &ls->ls_nodes, list) { 178 memb->slot = -1; 179 memb->generation = 0; 180 } 181 182 if (ls->ls_low_nodeid == dlm_our_nodeid()) { 183 error = wait_status_all(ls, DLM_RS_NODES, 1); 184 if (error) 185 goto out; 186 187 /* slots array is sparse, slots_size may be > num_slots */ 188 189 rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen); 190 if (!rv) { 191 spin_lock(&ls->ls_recover_lock); 192 _set_recover_status(ls, DLM_RS_NODES_ALL); 193 ls->ls_num_slots = num_slots; 194 ls->ls_slots_size = slots_size; 195 ls->ls_slots = slots; 196 ls->ls_generation = gen; 197 spin_unlock(&ls->ls_recover_lock); 198 } else { 199 dlm_set_recover_status(ls, DLM_RS_NODES_ALL); 200 } 201 } else { 202 error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS); 203 if (error) 204 goto out; 205 206 dlm_slots_copy_in(ls); 207 } 208 out: 209 return error; 210 } 211 212 int dlm_recover_directory_wait(struct dlm_ls *ls) 213 { 214 return wait_status(ls, DLM_RS_DIR); 215 } 216 217 int dlm_recover_locks_wait(struct dlm_ls *ls) 218 { 219 return wait_status(ls, DLM_RS_LOCKS); 220 } 221 222 int dlm_recover_done_wait(struct dlm_ls *ls) 223 { 224 return wait_status(ls, DLM_RS_DONE); 225 } 226 227 /* 228 * The recover_list contains all the rsb's for which we've requested the new 229 * master nodeid. As replies are returned from the resource directories the 230 * rsb's are removed from the list. When the list is empty we're done. 231 * 232 * The recover_list is later similarly used for all rsb's for which we've sent 233 * new lkb's and need to receive new corresponding lkid's. 234 * 235 * We use the address of the rsb struct as a simple local identifier for the 236 * rsb so we can match an rcom reply with the rsb it was sent for. 237 */ 238 239 static int recover_list_empty(struct dlm_ls *ls) 240 { 241 int empty; 242 243 spin_lock(&ls->ls_recover_list_lock); 244 empty = list_empty(&ls->ls_recover_list); 245 spin_unlock(&ls->ls_recover_list_lock); 246 247 return empty; 248 } 249 250 static void recover_list_add(struct dlm_rsb *r) 251 { 252 struct dlm_ls *ls = r->res_ls; 253 254 spin_lock(&ls->ls_recover_list_lock); 255 if (list_empty(&r->res_recover_list)) { 256 list_add_tail(&r->res_recover_list, &ls->ls_recover_list); 257 ls->ls_recover_list_count++; 258 dlm_hold_rsb(r); 259 } 260 spin_unlock(&ls->ls_recover_list_lock); 261 } 262 263 static void recover_list_del(struct dlm_rsb *r) 264 { 265 struct dlm_ls *ls = r->res_ls; 266 267 spin_lock(&ls->ls_recover_list_lock); 268 list_del_init(&r->res_recover_list); 269 ls->ls_recover_list_count--; 270 spin_unlock(&ls->ls_recover_list_lock); 271 272 dlm_put_rsb(r); 273 } 274 275 static void recover_list_clear(struct dlm_ls *ls) 276 { 277 struct dlm_rsb *r, *s; 278 279 spin_lock(&ls->ls_recover_list_lock); 280 list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) { 281 list_del_init(&r->res_recover_list); 282 r->res_recover_locks_count = 0; 283 dlm_put_rsb(r); 284 ls->ls_recover_list_count--; 285 } 286 287 if (ls->ls_recover_list_count != 0) { 288 log_error(ls, "warning: recover_list_count %d", 289 ls->ls_recover_list_count); 290 ls->ls_recover_list_count = 0; 291 } 292 spin_unlock(&ls->ls_recover_list_lock); 293 } 294 295 static int recover_idr_empty(struct dlm_ls *ls) 296 { 297 int empty = 1; 298 299 spin_lock(&ls->ls_recover_idr_lock); 300 if (ls->ls_recover_list_count) 301 empty = 0; 302 spin_unlock(&ls->ls_recover_idr_lock); 303 304 return empty; 305 } 306 307 static int recover_idr_add(struct dlm_rsb *r) 308 { 309 struct dlm_ls *ls = r->res_ls; 310 int rv; 311 312 idr_preload(GFP_NOFS); 313 spin_lock(&ls->ls_recover_idr_lock); 314 if (r->res_id) { 315 rv = -1; 316 goto out_unlock; 317 } 318 rv = idr_alloc(&ls->ls_recover_idr, r, 1, 0, GFP_NOWAIT); 319 if (rv < 0) 320 goto out_unlock; 321 322 r->res_id = rv; 323 ls->ls_recover_list_count++; 324 dlm_hold_rsb(r); 325 rv = 0; 326 out_unlock: 327 spin_unlock(&ls->ls_recover_idr_lock); 328 idr_preload_end(); 329 return rv; 330 } 331 332 static void recover_idr_del(struct dlm_rsb *r) 333 { 334 struct dlm_ls *ls = r->res_ls; 335 336 spin_lock(&ls->ls_recover_idr_lock); 337 idr_remove(&ls->ls_recover_idr, r->res_id); 338 r->res_id = 0; 339 ls->ls_recover_list_count--; 340 spin_unlock(&ls->ls_recover_idr_lock); 341 342 dlm_put_rsb(r); 343 } 344 345 static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id) 346 { 347 struct dlm_rsb *r; 348 349 spin_lock(&ls->ls_recover_idr_lock); 350 r = idr_find(&ls->ls_recover_idr, (int)id); 351 spin_unlock(&ls->ls_recover_idr_lock); 352 return r; 353 } 354 355 static void recover_idr_clear(struct dlm_ls *ls) 356 { 357 struct dlm_rsb *r; 358 int id; 359 360 spin_lock(&ls->ls_recover_idr_lock); 361 362 idr_for_each_entry(&ls->ls_recover_idr, r, id) { 363 idr_remove(&ls->ls_recover_idr, id); 364 r->res_id = 0; 365 r->res_recover_locks_count = 0; 366 ls->ls_recover_list_count--; 367 368 dlm_put_rsb(r); 369 } 370 371 if (ls->ls_recover_list_count != 0) { 372 log_error(ls, "warning: recover_list_count %d", 373 ls->ls_recover_list_count); 374 ls->ls_recover_list_count = 0; 375 } 376 spin_unlock(&ls->ls_recover_idr_lock); 377 } 378 379 380 /* Master recovery: find new master node for rsb's that were 381 mastered on nodes that have been removed. 382 383 dlm_recover_masters 384 recover_master 385 dlm_send_rcom_lookup -> receive_rcom_lookup 386 dlm_dir_lookup 387 receive_rcom_lookup_reply <- 388 dlm_recover_master_reply 389 set_new_master 390 set_master_lkbs 391 set_lock_master 392 */ 393 394 /* 395 * Set the lock master for all LKBs in a lock queue 396 * If we are the new master of the rsb, we may have received new 397 * MSTCPY locks from other nodes already which we need to ignore 398 * when setting the new nodeid. 399 */ 400 401 static void set_lock_master(struct list_head *queue, int nodeid) 402 { 403 struct dlm_lkb *lkb; 404 405 list_for_each_entry(lkb, queue, lkb_statequeue) { 406 if (!test_bit(DLM_IFL_MSTCPY_BIT, &lkb->lkb_iflags)) { 407 lkb->lkb_nodeid = nodeid; 408 lkb->lkb_remid = 0; 409 } 410 } 411 } 412 413 static void set_master_lkbs(struct dlm_rsb *r) 414 { 415 set_lock_master(&r->res_grantqueue, r->res_nodeid); 416 set_lock_master(&r->res_convertqueue, r->res_nodeid); 417 set_lock_master(&r->res_waitqueue, r->res_nodeid); 418 } 419 420 /* 421 * Propagate the new master nodeid to locks 422 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider. 423 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which 424 * rsb's to consider. 425 */ 426 427 static void set_new_master(struct dlm_rsb *r) 428 { 429 set_master_lkbs(r); 430 rsb_set_flag(r, RSB_NEW_MASTER); 431 rsb_set_flag(r, RSB_NEW_MASTER2); 432 } 433 434 /* 435 * We do async lookups on rsb's that need new masters. The rsb's 436 * waiting for a lookup reply are kept on the recover_list. 437 * 438 * Another node recovering the master may have sent us a rcom lookup, 439 * and our dlm_master_lookup() set it as the new master, along with 440 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid 441 * equals our_nodeid below). 442 */ 443 444 static int recover_master(struct dlm_rsb *r, unsigned int *count) 445 { 446 struct dlm_ls *ls = r->res_ls; 447 int our_nodeid, dir_nodeid; 448 int is_removed = 0; 449 int error; 450 451 if (is_master(r)) 452 return 0; 453 454 is_removed = dlm_is_removed(ls, r->res_nodeid); 455 456 if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER)) 457 return 0; 458 459 our_nodeid = dlm_our_nodeid(); 460 dir_nodeid = dlm_dir_nodeid(r); 461 462 if (dir_nodeid == our_nodeid) { 463 if (is_removed) { 464 r->res_master_nodeid = our_nodeid; 465 r->res_nodeid = 0; 466 } 467 468 /* set master of lkbs to ourself when is_removed, or to 469 another new master which we set along with NEW_MASTER 470 in dlm_master_lookup */ 471 set_new_master(r); 472 error = 0; 473 } else { 474 recover_idr_add(r); 475 error = dlm_send_rcom_lookup(r, dir_nodeid); 476 } 477 478 (*count)++; 479 return error; 480 } 481 482 /* 483 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same. 484 * This is necessary because recovery can be started, aborted and restarted, 485 * causing the master nodeid to briefly change during the aborted recovery, and 486 * change back to the original value in the second recovery. The MSTCPY locks 487 * may or may not have been purged during the aborted recovery. Another node 488 * with an outstanding request in waiters list and a request reply saved in the 489 * requestqueue, cannot know whether it should ignore the reply and resend the 490 * request, or accept the reply and complete the request. It must do the 491 * former if the remote node purged MSTCPY locks, and it must do the later if 492 * the remote node did not. This is solved by always purging MSTCPY locks, in 493 * which case, the request reply would always be ignored and the request 494 * resent. 495 */ 496 497 static int recover_master_static(struct dlm_rsb *r, unsigned int *count) 498 { 499 int dir_nodeid = dlm_dir_nodeid(r); 500 int new_master = dir_nodeid; 501 502 if (dir_nodeid == dlm_our_nodeid()) 503 new_master = 0; 504 505 dlm_purge_mstcpy_locks(r); 506 r->res_master_nodeid = dir_nodeid; 507 r->res_nodeid = new_master; 508 set_new_master(r); 509 (*count)++; 510 return 0; 511 } 512 513 /* 514 * Go through local root resources and for each rsb which has a master which 515 * has departed, get the new master nodeid from the directory. The dir will 516 * assign mastery to the first node to look up the new master. That means 517 * we'll discover in this lookup if we're the new master of any rsb's. 518 * 519 * We fire off all the dir lookup requests individually and asynchronously to 520 * the correct dir node. 521 */ 522 523 int dlm_recover_masters(struct dlm_ls *ls) 524 { 525 struct dlm_rsb *r; 526 unsigned int total = 0; 527 unsigned int count = 0; 528 int nodir = dlm_no_directory(ls); 529 int error; 530 531 log_rinfo(ls, "dlm_recover_masters"); 532 533 down_read(&ls->ls_root_sem); 534 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 535 if (dlm_recovery_stopped(ls)) { 536 up_read(&ls->ls_root_sem); 537 error = -EINTR; 538 goto out; 539 } 540 541 lock_rsb(r); 542 if (nodir) 543 error = recover_master_static(r, &count); 544 else 545 error = recover_master(r, &count); 546 unlock_rsb(r); 547 cond_resched(); 548 total++; 549 550 if (error) { 551 up_read(&ls->ls_root_sem); 552 goto out; 553 } 554 } 555 up_read(&ls->ls_root_sem); 556 557 log_rinfo(ls, "dlm_recover_masters %u of %u", count, total); 558 559 error = dlm_wait_function(ls, &recover_idr_empty); 560 out: 561 if (error) 562 recover_idr_clear(ls); 563 return error; 564 } 565 566 int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc) 567 { 568 struct dlm_rsb *r; 569 int ret_nodeid, new_master; 570 571 r = recover_idr_find(ls, le64_to_cpu(rc->rc_id)); 572 if (!r) { 573 log_error(ls, "dlm_recover_master_reply no id %llx", 574 (unsigned long long)le64_to_cpu(rc->rc_id)); 575 goto out; 576 } 577 578 ret_nodeid = le32_to_cpu(rc->rc_result); 579 580 if (ret_nodeid == dlm_our_nodeid()) 581 new_master = 0; 582 else 583 new_master = ret_nodeid; 584 585 lock_rsb(r); 586 r->res_master_nodeid = ret_nodeid; 587 r->res_nodeid = new_master; 588 set_new_master(r); 589 unlock_rsb(r); 590 recover_idr_del(r); 591 592 if (recover_idr_empty(ls)) 593 wake_up(&ls->ls_wait_general); 594 out: 595 return 0; 596 } 597 598 599 /* Lock recovery: rebuild the process-copy locks we hold on a 600 remastered rsb on the new rsb master. 601 602 dlm_recover_locks 603 recover_locks 604 recover_locks_queue 605 dlm_send_rcom_lock -> receive_rcom_lock 606 dlm_recover_master_copy 607 receive_rcom_lock_reply <- 608 dlm_recover_process_copy 609 */ 610 611 612 /* 613 * keep a count of the number of lkb's we send to the new master; when we get 614 * an equal number of replies then recovery for the rsb is done 615 */ 616 617 static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head) 618 { 619 struct dlm_lkb *lkb; 620 int error = 0; 621 622 list_for_each_entry(lkb, head, lkb_statequeue) { 623 error = dlm_send_rcom_lock(r, lkb); 624 if (error) 625 break; 626 r->res_recover_locks_count++; 627 } 628 629 return error; 630 } 631 632 static int recover_locks(struct dlm_rsb *r) 633 { 634 int error = 0; 635 636 lock_rsb(r); 637 638 DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r);); 639 640 error = recover_locks_queue(r, &r->res_grantqueue); 641 if (error) 642 goto out; 643 error = recover_locks_queue(r, &r->res_convertqueue); 644 if (error) 645 goto out; 646 error = recover_locks_queue(r, &r->res_waitqueue); 647 if (error) 648 goto out; 649 650 if (r->res_recover_locks_count) 651 recover_list_add(r); 652 else 653 rsb_clear_flag(r, RSB_NEW_MASTER); 654 out: 655 unlock_rsb(r); 656 return error; 657 } 658 659 int dlm_recover_locks(struct dlm_ls *ls) 660 { 661 struct dlm_rsb *r; 662 int error, count = 0; 663 664 down_read(&ls->ls_root_sem); 665 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 666 if (is_master(r)) { 667 rsb_clear_flag(r, RSB_NEW_MASTER); 668 continue; 669 } 670 671 if (!rsb_flag(r, RSB_NEW_MASTER)) 672 continue; 673 674 if (dlm_recovery_stopped(ls)) { 675 error = -EINTR; 676 up_read(&ls->ls_root_sem); 677 goto out; 678 } 679 680 error = recover_locks(r); 681 if (error) { 682 up_read(&ls->ls_root_sem); 683 goto out; 684 } 685 686 count += r->res_recover_locks_count; 687 } 688 up_read(&ls->ls_root_sem); 689 690 log_rinfo(ls, "dlm_recover_locks %d out", count); 691 692 error = dlm_wait_function(ls, &recover_list_empty); 693 out: 694 if (error) 695 recover_list_clear(ls); 696 return error; 697 } 698 699 void dlm_recovered_lock(struct dlm_rsb *r) 700 { 701 DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r);); 702 703 r->res_recover_locks_count--; 704 if (!r->res_recover_locks_count) { 705 rsb_clear_flag(r, RSB_NEW_MASTER); 706 recover_list_del(r); 707 } 708 709 if (recover_list_empty(r->res_ls)) 710 wake_up(&r->res_ls->ls_wait_general); 711 } 712 713 /* 714 * The lvb needs to be recovered on all master rsb's. This includes setting 715 * the VALNOTVALID flag if necessary, and determining the correct lvb contents 716 * based on the lvb's of the locks held on the rsb. 717 * 718 * RSB_VALNOTVALID is set in two cases: 719 * 720 * 1. we are master, but not new, and we purged an EX/PW lock held by a 721 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL) 722 * 723 * 2. we are a new master, and there are only NL/CR locks left. 724 * (We could probably improve this by only invaliding in this way when 725 * the previous master left uncleanly. VMS docs mention that.) 726 * 727 * The LVB contents are only considered for changing when this is a new master 728 * of the rsb (NEW_MASTER2). Then, the rsb's lvb is taken from any lkb with 729 * mode > CR. If no lkb's exist with mode above CR, the lvb contents are taken 730 * from the lkb with the largest lvb sequence number. 731 */ 732 733 static void recover_lvb(struct dlm_rsb *r) 734 { 735 struct dlm_lkb *big_lkb = NULL, *iter, *high_lkb = NULL; 736 uint32_t high_seq = 0; 737 int lock_lvb_exists = 0; 738 int lvblen = r->res_ls->ls_lvblen; 739 740 if (!rsb_flag(r, RSB_NEW_MASTER2) && 741 rsb_flag(r, RSB_RECOVER_LVB_INVAL)) { 742 /* case 1 above */ 743 rsb_set_flag(r, RSB_VALNOTVALID); 744 return; 745 } 746 747 if (!rsb_flag(r, RSB_NEW_MASTER2)) 748 return; 749 750 /* we are the new master, so figure out if VALNOTVALID should 751 be set, and set the rsb lvb from the best lkb available. */ 752 753 list_for_each_entry(iter, &r->res_grantqueue, lkb_statequeue) { 754 if (!(iter->lkb_exflags & DLM_LKF_VALBLK)) 755 continue; 756 757 lock_lvb_exists = 1; 758 759 if (iter->lkb_grmode > DLM_LOCK_CR) { 760 big_lkb = iter; 761 goto setflag; 762 } 763 764 if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) { 765 high_lkb = iter; 766 high_seq = iter->lkb_lvbseq; 767 } 768 } 769 770 list_for_each_entry(iter, &r->res_convertqueue, lkb_statequeue) { 771 if (!(iter->lkb_exflags & DLM_LKF_VALBLK)) 772 continue; 773 774 lock_lvb_exists = 1; 775 776 if (iter->lkb_grmode > DLM_LOCK_CR) { 777 big_lkb = iter; 778 goto setflag; 779 } 780 781 if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) { 782 high_lkb = iter; 783 high_seq = iter->lkb_lvbseq; 784 } 785 } 786 787 setflag: 788 if (!lock_lvb_exists) 789 goto out; 790 791 /* lvb is invalidated if only NL/CR locks remain */ 792 if (!big_lkb) 793 rsb_set_flag(r, RSB_VALNOTVALID); 794 795 if (!r->res_lvbptr) { 796 r->res_lvbptr = dlm_allocate_lvb(r->res_ls); 797 if (!r->res_lvbptr) 798 goto out; 799 } 800 801 if (big_lkb) { 802 r->res_lvbseq = big_lkb->lkb_lvbseq; 803 memcpy(r->res_lvbptr, big_lkb->lkb_lvbptr, lvblen); 804 } else if (high_lkb) { 805 r->res_lvbseq = high_lkb->lkb_lvbseq; 806 memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen); 807 } else { 808 r->res_lvbseq = 0; 809 memset(r->res_lvbptr, 0, lvblen); 810 } 811 out: 812 return; 813 } 814 815 /* All master rsb's flagged RECOVER_CONVERT need to be looked at. The locks 816 converting PR->CW or CW->PR need to have their lkb_grmode set. */ 817 818 static void recover_conversion(struct dlm_rsb *r) 819 { 820 struct dlm_ls *ls = r->res_ls; 821 struct dlm_lkb *lkb; 822 int grmode = -1; 823 824 list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) { 825 if (lkb->lkb_grmode == DLM_LOCK_PR || 826 lkb->lkb_grmode == DLM_LOCK_CW) { 827 grmode = lkb->lkb_grmode; 828 break; 829 } 830 } 831 832 list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) { 833 if (lkb->lkb_grmode != DLM_LOCK_IV) 834 continue; 835 if (grmode == -1) { 836 log_debug(ls, "recover_conversion %x set gr to rq %d", 837 lkb->lkb_id, lkb->lkb_rqmode); 838 lkb->lkb_grmode = lkb->lkb_rqmode; 839 } else { 840 log_debug(ls, "recover_conversion %x set gr %d", 841 lkb->lkb_id, grmode); 842 lkb->lkb_grmode = grmode; 843 } 844 } 845 } 846 847 /* We've become the new master for this rsb and waiting/converting locks may 848 need to be granted in dlm_recover_grant() due to locks that may have 849 existed from a removed node. */ 850 851 static void recover_grant(struct dlm_rsb *r) 852 { 853 if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue)) 854 rsb_set_flag(r, RSB_RECOVER_GRANT); 855 } 856 857 void dlm_recover_rsbs(struct dlm_ls *ls) 858 { 859 struct dlm_rsb *r; 860 unsigned int count = 0; 861 862 down_read(&ls->ls_root_sem); 863 list_for_each_entry(r, &ls->ls_root_list, res_root_list) { 864 lock_rsb(r); 865 if (is_master(r)) { 866 if (rsb_flag(r, RSB_RECOVER_CONVERT)) 867 recover_conversion(r); 868 869 /* recover lvb before granting locks so the updated 870 lvb/VALNOTVALID is presented in the completion */ 871 recover_lvb(r); 872 873 if (rsb_flag(r, RSB_NEW_MASTER2)) 874 recover_grant(r); 875 count++; 876 } else { 877 rsb_clear_flag(r, RSB_VALNOTVALID); 878 } 879 rsb_clear_flag(r, RSB_RECOVER_CONVERT); 880 rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL); 881 rsb_clear_flag(r, RSB_NEW_MASTER2); 882 unlock_rsb(r); 883 } 884 up_read(&ls->ls_root_sem); 885 886 if (count) 887 log_rinfo(ls, "dlm_recover_rsbs %d done", count); 888 } 889 890 /* Create a single list of all root rsb's to be used during recovery */ 891 892 int dlm_create_root_list(struct dlm_ls *ls) 893 { 894 struct rb_node *n; 895 struct dlm_rsb *r; 896 int i, error = 0; 897 898 down_write(&ls->ls_root_sem); 899 if (!list_empty(&ls->ls_root_list)) { 900 log_error(ls, "root list not empty"); 901 error = -EINVAL; 902 goto out; 903 } 904 905 for (i = 0; i < ls->ls_rsbtbl_size; i++) { 906 spin_lock(&ls->ls_rsbtbl[i].lock); 907 for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) { 908 r = rb_entry(n, struct dlm_rsb, res_hashnode); 909 list_add(&r->res_root_list, &ls->ls_root_list); 910 dlm_hold_rsb(r); 911 } 912 913 if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss)) 914 log_error(ls, "dlm_create_root_list toss not empty"); 915 spin_unlock(&ls->ls_rsbtbl[i].lock); 916 } 917 out: 918 up_write(&ls->ls_root_sem); 919 return error; 920 } 921 922 void dlm_release_root_list(struct dlm_ls *ls) 923 { 924 struct dlm_rsb *r, *safe; 925 926 down_write(&ls->ls_root_sem); 927 list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) { 928 list_del_init(&r->res_root_list); 929 dlm_put_rsb(r); 930 } 931 up_write(&ls->ls_root_sem); 932 } 933 934 void dlm_clear_toss(struct dlm_ls *ls) 935 { 936 struct rb_node *n, *next; 937 struct dlm_rsb *r; 938 unsigned int count = 0; 939 int i; 940 941 for (i = 0; i < ls->ls_rsbtbl_size; i++) { 942 spin_lock(&ls->ls_rsbtbl[i].lock); 943 for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) { 944 next = rb_next(n); 945 r = rb_entry(n, struct dlm_rsb, res_hashnode); 946 rb_erase(n, &ls->ls_rsbtbl[i].toss); 947 dlm_free_rsb(r); 948 count++; 949 } 950 spin_unlock(&ls->ls_rsbtbl[i].lock); 951 } 952 953 if (count) 954 log_rinfo(ls, "dlm_clear_toss %u done", count); 955 } 956 957