1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 /* 13 * lowcomms.c 14 * 15 * This is the "low-level" comms layer. 16 * 17 * It is responsible for sending/receiving messages 18 * from other nodes in the cluster. 19 * 20 * Cluster nodes are referred to by their nodeids. nodeids are 21 * simply 32 bit numbers to the locking module - if they need to 22 * be expanded for the cluster infrastructure then that is its 23 * responsibility. It is this layer's 24 * responsibility to resolve these into IP address or 25 * whatever it needs for inter-node communication. 26 * 27 * The comms level is two kernel threads that deal mainly with 28 * the receiving of messages from other nodes and passing them 29 * up to the mid-level comms layer (which understands the 30 * message format) for execution by the locking core, and 31 * a send thread which does all the setting up of connections 32 * to remote nodes and the sending of data. Threads are not allowed 33 * to send their own data because it may cause them to wait in times 34 * of high load. Also, this way, the sending thread can collect together 35 * messages bound for one node and send them in one block. 36 * 37 * lowcomms will choose to use either TCP or SCTP as its transport layer 38 * depending on the configuration variable 'protocol'. This should be set 39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 40 * cluster-wide mechanism as it must be the same on all nodes of the cluster 41 * for the DLM to function. 42 * 43 */ 44 45 #include <asm/ioctls.h> 46 #include <net/sock.h> 47 #include <net/tcp.h> 48 #include <linux/pagemap.h> 49 #include <linux/file.h> 50 #include <linux/mutex.h> 51 #include <linux/sctp.h> 52 #include <linux/slab.h> 53 #include <net/sctp/sctp.h> 54 #include <net/ipv6.h> 55 56 #include <trace/events/dlm.h> 57 #include <trace/events/sock.h> 58 59 #include "dlm_internal.h" 60 #include "lowcomms.h" 61 #include "midcomms.h" 62 #include "memory.h" 63 #include "config.h" 64 65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000) 66 #define DLM_MAX_PROCESS_BUFFERS 24 67 #define NEEDED_RMEM (4*1024*1024) 68 69 struct connection { 70 struct socket *sock; /* NULL if not connected */ 71 uint32_t nodeid; /* So we know who we are in the list */ 72 /* this semaphore is used to allow parallel recv/send in read 73 * lock mode. When we release a sock we need to held the write lock. 74 * 75 * However this is locking code and not nice. When we remove the 76 * othercon handling we can look into other mechanism to synchronize 77 * io handling to call sock_release() at the right time. 78 */ 79 struct rw_semaphore sock_lock; 80 unsigned long flags; 81 #define CF_APP_LIMITED 0 82 #define CF_RECV_PENDING 1 83 #define CF_SEND_PENDING 2 84 #define CF_RECV_INTR 3 85 #define CF_IO_STOP 4 86 #define CF_IS_OTHERCON 5 87 struct list_head writequeue; /* List of outgoing writequeue_entries */ 88 spinlock_t writequeue_lock; 89 int retries; 90 struct hlist_node list; 91 /* due some connect()/accept() races we currently have this cross over 92 * connection attempt second connection for one node. 93 * 94 * There is a solution to avoid the race by introducing a connect 95 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to 96 * connect. Otherside can connect but will only be considered that 97 * the other side wants to have a reconnect. 98 * 99 * However changing to this behaviour will break backwards compatible. 100 * In a DLM protocol major version upgrade we should remove this! 101 */ 102 struct connection *othercon; 103 struct work_struct rwork; /* receive worker */ 104 struct work_struct swork; /* send worker */ 105 wait_queue_head_t shutdown_wait; 106 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE]; 107 int rx_leftover; 108 int mark; 109 int addr_count; 110 int curr_addr_index; 111 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT]; 112 spinlock_t addrs_lock; 113 struct rcu_head rcu; 114 }; 115 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 116 117 struct listen_connection { 118 struct socket *sock; 119 struct work_struct rwork; 120 }; 121 122 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end) 123 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset) 124 125 /* An entry waiting to be sent */ 126 struct writequeue_entry { 127 struct list_head list; 128 struct page *page; 129 int offset; 130 int len; 131 int end; 132 int users; 133 bool dirty; 134 struct connection *con; 135 struct list_head msgs; 136 struct kref ref; 137 }; 138 139 struct dlm_msg { 140 struct writequeue_entry *entry; 141 struct dlm_msg *orig_msg; 142 bool retransmit; 143 void *ppc; 144 int len; 145 int idx; /* new()/commit() idx exchange */ 146 147 struct list_head list; 148 struct kref ref; 149 }; 150 151 struct processqueue_entry { 152 unsigned char *buf; 153 int nodeid; 154 int buflen; 155 156 struct list_head list; 157 }; 158 159 struct dlm_proto_ops { 160 bool try_new_addr; 161 const char *name; 162 int proto; 163 164 void (*sockopts)(struct socket *sock); 165 int (*bind)(struct socket *sock); 166 int (*listen_validate)(void); 167 void (*listen_sockopts)(struct socket *sock); 168 int (*listen_bind)(struct socket *sock); 169 }; 170 171 static struct listen_sock_callbacks { 172 void (*sk_error_report)(struct sock *); 173 void (*sk_data_ready)(struct sock *); 174 void (*sk_state_change)(struct sock *); 175 void (*sk_write_space)(struct sock *); 176 } listen_sock; 177 178 static struct listen_connection listen_con; 179 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT]; 180 static int dlm_local_count; 181 182 /* Work queues */ 183 static struct workqueue_struct *io_workqueue; 184 static struct workqueue_struct *process_workqueue; 185 186 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 187 static DEFINE_SPINLOCK(connections_lock); 188 DEFINE_STATIC_SRCU(connections_srcu); 189 190 static const struct dlm_proto_ops *dlm_proto_ops; 191 192 #define DLM_IO_SUCCESS 0 193 #define DLM_IO_END 1 194 #define DLM_IO_EOF 2 195 #define DLM_IO_RESCHED 3 196 #define DLM_IO_FLUSH 4 197 198 static void process_recv_sockets(struct work_struct *work); 199 static void process_send_sockets(struct work_struct *work); 200 static void process_dlm_messages(struct work_struct *work); 201 202 static DECLARE_WORK(process_work, process_dlm_messages); 203 static DEFINE_SPINLOCK(processqueue_lock); 204 static bool process_dlm_messages_pending; 205 static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq); 206 static atomic_t processqueue_count; 207 static LIST_HEAD(processqueue); 208 209 bool dlm_lowcomms_is_running(void) 210 { 211 return !!listen_con.sock; 212 } 213 214 static void lowcomms_queue_swork(struct connection *con) 215 { 216 assert_spin_locked(&con->writequeue_lock); 217 218 if (!test_bit(CF_IO_STOP, &con->flags) && 219 !test_bit(CF_APP_LIMITED, &con->flags) && 220 !test_and_set_bit(CF_SEND_PENDING, &con->flags)) 221 queue_work(io_workqueue, &con->swork); 222 } 223 224 static void lowcomms_queue_rwork(struct connection *con) 225 { 226 #ifdef CONFIG_LOCKDEP 227 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk)); 228 #endif 229 230 if (!test_bit(CF_IO_STOP, &con->flags) && 231 !test_and_set_bit(CF_RECV_PENDING, &con->flags)) 232 queue_work(io_workqueue, &con->rwork); 233 } 234 235 static void writequeue_entry_ctor(void *data) 236 { 237 struct writequeue_entry *entry = data; 238 239 INIT_LIST_HEAD(&entry->msgs); 240 } 241 242 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void) 243 { 244 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry), 245 0, 0, writequeue_entry_ctor); 246 } 247 248 struct kmem_cache *dlm_lowcomms_msg_cache_create(void) 249 { 250 return KMEM_CACHE(dlm_msg, 0); 251 } 252 253 /* need to held writequeue_lock */ 254 static struct writequeue_entry *con_next_wq(struct connection *con) 255 { 256 struct writequeue_entry *e; 257 258 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry, 259 list); 260 /* if len is zero nothing is to send, if there are users filling 261 * buffers we wait until the users are done so we can send more. 262 */ 263 if (!e || e->users || e->len == 0) 264 return NULL; 265 266 return e; 267 } 268 269 static struct connection *__find_con(int nodeid, int r) 270 { 271 struct connection *con; 272 273 hlist_for_each_entry_rcu(con, &connection_hash[r], list) { 274 if (con->nodeid == nodeid) 275 return con; 276 } 277 278 return NULL; 279 } 280 281 static void dlm_con_init(struct connection *con, int nodeid) 282 { 283 con->nodeid = nodeid; 284 init_rwsem(&con->sock_lock); 285 INIT_LIST_HEAD(&con->writequeue); 286 spin_lock_init(&con->writequeue_lock); 287 INIT_WORK(&con->swork, process_send_sockets); 288 INIT_WORK(&con->rwork, process_recv_sockets); 289 spin_lock_init(&con->addrs_lock); 290 init_waitqueue_head(&con->shutdown_wait); 291 } 292 293 /* 294 * If 'allocation' is zero then we don't attempt to create a new 295 * connection structure for this node. 296 */ 297 static struct connection *nodeid2con(int nodeid, gfp_t alloc) 298 { 299 struct connection *con, *tmp; 300 int r; 301 302 r = nodeid_hash(nodeid); 303 con = __find_con(nodeid, r); 304 if (con || !alloc) 305 return con; 306 307 con = kzalloc(sizeof(*con), alloc); 308 if (!con) 309 return NULL; 310 311 dlm_con_init(con, nodeid); 312 313 spin_lock(&connections_lock); 314 /* Because multiple workqueues/threads calls this function it can 315 * race on multiple cpu's. Instead of locking hot path __find_con() 316 * we just check in rare cases of recently added nodes again 317 * under protection of connections_lock. If this is the case we 318 * abort our connection creation and return the existing connection. 319 */ 320 tmp = __find_con(nodeid, r); 321 if (tmp) { 322 spin_unlock(&connections_lock); 323 kfree(con); 324 return tmp; 325 } 326 327 hlist_add_head_rcu(&con->list, &connection_hash[r]); 328 spin_unlock(&connections_lock); 329 330 return con; 331 } 332 333 static int addr_compare(const struct sockaddr_storage *x, 334 const struct sockaddr_storage *y) 335 { 336 switch (x->ss_family) { 337 case AF_INET: { 338 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 339 struct sockaddr_in *siny = (struct sockaddr_in *)y; 340 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 341 return 0; 342 if (sinx->sin_port != siny->sin_port) 343 return 0; 344 break; 345 } 346 case AF_INET6: { 347 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 348 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 349 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 350 return 0; 351 if (sinx->sin6_port != siny->sin6_port) 352 return 0; 353 break; 354 } 355 default: 356 return 0; 357 } 358 return 1; 359 } 360 361 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 362 struct sockaddr *sa_out, bool try_new_addr, 363 unsigned int *mark) 364 { 365 struct sockaddr_storage sas; 366 struct connection *con; 367 int idx; 368 369 if (!dlm_local_count) 370 return -1; 371 372 idx = srcu_read_lock(&connections_srcu); 373 con = nodeid2con(nodeid, 0); 374 if (!con) { 375 srcu_read_unlock(&connections_srcu, idx); 376 return -ENOENT; 377 } 378 379 spin_lock(&con->addrs_lock); 380 if (!con->addr_count) { 381 spin_unlock(&con->addrs_lock); 382 srcu_read_unlock(&connections_srcu, idx); 383 return -ENOENT; 384 } 385 386 memcpy(&sas, &con->addr[con->curr_addr_index], 387 sizeof(struct sockaddr_storage)); 388 389 if (try_new_addr) { 390 con->curr_addr_index++; 391 if (con->curr_addr_index == con->addr_count) 392 con->curr_addr_index = 0; 393 } 394 395 *mark = con->mark; 396 spin_unlock(&con->addrs_lock); 397 398 if (sas_out) 399 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 400 401 if (!sa_out) { 402 srcu_read_unlock(&connections_srcu, idx); 403 return 0; 404 } 405 406 if (dlm_local_addr[0].ss_family == AF_INET) { 407 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 408 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 409 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 410 } else { 411 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 412 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 413 ret6->sin6_addr = in6->sin6_addr; 414 } 415 416 srcu_read_unlock(&connections_srcu, idx); 417 return 0; 418 } 419 420 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid, 421 unsigned int *mark) 422 { 423 struct connection *con; 424 int i, idx, addr_i; 425 426 idx = srcu_read_lock(&connections_srcu); 427 for (i = 0; i < CONN_HASH_SIZE; i++) { 428 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 429 WARN_ON_ONCE(!con->addr_count); 430 431 spin_lock(&con->addrs_lock); 432 for (addr_i = 0; addr_i < con->addr_count; addr_i++) { 433 if (addr_compare(&con->addr[addr_i], addr)) { 434 *nodeid = con->nodeid; 435 *mark = con->mark; 436 spin_unlock(&con->addrs_lock); 437 srcu_read_unlock(&connections_srcu, idx); 438 return 0; 439 } 440 } 441 spin_unlock(&con->addrs_lock); 442 } 443 } 444 srcu_read_unlock(&connections_srcu, idx); 445 446 return -ENOENT; 447 } 448 449 static bool dlm_lowcomms_con_has_addr(const struct connection *con, 450 const struct sockaddr_storage *addr) 451 { 452 int i; 453 454 for (i = 0; i < con->addr_count; i++) { 455 if (addr_compare(&con->addr[i], addr)) 456 return true; 457 } 458 459 return false; 460 } 461 462 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr) 463 { 464 struct connection *con; 465 bool ret; 466 int idx; 467 468 idx = srcu_read_lock(&connections_srcu); 469 con = nodeid2con(nodeid, GFP_NOFS); 470 if (!con) { 471 srcu_read_unlock(&connections_srcu, idx); 472 return -ENOMEM; 473 } 474 475 spin_lock(&con->addrs_lock); 476 if (!con->addr_count) { 477 memcpy(&con->addr[0], addr, sizeof(*addr)); 478 con->addr_count = 1; 479 con->mark = dlm_config.ci_mark; 480 spin_unlock(&con->addrs_lock); 481 srcu_read_unlock(&connections_srcu, idx); 482 return 0; 483 } 484 485 ret = dlm_lowcomms_con_has_addr(con, addr); 486 if (ret) { 487 spin_unlock(&con->addrs_lock); 488 srcu_read_unlock(&connections_srcu, idx); 489 return -EEXIST; 490 } 491 492 if (con->addr_count >= DLM_MAX_ADDR_COUNT) { 493 spin_unlock(&con->addrs_lock); 494 srcu_read_unlock(&connections_srcu, idx); 495 return -ENOSPC; 496 } 497 498 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr)); 499 srcu_read_unlock(&connections_srcu, idx); 500 spin_unlock(&con->addrs_lock); 501 return 0; 502 } 503 504 /* Data available on socket or listen socket received a connect */ 505 static void lowcomms_data_ready(struct sock *sk) 506 { 507 struct connection *con = sock2con(sk); 508 509 trace_sk_data_ready(sk); 510 511 set_bit(CF_RECV_INTR, &con->flags); 512 lowcomms_queue_rwork(con); 513 } 514 515 static void lowcomms_write_space(struct sock *sk) 516 { 517 struct connection *con = sock2con(sk); 518 519 clear_bit(SOCK_NOSPACE, &con->sock->flags); 520 521 spin_lock_bh(&con->writequeue_lock); 522 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 523 con->sock->sk->sk_write_pending--; 524 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 525 } 526 527 lowcomms_queue_swork(con); 528 spin_unlock_bh(&con->writequeue_lock); 529 } 530 531 static void lowcomms_state_change(struct sock *sk) 532 { 533 /* SCTP layer is not calling sk_data_ready when the connection 534 * is done, so we catch the signal through here. 535 */ 536 if (sk->sk_shutdown == RCV_SHUTDOWN) 537 lowcomms_data_ready(sk); 538 } 539 540 static void lowcomms_listen_data_ready(struct sock *sk) 541 { 542 trace_sk_data_ready(sk); 543 544 queue_work(io_workqueue, &listen_con.rwork); 545 } 546 547 int dlm_lowcomms_connect_node(int nodeid) 548 { 549 struct connection *con; 550 int idx; 551 552 idx = srcu_read_lock(&connections_srcu); 553 con = nodeid2con(nodeid, 0); 554 if (WARN_ON_ONCE(!con)) { 555 srcu_read_unlock(&connections_srcu, idx); 556 return -ENOENT; 557 } 558 559 down_read(&con->sock_lock); 560 if (!con->sock) { 561 spin_lock_bh(&con->writequeue_lock); 562 lowcomms_queue_swork(con); 563 spin_unlock_bh(&con->writequeue_lock); 564 } 565 up_read(&con->sock_lock); 566 srcu_read_unlock(&connections_srcu, idx); 567 568 cond_resched(); 569 return 0; 570 } 571 572 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark) 573 { 574 struct connection *con; 575 int idx; 576 577 idx = srcu_read_lock(&connections_srcu); 578 con = nodeid2con(nodeid, 0); 579 if (!con) { 580 srcu_read_unlock(&connections_srcu, idx); 581 return -ENOENT; 582 } 583 584 spin_lock(&con->addrs_lock); 585 con->mark = mark; 586 spin_unlock(&con->addrs_lock); 587 srcu_read_unlock(&connections_srcu, idx); 588 return 0; 589 } 590 591 static void lowcomms_error_report(struct sock *sk) 592 { 593 struct connection *con = sock2con(sk); 594 struct inet_sock *inet; 595 596 inet = inet_sk(sk); 597 switch (sk->sk_family) { 598 case AF_INET: 599 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 600 "sending to node %d at %pI4, dport %d, " 601 "sk_err=%d/%d\n", dlm_our_nodeid(), 602 con->nodeid, &inet->inet_daddr, 603 ntohs(inet->inet_dport), sk->sk_err, 604 READ_ONCE(sk->sk_err_soft)); 605 break; 606 #if IS_ENABLED(CONFIG_IPV6) 607 case AF_INET6: 608 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 609 "sending to node %d at %pI6c, " 610 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(), 611 con->nodeid, &sk->sk_v6_daddr, 612 ntohs(inet->inet_dport), sk->sk_err, 613 READ_ONCE(sk->sk_err_soft)); 614 break; 615 #endif 616 default: 617 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 618 "invalid socket family %d set, " 619 "sk_err=%d/%d\n", dlm_our_nodeid(), 620 sk->sk_family, sk->sk_err, 621 READ_ONCE(sk->sk_err_soft)); 622 break; 623 } 624 625 dlm_midcomms_unack_msg_resend(con->nodeid); 626 627 listen_sock.sk_error_report(sk); 628 } 629 630 static void restore_callbacks(struct sock *sk) 631 { 632 #ifdef CONFIG_LOCKDEP 633 WARN_ON_ONCE(!lockdep_sock_is_held(sk)); 634 #endif 635 636 sk->sk_user_data = NULL; 637 sk->sk_data_ready = listen_sock.sk_data_ready; 638 sk->sk_state_change = listen_sock.sk_state_change; 639 sk->sk_write_space = listen_sock.sk_write_space; 640 sk->sk_error_report = listen_sock.sk_error_report; 641 } 642 643 /* Make a socket active */ 644 static void add_sock(struct socket *sock, struct connection *con) 645 { 646 struct sock *sk = sock->sk; 647 648 lock_sock(sk); 649 con->sock = sock; 650 651 sk->sk_user_data = con; 652 sk->sk_data_ready = lowcomms_data_ready; 653 sk->sk_write_space = lowcomms_write_space; 654 if (dlm_config.ci_protocol == DLM_PROTO_SCTP) 655 sk->sk_state_change = lowcomms_state_change; 656 sk->sk_allocation = GFP_NOFS; 657 sk->sk_use_task_frag = false; 658 sk->sk_error_report = lowcomms_error_report; 659 release_sock(sk); 660 } 661 662 /* Add the port number to an IPv6 or 4 sockaddr and return the address 663 length */ 664 static void make_sockaddr(struct sockaddr_storage *saddr, __be16 port, 665 int *addr_len) 666 { 667 saddr->ss_family = dlm_local_addr[0].ss_family; 668 if (saddr->ss_family == AF_INET) { 669 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 670 in4_addr->sin_port = port; 671 *addr_len = sizeof(struct sockaddr_in); 672 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 673 } else { 674 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 675 in6_addr->sin6_port = port; 676 *addr_len = sizeof(struct sockaddr_in6); 677 } 678 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 679 } 680 681 static void dlm_page_release(struct kref *kref) 682 { 683 struct writequeue_entry *e = container_of(kref, struct writequeue_entry, 684 ref); 685 686 __free_page(e->page); 687 dlm_free_writequeue(e); 688 } 689 690 static void dlm_msg_release(struct kref *kref) 691 { 692 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref); 693 694 kref_put(&msg->entry->ref, dlm_page_release); 695 dlm_free_msg(msg); 696 } 697 698 static void free_entry(struct writequeue_entry *e) 699 { 700 struct dlm_msg *msg, *tmp; 701 702 list_for_each_entry_safe(msg, tmp, &e->msgs, list) { 703 if (msg->orig_msg) { 704 msg->orig_msg->retransmit = false; 705 kref_put(&msg->orig_msg->ref, dlm_msg_release); 706 } 707 708 list_del(&msg->list); 709 kref_put(&msg->ref, dlm_msg_release); 710 } 711 712 list_del(&e->list); 713 kref_put(&e->ref, dlm_page_release); 714 } 715 716 static void dlm_close_sock(struct socket **sock) 717 { 718 lock_sock((*sock)->sk); 719 restore_callbacks((*sock)->sk); 720 release_sock((*sock)->sk); 721 722 sock_release(*sock); 723 *sock = NULL; 724 } 725 726 static void allow_connection_io(struct connection *con) 727 { 728 if (con->othercon) 729 clear_bit(CF_IO_STOP, &con->othercon->flags); 730 clear_bit(CF_IO_STOP, &con->flags); 731 } 732 733 static void stop_connection_io(struct connection *con) 734 { 735 if (con->othercon) 736 stop_connection_io(con->othercon); 737 738 spin_lock_bh(&con->writequeue_lock); 739 set_bit(CF_IO_STOP, &con->flags); 740 spin_unlock_bh(&con->writequeue_lock); 741 742 down_write(&con->sock_lock); 743 if (con->sock) { 744 lock_sock(con->sock->sk); 745 restore_callbacks(con->sock->sk); 746 release_sock(con->sock->sk); 747 } 748 up_write(&con->sock_lock); 749 750 cancel_work_sync(&con->swork); 751 cancel_work_sync(&con->rwork); 752 } 753 754 /* Close a remote connection and tidy up */ 755 static void close_connection(struct connection *con, bool and_other) 756 { 757 struct writequeue_entry *e; 758 759 if (con->othercon && and_other) 760 close_connection(con->othercon, false); 761 762 down_write(&con->sock_lock); 763 if (!con->sock) { 764 up_write(&con->sock_lock); 765 return; 766 } 767 768 dlm_close_sock(&con->sock); 769 770 /* if we send a writequeue entry only a half way, we drop the 771 * whole entry because reconnection and that we not start of the 772 * middle of a msg which will confuse the other end. 773 * 774 * we can always drop messages because retransmits, but what we 775 * cannot allow is to transmit half messages which may be processed 776 * at the other side. 777 * 778 * our policy is to start on a clean state when disconnects, we don't 779 * know what's send/received on transport layer in this case. 780 */ 781 spin_lock_bh(&con->writequeue_lock); 782 if (!list_empty(&con->writequeue)) { 783 e = list_first_entry(&con->writequeue, struct writequeue_entry, 784 list); 785 if (e->dirty) 786 free_entry(e); 787 } 788 spin_unlock_bh(&con->writequeue_lock); 789 790 con->rx_leftover = 0; 791 con->retries = 0; 792 clear_bit(CF_APP_LIMITED, &con->flags); 793 clear_bit(CF_RECV_PENDING, &con->flags); 794 clear_bit(CF_SEND_PENDING, &con->flags); 795 up_write(&con->sock_lock); 796 } 797 798 static void shutdown_connection(struct connection *con, bool and_other) 799 { 800 int ret; 801 802 if (con->othercon && and_other) 803 shutdown_connection(con->othercon, false); 804 805 flush_workqueue(io_workqueue); 806 down_read(&con->sock_lock); 807 /* nothing to shutdown */ 808 if (!con->sock) { 809 up_read(&con->sock_lock); 810 return; 811 } 812 813 ret = kernel_sock_shutdown(con->sock, SHUT_WR); 814 up_read(&con->sock_lock); 815 if (ret) { 816 log_print("Connection %p failed to shutdown: %d will force close", 817 con, ret); 818 goto force_close; 819 } else { 820 ret = wait_event_timeout(con->shutdown_wait, !con->sock, 821 DLM_SHUTDOWN_WAIT_TIMEOUT); 822 if (ret == 0) { 823 log_print("Connection %p shutdown timed out, will force close", 824 con); 825 goto force_close; 826 } 827 } 828 829 return; 830 831 force_close: 832 close_connection(con, false); 833 } 834 835 static struct processqueue_entry *new_processqueue_entry(int nodeid, 836 int buflen) 837 { 838 struct processqueue_entry *pentry; 839 840 pentry = kmalloc(sizeof(*pentry), GFP_NOFS); 841 if (!pentry) 842 return NULL; 843 844 pentry->buf = kmalloc(buflen, GFP_NOFS); 845 if (!pentry->buf) { 846 kfree(pentry); 847 return NULL; 848 } 849 850 pentry->nodeid = nodeid; 851 return pentry; 852 } 853 854 static void free_processqueue_entry(struct processqueue_entry *pentry) 855 { 856 kfree(pentry->buf); 857 kfree(pentry); 858 } 859 860 static void process_dlm_messages(struct work_struct *work) 861 { 862 struct processqueue_entry *pentry; 863 864 spin_lock_bh(&processqueue_lock); 865 pentry = list_first_entry_or_null(&processqueue, 866 struct processqueue_entry, list); 867 if (WARN_ON_ONCE(!pentry)) { 868 process_dlm_messages_pending = false; 869 spin_unlock_bh(&processqueue_lock); 870 return; 871 } 872 873 list_del(&pentry->list); 874 if (atomic_dec_and_test(&processqueue_count)) 875 wake_up(&processqueue_wq); 876 spin_unlock_bh(&processqueue_lock); 877 878 for (;;) { 879 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf, 880 pentry->buflen); 881 free_processqueue_entry(pentry); 882 883 spin_lock_bh(&processqueue_lock); 884 pentry = list_first_entry_or_null(&processqueue, 885 struct processqueue_entry, list); 886 if (!pentry) { 887 process_dlm_messages_pending = false; 888 spin_unlock_bh(&processqueue_lock); 889 break; 890 } 891 892 list_del(&pentry->list); 893 if (atomic_dec_and_test(&processqueue_count)) 894 wake_up(&processqueue_wq); 895 spin_unlock_bh(&processqueue_lock); 896 } 897 } 898 899 /* Data received from remote end */ 900 static int receive_from_sock(struct connection *con, int buflen) 901 { 902 struct processqueue_entry *pentry; 903 int ret, buflen_real; 904 struct msghdr msg; 905 struct kvec iov; 906 907 pentry = new_processqueue_entry(con->nodeid, buflen); 908 if (!pentry) 909 return DLM_IO_RESCHED; 910 911 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover); 912 913 /* calculate new buffer parameter regarding last receive and 914 * possible leftover bytes 915 */ 916 iov.iov_base = pentry->buf + con->rx_leftover; 917 iov.iov_len = buflen - con->rx_leftover; 918 919 memset(&msg, 0, sizeof(msg)); 920 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 921 clear_bit(CF_RECV_INTR, &con->flags); 922 again: 923 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, 924 msg.msg_flags); 925 trace_dlm_recv(con->nodeid, ret); 926 if (ret == -EAGAIN) { 927 lock_sock(con->sock->sk); 928 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) { 929 release_sock(con->sock->sk); 930 goto again; 931 } 932 933 clear_bit(CF_RECV_PENDING, &con->flags); 934 release_sock(con->sock->sk); 935 free_processqueue_entry(pentry); 936 return DLM_IO_END; 937 } else if (ret == 0) { 938 /* close will clear CF_RECV_PENDING */ 939 free_processqueue_entry(pentry); 940 return DLM_IO_EOF; 941 } else if (ret < 0) { 942 free_processqueue_entry(pentry); 943 return ret; 944 } 945 946 /* new buflen according readed bytes and leftover from last receive */ 947 buflen_real = ret + con->rx_leftover; 948 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf, 949 buflen_real); 950 if (ret < 0) { 951 free_processqueue_entry(pentry); 952 return ret; 953 } 954 955 pentry->buflen = ret; 956 957 /* calculate leftover bytes from process and put it into begin of 958 * the receive buffer, so next receive we have the full message 959 * at the start address of the receive buffer. 960 */ 961 con->rx_leftover = buflen_real - ret; 962 memmove(con->rx_leftover_buf, pentry->buf + ret, 963 con->rx_leftover); 964 965 spin_lock_bh(&processqueue_lock); 966 ret = atomic_inc_return(&processqueue_count); 967 list_add_tail(&pentry->list, &processqueue); 968 if (!process_dlm_messages_pending) { 969 process_dlm_messages_pending = true; 970 queue_work(process_workqueue, &process_work); 971 } 972 spin_unlock_bh(&processqueue_lock); 973 974 if (ret > DLM_MAX_PROCESS_BUFFERS) 975 return DLM_IO_FLUSH; 976 977 return DLM_IO_SUCCESS; 978 } 979 980 /* Listening socket is busy, accept a connection */ 981 static int accept_from_sock(void) 982 { 983 struct sockaddr_storage peeraddr; 984 int len, idx, result, nodeid; 985 struct connection *newcon; 986 struct socket *newsock; 987 unsigned int mark; 988 989 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK); 990 if (result == -EAGAIN) 991 return DLM_IO_END; 992 else if (result < 0) 993 goto accept_err; 994 995 /* Get the connected socket's peer */ 996 memset(&peeraddr, 0, sizeof(peeraddr)); 997 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 998 if (len < 0) { 999 result = -ECONNABORTED; 1000 goto accept_err; 1001 } 1002 1003 /* Get the new node's NODEID */ 1004 make_sockaddr(&peeraddr, 0, &len); 1005 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) { 1006 switch (peeraddr.ss_family) { 1007 case AF_INET: { 1008 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr; 1009 1010 log_print("connect from non cluster IPv4 node %pI4", 1011 &sin->sin_addr); 1012 break; 1013 } 1014 #if IS_ENABLED(CONFIG_IPV6) 1015 case AF_INET6: { 1016 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr; 1017 1018 log_print("connect from non cluster IPv6 node %pI6c", 1019 &sin6->sin6_addr); 1020 break; 1021 } 1022 #endif 1023 default: 1024 log_print("invalid family from non cluster node"); 1025 break; 1026 } 1027 1028 sock_release(newsock); 1029 return -1; 1030 } 1031 1032 log_print("got connection from %d", nodeid); 1033 1034 /* Check to see if we already have a connection to this node. This 1035 * could happen if the two nodes initiate a connection at roughly 1036 * the same time and the connections cross on the wire. 1037 * In this case we store the incoming one in "othercon" 1038 */ 1039 idx = srcu_read_lock(&connections_srcu); 1040 newcon = nodeid2con(nodeid, 0); 1041 if (WARN_ON_ONCE(!newcon)) { 1042 srcu_read_unlock(&connections_srcu, idx); 1043 result = -ENOENT; 1044 goto accept_err; 1045 } 1046 1047 sock_set_mark(newsock->sk, mark); 1048 1049 down_write(&newcon->sock_lock); 1050 if (newcon->sock) { 1051 struct connection *othercon = newcon->othercon; 1052 1053 if (!othercon) { 1054 othercon = kzalloc(sizeof(*othercon), GFP_NOFS); 1055 if (!othercon) { 1056 log_print("failed to allocate incoming socket"); 1057 up_write(&newcon->sock_lock); 1058 srcu_read_unlock(&connections_srcu, idx); 1059 result = -ENOMEM; 1060 goto accept_err; 1061 } 1062 1063 dlm_con_init(othercon, nodeid); 1064 lockdep_set_subclass(&othercon->sock_lock, 1); 1065 newcon->othercon = othercon; 1066 set_bit(CF_IS_OTHERCON, &othercon->flags); 1067 } else { 1068 /* close other sock con if we have something new */ 1069 close_connection(othercon, false); 1070 } 1071 1072 down_write(&othercon->sock_lock); 1073 add_sock(newsock, othercon); 1074 1075 /* check if we receved something while adding */ 1076 lock_sock(othercon->sock->sk); 1077 lowcomms_queue_rwork(othercon); 1078 release_sock(othercon->sock->sk); 1079 up_write(&othercon->sock_lock); 1080 } 1081 else { 1082 /* accept copies the sk after we've saved the callbacks, so we 1083 don't want to save them a second time or comm errors will 1084 result in calling sk_error_report recursively. */ 1085 add_sock(newsock, newcon); 1086 1087 /* check if we receved something while adding */ 1088 lock_sock(newcon->sock->sk); 1089 lowcomms_queue_rwork(newcon); 1090 release_sock(newcon->sock->sk); 1091 } 1092 up_write(&newcon->sock_lock); 1093 srcu_read_unlock(&connections_srcu, idx); 1094 1095 return DLM_IO_SUCCESS; 1096 1097 accept_err: 1098 if (newsock) 1099 sock_release(newsock); 1100 1101 return result; 1102 } 1103 1104 /* 1105 * writequeue_entry_complete - try to delete and free write queue entry 1106 * @e: write queue entry to try to delete 1107 * @completed: bytes completed 1108 * 1109 * writequeue_lock must be held. 1110 */ 1111 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 1112 { 1113 e->offset += completed; 1114 e->len -= completed; 1115 /* signal that page was half way transmitted */ 1116 e->dirty = true; 1117 1118 if (e->len == 0 && e->users == 0) 1119 free_entry(e); 1120 } 1121 1122 /* 1123 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1124 */ 1125 static int sctp_bind_addrs(struct socket *sock, __be16 port) 1126 { 1127 struct sockaddr_storage localaddr; 1128 struct sockaddr *addr = (struct sockaddr *)&localaddr; 1129 int i, addr_len, result = 0; 1130 1131 for (i = 0; i < dlm_local_count; i++) { 1132 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr)); 1133 make_sockaddr(&localaddr, port, &addr_len); 1134 1135 if (!i) 1136 result = kernel_bind(sock, addr, addr_len); 1137 else 1138 result = sock_bind_add(sock->sk, addr, addr_len); 1139 1140 if (result < 0) { 1141 log_print("Can't bind to %d addr number %d, %d.\n", 1142 port, i + 1, result); 1143 break; 1144 } 1145 } 1146 return result; 1147 } 1148 1149 /* Get local addresses */ 1150 static void init_local(void) 1151 { 1152 struct sockaddr_storage sas; 1153 int i; 1154 1155 dlm_local_count = 0; 1156 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1157 if (dlm_our_addr(&sas, i)) 1158 break; 1159 1160 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas)); 1161 } 1162 } 1163 1164 static struct writequeue_entry *new_writequeue_entry(struct connection *con) 1165 { 1166 struct writequeue_entry *entry; 1167 1168 entry = dlm_allocate_writequeue(); 1169 if (!entry) 1170 return NULL; 1171 1172 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 1173 if (!entry->page) { 1174 dlm_free_writequeue(entry); 1175 return NULL; 1176 } 1177 1178 entry->offset = 0; 1179 entry->len = 0; 1180 entry->end = 0; 1181 entry->dirty = false; 1182 entry->con = con; 1183 entry->users = 1; 1184 kref_init(&entry->ref); 1185 return entry; 1186 } 1187 1188 static struct writequeue_entry *new_wq_entry(struct connection *con, int len, 1189 char **ppc, void (*cb)(void *data), 1190 void *data) 1191 { 1192 struct writequeue_entry *e; 1193 1194 spin_lock_bh(&con->writequeue_lock); 1195 if (!list_empty(&con->writequeue)) { 1196 e = list_last_entry(&con->writequeue, struct writequeue_entry, list); 1197 if (DLM_WQ_REMAIN_BYTES(e) >= len) { 1198 kref_get(&e->ref); 1199 1200 *ppc = page_address(e->page) + e->end; 1201 if (cb) 1202 cb(data); 1203 1204 e->end += len; 1205 e->users++; 1206 goto out; 1207 } 1208 } 1209 1210 e = new_writequeue_entry(con); 1211 if (!e) 1212 goto out; 1213 1214 kref_get(&e->ref); 1215 *ppc = page_address(e->page); 1216 e->end += len; 1217 if (cb) 1218 cb(data); 1219 1220 list_add_tail(&e->list, &con->writequeue); 1221 1222 out: 1223 spin_unlock_bh(&con->writequeue_lock); 1224 return e; 1225 }; 1226 1227 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len, 1228 char **ppc, void (*cb)(void *data), 1229 void *data) 1230 { 1231 struct writequeue_entry *e; 1232 struct dlm_msg *msg; 1233 1234 msg = dlm_allocate_msg(); 1235 if (!msg) 1236 return NULL; 1237 1238 kref_init(&msg->ref); 1239 1240 e = new_wq_entry(con, len, ppc, cb, data); 1241 if (!e) { 1242 dlm_free_msg(msg); 1243 return NULL; 1244 } 1245 1246 msg->retransmit = false; 1247 msg->orig_msg = NULL; 1248 msg->ppc = *ppc; 1249 msg->len = len; 1250 msg->entry = e; 1251 1252 return msg; 1253 } 1254 1255 /* avoid false positive for nodes_srcu, unlock happens in 1256 * dlm_lowcomms_commit_msg which is a must call if success 1257 */ 1258 #ifndef __CHECKER__ 1259 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc, 1260 void (*cb)(void *data), void *data) 1261 { 1262 struct connection *con; 1263 struct dlm_msg *msg; 1264 int idx; 1265 1266 if (len > DLM_MAX_SOCKET_BUFSIZE || 1267 len < sizeof(struct dlm_header)) { 1268 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE); 1269 log_print("failed to allocate a buffer of size %d", len); 1270 WARN_ON_ONCE(1); 1271 return NULL; 1272 } 1273 1274 idx = srcu_read_lock(&connections_srcu); 1275 con = nodeid2con(nodeid, 0); 1276 if (WARN_ON_ONCE(!con)) { 1277 srcu_read_unlock(&connections_srcu, idx); 1278 return NULL; 1279 } 1280 1281 msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data); 1282 if (!msg) { 1283 srcu_read_unlock(&connections_srcu, idx); 1284 return NULL; 1285 } 1286 1287 /* for dlm_lowcomms_commit_msg() */ 1288 kref_get(&msg->ref); 1289 /* we assume if successful commit must called */ 1290 msg->idx = idx; 1291 return msg; 1292 } 1293 #endif 1294 1295 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1296 { 1297 struct writequeue_entry *e = msg->entry; 1298 struct connection *con = e->con; 1299 int users; 1300 1301 spin_lock_bh(&con->writequeue_lock); 1302 kref_get(&msg->ref); 1303 list_add(&msg->list, &e->msgs); 1304 1305 users = --e->users; 1306 if (users) 1307 goto out; 1308 1309 e->len = DLM_WQ_LENGTH_BYTES(e); 1310 1311 lowcomms_queue_swork(con); 1312 1313 out: 1314 spin_unlock_bh(&con->writequeue_lock); 1315 return; 1316 } 1317 1318 /* avoid false positive for nodes_srcu, lock was happen in 1319 * dlm_lowcomms_new_msg 1320 */ 1321 #ifndef __CHECKER__ 1322 void dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1323 { 1324 _dlm_lowcomms_commit_msg(msg); 1325 srcu_read_unlock(&connections_srcu, msg->idx); 1326 /* because dlm_lowcomms_new_msg() */ 1327 kref_put(&msg->ref, dlm_msg_release); 1328 } 1329 #endif 1330 1331 void dlm_lowcomms_put_msg(struct dlm_msg *msg) 1332 { 1333 kref_put(&msg->ref, dlm_msg_release); 1334 } 1335 1336 /* does not held connections_srcu, usage lowcomms_error_report only */ 1337 int dlm_lowcomms_resend_msg(struct dlm_msg *msg) 1338 { 1339 struct dlm_msg *msg_resend; 1340 char *ppc; 1341 1342 if (msg->retransmit) 1343 return 1; 1344 1345 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc, 1346 NULL, NULL); 1347 if (!msg_resend) 1348 return -ENOMEM; 1349 1350 msg->retransmit = true; 1351 kref_get(&msg->ref); 1352 msg_resend->orig_msg = msg; 1353 1354 memcpy(ppc, msg->ppc, msg->len); 1355 _dlm_lowcomms_commit_msg(msg_resend); 1356 dlm_lowcomms_put_msg(msg_resend); 1357 1358 return 0; 1359 } 1360 1361 /* Send a message */ 1362 static int send_to_sock(struct connection *con) 1363 { 1364 struct writequeue_entry *e; 1365 struct bio_vec bvec; 1366 struct msghdr msg = { 1367 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL, 1368 }; 1369 int len, offset, ret; 1370 1371 spin_lock_bh(&con->writequeue_lock); 1372 e = con_next_wq(con); 1373 if (!e) { 1374 clear_bit(CF_SEND_PENDING, &con->flags); 1375 spin_unlock_bh(&con->writequeue_lock); 1376 return DLM_IO_END; 1377 } 1378 1379 len = e->len; 1380 offset = e->offset; 1381 WARN_ON_ONCE(len == 0 && e->users == 0); 1382 spin_unlock_bh(&con->writequeue_lock); 1383 1384 bvec_set_page(&bvec, e->page, len, offset); 1385 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1386 ret = sock_sendmsg(con->sock, &msg); 1387 trace_dlm_send(con->nodeid, ret); 1388 if (ret == -EAGAIN || ret == 0) { 1389 lock_sock(con->sock->sk); 1390 spin_lock_bh(&con->writequeue_lock); 1391 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1392 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1393 /* Notify TCP that we're limited by the 1394 * application window size. 1395 */ 1396 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags); 1397 con->sock->sk->sk_write_pending++; 1398 1399 clear_bit(CF_SEND_PENDING, &con->flags); 1400 spin_unlock_bh(&con->writequeue_lock); 1401 release_sock(con->sock->sk); 1402 1403 /* wait for write_space() event */ 1404 return DLM_IO_END; 1405 } 1406 spin_unlock_bh(&con->writequeue_lock); 1407 release_sock(con->sock->sk); 1408 1409 return DLM_IO_RESCHED; 1410 } else if (ret < 0) { 1411 return ret; 1412 } 1413 1414 spin_lock_bh(&con->writequeue_lock); 1415 writequeue_entry_complete(e, ret); 1416 spin_unlock_bh(&con->writequeue_lock); 1417 1418 return DLM_IO_SUCCESS; 1419 } 1420 1421 static void clean_one_writequeue(struct connection *con) 1422 { 1423 struct writequeue_entry *e, *safe; 1424 1425 spin_lock_bh(&con->writequeue_lock); 1426 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1427 free_entry(e); 1428 } 1429 spin_unlock_bh(&con->writequeue_lock); 1430 } 1431 1432 static void connection_release(struct rcu_head *rcu) 1433 { 1434 struct connection *con = container_of(rcu, struct connection, rcu); 1435 1436 WARN_ON_ONCE(!list_empty(&con->writequeue)); 1437 WARN_ON_ONCE(con->sock); 1438 kfree(con); 1439 } 1440 1441 /* Called from recovery when it knows that a node has 1442 left the cluster */ 1443 int dlm_lowcomms_close(int nodeid) 1444 { 1445 struct connection *con; 1446 int idx; 1447 1448 log_print("closing connection to node %d", nodeid); 1449 1450 idx = srcu_read_lock(&connections_srcu); 1451 con = nodeid2con(nodeid, 0); 1452 if (WARN_ON_ONCE(!con)) { 1453 srcu_read_unlock(&connections_srcu, idx); 1454 return -ENOENT; 1455 } 1456 1457 stop_connection_io(con); 1458 log_print("io handling for node: %d stopped", nodeid); 1459 close_connection(con, true); 1460 1461 spin_lock(&connections_lock); 1462 hlist_del_rcu(&con->list); 1463 spin_unlock(&connections_lock); 1464 1465 clean_one_writequeue(con); 1466 call_srcu(&connections_srcu, &con->rcu, connection_release); 1467 if (con->othercon) { 1468 clean_one_writequeue(con->othercon); 1469 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release); 1470 } 1471 srcu_read_unlock(&connections_srcu, idx); 1472 1473 /* for debugging we print when we are done to compare with other 1474 * messages in between. This function need to be correctly synchronized 1475 * with io handling 1476 */ 1477 log_print("closing connection to node %d done", nodeid); 1478 1479 return 0; 1480 } 1481 1482 /* Receive worker function */ 1483 static void process_recv_sockets(struct work_struct *work) 1484 { 1485 struct connection *con = container_of(work, struct connection, rwork); 1486 int ret, buflen; 1487 1488 down_read(&con->sock_lock); 1489 if (!con->sock) { 1490 up_read(&con->sock_lock); 1491 return; 1492 } 1493 1494 buflen = READ_ONCE(dlm_config.ci_buffer_size); 1495 do { 1496 ret = receive_from_sock(con, buflen); 1497 } while (ret == DLM_IO_SUCCESS); 1498 up_read(&con->sock_lock); 1499 1500 switch (ret) { 1501 case DLM_IO_END: 1502 /* CF_RECV_PENDING cleared */ 1503 break; 1504 case DLM_IO_EOF: 1505 close_connection(con, false); 1506 wake_up(&con->shutdown_wait); 1507 /* CF_RECV_PENDING cleared */ 1508 break; 1509 case DLM_IO_FLUSH: 1510 /* we can't flush the process_workqueue here because a 1511 * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non 1512 * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead 1513 * we have a waitqueue to wait until all messages are 1514 * processed. 1515 * 1516 * This handling is only necessary to backoff the sender and 1517 * not queue all messages from the socket layer into DLM 1518 * processqueue. When DLM is capable to parse multiple messages 1519 * on an e.g. per socket basis this handling can might be 1520 * removed. Especially in a message burst we are too slow to 1521 * process messages and the queue will fill up memory. 1522 */ 1523 wait_event(processqueue_wq, !atomic_read(&processqueue_count)); 1524 fallthrough; 1525 case DLM_IO_RESCHED: 1526 cond_resched(); 1527 queue_work(io_workqueue, &con->rwork); 1528 /* CF_RECV_PENDING not cleared */ 1529 break; 1530 default: 1531 if (ret < 0) { 1532 if (test_bit(CF_IS_OTHERCON, &con->flags)) { 1533 close_connection(con, false); 1534 } else { 1535 spin_lock_bh(&con->writequeue_lock); 1536 lowcomms_queue_swork(con); 1537 spin_unlock_bh(&con->writequeue_lock); 1538 } 1539 1540 /* CF_RECV_PENDING cleared for othercon 1541 * we trigger send queue if not already done 1542 * and process_send_sockets will handle it 1543 */ 1544 break; 1545 } 1546 1547 WARN_ON_ONCE(1); 1548 break; 1549 } 1550 } 1551 1552 static void process_listen_recv_socket(struct work_struct *work) 1553 { 1554 int ret; 1555 1556 if (WARN_ON_ONCE(!listen_con.sock)) 1557 return; 1558 1559 do { 1560 ret = accept_from_sock(); 1561 } while (ret == DLM_IO_SUCCESS); 1562 1563 if (ret < 0) 1564 log_print("critical error accepting connection: %d", ret); 1565 } 1566 1567 static int dlm_connect(struct connection *con) 1568 { 1569 struct sockaddr_storage addr; 1570 int result, addr_len; 1571 struct socket *sock; 1572 unsigned int mark; 1573 1574 memset(&addr, 0, sizeof(addr)); 1575 result = nodeid_to_addr(con->nodeid, &addr, NULL, 1576 dlm_proto_ops->try_new_addr, &mark); 1577 if (result < 0) { 1578 log_print("no address for nodeid %d", con->nodeid); 1579 return result; 1580 } 1581 1582 /* Create a socket to communicate with */ 1583 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1584 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1585 if (result < 0) 1586 return result; 1587 1588 sock_set_mark(sock->sk, mark); 1589 dlm_proto_ops->sockopts(sock); 1590 1591 result = dlm_proto_ops->bind(sock); 1592 if (result < 0) { 1593 sock_release(sock); 1594 return result; 1595 } 1596 1597 add_sock(sock, con); 1598 1599 log_print_ratelimited("connecting to %d", con->nodeid); 1600 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len); 1601 result = kernel_connect(sock, (struct sockaddr *)&addr, addr_len, 0); 1602 switch (result) { 1603 case -EINPROGRESS: 1604 /* not an error */ 1605 fallthrough; 1606 case 0: 1607 break; 1608 default: 1609 if (result < 0) 1610 dlm_close_sock(&con->sock); 1611 1612 break; 1613 } 1614 1615 return result; 1616 } 1617 1618 /* Send worker function */ 1619 static void process_send_sockets(struct work_struct *work) 1620 { 1621 struct connection *con = container_of(work, struct connection, swork); 1622 int ret; 1623 1624 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags)); 1625 1626 down_read(&con->sock_lock); 1627 if (!con->sock) { 1628 up_read(&con->sock_lock); 1629 down_write(&con->sock_lock); 1630 if (!con->sock) { 1631 ret = dlm_connect(con); 1632 switch (ret) { 1633 case 0: 1634 break; 1635 default: 1636 /* CF_SEND_PENDING not cleared */ 1637 up_write(&con->sock_lock); 1638 log_print("connect to node %d try %d error %d", 1639 con->nodeid, con->retries++, ret); 1640 msleep(1000); 1641 /* For now we try forever to reconnect. In 1642 * future we should send a event to cluster 1643 * manager to fence itself after certain amount 1644 * of retries. 1645 */ 1646 queue_work(io_workqueue, &con->swork); 1647 return; 1648 } 1649 } 1650 downgrade_write(&con->sock_lock); 1651 } 1652 1653 do { 1654 ret = send_to_sock(con); 1655 } while (ret == DLM_IO_SUCCESS); 1656 up_read(&con->sock_lock); 1657 1658 switch (ret) { 1659 case DLM_IO_END: 1660 /* CF_SEND_PENDING cleared */ 1661 break; 1662 case DLM_IO_RESCHED: 1663 /* CF_SEND_PENDING not cleared */ 1664 cond_resched(); 1665 queue_work(io_workqueue, &con->swork); 1666 break; 1667 default: 1668 if (ret < 0) { 1669 close_connection(con, false); 1670 1671 /* CF_SEND_PENDING cleared */ 1672 spin_lock_bh(&con->writequeue_lock); 1673 lowcomms_queue_swork(con); 1674 spin_unlock_bh(&con->writequeue_lock); 1675 break; 1676 } 1677 1678 WARN_ON_ONCE(1); 1679 break; 1680 } 1681 } 1682 1683 static void work_stop(void) 1684 { 1685 if (io_workqueue) { 1686 destroy_workqueue(io_workqueue); 1687 io_workqueue = NULL; 1688 } 1689 1690 if (process_workqueue) { 1691 destroy_workqueue(process_workqueue); 1692 process_workqueue = NULL; 1693 } 1694 } 1695 1696 static int work_start(void) 1697 { 1698 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM | 1699 WQ_UNBOUND, 0); 1700 if (!io_workqueue) { 1701 log_print("can't start dlm_io"); 1702 return -ENOMEM; 1703 } 1704 1705 process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0); 1706 if (!process_workqueue) { 1707 log_print("can't start dlm_process"); 1708 destroy_workqueue(io_workqueue); 1709 io_workqueue = NULL; 1710 return -ENOMEM; 1711 } 1712 1713 return 0; 1714 } 1715 1716 void dlm_lowcomms_shutdown(void) 1717 { 1718 struct connection *con; 1719 int i, idx; 1720 1721 /* stop lowcomms_listen_data_ready calls */ 1722 lock_sock(listen_con.sock->sk); 1723 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready; 1724 release_sock(listen_con.sock->sk); 1725 1726 cancel_work_sync(&listen_con.rwork); 1727 dlm_close_sock(&listen_con.sock); 1728 1729 idx = srcu_read_lock(&connections_srcu); 1730 for (i = 0; i < CONN_HASH_SIZE; i++) { 1731 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 1732 shutdown_connection(con, true); 1733 stop_connection_io(con); 1734 flush_workqueue(process_workqueue); 1735 close_connection(con, true); 1736 1737 clean_one_writequeue(con); 1738 if (con->othercon) 1739 clean_one_writequeue(con->othercon); 1740 allow_connection_io(con); 1741 } 1742 } 1743 srcu_read_unlock(&connections_srcu, idx); 1744 } 1745 1746 void dlm_lowcomms_stop(void) 1747 { 1748 work_stop(); 1749 dlm_proto_ops = NULL; 1750 } 1751 1752 static int dlm_listen_for_all(void) 1753 { 1754 struct socket *sock; 1755 int result; 1756 1757 log_print("Using %s for communications", 1758 dlm_proto_ops->name); 1759 1760 result = dlm_proto_ops->listen_validate(); 1761 if (result < 0) 1762 return result; 1763 1764 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1765 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1766 if (result < 0) { 1767 log_print("Can't create comms socket: %d", result); 1768 return result; 1769 } 1770 1771 sock_set_mark(sock->sk, dlm_config.ci_mark); 1772 dlm_proto_ops->listen_sockopts(sock); 1773 1774 result = dlm_proto_ops->listen_bind(sock); 1775 if (result < 0) 1776 goto out; 1777 1778 lock_sock(sock->sk); 1779 listen_sock.sk_data_ready = sock->sk->sk_data_ready; 1780 listen_sock.sk_write_space = sock->sk->sk_write_space; 1781 listen_sock.sk_error_report = sock->sk->sk_error_report; 1782 listen_sock.sk_state_change = sock->sk->sk_state_change; 1783 1784 listen_con.sock = sock; 1785 1786 sock->sk->sk_allocation = GFP_NOFS; 1787 sock->sk->sk_use_task_frag = false; 1788 sock->sk->sk_data_ready = lowcomms_listen_data_ready; 1789 release_sock(sock->sk); 1790 1791 result = sock->ops->listen(sock, 128); 1792 if (result < 0) { 1793 dlm_close_sock(&listen_con.sock); 1794 return result; 1795 } 1796 1797 return 0; 1798 1799 out: 1800 sock_release(sock); 1801 return result; 1802 } 1803 1804 static int dlm_tcp_bind(struct socket *sock) 1805 { 1806 struct sockaddr_storage src_addr; 1807 int result, addr_len; 1808 1809 /* Bind to our cluster-known address connecting to avoid 1810 * routing problems. 1811 */ 1812 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr)); 1813 make_sockaddr(&src_addr, 0, &addr_len); 1814 1815 result = kernel_bind(sock, (struct sockaddr *)&src_addr, 1816 addr_len); 1817 if (result < 0) { 1818 /* This *may* not indicate a critical error */ 1819 log_print("could not bind for connect: %d", result); 1820 } 1821 1822 return 0; 1823 } 1824 1825 static int dlm_tcp_listen_validate(void) 1826 { 1827 /* We don't support multi-homed hosts */ 1828 if (dlm_local_count > 1) { 1829 log_print("TCP protocol can't handle multi-homed hosts, try SCTP"); 1830 return -EINVAL; 1831 } 1832 1833 return 0; 1834 } 1835 1836 static void dlm_tcp_sockopts(struct socket *sock) 1837 { 1838 /* Turn off Nagle's algorithm */ 1839 tcp_sock_set_nodelay(sock->sk); 1840 } 1841 1842 static void dlm_tcp_listen_sockopts(struct socket *sock) 1843 { 1844 dlm_tcp_sockopts(sock); 1845 sock_set_reuseaddr(sock->sk); 1846 } 1847 1848 static int dlm_tcp_listen_bind(struct socket *sock) 1849 { 1850 int addr_len; 1851 1852 /* Bind to our port */ 1853 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len); 1854 return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0], 1855 addr_len); 1856 } 1857 1858 static const struct dlm_proto_ops dlm_tcp_ops = { 1859 .name = "TCP", 1860 .proto = IPPROTO_TCP, 1861 .sockopts = dlm_tcp_sockopts, 1862 .bind = dlm_tcp_bind, 1863 .listen_validate = dlm_tcp_listen_validate, 1864 .listen_sockopts = dlm_tcp_listen_sockopts, 1865 .listen_bind = dlm_tcp_listen_bind, 1866 }; 1867 1868 static int dlm_sctp_bind(struct socket *sock) 1869 { 1870 return sctp_bind_addrs(sock, 0); 1871 } 1872 1873 static int dlm_sctp_listen_validate(void) 1874 { 1875 if (!IS_ENABLED(CONFIG_IP_SCTP)) { 1876 log_print("SCTP is not enabled by this kernel"); 1877 return -EOPNOTSUPP; 1878 } 1879 1880 request_module("sctp"); 1881 return 0; 1882 } 1883 1884 static int dlm_sctp_bind_listen(struct socket *sock) 1885 { 1886 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port); 1887 } 1888 1889 static void dlm_sctp_sockopts(struct socket *sock) 1890 { 1891 /* Turn off Nagle's algorithm */ 1892 sctp_sock_set_nodelay(sock->sk); 1893 sock_set_rcvbuf(sock->sk, NEEDED_RMEM); 1894 } 1895 1896 static const struct dlm_proto_ops dlm_sctp_ops = { 1897 .name = "SCTP", 1898 .proto = IPPROTO_SCTP, 1899 .try_new_addr = true, 1900 .sockopts = dlm_sctp_sockopts, 1901 .bind = dlm_sctp_bind, 1902 .listen_validate = dlm_sctp_listen_validate, 1903 .listen_sockopts = dlm_sctp_sockopts, 1904 .listen_bind = dlm_sctp_bind_listen, 1905 }; 1906 1907 int dlm_lowcomms_start(void) 1908 { 1909 int error; 1910 1911 init_local(); 1912 if (!dlm_local_count) { 1913 error = -ENOTCONN; 1914 log_print("no local IP address has been set"); 1915 goto fail; 1916 } 1917 1918 error = work_start(); 1919 if (error) 1920 goto fail; 1921 1922 /* Start listening */ 1923 switch (dlm_config.ci_protocol) { 1924 case DLM_PROTO_TCP: 1925 dlm_proto_ops = &dlm_tcp_ops; 1926 break; 1927 case DLM_PROTO_SCTP: 1928 dlm_proto_ops = &dlm_sctp_ops; 1929 break; 1930 default: 1931 log_print("Invalid protocol identifier %d set", 1932 dlm_config.ci_protocol); 1933 error = -EINVAL; 1934 goto fail_proto_ops; 1935 } 1936 1937 error = dlm_listen_for_all(); 1938 if (error) 1939 goto fail_listen; 1940 1941 return 0; 1942 1943 fail_listen: 1944 dlm_proto_ops = NULL; 1945 fail_proto_ops: 1946 work_stop(); 1947 fail: 1948 return error; 1949 } 1950 1951 void dlm_lowcomms_init(void) 1952 { 1953 int i; 1954 1955 for (i = 0; i < CONN_HASH_SIZE; i++) 1956 INIT_HLIST_HEAD(&connection_hash[i]); 1957 1958 INIT_WORK(&listen_con.rwork, process_listen_recv_socket); 1959 } 1960 1961 void dlm_lowcomms_exit(void) 1962 { 1963 struct connection *con; 1964 int i, idx; 1965 1966 idx = srcu_read_lock(&connections_srcu); 1967 for (i = 0; i < CONN_HASH_SIZE; i++) { 1968 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 1969 spin_lock(&connections_lock); 1970 hlist_del_rcu(&con->list); 1971 spin_unlock(&connections_lock); 1972 1973 if (con->othercon) 1974 call_srcu(&connections_srcu, &con->othercon->rcu, 1975 connection_release); 1976 call_srcu(&connections_srcu, &con->rcu, connection_release); 1977 } 1978 } 1979 srcu_read_unlock(&connections_srcu, idx); 1980 } 1981