xref: /linux/fs/dlm/lowcomms.c (revision a0f97e06a43cf524e616f09e6af3398e1e9c1c5b)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2007 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is it's
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use wither TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It shouldbe configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/idr.h>
52 #include <linux/file.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 
63 struct cbuf {
64 	unsigned int base;
65 	unsigned int len;
66 	unsigned int mask;
67 };
68 
69 static void cbuf_add(struct cbuf *cb, int n)
70 {
71 	cb->len += n;
72 }
73 
74 static int cbuf_data(struct cbuf *cb)
75 {
76 	return ((cb->base + cb->len) & cb->mask);
77 }
78 
79 static void cbuf_init(struct cbuf *cb, int size)
80 {
81 	cb->base = cb->len = 0;
82 	cb->mask = size-1;
83 }
84 
85 static void cbuf_eat(struct cbuf *cb, int n)
86 {
87 	cb->len  -= n;
88 	cb->base += n;
89 	cb->base &= cb->mask;
90 }
91 
92 static bool cbuf_empty(struct cbuf *cb)
93 {
94 	return cb->len == 0;
95 }
96 
97 struct connection {
98 	struct socket *sock;	/* NULL if not connected */
99 	uint32_t nodeid;	/* So we know who we are in the list */
100 	struct mutex sock_mutex;
101 	unsigned long flags;
102 #define CF_READ_PENDING 1
103 #define CF_WRITE_PENDING 2
104 #define CF_CONNECT_PENDING 3
105 #define CF_INIT_PENDING 4
106 #define CF_IS_OTHERCON 5
107 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
108 	spinlock_t writequeue_lock;
109 	int (*rx_action) (struct connection *);	/* What to do when active */
110 	void (*connect_action) (struct connection *);	/* What to do to connect */
111 	struct page *rx_page;
112 	struct cbuf cb;
113 	int retries;
114 #define MAX_CONNECT_RETRIES 3
115 	int sctp_assoc;
116 	struct connection *othercon;
117 	struct work_struct rwork; /* Receive workqueue */
118 	struct work_struct swork; /* Send workqueue */
119 };
120 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
121 
122 /* An entry waiting to be sent */
123 struct writequeue_entry {
124 	struct list_head list;
125 	struct page *page;
126 	int offset;
127 	int len;
128 	int end;
129 	int users;
130 	struct connection *con;
131 };
132 
133 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
134 static int dlm_local_count;
135 
136 /* Work queues */
137 static struct workqueue_struct *recv_workqueue;
138 static struct workqueue_struct *send_workqueue;
139 
140 static DEFINE_IDR(connections_idr);
141 static DECLARE_MUTEX(connections_lock);
142 static int max_nodeid;
143 static struct kmem_cache *con_cache;
144 
145 static void process_recv_sockets(struct work_struct *work);
146 static void process_send_sockets(struct work_struct *work);
147 
148 /*
149  * If 'allocation' is zero then we don't attempt to create a new
150  * connection structure for this node.
151  */
152 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
153 {
154 	struct connection *con = NULL;
155 	int r;
156 	int n;
157 
158 	con = idr_find(&connections_idr, nodeid);
159 	if (con || !alloc)
160 		return con;
161 
162 	r = idr_pre_get(&connections_idr, alloc);
163 	if (!r)
164 		return NULL;
165 
166 	con = kmem_cache_zalloc(con_cache, alloc);
167 	if (!con)
168 		return NULL;
169 
170 	r = idr_get_new_above(&connections_idr, con, nodeid, &n);
171 	if (r) {
172 		kmem_cache_free(con_cache, con);
173 		return NULL;
174 	}
175 
176 	if (n != nodeid) {
177 		idr_remove(&connections_idr, n);
178 		kmem_cache_free(con_cache, con);
179 		return NULL;
180 	}
181 
182 	con->nodeid = nodeid;
183 	mutex_init(&con->sock_mutex);
184 	INIT_LIST_HEAD(&con->writequeue);
185 	spin_lock_init(&con->writequeue_lock);
186 	INIT_WORK(&con->swork, process_send_sockets);
187 	INIT_WORK(&con->rwork, process_recv_sockets);
188 
189 	/* Setup action pointers for child sockets */
190 	if (con->nodeid) {
191 		struct connection *zerocon = idr_find(&connections_idr, 0);
192 
193 		con->connect_action = zerocon->connect_action;
194 		if (!con->rx_action)
195 			con->rx_action = zerocon->rx_action;
196 	}
197 
198 	if (nodeid > max_nodeid)
199 		max_nodeid = nodeid;
200 
201 	return con;
202 }
203 
204 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
205 {
206 	struct connection *con;
207 
208 	down(&connections_lock);
209 	con = __nodeid2con(nodeid, allocation);
210 	up(&connections_lock);
211 
212 	return con;
213 }
214 
215 /* This is a bit drastic, but only called when things go wrong */
216 static struct connection *assoc2con(int assoc_id)
217 {
218 	int i;
219 	struct connection *con;
220 
221 	down(&connections_lock);
222 	for (i=0; i<=max_nodeid; i++) {
223 		con = __nodeid2con(i, 0);
224 		if (con && con->sctp_assoc == assoc_id) {
225 			up(&connections_lock);
226 			return con;
227 		}
228 	}
229 	up(&connections_lock);
230 	return NULL;
231 }
232 
233 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
234 {
235 	struct sockaddr_storage addr;
236 	int error;
237 
238 	if (!dlm_local_count)
239 		return -1;
240 
241 	error = dlm_nodeid_to_addr(nodeid, &addr);
242 	if (error)
243 		return error;
244 
245 	if (dlm_local_addr[0]->ss_family == AF_INET) {
246 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
247 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
248 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
249 	} else {
250 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
251 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
252 		memcpy(&ret6->sin6_addr, &in6->sin6_addr,
253 		       sizeof(in6->sin6_addr));
254 	}
255 
256 	return 0;
257 }
258 
259 /* Data available on socket or listen socket received a connect */
260 static void lowcomms_data_ready(struct sock *sk, int count_unused)
261 {
262 	struct connection *con = sock2con(sk);
263 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
264 		queue_work(recv_workqueue, &con->rwork);
265 }
266 
267 static void lowcomms_write_space(struct sock *sk)
268 {
269 	struct connection *con = sock2con(sk);
270 
271 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
272 		queue_work(send_workqueue, &con->swork);
273 }
274 
275 static inline void lowcomms_connect_sock(struct connection *con)
276 {
277 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
278 		queue_work(send_workqueue, &con->swork);
279 }
280 
281 static void lowcomms_state_change(struct sock *sk)
282 {
283 	if (sk->sk_state == TCP_ESTABLISHED)
284 		lowcomms_write_space(sk);
285 }
286 
287 /* Make a socket active */
288 static int add_sock(struct socket *sock, struct connection *con)
289 {
290 	con->sock = sock;
291 
292 	/* Install a data_ready callback */
293 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
294 	con->sock->sk->sk_write_space = lowcomms_write_space;
295 	con->sock->sk->sk_state_change = lowcomms_state_change;
296 	con->sock->sk->sk_user_data = con;
297 	return 0;
298 }
299 
300 /* Add the port number to an IPv6 or 4 sockaddr and return the address
301    length */
302 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
303 			  int *addr_len)
304 {
305 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
306 	if (saddr->ss_family == AF_INET) {
307 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
308 		in4_addr->sin_port = cpu_to_be16(port);
309 		*addr_len = sizeof(struct sockaddr_in);
310 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
311 	} else {
312 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
313 		in6_addr->sin6_port = cpu_to_be16(port);
314 		*addr_len = sizeof(struct sockaddr_in6);
315 	}
316 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
317 }
318 
319 /* Close a remote connection and tidy up */
320 static void close_connection(struct connection *con, bool and_other)
321 {
322 	mutex_lock(&con->sock_mutex);
323 
324 	if (con->sock) {
325 		sock_release(con->sock);
326 		con->sock = NULL;
327 	}
328 	if (con->othercon && and_other) {
329 		/* Will only re-enter once. */
330 		close_connection(con->othercon, false);
331 	}
332 	if (con->rx_page) {
333 		__free_page(con->rx_page);
334 		con->rx_page = NULL;
335 	}
336 
337 	/* If we are an 'othercon' then NULL the pointer to us
338 	   from the parent and tidy ourself up */
339 	if (test_bit(CF_IS_OTHERCON, &con->flags)) {
340 		struct connection *parent = __nodeid2con(con->nodeid, 0);
341 		parent->othercon = NULL;
342 		kmem_cache_free(con_cache, con);
343 	}
344 	else {
345 		/* Parent connections get reused */
346 		con->retries = 0;
347 		mutex_unlock(&con->sock_mutex);
348 	}
349 }
350 
351 /* We only send shutdown messages to nodes that are not part of the cluster */
352 static void sctp_send_shutdown(sctp_assoc_t associd)
353 {
354 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
355 	struct msghdr outmessage;
356 	struct cmsghdr *cmsg;
357 	struct sctp_sndrcvinfo *sinfo;
358 	int ret;
359 	struct connection *con;
360 
361 	con = nodeid2con(0,0);
362 	BUG_ON(con == NULL);
363 
364 	outmessage.msg_name = NULL;
365 	outmessage.msg_namelen = 0;
366 	outmessage.msg_control = outcmsg;
367 	outmessage.msg_controllen = sizeof(outcmsg);
368 	outmessage.msg_flags = MSG_EOR;
369 
370 	cmsg = CMSG_FIRSTHDR(&outmessage);
371 	cmsg->cmsg_level = IPPROTO_SCTP;
372 	cmsg->cmsg_type = SCTP_SNDRCV;
373 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
374 	outmessage.msg_controllen = cmsg->cmsg_len;
375 	sinfo = CMSG_DATA(cmsg);
376 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
377 
378 	sinfo->sinfo_flags |= MSG_EOF;
379 	sinfo->sinfo_assoc_id = associd;
380 
381 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
382 
383 	if (ret != 0)
384 		log_print("send EOF to node failed: %d", ret);
385 }
386 
387 /* INIT failed but we don't know which node...
388    restart INIT on all pending nodes */
389 static void sctp_init_failed(void)
390 {
391 	int i;
392 	struct connection *con;
393 
394 	down(&connections_lock);
395 	for (i=1; i<=max_nodeid; i++) {
396 		con = __nodeid2con(i, 0);
397 		if (!con)
398 			continue;
399 		con->sctp_assoc = 0;
400 		if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
401 			if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
402 				queue_work(send_workqueue, &con->swork);
403 			}
404 		}
405 	}
406 	up(&connections_lock);
407 }
408 
409 /* Something happened to an association */
410 static void process_sctp_notification(struct connection *con,
411 				      struct msghdr *msg, char *buf)
412 {
413 	union sctp_notification *sn = (union sctp_notification *)buf;
414 
415 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
416 		switch (sn->sn_assoc_change.sac_state) {
417 
418 		case SCTP_COMM_UP:
419 		case SCTP_RESTART:
420 		{
421 			/* Check that the new node is in the lockspace */
422 			struct sctp_prim prim;
423 			int nodeid;
424 			int prim_len, ret;
425 			int addr_len;
426 			struct connection *new_con;
427 			struct file *file;
428 			sctp_peeloff_arg_t parg;
429 			int parglen = sizeof(parg);
430 
431 			/*
432 			 * We get this before any data for an association.
433 			 * We verify that the node is in the cluster and
434 			 * then peel off a socket for it.
435 			 */
436 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
437 				log_print("COMM_UP for invalid assoc ID %d",
438 					 (int)sn->sn_assoc_change.sac_assoc_id);
439 				sctp_init_failed();
440 				return;
441 			}
442 			memset(&prim, 0, sizeof(struct sctp_prim));
443 			prim_len = sizeof(struct sctp_prim);
444 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
445 
446 			ret = kernel_getsockopt(con->sock,
447 						IPPROTO_SCTP,
448 						SCTP_PRIMARY_ADDR,
449 						(char*)&prim,
450 						&prim_len);
451 			if (ret < 0) {
452 				log_print("getsockopt/sctp_primary_addr on "
453 					  "new assoc %d failed : %d",
454 					  (int)sn->sn_assoc_change.sac_assoc_id,
455 					  ret);
456 
457 				/* Retry INIT later */
458 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
459 				if (new_con)
460 					clear_bit(CF_CONNECT_PENDING, &con->flags);
461 				return;
462 			}
463 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
464 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
465 				int i;
466 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
467 				log_print("reject connect from unknown addr");
468 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
469 					printk("%02x ", b[i]);
470 				printk("\n");
471 				sctp_send_shutdown(prim.ssp_assoc_id);
472 				return;
473 			}
474 
475 			new_con = nodeid2con(nodeid, GFP_KERNEL);
476 			if (!new_con)
477 				return;
478 
479 			/* Peel off a new sock */
480 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
481 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
482 						SCTP_SOCKOPT_PEELOFF,
483 						(void *)&parg, &parglen);
484 			if (ret) {
485 				log_print("Can't peel off a socket for "
486 					  "connection %d to node %d: err=%d\n",
487 					  parg.associd, nodeid, ret);
488 			}
489 			file = fget(parg.sd);
490 			new_con->sock = SOCKET_I(file->f_dentry->d_inode);
491 			add_sock(new_con->sock, new_con);
492 			fput(file);
493 			put_unused_fd(parg.sd);
494 
495 			log_print("got new/restarted association %d nodeid %d",
496 				 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
497 
498 			/* Send any pending writes */
499 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
500 			clear_bit(CF_INIT_PENDING, &con->flags);
501 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
502 				queue_work(send_workqueue, &new_con->swork);
503 			}
504 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
505 				queue_work(recv_workqueue, &new_con->rwork);
506 		}
507 		break;
508 
509 		case SCTP_COMM_LOST:
510 		case SCTP_SHUTDOWN_COMP:
511 		{
512 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
513 			if (con) {
514 				con->sctp_assoc = 0;
515 			}
516 		}
517 		break;
518 
519 		/* We don't know which INIT failed, so clear the PENDING flags
520 		 * on them all.  if assoc_id is zero then it will then try
521 		 * again */
522 
523 		case SCTP_CANT_STR_ASSOC:
524 		{
525 			log_print("Can't start SCTP association - retrying");
526 			sctp_init_failed();
527 		}
528 		break;
529 
530 		default:
531 			log_print("unexpected SCTP assoc change id=%d state=%d",
532 				  (int)sn->sn_assoc_change.sac_assoc_id,
533 				  sn->sn_assoc_change.sac_state);
534 		}
535 	}
536 }
537 
538 /* Data received from remote end */
539 static int receive_from_sock(struct connection *con)
540 {
541 	int ret = 0;
542 	struct msghdr msg = {};
543 	struct kvec iov[2];
544 	unsigned len;
545 	int r;
546 	int call_again_soon = 0;
547 	int nvec;
548 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
549 
550 	mutex_lock(&con->sock_mutex);
551 
552 	if (con->sock == NULL) {
553 		ret = -EAGAIN;
554 		goto out_close;
555 	}
556 
557 	if (con->rx_page == NULL) {
558 		/*
559 		 * This doesn't need to be atomic, but I think it should
560 		 * improve performance if it is.
561 		 */
562 		con->rx_page = alloc_page(GFP_ATOMIC);
563 		if (con->rx_page == NULL)
564 			goto out_resched;
565 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
566 	}
567 
568 	/* Only SCTP needs these really */
569 	memset(&incmsg, 0, sizeof(incmsg));
570 	msg.msg_control = incmsg;
571 	msg.msg_controllen = sizeof(incmsg);
572 
573 	/*
574 	 * iov[0] is the bit of the circular buffer between the current end
575 	 * point (cb.base + cb.len) and the end of the buffer.
576 	 */
577 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
578 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
579 	iov[1].iov_len = 0;
580 	nvec = 1;
581 
582 	/*
583 	 * iov[1] is the bit of the circular buffer between the start of the
584 	 * buffer and the start of the currently used section (cb.base)
585 	 */
586 	if (cbuf_data(&con->cb) >= con->cb.base) {
587 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
588 		iov[1].iov_len = con->cb.base;
589 		iov[1].iov_base = page_address(con->rx_page);
590 		nvec = 2;
591 	}
592 	len = iov[0].iov_len + iov[1].iov_len;
593 
594 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
595 			       MSG_DONTWAIT | MSG_NOSIGNAL);
596 	if (ret <= 0)
597 		goto out_close;
598 
599 	/* Process SCTP notifications */
600 	if (msg.msg_flags & MSG_NOTIFICATION) {
601 		msg.msg_control = incmsg;
602 		msg.msg_controllen = sizeof(incmsg);
603 
604 		process_sctp_notification(con, &msg,
605 				page_address(con->rx_page) + con->cb.base);
606 		mutex_unlock(&con->sock_mutex);
607 		return 0;
608 	}
609 	BUG_ON(con->nodeid == 0);
610 
611 	if (ret == len)
612 		call_again_soon = 1;
613 	cbuf_add(&con->cb, ret);
614 	ret = dlm_process_incoming_buffer(con->nodeid,
615 					  page_address(con->rx_page),
616 					  con->cb.base, con->cb.len,
617 					  PAGE_CACHE_SIZE);
618 	if (ret == -EBADMSG) {
619 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
620 			  "iov_len=%u, iov_base[0]=%p, read=%d",
621 			  page_address(con->rx_page), con->cb.base, con->cb.len,
622 			  len, iov[0].iov_base, r);
623 	}
624 	if (ret < 0)
625 		goto out_close;
626 	cbuf_eat(&con->cb, ret);
627 
628 	if (cbuf_empty(&con->cb) && !call_again_soon) {
629 		__free_page(con->rx_page);
630 		con->rx_page = NULL;
631 	}
632 
633 	if (call_again_soon)
634 		goto out_resched;
635 	mutex_unlock(&con->sock_mutex);
636 	return 0;
637 
638 out_resched:
639 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
640 		queue_work(recv_workqueue, &con->rwork);
641 	mutex_unlock(&con->sock_mutex);
642 	return -EAGAIN;
643 
644 out_close:
645 	mutex_unlock(&con->sock_mutex);
646 	if (ret != -EAGAIN) {
647 		close_connection(con, false);
648 		/* Reconnect when there is something to send */
649 	}
650 	/* Don't return success if we really got EOF */
651 	if (ret == 0)
652 		ret = -EAGAIN;
653 
654 	return ret;
655 }
656 
657 /* Listening socket is busy, accept a connection */
658 static int tcp_accept_from_sock(struct connection *con)
659 {
660 	int result;
661 	struct sockaddr_storage peeraddr;
662 	struct socket *newsock;
663 	int len;
664 	int nodeid;
665 	struct connection *newcon;
666 	struct connection *addcon;
667 
668 	memset(&peeraddr, 0, sizeof(peeraddr));
669 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
670 				  IPPROTO_TCP, &newsock);
671 	if (result < 0)
672 		return -ENOMEM;
673 
674 	mutex_lock_nested(&con->sock_mutex, 0);
675 
676 	result = -ENOTCONN;
677 	if (con->sock == NULL)
678 		goto accept_err;
679 
680 	newsock->type = con->sock->type;
681 	newsock->ops = con->sock->ops;
682 
683 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
684 	if (result < 0)
685 		goto accept_err;
686 
687 	/* Get the connected socket's peer */
688 	memset(&peeraddr, 0, sizeof(peeraddr));
689 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
690 				  &len, 2)) {
691 		result = -ECONNABORTED;
692 		goto accept_err;
693 	}
694 
695 	/* Get the new node's NODEID */
696 	make_sockaddr(&peeraddr, 0, &len);
697 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
698 		log_print("connect from non cluster node");
699 		sock_release(newsock);
700 		mutex_unlock(&con->sock_mutex);
701 		return -1;
702 	}
703 
704 	log_print("got connection from %d", nodeid);
705 
706 	/*  Check to see if we already have a connection to this node. This
707 	 *  could happen if the two nodes initiate a connection at roughly
708 	 *  the same time and the connections cross on the wire.
709 	 *  In this case we store the incoming one in "othercon"
710 	 */
711 	newcon = nodeid2con(nodeid, GFP_KERNEL);
712 	if (!newcon) {
713 		result = -ENOMEM;
714 		goto accept_err;
715 	}
716 	mutex_lock_nested(&newcon->sock_mutex, 1);
717 	if (newcon->sock) {
718 		struct connection *othercon = newcon->othercon;
719 
720 		if (!othercon) {
721 			othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
722 			if (!othercon) {
723 				log_print("failed to allocate incoming socket");
724 				mutex_unlock(&newcon->sock_mutex);
725 				result = -ENOMEM;
726 				goto accept_err;
727 			}
728 			othercon->nodeid = nodeid;
729 			othercon->rx_action = receive_from_sock;
730 			mutex_init(&othercon->sock_mutex);
731 			INIT_WORK(&othercon->swork, process_send_sockets);
732 			INIT_WORK(&othercon->rwork, process_recv_sockets);
733 			set_bit(CF_IS_OTHERCON, &othercon->flags);
734 			newcon->othercon = othercon;
735 			othercon->sock = newsock;
736 			newsock->sk->sk_user_data = othercon;
737 			add_sock(newsock, othercon);
738 			addcon = othercon;
739 		}
740 		else {
741 			printk("Extra connection from node %d attempted\n", nodeid);
742 			result = -EAGAIN;
743 			mutex_unlock(&newcon->sock_mutex);
744 			goto accept_err;
745 		}
746 	}
747 	else {
748 		newsock->sk->sk_user_data = newcon;
749 		newcon->rx_action = receive_from_sock;
750 		add_sock(newsock, newcon);
751 		addcon = newcon;
752 	}
753 
754 	mutex_unlock(&newcon->sock_mutex);
755 
756 	/*
757 	 * Add it to the active queue in case we got data
758 	 * beween processing the accept adding the socket
759 	 * to the read_sockets list
760 	 */
761 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
762 		queue_work(recv_workqueue, &addcon->rwork);
763 	mutex_unlock(&con->sock_mutex);
764 
765 	return 0;
766 
767 accept_err:
768 	mutex_unlock(&con->sock_mutex);
769 	sock_release(newsock);
770 
771 	if (result != -EAGAIN)
772 		log_print("error accepting connection from node: %d", result);
773 	return result;
774 }
775 
776 static void free_entry(struct writequeue_entry *e)
777 {
778 	__free_page(e->page);
779 	kfree(e);
780 }
781 
782 /* Initiate an SCTP association.
783    This is a special case of send_to_sock() in that we don't yet have a
784    peeled-off socket for this association, so we use the listening socket
785    and add the primary IP address of the remote node.
786  */
787 static void sctp_init_assoc(struct connection *con)
788 {
789 	struct sockaddr_storage rem_addr;
790 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
791 	struct msghdr outmessage;
792 	struct cmsghdr *cmsg;
793 	struct sctp_sndrcvinfo *sinfo;
794 	struct connection *base_con;
795 	struct writequeue_entry *e;
796 	int len, offset;
797 	int ret;
798 	int addrlen;
799 	struct kvec iov[1];
800 
801 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
802 		return;
803 
804 	if (con->retries++ > MAX_CONNECT_RETRIES)
805 		return;
806 
807 	log_print("Initiating association with node %d", con->nodeid);
808 
809 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
810 		log_print("no address for nodeid %d", con->nodeid);
811 		return;
812 	}
813 	base_con = nodeid2con(0, 0);
814 	BUG_ON(base_con == NULL);
815 
816 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
817 
818 	outmessage.msg_name = &rem_addr;
819 	outmessage.msg_namelen = addrlen;
820 	outmessage.msg_control = outcmsg;
821 	outmessage.msg_controllen = sizeof(outcmsg);
822 	outmessage.msg_flags = MSG_EOR;
823 
824 	spin_lock(&con->writequeue_lock);
825 	e = list_entry(con->writequeue.next, struct writequeue_entry,
826 		       list);
827 
828 	BUG_ON((struct list_head *) e == &con->writequeue);
829 
830 	len = e->len;
831 	offset = e->offset;
832 	spin_unlock(&con->writequeue_lock);
833 	kmap(e->page);
834 
835 	/* Send the first block off the write queue */
836 	iov[0].iov_base = page_address(e->page)+offset;
837 	iov[0].iov_len = len;
838 
839 	cmsg = CMSG_FIRSTHDR(&outmessage);
840 	cmsg->cmsg_level = IPPROTO_SCTP;
841 	cmsg->cmsg_type = SCTP_SNDRCV;
842 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
843 	sinfo = CMSG_DATA(cmsg);
844 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
845 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
846 	outmessage.msg_controllen = cmsg->cmsg_len;
847 
848 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
849 	if (ret < 0) {
850 		log_print("Send first packet to node %d failed: %d",
851 			  con->nodeid, ret);
852 
853 		/* Try again later */
854 		clear_bit(CF_CONNECT_PENDING, &con->flags);
855 		clear_bit(CF_INIT_PENDING, &con->flags);
856 	}
857 	else {
858 		spin_lock(&con->writequeue_lock);
859 		e->offset += ret;
860 		e->len -= ret;
861 
862 		if (e->len == 0 && e->users == 0) {
863 			list_del(&e->list);
864 			kunmap(e->page);
865 			free_entry(e);
866 		}
867 		spin_unlock(&con->writequeue_lock);
868 	}
869 }
870 
871 /* Connect a new socket to its peer */
872 static void tcp_connect_to_sock(struct connection *con)
873 {
874 	int result = -EHOSTUNREACH;
875 	struct sockaddr_storage saddr;
876 	int addr_len;
877 	struct socket *sock;
878 
879 	if (con->nodeid == 0) {
880 		log_print("attempt to connect sock 0 foiled");
881 		return;
882 	}
883 
884 	mutex_lock(&con->sock_mutex);
885 	if (con->retries++ > MAX_CONNECT_RETRIES)
886 		goto out;
887 
888 	/* Some odd races can cause double-connects, ignore them */
889 	if (con->sock) {
890 		result = 0;
891 		goto out;
892 	}
893 
894 	/* Create a socket to communicate with */
895 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
896 				  IPPROTO_TCP, &sock);
897 	if (result < 0)
898 		goto out_err;
899 
900 	memset(&saddr, 0, sizeof(saddr));
901 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
902 		goto out_err;
903 
904 	sock->sk->sk_user_data = con;
905 	con->rx_action = receive_from_sock;
906 	con->connect_action = tcp_connect_to_sock;
907 	add_sock(sock, con);
908 
909 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
910 
911 	log_print("connecting to %d", con->nodeid);
912 	result =
913 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
914 				   O_NONBLOCK);
915 	if (result == -EINPROGRESS)
916 		result = 0;
917 	if (result == 0)
918 		goto out;
919 
920 out_err:
921 	if (con->sock) {
922 		sock_release(con->sock);
923 		con->sock = NULL;
924 	}
925 	/*
926 	 * Some errors are fatal and this list might need adjusting. For other
927 	 * errors we try again until the max number of retries is reached.
928 	 */
929 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
930 	    result != -ENETDOWN && result != EINVAL
931 	    && result != -EPROTONOSUPPORT) {
932 		lowcomms_connect_sock(con);
933 		result = 0;
934 	}
935 out:
936 	mutex_unlock(&con->sock_mutex);
937 	return;
938 }
939 
940 static struct socket *tcp_create_listen_sock(struct connection *con,
941 					     struct sockaddr_storage *saddr)
942 {
943 	struct socket *sock = NULL;
944 	int result = 0;
945 	int one = 1;
946 	int addr_len;
947 
948 	if (dlm_local_addr[0]->ss_family == AF_INET)
949 		addr_len = sizeof(struct sockaddr_in);
950 	else
951 		addr_len = sizeof(struct sockaddr_in6);
952 
953 	/* Create a socket to communicate with */
954 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
955 				  IPPROTO_TCP, &sock);
956 	if (result < 0) {
957 		log_print("Can't create listening comms socket");
958 		goto create_out;
959 	}
960 
961 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
962 				   (char *)&one, sizeof(one));
963 
964 	if (result < 0) {
965 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
966 	}
967 	sock->sk->sk_user_data = con;
968 	con->rx_action = tcp_accept_from_sock;
969 	con->connect_action = tcp_connect_to_sock;
970 	con->sock = sock;
971 
972 	/* Bind to our port */
973 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
974 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
975 	if (result < 0) {
976 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
977 		sock_release(sock);
978 		sock = NULL;
979 		con->sock = NULL;
980 		goto create_out;
981 	}
982 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
983 				 (char *)&one, sizeof(one));
984 	if (result < 0) {
985 		log_print("Set keepalive failed: %d", result);
986 	}
987 
988 	result = sock->ops->listen(sock, 5);
989 	if (result < 0) {
990 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
991 		sock_release(sock);
992 		sock = NULL;
993 		goto create_out;
994 	}
995 
996 create_out:
997 	return sock;
998 }
999 
1000 /* Get local addresses */
1001 static void init_local(void)
1002 {
1003 	struct sockaddr_storage sas, *addr;
1004 	int i;
1005 
1006 	dlm_local_count = 0;
1007 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1008 		if (dlm_our_addr(&sas, i))
1009 			break;
1010 
1011 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1012 		if (!addr)
1013 			break;
1014 		memcpy(addr, &sas, sizeof(*addr));
1015 		dlm_local_addr[dlm_local_count++] = addr;
1016 	}
1017 }
1018 
1019 /* Bind to an IP address. SCTP allows multiple address so it can do
1020    multi-homing */
1021 static int add_sctp_bind_addr(struct connection *sctp_con,
1022 			      struct sockaddr_storage *addr,
1023 			      int addr_len, int num)
1024 {
1025 	int result = 0;
1026 
1027 	if (num == 1)
1028 		result = kernel_bind(sctp_con->sock,
1029 				     (struct sockaddr *) addr,
1030 				     addr_len);
1031 	else
1032 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1033 					   SCTP_SOCKOPT_BINDX_ADD,
1034 					   (char *)addr, addr_len);
1035 
1036 	if (result < 0)
1037 		log_print("Can't bind to port %d addr number %d",
1038 			  dlm_config.ci_tcp_port, num);
1039 
1040 	return result;
1041 }
1042 
1043 /* Initialise SCTP socket and bind to all interfaces */
1044 static int sctp_listen_for_all(void)
1045 {
1046 	struct socket *sock = NULL;
1047 	struct sockaddr_storage localaddr;
1048 	struct sctp_event_subscribe subscribe;
1049 	int result = -EINVAL, num = 1, i, addr_len;
1050 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1051 	int bufsize = NEEDED_RMEM;
1052 
1053 	if (!con)
1054 		return -ENOMEM;
1055 
1056 	log_print("Using SCTP for communications");
1057 
1058 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1059 				  IPPROTO_SCTP, &sock);
1060 	if (result < 0) {
1061 		log_print("Can't create comms socket, check SCTP is loaded");
1062 		goto out;
1063 	}
1064 
1065 	/* Listen for events */
1066 	memset(&subscribe, 0, sizeof(subscribe));
1067 	subscribe.sctp_data_io_event = 1;
1068 	subscribe.sctp_association_event = 1;
1069 	subscribe.sctp_send_failure_event = 1;
1070 	subscribe.sctp_shutdown_event = 1;
1071 	subscribe.sctp_partial_delivery_event = 1;
1072 
1073 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
1074 				 (char *)&bufsize, sizeof(bufsize));
1075 	if (result)
1076 		log_print("Error increasing buffer space on socket %d", result);
1077 
1078 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1079 				   (char *)&subscribe, sizeof(subscribe));
1080 	if (result < 0) {
1081 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1082 			  result);
1083 		goto create_delsock;
1084 	}
1085 
1086 	/* Init con struct */
1087 	sock->sk->sk_user_data = con;
1088 	con->sock = sock;
1089 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1090 	con->rx_action = receive_from_sock;
1091 	con->connect_action = sctp_init_assoc;
1092 
1093 	/* Bind to all interfaces. */
1094 	for (i = 0; i < dlm_local_count; i++) {
1095 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1096 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1097 
1098 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1099 		if (result)
1100 			goto create_delsock;
1101 		++num;
1102 	}
1103 
1104 	result = sock->ops->listen(sock, 5);
1105 	if (result < 0) {
1106 		log_print("Can't set socket listening");
1107 		goto create_delsock;
1108 	}
1109 
1110 	return 0;
1111 
1112 create_delsock:
1113 	sock_release(sock);
1114 	con->sock = NULL;
1115 out:
1116 	return result;
1117 }
1118 
1119 static int tcp_listen_for_all(void)
1120 {
1121 	struct socket *sock = NULL;
1122 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1123 	int result = -EINVAL;
1124 
1125 	if (!con)
1126 		return -ENOMEM;
1127 
1128 	/* We don't support multi-homed hosts */
1129 	if (dlm_local_addr[1] != NULL) {
1130 		log_print("TCP protocol can't handle multi-homed hosts, "
1131 			  "try SCTP");
1132 		return -EINVAL;
1133 	}
1134 
1135 	log_print("Using TCP for communications");
1136 
1137 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1138 	if (sock) {
1139 		add_sock(sock, con);
1140 		result = 0;
1141 	}
1142 	else {
1143 		result = -EADDRINUSE;
1144 	}
1145 
1146 	return result;
1147 }
1148 
1149 
1150 
1151 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1152 						     gfp_t allocation)
1153 {
1154 	struct writequeue_entry *entry;
1155 
1156 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1157 	if (!entry)
1158 		return NULL;
1159 
1160 	entry->page = alloc_page(allocation);
1161 	if (!entry->page) {
1162 		kfree(entry);
1163 		return NULL;
1164 	}
1165 
1166 	entry->offset = 0;
1167 	entry->len = 0;
1168 	entry->end = 0;
1169 	entry->users = 0;
1170 	entry->con = con;
1171 
1172 	return entry;
1173 }
1174 
1175 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1176 {
1177 	struct connection *con;
1178 	struct writequeue_entry *e;
1179 	int offset = 0;
1180 	int users = 0;
1181 
1182 	con = nodeid2con(nodeid, allocation);
1183 	if (!con)
1184 		return NULL;
1185 
1186 	spin_lock(&con->writequeue_lock);
1187 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1188 	if ((&e->list == &con->writequeue) ||
1189 	    (PAGE_CACHE_SIZE - e->end < len)) {
1190 		e = NULL;
1191 	} else {
1192 		offset = e->end;
1193 		e->end += len;
1194 		users = e->users++;
1195 	}
1196 	spin_unlock(&con->writequeue_lock);
1197 
1198 	if (e) {
1199 	got_one:
1200 		if (users == 0)
1201 			kmap(e->page);
1202 		*ppc = page_address(e->page) + offset;
1203 		return e;
1204 	}
1205 
1206 	e = new_writequeue_entry(con, allocation);
1207 	if (e) {
1208 		spin_lock(&con->writequeue_lock);
1209 		offset = e->end;
1210 		e->end += len;
1211 		users = e->users++;
1212 		list_add_tail(&e->list, &con->writequeue);
1213 		spin_unlock(&con->writequeue_lock);
1214 		goto got_one;
1215 	}
1216 	return NULL;
1217 }
1218 
1219 void dlm_lowcomms_commit_buffer(void *mh)
1220 {
1221 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1222 	struct connection *con = e->con;
1223 	int users;
1224 
1225 	spin_lock(&con->writequeue_lock);
1226 	users = --e->users;
1227 	if (users)
1228 		goto out;
1229 	e->len = e->end - e->offset;
1230 	kunmap(e->page);
1231 	spin_unlock(&con->writequeue_lock);
1232 
1233 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1234 		queue_work(send_workqueue, &con->swork);
1235 	}
1236 	return;
1237 
1238 out:
1239 	spin_unlock(&con->writequeue_lock);
1240 	return;
1241 }
1242 
1243 /* Send a message */
1244 static void send_to_sock(struct connection *con)
1245 {
1246 	int ret = 0;
1247 	ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1248 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1249 	struct writequeue_entry *e;
1250 	int len, offset;
1251 
1252 	mutex_lock(&con->sock_mutex);
1253 	if (con->sock == NULL)
1254 		goto out_connect;
1255 
1256 	sendpage = con->sock->ops->sendpage;
1257 
1258 	spin_lock(&con->writequeue_lock);
1259 	for (;;) {
1260 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1261 			       list);
1262 		if ((struct list_head *) e == &con->writequeue)
1263 			break;
1264 
1265 		len = e->len;
1266 		offset = e->offset;
1267 		BUG_ON(len == 0 && e->users == 0);
1268 		spin_unlock(&con->writequeue_lock);
1269 		kmap(e->page);
1270 
1271 		ret = 0;
1272 		if (len) {
1273 			ret = sendpage(con->sock, e->page, offset, len,
1274 				       msg_flags);
1275 			if (ret == -EAGAIN || ret == 0)
1276 				goto out;
1277 			if (ret <= 0)
1278 				goto send_error;
1279 		} else {
1280 			/* Don't starve people filling buffers */
1281 			cond_resched();
1282 		}
1283 
1284 		spin_lock(&con->writequeue_lock);
1285 		e->offset += ret;
1286 		e->len -= ret;
1287 
1288 		if (e->len == 0 && e->users == 0) {
1289 			list_del(&e->list);
1290 			kunmap(e->page);
1291 			free_entry(e);
1292 			continue;
1293 		}
1294 	}
1295 	spin_unlock(&con->writequeue_lock);
1296 out:
1297 	mutex_unlock(&con->sock_mutex);
1298 	return;
1299 
1300 send_error:
1301 	mutex_unlock(&con->sock_mutex);
1302 	close_connection(con, false);
1303 	lowcomms_connect_sock(con);
1304 	return;
1305 
1306 out_connect:
1307 	mutex_unlock(&con->sock_mutex);
1308 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1309 		lowcomms_connect_sock(con);
1310 	return;
1311 }
1312 
1313 static void clean_one_writequeue(struct connection *con)
1314 {
1315 	struct list_head *list;
1316 	struct list_head *temp;
1317 
1318 	spin_lock(&con->writequeue_lock);
1319 	list_for_each_safe(list, temp, &con->writequeue) {
1320 		struct writequeue_entry *e =
1321 			list_entry(list, struct writequeue_entry, list);
1322 		list_del(&e->list);
1323 		free_entry(e);
1324 	}
1325 	spin_unlock(&con->writequeue_lock);
1326 }
1327 
1328 /* Called from recovery when it knows that a node has
1329    left the cluster */
1330 int dlm_lowcomms_close(int nodeid)
1331 {
1332 	struct connection *con;
1333 
1334 	log_print("closing connection to node %d", nodeid);
1335 	con = nodeid2con(nodeid, 0);
1336 	if (con) {
1337 		clean_one_writequeue(con);
1338 		close_connection(con, true);
1339 	}
1340 	return 0;
1341 }
1342 
1343 /* Receive workqueue function */
1344 static void process_recv_sockets(struct work_struct *work)
1345 {
1346 	struct connection *con = container_of(work, struct connection, rwork);
1347 	int err;
1348 
1349 	clear_bit(CF_READ_PENDING, &con->flags);
1350 	do {
1351 		err = con->rx_action(con);
1352 	} while (!err);
1353 }
1354 
1355 /* Send workqueue function */
1356 static void process_send_sockets(struct work_struct *work)
1357 {
1358 	struct connection *con = container_of(work, struct connection, swork);
1359 
1360 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1361 		con->connect_action(con);
1362 	}
1363 	clear_bit(CF_WRITE_PENDING, &con->flags);
1364 	send_to_sock(con);
1365 }
1366 
1367 
1368 /* Discard all entries on the write queues */
1369 static void clean_writequeues(void)
1370 {
1371 	int nodeid;
1372 
1373 	for (nodeid = 1; nodeid <= max_nodeid; nodeid++) {
1374 		struct connection *con = __nodeid2con(nodeid, 0);
1375 
1376 		if (con)
1377 			clean_one_writequeue(con);
1378 	}
1379 }
1380 
1381 static void work_stop(void)
1382 {
1383 	destroy_workqueue(recv_workqueue);
1384 	destroy_workqueue(send_workqueue);
1385 }
1386 
1387 static int work_start(void)
1388 {
1389 	int error;
1390 	recv_workqueue = create_workqueue("dlm_recv");
1391 	error = IS_ERR(recv_workqueue);
1392 	if (error) {
1393 		log_print("can't start dlm_recv %d", error);
1394 		return error;
1395 	}
1396 
1397 	send_workqueue = create_singlethread_workqueue("dlm_send");
1398 	error = IS_ERR(send_workqueue);
1399 	if (error) {
1400 		log_print("can't start dlm_send %d", error);
1401 		destroy_workqueue(recv_workqueue);
1402 		return error;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
1408 void dlm_lowcomms_stop(void)
1409 {
1410 	int i;
1411 	struct connection *con;
1412 
1413 	/* Set all the flags to prevent any
1414 	   socket activity.
1415 	*/
1416 	down(&connections_lock);
1417 	for (i = 0; i <= max_nodeid; i++) {
1418 		con = __nodeid2con(i, 0);
1419 		if (con) {
1420 			con->flags |= 0x0F;
1421 			if (con->sock)
1422 				con->sock->sk->sk_user_data = NULL;
1423 		}
1424 	}
1425 	up(&connections_lock);
1426 
1427 	work_stop();
1428 
1429 	down(&connections_lock);
1430 	clean_writequeues();
1431 
1432 	for (i = 0; i <= max_nodeid; i++) {
1433 		con = __nodeid2con(i, 0);
1434 		if (con) {
1435 			close_connection(con, true);
1436 			kmem_cache_free(con_cache, con);
1437 		}
1438 	}
1439 	max_nodeid = 0;
1440 	up(&connections_lock);
1441 	kmem_cache_destroy(con_cache);
1442 	idr_init(&connections_idr);
1443 }
1444 
1445 int dlm_lowcomms_start(void)
1446 {
1447 	int error = -EINVAL;
1448 	struct connection *con;
1449 
1450 	init_local();
1451 	if (!dlm_local_count) {
1452 		error = -ENOTCONN;
1453 		log_print("no local IP address has been set");
1454 		goto out;
1455 	}
1456 
1457 	error = -ENOMEM;
1458 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1459 				      __alignof__(struct connection), 0,
1460 				      NULL);
1461 	if (!con_cache)
1462 		goto out;
1463 
1464 	/* Set some sysctl minima */
1465 	if (sysctl_rmem_max < NEEDED_RMEM)
1466 		sysctl_rmem_max = NEEDED_RMEM;
1467 
1468 	/* Start listening */
1469 	if (dlm_config.ci_protocol == 0)
1470 		error = tcp_listen_for_all();
1471 	else
1472 		error = sctp_listen_for_all();
1473 	if (error)
1474 		goto fail_unlisten;
1475 
1476 	error = work_start();
1477 	if (error)
1478 		goto fail_unlisten;
1479 
1480 	return 0;
1481 
1482 fail_unlisten:
1483 	con = nodeid2con(0,0);
1484 	if (con) {
1485 		close_connection(con, false);
1486 		kmem_cache_free(con_cache, con);
1487 	}
1488 	kmem_cache_destroy(con_cache);
1489 
1490 out:
1491 	return error;
1492 }
1493