xref: /linux/fs/dlm/lowcomms.c (revision f8343685643f2901fe11aa9d0358cafbeaf7b4c3)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2007 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is it's
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use wither TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It shouldbe configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/idr.h>
52 #include <linux/file.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 
63 struct cbuf {
64 	unsigned int base;
65 	unsigned int len;
66 	unsigned int mask;
67 };
68 
69 static void cbuf_add(struct cbuf *cb, int n)
70 {
71 	cb->len += n;
72 }
73 
74 static int cbuf_data(struct cbuf *cb)
75 {
76 	return ((cb->base + cb->len) & cb->mask);
77 }
78 
79 static void cbuf_init(struct cbuf *cb, int size)
80 {
81 	cb->base = cb->len = 0;
82 	cb->mask = size-1;
83 }
84 
85 static void cbuf_eat(struct cbuf *cb, int n)
86 {
87 	cb->len  -= n;
88 	cb->base += n;
89 	cb->base &= cb->mask;
90 }
91 
92 static bool cbuf_empty(struct cbuf *cb)
93 {
94 	return cb->len == 0;
95 }
96 
97 struct connection {
98 	struct socket *sock;	/* NULL if not connected */
99 	uint32_t nodeid;	/* So we know who we are in the list */
100 	struct mutex sock_mutex;
101 	unsigned long flags;
102 #define CF_READ_PENDING 1
103 #define CF_WRITE_PENDING 2
104 #define CF_CONNECT_PENDING 3
105 #define CF_INIT_PENDING 4
106 #define CF_IS_OTHERCON 5
107 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
108 	spinlock_t writequeue_lock;
109 	int (*rx_action) (struct connection *);	/* What to do when active */
110 	void (*connect_action) (struct connection *);	/* What to do to connect */
111 	struct page *rx_page;
112 	struct cbuf cb;
113 	int retries;
114 #define MAX_CONNECT_RETRIES 3
115 	int sctp_assoc;
116 	struct connection *othercon;
117 	struct work_struct rwork; /* Receive workqueue */
118 	struct work_struct swork; /* Send workqueue */
119 };
120 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
121 
122 /* An entry waiting to be sent */
123 struct writequeue_entry {
124 	struct list_head list;
125 	struct page *page;
126 	int offset;
127 	int len;
128 	int end;
129 	int users;
130 	struct connection *con;
131 };
132 
133 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
134 static int dlm_local_count;
135 
136 /* Work queues */
137 static struct workqueue_struct *recv_workqueue;
138 static struct workqueue_struct *send_workqueue;
139 
140 static DEFINE_IDR(connections_idr);
141 static DECLARE_MUTEX(connections_lock);
142 static int max_nodeid;
143 static struct kmem_cache *con_cache;
144 
145 static void process_recv_sockets(struct work_struct *work);
146 static void process_send_sockets(struct work_struct *work);
147 
148 /*
149  * If 'allocation' is zero then we don't attempt to create a new
150  * connection structure for this node.
151  */
152 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
153 {
154 	struct connection *con = NULL;
155 	int r;
156 	int n;
157 
158 	con = idr_find(&connections_idr, nodeid);
159 	if (con || !alloc)
160 		return con;
161 
162 	r = idr_pre_get(&connections_idr, alloc);
163 	if (!r)
164 		return NULL;
165 
166 	con = kmem_cache_zalloc(con_cache, alloc);
167 	if (!con)
168 		return NULL;
169 
170 	r = idr_get_new_above(&connections_idr, con, nodeid, &n);
171 	if (r) {
172 		kmem_cache_free(con_cache, con);
173 		return NULL;
174 	}
175 
176 	if (n != nodeid) {
177 		idr_remove(&connections_idr, n);
178 		kmem_cache_free(con_cache, con);
179 		return NULL;
180 	}
181 
182 	con->nodeid = nodeid;
183 	mutex_init(&con->sock_mutex);
184 	INIT_LIST_HEAD(&con->writequeue);
185 	spin_lock_init(&con->writequeue_lock);
186 	INIT_WORK(&con->swork, process_send_sockets);
187 	INIT_WORK(&con->rwork, process_recv_sockets);
188 
189 	/* Setup action pointers for child sockets */
190 	if (con->nodeid) {
191 		struct connection *zerocon = idr_find(&connections_idr, 0);
192 
193 		con->connect_action = zerocon->connect_action;
194 		if (!con->rx_action)
195 			con->rx_action = zerocon->rx_action;
196 	}
197 
198 	if (nodeid > max_nodeid)
199 		max_nodeid = nodeid;
200 
201 	return con;
202 }
203 
204 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
205 {
206 	struct connection *con;
207 
208 	down(&connections_lock);
209 	con = __nodeid2con(nodeid, allocation);
210 	up(&connections_lock);
211 
212 	return con;
213 }
214 
215 /* This is a bit drastic, but only called when things go wrong */
216 static struct connection *assoc2con(int assoc_id)
217 {
218 	int i;
219 	struct connection *con;
220 
221 	down(&connections_lock);
222 	for (i=0; i<=max_nodeid; i++) {
223 		con = __nodeid2con(i, 0);
224 		if (con && con->sctp_assoc == assoc_id) {
225 			up(&connections_lock);
226 			return con;
227 		}
228 	}
229 	up(&connections_lock);
230 	return NULL;
231 }
232 
233 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
234 {
235 	struct sockaddr_storage addr;
236 	int error;
237 
238 	if (!dlm_local_count)
239 		return -1;
240 
241 	error = dlm_nodeid_to_addr(nodeid, &addr);
242 	if (error)
243 		return error;
244 
245 	if (dlm_local_addr[0]->ss_family == AF_INET) {
246 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
247 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
248 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
249 	} else {
250 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
251 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
252 		memcpy(&ret6->sin6_addr, &in6->sin6_addr,
253 		       sizeof(in6->sin6_addr));
254 	}
255 
256 	return 0;
257 }
258 
259 /* Data available on socket or listen socket received a connect */
260 static void lowcomms_data_ready(struct sock *sk, int count_unused)
261 {
262 	struct connection *con = sock2con(sk);
263 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
264 		queue_work(recv_workqueue, &con->rwork);
265 }
266 
267 static void lowcomms_write_space(struct sock *sk)
268 {
269 	struct connection *con = sock2con(sk);
270 
271 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
272 		queue_work(send_workqueue, &con->swork);
273 }
274 
275 static inline void lowcomms_connect_sock(struct connection *con)
276 {
277 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
278 		queue_work(send_workqueue, &con->swork);
279 }
280 
281 static void lowcomms_state_change(struct sock *sk)
282 {
283 	if (sk->sk_state == TCP_ESTABLISHED)
284 		lowcomms_write_space(sk);
285 }
286 
287 /* Make a socket active */
288 static int add_sock(struct socket *sock, struct connection *con)
289 {
290 	con->sock = sock;
291 
292 	/* Install a data_ready callback */
293 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
294 	con->sock->sk->sk_write_space = lowcomms_write_space;
295 	con->sock->sk->sk_state_change = lowcomms_state_change;
296 	con->sock->sk->sk_user_data = con;
297 	return 0;
298 }
299 
300 /* Add the port number to an IPv6 or 4 sockaddr and return the address
301    length */
302 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
303 			  int *addr_len)
304 {
305 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
306 	if (saddr->ss_family == AF_INET) {
307 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
308 		in4_addr->sin_port = cpu_to_be16(port);
309 		*addr_len = sizeof(struct sockaddr_in);
310 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
311 	} else {
312 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
313 		in6_addr->sin6_port = cpu_to_be16(port);
314 		*addr_len = sizeof(struct sockaddr_in6);
315 	}
316 }
317 
318 /* Close a remote connection and tidy up */
319 static void close_connection(struct connection *con, bool and_other)
320 {
321 	mutex_lock(&con->sock_mutex);
322 
323 	if (con->sock) {
324 		sock_release(con->sock);
325 		con->sock = NULL;
326 	}
327 	if (con->othercon && and_other) {
328 		/* Will only re-enter once. */
329 		close_connection(con->othercon, false);
330 	}
331 	if (con->rx_page) {
332 		__free_page(con->rx_page);
333 		con->rx_page = NULL;
334 	}
335 	con->retries = 0;
336 	mutex_unlock(&con->sock_mutex);
337 }
338 
339 /* We only send shutdown messages to nodes that are not part of the cluster */
340 static void sctp_send_shutdown(sctp_assoc_t associd)
341 {
342 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
343 	struct msghdr outmessage;
344 	struct cmsghdr *cmsg;
345 	struct sctp_sndrcvinfo *sinfo;
346 	int ret;
347 	struct connection *con;
348 
349 	con = nodeid2con(0,0);
350 	BUG_ON(con == NULL);
351 
352 	outmessage.msg_name = NULL;
353 	outmessage.msg_namelen = 0;
354 	outmessage.msg_control = outcmsg;
355 	outmessage.msg_controllen = sizeof(outcmsg);
356 	outmessage.msg_flags = MSG_EOR;
357 
358 	cmsg = CMSG_FIRSTHDR(&outmessage);
359 	cmsg->cmsg_level = IPPROTO_SCTP;
360 	cmsg->cmsg_type = SCTP_SNDRCV;
361 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
362 	outmessage.msg_controllen = cmsg->cmsg_len;
363 	sinfo = CMSG_DATA(cmsg);
364 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
365 
366 	sinfo->sinfo_flags |= MSG_EOF;
367 	sinfo->sinfo_assoc_id = associd;
368 
369 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
370 
371 	if (ret != 0)
372 		log_print("send EOF to node failed: %d", ret);
373 }
374 
375 /* INIT failed but we don't know which node...
376    restart INIT on all pending nodes */
377 static void sctp_init_failed(void)
378 {
379 	int i;
380 	struct connection *con;
381 
382 	down(&connections_lock);
383 	for (i=1; i<=max_nodeid; i++) {
384 		con = __nodeid2con(i, 0);
385 		if (!con)
386 			continue;
387 		con->sctp_assoc = 0;
388 		if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
389 			if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
390 				queue_work(send_workqueue, &con->swork);
391 			}
392 		}
393 	}
394 	up(&connections_lock);
395 }
396 
397 /* Something happened to an association */
398 static void process_sctp_notification(struct connection *con,
399 				      struct msghdr *msg, char *buf)
400 {
401 	union sctp_notification *sn = (union sctp_notification *)buf;
402 
403 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
404 		switch (sn->sn_assoc_change.sac_state) {
405 
406 		case SCTP_COMM_UP:
407 		case SCTP_RESTART:
408 		{
409 			/* Check that the new node is in the lockspace */
410 			struct sctp_prim prim;
411 			int nodeid;
412 			int prim_len, ret;
413 			int addr_len;
414 			struct connection *new_con;
415 			struct file *file;
416 			sctp_peeloff_arg_t parg;
417 			int parglen = sizeof(parg);
418 
419 			/*
420 			 * We get this before any data for an association.
421 			 * We verify that the node is in the cluster and
422 			 * then peel off a socket for it.
423 			 */
424 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
425 				log_print("COMM_UP for invalid assoc ID %d",
426 					 (int)sn->sn_assoc_change.sac_assoc_id);
427 				sctp_init_failed();
428 				return;
429 			}
430 			memset(&prim, 0, sizeof(struct sctp_prim));
431 			prim_len = sizeof(struct sctp_prim);
432 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
433 
434 			ret = kernel_getsockopt(con->sock,
435 						IPPROTO_SCTP,
436 						SCTP_PRIMARY_ADDR,
437 						(char*)&prim,
438 						&prim_len);
439 			if (ret < 0) {
440 				log_print("getsockopt/sctp_primary_addr on "
441 					  "new assoc %d failed : %d",
442 					  (int)sn->sn_assoc_change.sac_assoc_id,
443 					  ret);
444 
445 				/* Retry INIT later */
446 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
447 				if (new_con)
448 					clear_bit(CF_CONNECT_PENDING, &con->flags);
449 				return;
450 			}
451 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
452 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
453 				int i;
454 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
455 				log_print("reject connect from unknown addr");
456 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
457 					printk("%02x ", b[i]);
458 				printk("\n");
459 				sctp_send_shutdown(prim.ssp_assoc_id);
460 				return;
461 			}
462 
463 			new_con = nodeid2con(nodeid, GFP_KERNEL);
464 			if (!new_con)
465 				return;
466 
467 			/* Peel off a new sock */
468 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
469 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
470 						SCTP_SOCKOPT_PEELOFF,
471 						(void *)&parg, &parglen);
472 			if (ret) {
473 				log_print("Can't peel off a socket for "
474 					  "connection %d to node %d: err=%d\n",
475 					  parg.associd, nodeid, ret);
476 			}
477 			file = fget(parg.sd);
478 			new_con->sock = SOCKET_I(file->f_dentry->d_inode);
479 			add_sock(new_con->sock, new_con);
480 			fput(file);
481 			put_unused_fd(parg.sd);
482 
483 			log_print("got new/restarted association %d nodeid %d",
484 				 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
485 
486 			/* Send any pending writes */
487 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
488 			clear_bit(CF_INIT_PENDING, &con->flags);
489 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
490 				queue_work(send_workqueue, &new_con->swork);
491 			}
492 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
493 				queue_work(recv_workqueue, &new_con->rwork);
494 		}
495 		break;
496 
497 		case SCTP_COMM_LOST:
498 		case SCTP_SHUTDOWN_COMP:
499 		{
500 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
501 			if (con) {
502 				con->sctp_assoc = 0;
503 			}
504 		}
505 		break;
506 
507 		/* We don't know which INIT failed, so clear the PENDING flags
508 		 * on them all.  if assoc_id is zero then it will then try
509 		 * again */
510 
511 		case SCTP_CANT_STR_ASSOC:
512 		{
513 			log_print("Can't start SCTP association - retrying");
514 			sctp_init_failed();
515 		}
516 		break;
517 
518 		default:
519 			log_print("unexpected SCTP assoc change id=%d state=%d",
520 				  (int)sn->sn_assoc_change.sac_assoc_id,
521 				  sn->sn_assoc_change.sac_state);
522 		}
523 	}
524 }
525 
526 /* Data received from remote end */
527 static int receive_from_sock(struct connection *con)
528 {
529 	int ret = 0;
530 	struct msghdr msg = {};
531 	struct kvec iov[2];
532 	unsigned len;
533 	int r;
534 	int call_again_soon = 0;
535 	int nvec;
536 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
537 
538 	mutex_lock(&con->sock_mutex);
539 
540 	if (con->sock == NULL) {
541 		ret = -EAGAIN;
542 		goto out_close;
543 	}
544 
545 	if (con->rx_page == NULL) {
546 		/*
547 		 * This doesn't need to be atomic, but I think it should
548 		 * improve performance if it is.
549 		 */
550 		con->rx_page = alloc_page(GFP_ATOMIC);
551 		if (con->rx_page == NULL)
552 			goto out_resched;
553 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
554 	}
555 
556 	/* Only SCTP needs these really */
557 	memset(&incmsg, 0, sizeof(incmsg));
558 	msg.msg_control = incmsg;
559 	msg.msg_controllen = sizeof(incmsg);
560 
561 	/*
562 	 * iov[0] is the bit of the circular buffer between the current end
563 	 * point (cb.base + cb.len) and the end of the buffer.
564 	 */
565 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
566 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
567 	iov[1].iov_len = 0;
568 	nvec = 1;
569 
570 	/*
571 	 * iov[1] is the bit of the circular buffer between the start of the
572 	 * buffer and the start of the currently used section (cb.base)
573 	 */
574 	if (cbuf_data(&con->cb) >= con->cb.base) {
575 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
576 		iov[1].iov_len = con->cb.base;
577 		iov[1].iov_base = page_address(con->rx_page);
578 		nvec = 2;
579 	}
580 	len = iov[0].iov_len + iov[1].iov_len;
581 
582 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
583 			       MSG_DONTWAIT | MSG_NOSIGNAL);
584 	if (ret <= 0)
585 		goto out_close;
586 
587 	/* Process SCTP notifications */
588 	if (msg.msg_flags & MSG_NOTIFICATION) {
589 		msg.msg_control = incmsg;
590 		msg.msg_controllen = sizeof(incmsg);
591 
592 		process_sctp_notification(con, &msg,
593 				page_address(con->rx_page) + con->cb.base);
594 		mutex_unlock(&con->sock_mutex);
595 		return 0;
596 	}
597 	BUG_ON(con->nodeid == 0);
598 
599 	if (ret == len)
600 		call_again_soon = 1;
601 	cbuf_add(&con->cb, ret);
602 	ret = dlm_process_incoming_buffer(con->nodeid,
603 					  page_address(con->rx_page),
604 					  con->cb.base, con->cb.len,
605 					  PAGE_CACHE_SIZE);
606 	if (ret == -EBADMSG) {
607 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
608 			  "iov_len=%u, iov_base[0]=%p, read=%d",
609 			  page_address(con->rx_page), con->cb.base, con->cb.len,
610 			  len, iov[0].iov_base, r);
611 	}
612 	if (ret < 0)
613 		goto out_close;
614 	cbuf_eat(&con->cb, ret);
615 
616 	if (cbuf_empty(&con->cb) && !call_again_soon) {
617 		__free_page(con->rx_page);
618 		con->rx_page = NULL;
619 	}
620 
621 	if (call_again_soon)
622 		goto out_resched;
623 	mutex_unlock(&con->sock_mutex);
624 	return 0;
625 
626 out_resched:
627 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
628 		queue_work(recv_workqueue, &con->rwork);
629 	mutex_unlock(&con->sock_mutex);
630 	return -EAGAIN;
631 
632 out_close:
633 	mutex_unlock(&con->sock_mutex);
634 	if (ret != -EAGAIN && !test_bit(CF_IS_OTHERCON, &con->flags)) {
635 		close_connection(con, false);
636 		/* Reconnect when there is something to send */
637 	}
638 	/* Don't return success if we really got EOF */
639 	if (ret == 0)
640 		ret = -EAGAIN;
641 
642 	return ret;
643 }
644 
645 /* Listening socket is busy, accept a connection */
646 static int tcp_accept_from_sock(struct connection *con)
647 {
648 	int result;
649 	struct sockaddr_storage peeraddr;
650 	struct socket *newsock;
651 	int len;
652 	int nodeid;
653 	struct connection *newcon;
654 	struct connection *addcon;
655 
656 	memset(&peeraddr, 0, sizeof(peeraddr));
657 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
658 				  IPPROTO_TCP, &newsock);
659 	if (result < 0)
660 		return -ENOMEM;
661 
662 	mutex_lock_nested(&con->sock_mutex, 0);
663 
664 	result = -ENOTCONN;
665 	if (con->sock == NULL)
666 		goto accept_err;
667 
668 	newsock->type = con->sock->type;
669 	newsock->ops = con->sock->ops;
670 
671 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
672 	if (result < 0)
673 		goto accept_err;
674 
675 	/* Get the connected socket's peer */
676 	memset(&peeraddr, 0, sizeof(peeraddr));
677 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
678 				  &len, 2)) {
679 		result = -ECONNABORTED;
680 		goto accept_err;
681 	}
682 
683 	/* Get the new node's NODEID */
684 	make_sockaddr(&peeraddr, 0, &len);
685 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
686 		log_print("connect from non cluster node");
687 		sock_release(newsock);
688 		mutex_unlock(&con->sock_mutex);
689 		return -1;
690 	}
691 
692 	log_print("got connection from %d", nodeid);
693 
694 	/*  Check to see if we already have a connection to this node. This
695 	 *  could happen if the two nodes initiate a connection at roughly
696 	 *  the same time and the connections cross on the wire.
697 	 *  In this case we store the incoming one in "othercon"
698 	 */
699 	newcon = nodeid2con(nodeid, GFP_KERNEL);
700 	if (!newcon) {
701 		result = -ENOMEM;
702 		goto accept_err;
703 	}
704 	mutex_lock_nested(&newcon->sock_mutex, 1);
705 	if (newcon->sock) {
706 		struct connection *othercon = newcon->othercon;
707 
708 		if (!othercon) {
709 			othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
710 			if (!othercon) {
711 				log_print("failed to allocate incoming socket");
712 				mutex_unlock(&newcon->sock_mutex);
713 				result = -ENOMEM;
714 				goto accept_err;
715 			}
716 			othercon->nodeid = nodeid;
717 			othercon->rx_action = receive_from_sock;
718 			mutex_init(&othercon->sock_mutex);
719 			INIT_WORK(&othercon->swork, process_send_sockets);
720 			INIT_WORK(&othercon->rwork, process_recv_sockets);
721 			set_bit(CF_IS_OTHERCON, &othercon->flags);
722 			newcon->othercon = othercon;
723 		}
724 		othercon->sock = newsock;
725 		newsock->sk->sk_user_data = othercon;
726 		add_sock(newsock, othercon);
727 		addcon = othercon;
728 	}
729 	else {
730 		newsock->sk->sk_user_data = newcon;
731 		newcon->rx_action = receive_from_sock;
732 		add_sock(newsock, newcon);
733 		addcon = newcon;
734 	}
735 
736 	mutex_unlock(&newcon->sock_mutex);
737 
738 	/*
739 	 * Add it to the active queue in case we got data
740 	 * beween processing the accept adding the socket
741 	 * to the read_sockets list
742 	 */
743 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
744 		queue_work(recv_workqueue, &addcon->rwork);
745 	mutex_unlock(&con->sock_mutex);
746 
747 	return 0;
748 
749 accept_err:
750 	mutex_unlock(&con->sock_mutex);
751 	sock_release(newsock);
752 
753 	if (result != -EAGAIN)
754 		log_print("error accepting connection from node: %d", result);
755 	return result;
756 }
757 
758 static void free_entry(struct writequeue_entry *e)
759 {
760 	__free_page(e->page);
761 	kfree(e);
762 }
763 
764 /* Initiate an SCTP association.
765    This is a special case of send_to_sock() in that we don't yet have a
766    peeled-off socket for this association, so we use the listening socket
767    and add the primary IP address of the remote node.
768  */
769 static void sctp_init_assoc(struct connection *con)
770 {
771 	struct sockaddr_storage rem_addr;
772 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
773 	struct msghdr outmessage;
774 	struct cmsghdr *cmsg;
775 	struct sctp_sndrcvinfo *sinfo;
776 	struct connection *base_con;
777 	struct writequeue_entry *e;
778 	int len, offset;
779 	int ret;
780 	int addrlen;
781 	struct kvec iov[1];
782 
783 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
784 		return;
785 
786 	if (con->retries++ > MAX_CONNECT_RETRIES)
787 		return;
788 
789 	log_print("Initiating association with node %d", con->nodeid);
790 
791 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
792 		log_print("no address for nodeid %d", con->nodeid);
793 		return;
794 	}
795 	base_con = nodeid2con(0, 0);
796 	BUG_ON(base_con == NULL);
797 
798 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
799 
800 	outmessage.msg_name = &rem_addr;
801 	outmessage.msg_namelen = addrlen;
802 	outmessage.msg_control = outcmsg;
803 	outmessage.msg_controllen = sizeof(outcmsg);
804 	outmessage.msg_flags = MSG_EOR;
805 
806 	spin_lock(&con->writequeue_lock);
807 	e = list_entry(con->writequeue.next, struct writequeue_entry,
808 		       list);
809 
810 	BUG_ON((struct list_head *) e == &con->writequeue);
811 
812 	len = e->len;
813 	offset = e->offset;
814 	spin_unlock(&con->writequeue_lock);
815 	kmap(e->page);
816 
817 	/* Send the first block off the write queue */
818 	iov[0].iov_base = page_address(e->page)+offset;
819 	iov[0].iov_len = len;
820 
821 	cmsg = CMSG_FIRSTHDR(&outmessage);
822 	cmsg->cmsg_level = IPPROTO_SCTP;
823 	cmsg->cmsg_type = SCTP_SNDRCV;
824 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
825 	sinfo = CMSG_DATA(cmsg);
826 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
827 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
828 	outmessage.msg_controllen = cmsg->cmsg_len;
829 
830 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
831 	if (ret < 0) {
832 		log_print("Send first packet to node %d failed: %d",
833 			  con->nodeid, ret);
834 
835 		/* Try again later */
836 		clear_bit(CF_CONNECT_PENDING, &con->flags);
837 		clear_bit(CF_INIT_PENDING, &con->flags);
838 	}
839 	else {
840 		spin_lock(&con->writequeue_lock);
841 		e->offset += ret;
842 		e->len -= ret;
843 
844 		if (e->len == 0 && e->users == 0) {
845 			list_del(&e->list);
846 			kunmap(e->page);
847 			free_entry(e);
848 		}
849 		spin_unlock(&con->writequeue_lock);
850 	}
851 }
852 
853 /* Connect a new socket to its peer */
854 static void tcp_connect_to_sock(struct connection *con)
855 {
856 	int result = -EHOSTUNREACH;
857 	struct sockaddr_storage saddr;
858 	int addr_len;
859 	struct socket *sock;
860 
861 	if (con->nodeid == 0) {
862 		log_print("attempt to connect sock 0 foiled");
863 		return;
864 	}
865 
866 	mutex_lock(&con->sock_mutex);
867 	if (con->retries++ > MAX_CONNECT_RETRIES)
868 		goto out;
869 
870 	/* Some odd races can cause double-connects, ignore them */
871 	if (con->sock) {
872 		result = 0;
873 		goto out;
874 	}
875 
876 	/* Create a socket to communicate with */
877 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
878 				  IPPROTO_TCP, &sock);
879 	if (result < 0)
880 		goto out_err;
881 
882 	memset(&saddr, 0, sizeof(saddr));
883 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
884 		goto out_err;
885 
886 	sock->sk->sk_user_data = con;
887 	con->rx_action = receive_from_sock;
888 	con->connect_action = tcp_connect_to_sock;
889 	add_sock(sock, con);
890 
891 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
892 
893 	log_print("connecting to %d", con->nodeid);
894 	result =
895 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
896 				   O_NONBLOCK);
897 	if (result == -EINPROGRESS)
898 		result = 0;
899 	if (result == 0)
900 		goto out;
901 
902 out_err:
903 	if (con->sock) {
904 		sock_release(con->sock);
905 		con->sock = NULL;
906 	}
907 	/*
908 	 * Some errors are fatal and this list might need adjusting. For other
909 	 * errors we try again until the max number of retries is reached.
910 	 */
911 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
912 	    result != -ENETDOWN && result != EINVAL
913 	    && result != -EPROTONOSUPPORT) {
914 		lowcomms_connect_sock(con);
915 		result = 0;
916 	}
917 out:
918 	mutex_unlock(&con->sock_mutex);
919 	return;
920 }
921 
922 static struct socket *tcp_create_listen_sock(struct connection *con,
923 					     struct sockaddr_storage *saddr)
924 {
925 	struct socket *sock = NULL;
926 	int result = 0;
927 	int one = 1;
928 	int addr_len;
929 
930 	if (dlm_local_addr[0]->ss_family == AF_INET)
931 		addr_len = sizeof(struct sockaddr_in);
932 	else
933 		addr_len = sizeof(struct sockaddr_in6);
934 
935 	/* Create a socket to communicate with */
936 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
937 				  IPPROTO_TCP, &sock);
938 	if (result < 0) {
939 		log_print("Can't create listening comms socket");
940 		goto create_out;
941 	}
942 
943 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
944 				   (char *)&one, sizeof(one));
945 
946 	if (result < 0) {
947 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
948 	}
949 	sock->sk->sk_user_data = con;
950 	con->rx_action = tcp_accept_from_sock;
951 	con->connect_action = tcp_connect_to_sock;
952 	con->sock = sock;
953 
954 	/* Bind to our port */
955 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
956 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
957 	if (result < 0) {
958 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
959 		sock_release(sock);
960 		sock = NULL;
961 		con->sock = NULL;
962 		goto create_out;
963 	}
964 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
965 				 (char *)&one, sizeof(one));
966 	if (result < 0) {
967 		log_print("Set keepalive failed: %d", result);
968 	}
969 
970 	result = sock->ops->listen(sock, 5);
971 	if (result < 0) {
972 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
973 		sock_release(sock);
974 		sock = NULL;
975 		goto create_out;
976 	}
977 
978 create_out:
979 	return sock;
980 }
981 
982 /* Get local addresses */
983 static void init_local(void)
984 {
985 	struct sockaddr_storage sas, *addr;
986 	int i;
987 
988 	dlm_local_count = 0;
989 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
990 		if (dlm_our_addr(&sas, i))
991 			break;
992 
993 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
994 		if (!addr)
995 			break;
996 		memcpy(addr, &sas, sizeof(*addr));
997 		dlm_local_addr[dlm_local_count++] = addr;
998 	}
999 }
1000 
1001 /* Bind to an IP address. SCTP allows multiple address so it can do
1002    multi-homing */
1003 static int add_sctp_bind_addr(struct connection *sctp_con,
1004 			      struct sockaddr_storage *addr,
1005 			      int addr_len, int num)
1006 {
1007 	int result = 0;
1008 
1009 	if (num == 1)
1010 		result = kernel_bind(sctp_con->sock,
1011 				     (struct sockaddr *) addr,
1012 				     addr_len);
1013 	else
1014 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1015 					   SCTP_SOCKOPT_BINDX_ADD,
1016 					   (char *)addr, addr_len);
1017 
1018 	if (result < 0)
1019 		log_print("Can't bind to port %d addr number %d",
1020 			  dlm_config.ci_tcp_port, num);
1021 
1022 	return result;
1023 }
1024 
1025 /* Initialise SCTP socket and bind to all interfaces */
1026 static int sctp_listen_for_all(void)
1027 {
1028 	struct socket *sock = NULL;
1029 	struct sockaddr_storage localaddr;
1030 	struct sctp_event_subscribe subscribe;
1031 	int result = -EINVAL, num = 1, i, addr_len;
1032 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1033 	int bufsize = NEEDED_RMEM;
1034 
1035 	if (!con)
1036 		return -ENOMEM;
1037 
1038 	log_print("Using SCTP for communications");
1039 
1040 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1041 				  IPPROTO_SCTP, &sock);
1042 	if (result < 0) {
1043 		log_print("Can't create comms socket, check SCTP is loaded");
1044 		goto out;
1045 	}
1046 
1047 	/* Listen for events */
1048 	memset(&subscribe, 0, sizeof(subscribe));
1049 	subscribe.sctp_data_io_event = 1;
1050 	subscribe.sctp_association_event = 1;
1051 	subscribe.sctp_send_failure_event = 1;
1052 	subscribe.sctp_shutdown_event = 1;
1053 	subscribe.sctp_partial_delivery_event = 1;
1054 
1055 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
1056 				 (char *)&bufsize, sizeof(bufsize));
1057 	if (result)
1058 		log_print("Error increasing buffer space on socket %d", result);
1059 
1060 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1061 				   (char *)&subscribe, sizeof(subscribe));
1062 	if (result < 0) {
1063 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1064 			  result);
1065 		goto create_delsock;
1066 	}
1067 
1068 	/* Init con struct */
1069 	sock->sk->sk_user_data = con;
1070 	con->sock = sock;
1071 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1072 	con->rx_action = receive_from_sock;
1073 	con->connect_action = sctp_init_assoc;
1074 
1075 	/* Bind to all interfaces. */
1076 	for (i = 0; i < dlm_local_count; i++) {
1077 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1078 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1079 
1080 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1081 		if (result)
1082 			goto create_delsock;
1083 		++num;
1084 	}
1085 
1086 	result = sock->ops->listen(sock, 5);
1087 	if (result < 0) {
1088 		log_print("Can't set socket listening");
1089 		goto create_delsock;
1090 	}
1091 
1092 	return 0;
1093 
1094 create_delsock:
1095 	sock_release(sock);
1096 	con->sock = NULL;
1097 out:
1098 	return result;
1099 }
1100 
1101 static int tcp_listen_for_all(void)
1102 {
1103 	struct socket *sock = NULL;
1104 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1105 	int result = -EINVAL;
1106 
1107 	if (!con)
1108 		return -ENOMEM;
1109 
1110 	/* We don't support multi-homed hosts */
1111 	if (dlm_local_addr[1] != NULL) {
1112 		log_print("TCP protocol can't handle multi-homed hosts, "
1113 			  "try SCTP");
1114 		return -EINVAL;
1115 	}
1116 
1117 	log_print("Using TCP for communications");
1118 
1119 	set_bit(CF_IS_OTHERCON, &con->flags);
1120 
1121 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1122 	if (sock) {
1123 		add_sock(sock, con);
1124 		result = 0;
1125 	}
1126 	else {
1127 		result = -EADDRINUSE;
1128 	}
1129 
1130 	return result;
1131 }
1132 
1133 
1134 
1135 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1136 						     gfp_t allocation)
1137 {
1138 	struct writequeue_entry *entry;
1139 
1140 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1141 	if (!entry)
1142 		return NULL;
1143 
1144 	entry->page = alloc_page(allocation);
1145 	if (!entry->page) {
1146 		kfree(entry);
1147 		return NULL;
1148 	}
1149 
1150 	entry->offset = 0;
1151 	entry->len = 0;
1152 	entry->end = 0;
1153 	entry->users = 0;
1154 	entry->con = con;
1155 
1156 	return entry;
1157 }
1158 
1159 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1160 {
1161 	struct connection *con;
1162 	struct writequeue_entry *e;
1163 	int offset = 0;
1164 	int users = 0;
1165 
1166 	con = nodeid2con(nodeid, allocation);
1167 	if (!con)
1168 		return NULL;
1169 
1170 	spin_lock(&con->writequeue_lock);
1171 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1172 	if ((&e->list == &con->writequeue) ||
1173 	    (PAGE_CACHE_SIZE - e->end < len)) {
1174 		e = NULL;
1175 	} else {
1176 		offset = e->end;
1177 		e->end += len;
1178 		users = e->users++;
1179 	}
1180 	spin_unlock(&con->writequeue_lock);
1181 
1182 	if (e) {
1183 	got_one:
1184 		if (users == 0)
1185 			kmap(e->page);
1186 		*ppc = page_address(e->page) + offset;
1187 		return e;
1188 	}
1189 
1190 	e = new_writequeue_entry(con, allocation);
1191 	if (e) {
1192 		spin_lock(&con->writequeue_lock);
1193 		offset = e->end;
1194 		e->end += len;
1195 		users = e->users++;
1196 		list_add_tail(&e->list, &con->writequeue);
1197 		spin_unlock(&con->writequeue_lock);
1198 		goto got_one;
1199 	}
1200 	return NULL;
1201 }
1202 
1203 void dlm_lowcomms_commit_buffer(void *mh)
1204 {
1205 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1206 	struct connection *con = e->con;
1207 	int users;
1208 
1209 	spin_lock(&con->writequeue_lock);
1210 	users = --e->users;
1211 	if (users)
1212 		goto out;
1213 	e->len = e->end - e->offset;
1214 	kunmap(e->page);
1215 	spin_unlock(&con->writequeue_lock);
1216 
1217 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1218 		queue_work(send_workqueue, &con->swork);
1219 	}
1220 	return;
1221 
1222 out:
1223 	spin_unlock(&con->writequeue_lock);
1224 	return;
1225 }
1226 
1227 /* Send a message */
1228 static void send_to_sock(struct connection *con)
1229 {
1230 	int ret = 0;
1231 	ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1232 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1233 	struct writequeue_entry *e;
1234 	int len, offset;
1235 
1236 	mutex_lock(&con->sock_mutex);
1237 	if (con->sock == NULL)
1238 		goto out_connect;
1239 
1240 	sendpage = con->sock->ops->sendpage;
1241 
1242 	spin_lock(&con->writequeue_lock);
1243 	for (;;) {
1244 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1245 			       list);
1246 		if ((struct list_head *) e == &con->writequeue)
1247 			break;
1248 
1249 		len = e->len;
1250 		offset = e->offset;
1251 		BUG_ON(len == 0 && e->users == 0);
1252 		spin_unlock(&con->writequeue_lock);
1253 		kmap(e->page);
1254 
1255 		ret = 0;
1256 		if (len) {
1257 			ret = sendpage(con->sock, e->page, offset, len,
1258 				       msg_flags);
1259 			if (ret == -EAGAIN || ret == 0)
1260 				goto out;
1261 			if (ret <= 0)
1262 				goto send_error;
1263 		} else {
1264 			/* Don't starve people filling buffers */
1265 			cond_resched();
1266 		}
1267 
1268 		spin_lock(&con->writequeue_lock);
1269 		e->offset += ret;
1270 		e->len -= ret;
1271 
1272 		if (e->len == 0 && e->users == 0) {
1273 			list_del(&e->list);
1274 			kunmap(e->page);
1275 			free_entry(e);
1276 			continue;
1277 		}
1278 	}
1279 	spin_unlock(&con->writequeue_lock);
1280 out:
1281 	mutex_unlock(&con->sock_mutex);
1282 	return;
1283 
1284 send_error:
1285 	mutex_unlock(&con->sock_mutex);
1286 	close_connection(con, false);
1287 	lowcomms_connect_sock(con);
1288 	return;
1289 
1290 out_connect:
1291 	mutex_unlock(&con->sock_mutex);
1292 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1293 		lowcomms_connect_sock(con);
1294 	return;
1295 }
1296 
1297 static void clean_one_writequeue(struct connection *con)
1298 {
1299 	struct list_head *list;
1300 	struct list_head *temp;
1301 
1302 	spin_lock(&con->writequeue_lock);
1303 	list_for_each_safe(list, temp, &con->writequeue) {
1304 		struct writequeue_entry *e =
1305 			list_entry(list, struct writequeue_entry, list);
1306 		list_del(&e->list);
1307 		free_entry(e);
1308 	}
1309 	spin_unlock(&con->writequeue_lock);
1310 }
1311 
1312 /* Called from recovery when it knows that a node has
1313    left the cluster */
1314 int dlm_lowcomms_close(int nodeid)
1315 {
1316 	struct connection *con;
1317 
1318 	log_print("closing connection to node %d", nodeid);
1319 	con = nodeid2con(nodeid, 0);
1320 	if (con) {
1321 		clean_one_writequeue(con);
1322 		close_connection(con, true);
1323 	}
1324 	return 0;
1325 }
1326 
1327 /* Receive workqueue function */
1328 static void process_recv_sockets(struct work_struct *work)
1329 {
1330 	struct connection *con = container_of(work, struct connection, rwork);
1331 	int err;
1332 
1333 	clear_bit(CF_READ_PENDING, &con->flags);
1334 	do {
1335 		err = con->rx_action(con);
1336 	} while (!err);
1337 }
1338 
1339 /* Send workqueue function */
1340 static void process_send_sockets(struct work_struct *work)
1341 {
1342 	struct connection *con = container_of(work, struct connection, swork);
1343 
1344 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1345 		con->connect_action(con);
1346 	}
1347 	clear_bit(CF_WRITE_PENDING, &con->flags);
1348 	send_to_sock(con);
1349 }
1350 
1351 
1352 /* Discard all entries on the write queues */
1353 static void clean_writequeues(void)
1354 {
1355 	int nodeid;
1356 
1357 	for (nodeid = 1; nodeid <= max_nodeid; nodeid++) {
1358 		struct connection *con = __nodeid2con(nodeid, 0);
1359 
1360 		if (con)
1361 			clean_one_writequeue(con);
1362 	}
1363 }
1364 
1365 static void work_stop(void)
1366 {
1367 	destroy_workqueue(recv_workqueue);
1368 	destroy_workqueue(send_workqueue);
1369 }
1370 
1371 static int work_start(void)
1372 {
1373 	int error;
1374 	recv_workqueue = create_workqueue("dlm_recv");
1375 	error = IS_ERR(recv_workqueue);
1376 	if (error) {
1377 		log_print("can't start dlm_recv %d", error);
1378 		return error;
1379 	}
1380 
1381 	send_workqueue = create_singlethread_workqueue("dlm_send");
1382 	error = IS_ERR(send_workqueue);
1383 	if (error) {
1384 		log_print("can't start dlm_send %d", error);
1385 		destroy_workqueue(recv_workqueue);
1386 		return error;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 void dlm_lowcomms_stop(void)
1393 {
1394 	int i;
1395 	struct connection *con;
1396 
1397 	/* Set all the flags to prevent any
1398 	   socket activity.
1399 	*/
1400 	down(&connections_lock);
1401 	for (i = 0; i <= max_nodeid; i++) {
1402 		con = __nodeid2con(i, 0);
1403 		if (con)
1404 			con->flags |= 0xFF;
1405 	}
1406 	up(&connections_lock);
1407 
1408 	work_stop();
1409 
1410 	down(&connections_lock);
1411 	clean_writequeues();
1412 
1413 	for (i = 0; i <= max_nodeid; i++) {
1414 		con = __nodeid2con(i, 0);
1415 		if (con) {
1416 			close_connection(con, true);
1417 			if (con->othercon)
1418 				kmem_cache_free(con_cache, con->othercon);
1419 			kmem_cache_free(con_cache, con);
1420 		}
1421 	}
1422 	max_nodeid = 0;
1423 	up(&connections_lock);
1424 	kmem_cache_destroy(con_cache);
1425 	idr_init(&connections_idr);
1426 }
1427 
1428 int dlm_lowcomms_start(void)
1429 {
1430 	int error = -EINVAL;
1431 	struct connection *con;
1432 
1433 	init_local();
1434 	if (!dlm_local_count) {
1435 		error = -ENOTCONN;
1436 		log_print("no local IP address has been set");
1437 		goto out;
1438 	}
1439 
1440 	error = -ENOMEM;
1441 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1442 				      __alignof__(struct connection), 0,
1443 				      NULL, NULL);
1444 	if (!con_cache)
1445 		goto out;
1446 
1447 	/* Set some sysctl minima */
1448 	if (sysctl_rmem_max < NEEDED_RMEM)
1449 		sysctl_rmem_max = NEEDED_RMEM;
1450 
1451 	/* Start listening */
1452 	if (dlm_config.ci_protocol == 0)
1453 		error = tcp_listen_for_all();
1454 	else
1455 		error = sctp_listen_for_all();
1456 	if (error)
1457 		goto fail_unlisten;
1458 
1459 	error = work_start();
1460 	if (error)
1461 		goto fail_unlisten;
1462 
1463 	return 0;
1464 
1465 fail_unlisten:
1466 	con = nodeid2con(0,0);
1467 	if (con) {
1468 		close_connection(con, false);
1469 		kmem_cache_free(con_cache, con);
1470 	}
1471 	kmem_cache_destroy(con_cache);
1472 
1473 out:
1474 	return error;
1475 }
1476