xref: /linux/fs/dlm/lowcomms.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11 
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44 
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55 
56 #include "dlm_internal.h"
57 #include "lowcomms.h"
58 #include "midcomms.h"
59 #include "config.h"
60 
61 #define NEEDED_RMEM (4*1024*1024)
62 #define CONN_HASH_SIZE 32
63 
64 /* Number of messages to send before rescheduling */
65 #define MAX_SEND_MSG_COUNT 25
66 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
67 
68 struct connection {
69 	struct socket *sock;	/* NULL if not connected */
70 	uint32_t nodeid;	/* So we know who we are in the list */
71 	struct mutex sock_mutex;
72 	unsigned long flags;
73 #define CF_READ_PENDING 1
74 #define CF_WRITE_PENDING 2
75 #define CF_INIT_PENDING 4
76 #define CF_IS_OTHERCON 5
77 #define CF_CLOSE 6
78 #define CF_APP_LIMITED 7
79 #define CF_CLOSING 8
80 #define CF_SHUTDOWN 9
81 #define CF_CONNECTED 10
82 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
83 	spinlock_t writequeue_lock;
84 	void (*connect_action) (struct connection *);	/* What to do to connect */
85 	void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
86 	int retries;
87 #define MAX_CONNECT_RETRIES 3
88 	struct hlist_node list;
89 	struct connection *othercon;
90 	struct work_struct rwork; /* Receive workqueue */
91 	struct work_struct swork; /* Send workqueue */
92 	wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
93 	unsigned char *rx_buf;
94 	int rx_buflen;
95 	int rx_leftover;
96 	struct rcu_head rcu;
97 };
98 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
99 
100 struct listen_connection {
101 	struct socket *sock;
102 	struct work_struct rwork;
103 };
104 
105 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
106 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
107 
108 /* An entry waiting to be sent */
109 struct writequeue_entry {
110 	struct list_head list;
111 	struct page *page;
112 	int offset;
113 	int len;
114 	int end;
115 	int users;
116 	struct connection *con;
117 };
118 
119 struct dlm_node_addr {
120 	struct list_head list;
121 	int nodeid;
122 	int mark;
123 	int addr_count;
124 	int curr_addr_index;
125 	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
126 };
127 
128 static struct listen_sock_callbacks {
129 	void (*sk_error_report)(struct sock *);
130 	void (*sk_data_ready)(struct sock *);
131 	void (*sk_state_change)(struct sock *);
132 	void (*sk_write_space)(struct sock *);
133 } listen_sock;
134 
135 static LIST_HEAD(dlm_node_addrs);
136 static DEFINE_SPINLOCK(dlm_node_addrs_spin);
137 
138 static struct listen_connection listen_con;
139 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
140 static int dlm_local_count;
141 int dlm_allow_conn;
142 
143 /* Work queues */
144 static struct workqueue_struct *recv_workqueue;
145 static struct workqueue_struct *send_workqueue;
146 
147 static struct hlist_head connection_hash[CONN_HASH_SIZE];
148 static DEFINE_SPINLOCK(connections_lock);
149 DEFINE_STATIC_SRCU(connections_srcu);
150 
151 static void process_recv_sockets(struct work_struct *work);
152 static void process_send_sockets(struct work_struct *work);
153 
154 static void sctp_connect_to_sock(struct connection *con);
155 static void tcp_connect_to_sock(struct connection *con);
156 static void dlm_tcp_shutdown(struct connection *con);
157 
158 /* This is deliberately very simple because most clusters have simple
159    sequential nodeids, so we should be able to go straight to a connection
160    struct in the array */
161 static inline int nodeid_hash(int nodeid)
162 {
163 	return nodeid & (CONN_HASH_SIZE-1);
164 }
165 
166 static struct connection *__find_con(int nodeid)
167 {
168 	int r, idx;
169 	struct connection *con;
170 
171 	r = nodeid_hash(nodeid);
172 
173 	idx = srcu_read_lock(&connections_srcu);
174 	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
175 		if (con->nodeid == nodeid) {
176 			srcu_read_unlock(&connections_srcu, idx);
177 			return con;
178 		}
179 	}
180 	srcu_read_unlock(&connections_srcu, idx);
181 
182 	return NULL;
183 }
184 
185 static int dlm_con_init(struct connection *con, int nodeid)
186 {
187 	con->rx_buflen = dlm_config.ci_buffer_size;
188 	con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
189 	if (!con->rx_buf)
190 		return -ENOMEM;
191 
192 	con->nodeid = nodeid;
193 	mutex_init(&con->sock_mutex);
194 	INIT_LIST_HEAD(&con->writequeue);
195 	spin_lock_init(&con->writequeue_lock);
196 	INIT_WORK(&con->swork, process_send_sockets);
197 	INIT_WORK(&con->rwork, process_recv_sockets);
198 	init_waitqueue_head(&con->shutdown_wait);
199 
200 	if (dlm_config.ci_protocol == 0) {
201 		con->connect_action = tcp_connect_to_sock;
202 		con->shutdown_action = dlm_tcp_shutdown;
203 	} else {
204 		con->connect_action = sctp_connect_to_sock;
205 	}
206 
207 	return 0;
208 }
209 
210 /*
211  * If 'allocation' is zero then we don't attempt to create a new
212  * connection structure for this node.
213  */
214 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
215 {
216 	struct connection *con, *tmp;
217 	int r, ret;
218 
219 	con = __find_con(nodeid);
220 	if (con || !alloc)
221 		return con;
222 
223 	con = kzalloc(sizeof(*con), alloc);
224 	if (!con)
225 		return NULL;
226 
227 	ret = dlm_con_init(con, nodeid);
228 	if (ret) {
229 		kfree(con);
230 		return NULL;
231 	}
232 
233 	r = nodeid_hash(nodeid);
234 
235 	spin_lock(&connections_lock);
236 	/* Because multiple workqueues/threads calls this function it can
237 	 * race on multiple cpu's. Instead of locking hot path __find_con()
238 	 * we just check in rare cases of recently added nodes again
239 	 * under protection of connections_lock. If this is the case we
240 	 * abort our connection creation and return the existing connection.
241 	 */
242 	tmp = __find_con(nodeid);
243 	if (tmp) {
244 		spin_unlock(&connections_lock);
245 		kfree(con->rx_buf);
246 		kfree(con);
247 		return tmp;
248 	}
249 
250 	hlist_add_head_rcu(&con->list, &connection_hash[r]);
251 	spin_unlock(&connections_lock);
252 
253 	return con;
254 }
255 
256 /* Loop round all connections */
257 static void foreach_conn(void (*conn_func)(struct connection *c))
258 {
259 	int i, idx;
260 	struct connection *con;
261 
262 	idx = srcu_read_lock(&connections_srcu);
263 	for (i = 0; i < CONN_HASH_SIZE; i++) {
264 		hlist_for_each_entry_rcu(con, &connection_hash[i], list)
265 			conn_func(con);
266 	}
267 	srcu_read_unlock(&connections_srcu, idx);
268 }
269 
270 static struct dlm_node_addr *find_node_addr(int nodeid)
271 {
272 	struct dlm_node_addr *na;
273 
274 	list_for_each_entry(na, &dlm_node_addrs, list) {
275 		if (na->nodeid == nodeid)
276 			return na;
277 	}
278 	return NULL;
279 }
280 
281 static int addr_compare(const struct sockaddr_storage *x,
282 			const struct sockaddr_storage *y)
283 {
284 	switch (x->ss_family) {
285 	case AF_INET: {
286 		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
287 		struct sockaddr_in *siny = (struct sockaddr_in *)y;
288 		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
289 			return 0;
290 		if (sinx->sin_port != siny->sin_port)
291 			return 0;
292 		break;
293 	}
294 	case AF_INET6: {
295 		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
296 		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
297 		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
298 			return 0;
299 		if (sinx->sin6_port != siny->sin6_port)
300 			return 0;
301 		break;
302 	}
303 	default:
304 		return 0;
305 	}
306 	return 1;
307 }
308 
309 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
310 			  struct sockaddr *sa_out, bool try_new_addr,
311 			  unsigned int *mark)
312 {
313 	struct sockaddr_storage sas;
314 	struct dlm_node_addr *na;
315 
316 	if (!dlm_local_count)
317 		return -1;
318 
319 	spin_lock(&dlm_node_addrs_spin);
320 	na = find_node_addr(nodeid);
321 	if (na && na->addr_count) {
322 		memcpy(&sas, na->addr[na->curr_addr_index],
323 		       sizeof(struct sockaddr_storage));
324 
325 		if (try_new_addr) {
326 			na->curr_addr_index++;
327 			if (na->curr_addr_index == na->addr_count)
328 				na->curr_addr_index = 0;
329 		}
330 	}
331 	spin_unlock(&dlm_node_addrs_spin);
332 
333 	if (!na)
334 		return -EEXIST;
335 
336 	if (!na->addr_count)
337 		return -ENOENT;
338 
339 	*mark = na->mark;
340 
341 	if (sas_out)
342 		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
343 
344 	if (!sa_out)
345 		return 0;
346 
347 	if (dlm_local_addr[0]->ss_family == AF_INET) {
348 		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
349 		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
350 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
351 	} else {
352 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
353 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
354 		ret6->sin6_addr = in6->sin6_addr;
355 	}
356 
357 	return 0;
358 }
359 
360 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
361 			  unsigned int *mark)
362 {
363 	struct dlm_node_addr *na;
364 	int rv = -EEXIST;
365 	int addr_i;
366 
367 	spin_lock(&dlm_node_addrs_spin);
368 	list_for_each_entry(na, &dlm_node_addrs, list) {
369 		if (!na->addr_count)
370 			continue;
371 
372 		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
373 			if (addr_compare(na->addr[addr_i], addr)) {
374 				*nodeid = na->nodeid;
375 				*mark = na->mark;
376 				rv = 0;
377 				goto unlock;
378 			}
379 		}
380 	}
381 unlock:
382 	spin_unlock(&dlm_node_addrs_spin);
383 	return rv;
384 }
385 
386 /* caller need to held dlm_node_addrs_spin lock */
387 static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na,
388 				     const struct sockaddr_storage *addr)
389 {
390 	int i;
391 
392 	for (i = 0; i < na->addr_count; i++) {
393 		if (addr_compare(na->addr[i], addr))
394 			return true;
395 	}
396 
397 	return false;
398 }
399 
400 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
401 {
402 	struct sockaddr_storage *new_addr;
403 	struct dlm_node_addr *new_node, *na;
404 	bool ret;
405 
406 	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
407 	if (!new_node)
408 		return -ENOMEM;
409 
410 	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
411 	if (!new_addr) {
412 		kfree(new_node);
413 		return -ENOMEM;
414 	}
415 
416 	memcpy(new_addr, addr, len);
417 
418 	spin_lock(&dlm_node_addrs_spin);
419 	na = find_node_addr(nodeid);
420 	if (!na) {
421 		new_node->nodeid = nodeid;
422 		new_node->addr[0] = new_addr;
423 		new_node->addr_count = 1;
424 		new_node->mark = dlm_config.ci_mark;
425 		list_add(&new_node->list, &dlm_node_addrs);
426 		spin_unlock(&dlm_node_addrs_spin);
427 		return 0;
428 	}
429 
430 	ret = dlm_lowcomms_na_has_addr(na, addr);
431 	if (ret) {
432 		spin_unlock(&dlm_node_addrs_spin);
433 		kfree(new_addr);
434 		kfree(new_node);
435 		return -EEXIST;
436 	}
437 
438 	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
439 		spin_unlock(&dlm_node_addrs_spin);
440 		kfree(new_addr);
441 		kfree(new_node);
442 		return -ENOSPC;
443 	}
444 
445 	na->addr[na->addr_count++] = new_addr;
446 	spin_unlock(&dlm_node_addrs_spin);
447 	kfree(new_node);
448 	return 0;
449 }
450 
451 /* Data available on socket or listen socket received a connect */
452 static void lowcomms_data_ready(struct sock *sk)
453 {
454 	struct connection *con;
455 
456 	read_lock_bh(&sk->sk_callback_lock);
457 	con = sock2con(sk);
458 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
459 		queue_work(recv_workqueue, &con->rwork);
460 	read_unlock_bh(&sk->sk_callback_lock);
461 }
462 
463 static void lowcomms_listen_data_ready(struct sock *sk)
464 {
465 	queue_work(recv_workqueue, &listen_con.rwork);
466 }
467 
468 static void lowcomms_write_space(struct sock *sk)
469 {
470 	struct connection *con;
471 
472 	read_lock_bh(&sk->sk_callback_lock);
473 	con = sock2con(sk);
474 	if (!con)
475 		goto out;
476 
477 	if (!test_and_set_bit(CF_CONNECTED, &con->flags)) {
478 		log_print("successful connected to node %d", con->nodeid);
479 		queue_work(send_workqueue, &con->swork);
480 		goto out;
481 	}
482 
483 	clear_bit(SOCK_NOSPACE, &con->sock->flags);
484 
485 	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
486 		con->sock->sk->sk_write_pending--;
487 		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
488 	}
489 
490 	queue_work(send_workqueue, &con->swork);
491 out:
492 	read_unlock_bh(&sk->sk_callback_lock);
493 }
494 
495 static inline void lowcomms_connect_sock(struct connection *con)
496 {
497 	if (test_bit(CF_CLOSE, &con->flags))
498 		return;
499 	queue_work(send_workqueue, &con->swork);
500 	cond_resched();
501 }
502 
503 static void lowcomms_state_change(struct sock *sk)
504 {
505 	/* SCTP layer is not calling sk_data_ready when the connection
506 	 * is done, so we catch the signal through here. Also, it
507 	 * doesn't switch socket state when entering shutdown, so we
508 	 * skip the write in that case.
509 	 */
510 	if (sk->sk_shutdown) {
511 		if (sk->sk_shutdown == RCV_SHUTDOWN)
512 			lowcomms_data_ready(sk);
513 	} else if (sk->sk_state == TCP_ESTABLISHED) {
514 		lowcomms_write_space(sk);
515 	}
516 }
517 
518 int dlm_lowcomms_connect_node(int nodeid)
519 {
520 	struct connection *con;
521 
522 	if (nodeid == dlm_our_nodeid())
523 		return 0;
524 
525 	con = nodeid2con(nodeid, GFP_NOFS);
526 	if (!con)
527 		return -ENOMEM;
528 	lowcomms_connect_sock(con);
529 	return 0;
530 }
531 
532 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
533 {
534 	struct dlm_node_addr *na;
535 
536 	spin_lock(&dlm_node_addrs_spin);
537 	na = find_node_addr(nodeid);
538 	if (!na) {
539 		spin_unlock(&dlm_node_addrs_spin);
540 		return -ENOENT;
541 	}
542 
543 	na->mark = mark;
544 	spin_unlock(&dlm_node_addrs_spin);
545 
546 	return 0;
547 }
548 
549 static void lowcomms_error_report(struct sock *sk)
550 {
551 	struct connection *con;
552 	struct sockaddr_storage saddr;
553 	void (*orig_report)(struct sock *) = NULL;
554 
555 	read_lock_bh(&sk->sk_callback_lock);
556 	con = sock2con(sk);
557 	if (con == NULL)
558 		goto out;
559 
560 	orig_report = listen_sock.sk_error_report;
561 	if (con->sock == NULL ||
562 	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
563 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
564 				   "sending to node %d, port %d, "
565 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
566 				   con->nodeid, dlm_config.ci_tcp_port,
567 				   sk->sk_err, sk->sk_err_soft);
568 	} else if (saddr.ss_family == AF_INET) {
569 		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
570 
571 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
572 				   "sending to node %d at %pI4, port %d, "
573 				   "sk_err=%d/%d\n", dlm_our_nodeid(),
574 				   con->nodeid, &sin4->sin_addr.s_addr,
575 				   dlm_config.ci_tcp_port, sk->sk_err,
576 				   sk->sk_err_soft);
577 	} else {
578 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
579 
580 		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
581 				   "sending to node %d at %u.%u.%u.%u, "
582 				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
583 				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
584 				   sin6->sin6_addr.s6_addr32[1],
585 				   sin6->sin6_addr.s6_addr32[2],
586 				   sin6->sin6_addr.s6_addr32[3],
587 				   dlm_config.ci_tcp_port, sk->sk_err,
588 				   sk->sk_err_soft);
589 	}
590 out:
591 	read_unlock_bh(&sk->sk_callback_lock);
592 	if (orig_report)
593 		orig_report(sk);
594 }
595 
596 /* Note: sk_callback_lock must be locked before calling this function. */
597 static void save_listen_callbacks(struct socket *sock)
598 {
599 	struct sock *sk = sock->sk;
600 
601 	listen_sock.sk_data_ready = sk->sk_data_ready;
602 	listen_sock.sk_state_change = sk->sk_state_change;
603 	listen_sock.sk_write_space = sk->sk_write_space;
604 	listen_sock.sk_error_report = sk->sk_error_report;
605 }
606 
607 static void restore_callbacks(struct socket *sock)
608 {
609 	struct sock *sk = sock->sk;
610 
611 	write_lock_bh(&sk->sk_callback_lock);
612 	sk->sk_user_data = NULL;
613 	sk->sk_data_ready = listen_sock.sk_data_ready;
614 	sk->sk_state_change = listen_sock.sk_state_change;
615 	sk->sk_write_space = listen_sock.sk_write_space;
616 	sk->sk_error_report = listen_sock.sk_error_report;
617 	write_unlock_bh(&sk->sk_callback_lock);
618 }
619 
620 static void add_listen_sock(struct socket *sock, struct listen_connection *con)
621 {
622 	struct sock *sk = sock->sk;
623 
624 	write_lock_bh(&sk->sk_callback_lock);
625 	save_listen_callbacks(sock);
626 	con->sock = sock;
627 
628 	sk->sk_user_data = con;
629 	sk->sk_allocation = GFP_NOFS;
630 	/* Install a data_ready callback */
631 	sk->sk_data_ready = lowcomms_listen_data_ready;
632 	write_unlock_bh(&sk->sk_callback_lock);
633 }
634 
635 /* Make a socket active */
636 static void add_sock(struct socket *sock, struct connection *con)
637 {
638 	struct sock *sk = sock->sk;
639 
640 	write_lock_bh(&sk->sk_callback_lock);
641 	con->sock = sock;
642 
643 	sk->sk_user_data = con;
644 	/* Install a data_ready callback */
645 	sk->sk_data_ready = lowcomms_data_ready;
646 	sk->sk_write_space = lowcomms_write_space;
647 	sk->sk_state_change = lowcomms_state_change;
648 	sk->sk_allocation = GFP_NOFS;
649 	sk->sk_error_report = lowcomms_error_report;
650 	write_unlock_bh(&sk->sk_callback_lock);
651 }
652 
653 /* Add the port number to an IPv6 or 4 sockaddr and return the address
654    length */
655 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
656 			  int *addr_len)
657 {
658 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
659 	if (saddr->ss_family == AF_INET) {
660 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
661 		in4_addr->sin_port = cpu_to_be16(port);
662 		*addr_len = sizeof(struct sockaddr_in);
663 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
664 	} else {
665 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
666 		in6_addr->sin6_port = cpu_to_be16(port);
667 		*addr_len = sizeof(struct sockaddr_in6);
668 	}
669 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
670 }
671 
672 static void dlm_close_sock(struct socket **sock)
673 {
674 	if (*sock) {
675 		restore_callbacks(*sock);
676 		sock_release(*sock);
677 		*sock = NULL;
678 	}
679 }
680 
681 /* Close a remote connection and tidy up */
682 static void close_connection(struct connection *con, bool and_other,
683 			     bool tx, bool rx)
684 {
685 	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
686 
687 	if (tx && !closing && cancel_work_sync(&con->swork)) {
688 		log_print("canceled swork for node %d", con->nodeid);
689 		clear_bit(CF_WRITE_PENDING, &con->flags);
690 	}
691 	if (rx && !closing && cancel_work_sync(&con->rwork)) {
692 		log_print("canceled rwork for node %d", con->nodeid);
693 		clear_bit(CF_READ_PENDING, &con->flags);
694 	}
695 
696 	mutex_lock(&con->sock_mutex);
697 	dlm_close_sock(&con->sock);
698 
699 	if (con->othercon && and_other) {
700 		/* Will only re-enter once. */
701 		close_connection(con->othercon, false, true, true);
702 	}
703 
704 	con->rx_leftover = 0;
705 	con->retries = 0;
706 	clear_bit(CF_CONNECTED, &con->flags);
707 	mutex_unlock(&con->sock_mutex);
708 	clear_bit(CF_CLOSING, &con->flags);
709 }
710 
711 static void shutdown_connection(struct connection *con)
712 {
713 	int ret;
714 
715 	flush_work(&con->swork);
716 
717 	mutex_lock(&con->sock_mutex);
718 	/* nothing to shutdown */
719 	if (!con->sock) {
720 		mutex_unlock(&con->sock_mutex);
721 		return;
722 	}
723 
724 	set_bit(CF_SHUTDOWN, &con->flags);
725 	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
726 	mutex_unlock(&con->sock_mutex);
727 	if (ret) {
728 		log_print("Connection %p failed to shutdown: %d will force close",
729 			  con, ret);
730 		goto force_close;
731 	} else {
732 		ret = wait_event_timeout(con->shutdown_wait,
733 					 !test_bit(CF_SHUTDOWN, &con->flags),
734 					 DLM_SHUTDOWN_WAIT_TIMEOUT);
735 		if (ret == 0) {
736 			log_print("Connection %p shutdown timed out, will force close",
737 				  con);
738 			goto force_close;
739 		}
740 	}
741 
742 	return;
743 
744 force_close:
745 	clear_bit(CF_SHUTDOWN, &con->flags);
746 	close_connection(con, false, true, true);
747 }
748 
749 static void dlm_tcp_shutdown(struct connection *con)
750 {
751 	if (con->othercon)
752 		shutdown_connection(con->othercon);
753 	shutdown_connection(con);
754 }
755 
756 static int con_realloc_receive_buf(struct connection *con, int newlen)
757 {
758 	unsigned char *newbuf;
759 
760 	newbuf = kmalloc(newlen, GFP_NOFS);
761 	if (!newbuf)
762 		return -ENOMEM;
763 
764 	/* copy any leftover from last receive */
765 	if (con->rx_leftover)
766 		memmove(newbuf, con->rx_buf, con->rx_leftover);
767 
768 	/* swap to new buffer space */
769 	kfree(con->rx_buf);
770 	con->rx_buflen = newlen;
771 	con->rx_buf = newbuf;
772 
773 	return 0;
774 }
775 
776 /* Data received from remote end */
777 static int receive_from_sock(struct connection *con)
778 {
779 	int call_again_soon = 0;
780 	struct msghdr msg;
781 	struct kvec iov;
782 	int ret, buflen;
783 
784 	mutex_lock(&con->sock_mutex);
785 
786 	if (con->sock == NULL) {
787 		ret = -EAGAIN;
788 		goto out_close;
789 	}
790 
791 	/* realloc if we get new buffer size to read out */
792 	buflen = dlm_config.ci_buffer_size;
793 	if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
794 		ret = con_realloc_receive_buf(con, buflen);
795 		if (ret < 0)
796 			goto out_resched;
797 	}
798 
799 	/* calculate new buffer parameter regarding last receive and
800 	 * possible leftover bytes
801 	 */
802 	iov.iov_base = con->rx_buf + con->rx_leftover;
803 	iov.iov_len = con->rx_buflen - con->rx_leftover;
804 
805 	memset(&msg, 0, sizeof(msg));
806 	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
807 	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
808 			     msg.msg_flags);
809 	if (ret <= 0)
810 		goto out_close;
811 	else if (ret == iov.iov_len)
812 		call_again_soon = 1;
813 
814 	/* new buflen according readed bytes and leftover from last receive */
815 	buflen = ret + con->rx_leftover;
816 	ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
817 	if (ret < 0)
818 		goto out_close;
819 
820 	/* calculate leftover bytes from process and put it into begin of
821 	 * the receive buffer, so next receive we have the full message
822 	 * at the start address of the receive buffer.
823 	 */
824 	con->rx_leftover = buflen - ret;
825 	if (con->rx_leftover) {
826 		memmove(con->rx_buf, con->rx_buf + ret,
827 			con->rx_leftover);
828 		call_again_soon = true;
829 	}
830 
831 	if (call_again_soon)
832 		goto out_resched;
833 
834 	mutex_unlock(&con->sock_mutex);
835 	return 0;
836 
837 out_resched:
838 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
839 		queue_work(recv_workqueue, &con->rwork);
840 	mutex_unlock(&con->sock_mutex);
841 	return -EAGAIN;
842 
843 out_close:
844 	mutex_unlock(&con->sock_mutex);
845 	if (ret != -EAGAIN) {
846 		/* Reconnect when there is something to send */
847 		close_connection(con, false, true, false);
848 		if (ret == 0) {
849 			log_print("connection %p got EOF from %d",
850 				  con, con->nodeid);
851 			/* handling for tcp shutdown */
852 			clear_bit(CF_SHUTDOWN, &con->flags);
853 			wake_up(&con->shutdown_wait);
854 			/* signal to breaking receive worker */
855 			ret = -1;
856 		}
857 	}
858 	return ret;
859 }
860 
861 /* Listening socket is busy, accept a connection */
862 static int accept_from_sock(struct listen_connection *con)
863 {
864 	int result;
865 	struct sockaddr_storage peeraddr;
866 	struct socket *newsock;
867 	int len;
868 	int nodeid;
869 	struct connection *newcon;
870 	struct connection *addcon;
871 	unsigned int mark;
872 
873 	if (!dlm_allow_conn) {
874 		return -1;
875 	}
876 
877 	if (!con->sock)
878 		return -ENOTCONN;
879 
880 	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
881 	if (result < 0)
882 		goto accept_err;
883 
884 	/* Get the connected socket's peer */
885 	memset(&peeraddr, 0, sizeof(peeraddr));
886 	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
887 	if (len < 0) {
888 		result = -ECONNABORTED;
889 		goto accept_err;
890 	}
891 
892 	/* Get the new node's NODEID */
893 	make_sockaddr(&peeraddr, 0, &len);
894 	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
895 		unsigned char *b=(unsigned char *)&peeraddr;
896 		log_print("connect from non cluster node");
897 		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE,
898 				     b, sizeof(struct sockaddr_storage));
899 		sock_release(newsock);
900 		return -1;
901 	}
902 
903 	log_print("got connection from %d", nodeid);
904 
905 	/*  Check to see if we already have a connection to this node. This
906 	 *  could happen if the two nodes initiate a connection at roughly
907 	 *  the same time and the connections cross on the wire.
908 	 *  In this case we store the incoming one in "othercon"
909 	 */
910 	newcon = nodeid2con(nodeid, GFP_NOFS);
911 	if (!newcon) {
912 		result = -ENOMEM;
913 		goto accept_err;
914 	}
915 
916 	sock_set_mark(newsock->sk, mark);
917 
918 	mutex_lock(&newcon->sock_mutex);
919 	if (newcon->sock) {
920 		struct connection *othercon = newcon->othercon;
921 
922 		if (!othercon) {
923 			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
924 			if (!othercon) {
925 				log_print("failed to allocate incoming socket");
926 				mutex_unlock(&newcon->sock_mutex);
927 				result = -ENOMEM;
928 				goto accept_err;
929 			}
930 
931 			result = dlm_con_init(othercon, nodeid);
932 			if (result < 0) {
933 				kfree(othercon);
934 				mutex_unlock(&newcon->sock_mutex);
935 				goto accept_err;
936 			}
937 
938 			lockdep_set_subclass(&othercon->sock_mutex, 1);
939 			newcon->othercon = othercon;
940 		} else {
941 			/* close other sock con if we have something new */
942 			close_connection(othercon, false, true, false);
943 		}
944 
945 		mutex_lock(&othercon->sock_mutex);
946 		add_sock(newsock, othercon);
947 		addcon = othercon;
948 		mutex_unlock(&othercon->sock_mutex);
949 	}
950 	else {
951 		/* accept copies the sk after we've saved the callbacks, so we
952 		   don't want to save them a second time or comm errors will
953 		   result in calling sk_error_report recursively. */
954 		add_sock(newsock, newcon);
955 		addcon = newcon;
956 	}
957 
958 	set_bit(CF_CONNECTED, &addcon->flags);
959 	mutex_unlock(&newcon->sock_mutex);
960 
961 	/*
962 	 * Add it to the active queue in case we got data
963 	 * between processing the accept adding the socket
964 	 * to the read_sockets list
965 	 */
966 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
967 		queue_work(recv_workqueue, &addcon->rwork);
968 
969 	return 0;
970 
971 accept_err:
972 	if (newsock)
973 		sock_release(newsock);
974 
975 	if (result != -EAGAIN)
976 		log_print("error accepting connection from node: %d", result);
977 	return result;
978 }
979 
980 static void free_entry(struct writequeue_entry *e)
981 {
982 	__free_page(e->page);
983 	kfree(e);
984 }
985 
986 /*
987  * writequeue_entry_complete - try to delete and free write queue entry
988  * @e: write queue entry to try to delete
989  * @completed: bytes completed
990  *
991  * writequeue_lock must be held.
992  */
993 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
994 {
995 	e->offset += completed;
996 	e->len -= completed;
997 
998 	if (e->len == 0 && e->users == 0) {
999 		list_del(&e->list);
1000 		free_entry(e);
1001 	}
1002 }
1003 
1004 /*
1005  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1006  */
1007 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1008 {
1009 	struct sockaddr_storage localaddr;
1010 	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1011 	int i, addr_len, result = 0;
1012 
1013 	for (i = 0; i < dlm_local_count; i++) {
1014 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1015 		make_sockaddr(&localaddr, port, &addr_len);
1016 
1017 		if (!i)
1018 			result = kernel_bind(sock, addr, addr_len);
1019 		else
1020 			result = sock_bind_add(sock->sk, addr, addr_len);
1021 
1022 		if (result < 0) {
1023 			log_print("Can't bind to %d addr number %d, %d.\n",
1024 				  port, i + 1, result);
1025 			break;
1026 		}
1027 	}
1028 	return result;
1029 }
1030 
1031 /* Initiate an SCTP association.
1032    This is a special case of send_to_sock() in that we don't yet have a
1033    peeled-off socket for this association, so we use the listening socket
1034    and add the primary IP address of the remote node.
1035  */
1036 static void sctp_connect_to_sock(struct connection *con)
1037 {
1038 	struct sockaddr_storage daddr;
1039 	int result;
1040 	int addr_len;
1041 	struct socket *sock;
1042 	unsigned int mark;
1043 
1044 	mutex_lock(&con->sock_mutex);
1045 
1046 	/* Some odd races can cause double-connects, ignore them */
1047 	if (con->retries++ > MAX_CONNECT_RETRIES)
1048 		goto out;
1049 
1050 	if (con->sock) {
1051 		log_print("node %d already connected.", con->nodeid);
1052 		goto out;
1053 	}
1054 
1055 	memset(&daddr, 0, sizeof(daddr));
1056 	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true, &mark);
1057 	if (result < 0) {
1058 		log_print("no address for nodeid %d", con->nodeid);
1059 		goto out;
1060 	}
1061 
1062 	/* Create a socket to communicate with */
1063 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1064 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1065 	if (result < 0)
1066 		goto socket_err;
1067 
1068 	sock_set_mark(sock->sk, mark);
1069 
1070 	add_sock(sock, con);
1071 
1072 	/* Bind to all addresses. */
1073 	if (sctp_bind_addrs(con->sock, 0))
1074 		goto bind_err;
1075 
1076 	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1077 
1078 	log_print("connecting to %d", con->nodeid);
1079 
1080 	/* Turn off Nagle's algorithm */
1081 	sctp_sock_set_nodelay(sock->sk);
1082 
1083 	/*
1084 	 * Make sock->ops->connect() function return in specified time,
1085 	 * since O_NONBLOCK argument in connect() function does not work here,
1086 	 * then, we should restore the default value of this attribute.
1087 	 */
1088 	sock_set_sndtimeo(sock->sk, 5);
1089 	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1090 				   0);
1091 	sock_set_sndtimeo(sock->sk, 0);
1092 
1093 	if (result == -EINPROGRESS)
1094 		result = 0;
1095 	if (result == 0) {
1096 		if (!test_and_set_bit(CF_CONNECTED, &con->flags))
1097 			log_print("successful connected to node %d", con->nodeid);
1098 		goto out;
1099 	}
1100 
1101 bind_err:
1102 	con->sock = NULL;
1103 	sock_release(sock);
1104 
1105 socket_err:
1106 	/*
1107 	 * Some errors are fatal and this list might need adjusting. For other
1108 	 * errors we try again until the max number of retries is reached.
1109 	 */
1110 	if (result != -EHOSTUNREACH &&
1111 	    result != -ENETUNREACH &&
1112 	    result != -ENETDOWN &&
1113 	    result != -EINVAL &&
1114 	    result != -EPROTONOSUPPORT) {
1115 		log_print("connect %d try %d error %d", con->nodeid,
1116 			  con->retries, result);
1117 		mutex_unlock(&con->sock_mutex);
1118 		msleep(1000);
1119 		lowcomms_connect_sock(con);
1120 		return;
1121 	}
1122 
1123 out:
1124 	mutex_unlock(&con->sock_mutex);
1125 }
1126 
1127 /* Connect a new socket to its peer */
1128 static void tcp_connect_to_sock(struct connection *con)
1129 {
1130 	struct sockaddr_storage saddr, src_addr;
1131 	unsigned int mark;
1132 	int addr_len;
1133 	struct socket *sock = NULL;
1134 	int result;
1135 
1136 	mutex_lock(&con->sock_mutex);
1137 	if (con->retries++ > MAX_CONNECT_RETRIES)
1138 		goto out;
1139 
1140 	/* Some odd races can cause double-connects, ignore them */
1141 	if (con->sock)
1142 		goto out;
1143 
1144 	/* Create a socket to communicate with */
1145 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1146 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1147 	if (result < 0)
1148 		goto out_err;
1149 
1150 	memset(&saddr, 0, sizeof(saddr));
1151 	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false, &mark);
1152 	if (result < 0) {
1153 		log_print("no address for nodeid %d", con->nodeid);
1154 		goto out_err;
1155 	}
1156 
1157 	sock_set_mark(sock->sk, mark);
1158 
1159 	add_sock(sock, con);
1160 
1161 	/* Bind to our cluster-known address connecting to avoid
1162 	   routing problems */
1163 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1164 	make_sockaddr(&src_addr, 0, &addr_len);
1165 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1166 				 addr_len);
1167 	if (result < 0) {
1168 		log_print("could not bind for connect: %d", result);
1169 		/* This *may* not indicate a critical error */
1170 	}
1171 
1172 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1173 
1174 	log_print("connecting to %d", con->nodeid);
1175 
1176 	/* Turn off Nagle's algorithm */
1177 	tcp_sock_set_nodelay(sock->sk);
1178 
1179 	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1180 				   O_NONBLOCK);
1181 	if (result == -EINPROGRESS)
1182 		result = 0;
1183 	if (result == 0)
1184 		goto out;
1185 
1186 out_err:
1187 	if (con->sock) {
1188 		sock_release(con->sock);
1189 		con->sock = NULL;
1190 	} else if (sock) {
1191 		sock_release(sock);
1192 	}
1193 	/*
1194 	 * Some errors are fatal and this list might need adjusting. For other
1195 	 * errors we try again until the max number of retries is reached.
1196 	 */
1197 	if (result != -EHOSTUNREACH &&
1198 	    result != -ENETUNREACH &&
1199 	    result != -ENETDOWN &&
1200 	    result != -EINVAL &&
1201 	    result != -EPROTONOSUPPORT) {
1202 		log_print("connect %d try %d error %d", con->nodeid,
1203 			  con->retries, result);
1204 		mutex_unlock(&con->sock_mutex);
1205 		msleep(1000);
1206 		lowcomms_connect_sock(con);
1207 		return;
1208 	}
1209 out:
1210 	mutex_unlock(&con->sock_mutex);
1211 	return;
1212 }
1213 
1214 /* On error caller must run dlm_close_sock() for the
1215  * listen connection socket.
1216  */
1217 static int tcp_create_listen_sock(struct listen_connection *con,
1218 				  struct sockaddr_storage *saddr)
1219 {
1220 	struct socket *sock = NULL;
1221 	int result = 0;
1222 	int addr_len;
1223 
1224 	if (dlm_local_addr[0]->ss_family == AF_INET)
1225 		addr_len = sizeof(struct sockaddr_in);
1226 	else
1227 		addr_len = sizeof(struct sockaddr_in6);
1228 
1229 	/* Create a socket to communicate with */
1230 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1231 				  SOCK_STREAM, IPPROTO_TCP, &sock);
1232 	if (result < 0) {
1233 		log_print("Can't create listening comms socket");
1234 		goto create_out;
1235 	}
1236 
1237 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1238 
1239 	/* Turn off Nagle's algorithm */
1240 	tcp_sock_set_nodelay(sock->sk);
1241 
1242 	sock_set_reuseaddr(sock->sk);
1243 
1244 	add_listen_sock(sock, con);
1245 
1246 	/* Bind to our port */
1247 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1248 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1249 	if (result < 0) {
1250 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1251 		goto create_out;
1252 	}
1253 	sock_set_keepalive(sock->sk);
1254 
1255 	result = sock->ops->listen(sock, 5);
1256 	if (result < 0) {
1257 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1258 		goto create_out;
1259 	}
1260 
1261 	return 0;
1262 
1263 create_out:
1264 	return result;
1265 }
1266 
1267 /* Get local addresses */
1268 static void init_local(void)
1269 {
1270 	struct sockaddr_storage sas, *addr;
1271 	int i;
1272 
1273 	dlm_local_count = 0;
1274 	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1275 		if (dlm_our_addr(&sas, i))
1276 			break;
1277 
1278 		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1279 		if (!addr)
1280 			break;
1281 		dlm_local_addr[dlm_local_count++] = addr;
1282 	}
1283 }
1284 
1285 static void deinit_local(void)
1286 {
1287 	int i;
1288 
1289 	for (i = 0; i < dlm_local_count; i++)
1290 		kfree(dlm_local_addr[i]);
1291 }
1292 
1293 /* Initialise SCTP socket and bind to all interfaces
1294  * On error caller must run dlm_close_sock() for the
1295  * listen connection socket.
1296  */
1297 static int sctp_listen_for_all(struct listen_connection *con)
1298 {
1299 	struct socket *sock = NULL;
1300 	int result = -EINVAL;
1301 
1302 	log_print("Using SCTP for communications");
1303 
1304 	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1305 				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1306 	if (result < 0) {
1307 		log_print("Can't create comms socket, check SCTP is loaded");
1308 		goto out;
1309 	}
1310 
1311 	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1312 	sock_set_mark(sock->sk, dlm_config.ci_mark);
1313 	sctp_sock_set_nodelay(sock->sk);
1314 
1315 	add_listen_sock(sock, con);
1316 
1317 	/* Bind to all addresses. */
1318 	result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port);
1319 	if (result < 0)
1320 		goto out;
1321 
1322 	result = sock->ops->listen(sock, 5);
1323 	if (result < 0) {
1324 		log_print("Can't set socket listening");
1325 		goto out;
1326 	}
1327 
1328 	return 0;
1329 
1330 out:
1331 	return result;
1332 }
1333 
1334 static int tcp_listen_for_all(void)
1335 {
1336 	/* We don't support multi-homed hosts */
1337 	if (dlm_local_count > 1) {
1338 		log_print("TCP protocol can't handle multi-homed hosts, "
1339 			  "try SCTP");
1340 		return -EINVAL;
1341 	}
1342 
1343 	log_print("Using TCP for communications");
1344 
1345 	return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]);
1346 }
1347 
1348 
1349 
1350 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1351 						     gfp_t allocation)
1352 {
1353 	struct writequeue_entry *entry;
1354 
1355 	entry = kzalloc(sizeof(*entry), allocation);
1356 	if (!entry)
1357 		return NULL;
1358 
1359 	entry->page = alloc_page(allocation | __GFP_ZERO);
1360 	if (!entry->page) {
1361 		kfree(entry);
1362 		return NULL;
1363 	}
1364 
1365 	entry->con = con;
1366 	entry->users = 1;
1367 
1368 	return entry;
1369 }
1370 
1371 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1372 					     gfp_t allocation, char **ppc)
1373 {
1374 	struct writequeue_entry *e;
1375 
1376 	spin_lock(&con->writequeue_lock);
1377 	if (!list_empty(&con->writequeue)) {
1378 		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1379 		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1380 			*ppc = page_address(e->page) + e->end;
1381 			e->end += len;
1382 			e->users++;
1383 			spin_unlock(&con->writequeue_lock);
1384 
1385 			return e;
1386 		}
1387 	}
1388 	spin_unlock(&con->writequeue_lock);
1389 
1390 	e = new_writequeue_entry(con, allocation);
1391 	if (!e)
1392 		return NULL;
1393 
1394 	*ppc = page_address(e->page);
1395 	e->end += len;
1396 
1397 	spin_lock(&con->writequeue_lock);
1398 	list_add_tail(&e->list, &con->writequeue);
1399 	spin_unlock(&con->writequeue_lock);
1400 
1401 	return e;
1402 };
1403 
1404 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1405 {
1406 	struct connection *con;
1407 
1408 	if (len > DEFAULT_BUFFER_SIZE ||
1409 	    len < sizeof(struct dlm_header)) {
1410 		BUILD_BUG_ON(PAGE_SIZE < DEFAULT_BUFFER_SIZE);
1411 		log_print("failed to allocate a buffer of size %d", len);
1412 		WARN_ON(1);
1413 		return NULL;
1414 	}
1415 
1416 	con = nodeid2con(nodeid, allocation);
1417 	if (!con)
1418 		return NULL;
1419 
1420 	return new_wq_entry(con, len, allocation, ppc);
1421 }
1422 
1423 void dlm_lowcomms_commit_buffer(void *mh)
1424 {
1425 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1426 	struct connection *con = e->con;
1427 	int users;
1428 
1429 	spin_lock(&con->writequeue_lock);
1430 	users = --e->users;
1431 	if (users)
1432 		goto out;
1433 
1434 	e->len = DLM_WQ_LENGTH_BYTES(e);
1435 	spin_unlock(&con->writequeue_lock);
1436 
1437 	queue_work(send_workqueue, &con->swork);
1438 	return;
1439 
1440 out:
1441 	spin_unlock(&con->writequeue_lock);
1442 	return;
1443 }
1444 
1445 /* Send a message */
1446 static void send_to_sock(struct connection *con)
1447 {
1448 	int ret = 0;
1449 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1450 	struct writequeue_entry *e;
1451 	int len, offset;
1452 	int count = 0;
1453 
1454 	mutex_lock(&con->sock_mutex);
1455 	if (con->sock == NULL)
1456 		goto out_connect;
1457 
1458 	spin_lock(&con->writequeue_lock);
1459 	for (;;) {
1460 		if (list_empty(&con->writequeue))
1461 			break;
1462 
1463 		e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1464 		len = e->len;
1465 		offset = e->offset;
1466 		BUG_ON(len == 0 && e->users == 0);
1467 		spin_unlock(&con->writequeue_lock);
1468 
1469 		ret = 0;
1470 		if (len) {
1471 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1472 					      msg_flags);
1473 			if (ret == -EAGAIN || ret == 0) {
1474 				if (ret == -EAGAIN &&
1475 				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1476 				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1477 					/* Notify TCP that we're limited by the
1478 					 * application window size.
1479 					 */
1480 					set_bit(SOCK_NOSPACE, &con->sock->flags);
1481 					con->sock->sk->sk_write_pending++;
1482 				}
1483 				cond_resched();
1484 				goto out;
1485 			} else if (ret < 0)
1486 				goto send_error;
1487 		}
1488 
1489 		/* Don't starve people filling buffers */
1490 		if (++count >= MAX_SEND_MSG_COUNT) {
1491 			cond_resched();
1492 			count = 0;
1493 		}
1494 
1495 		spin_lock(&con->writequeue_lock);
1496 		writequeue_entry_complete(e, ret);
1497 	}
1498 	spin_unlock(&con->writequeue_lock);
1499 out:
1500 	mutex_unlock(&con->sock_mutex);
1501 	return;
1502 
1503 send_error:
1504 	mutex_unlock(&con->sock_mutex);
1505 	close_connection(con, false, false, true);
1506 	/* Requeue the send work. When the work daemon runs again, it will try
1507 	   a new connection, then call this function again. */
1508 	queue_work(send_workqueue, &con->swork);
1509 	return;
1510 
1511 out_connect:
1512 	mutex_unlock(&con->sock_mutex);
1513 	queue_work(send_workqueue, &con->swork);
1514 	cond_resched();
1515 }
1516 
1517 static void clean_one_writequeue(struct connection *con)
1518 {
1519 	struct writequeue_entry *e, *safe;
1520 
1521 	spin_lock(&con->writequeue_lock);
1522 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1523 		list_del(&e->list);
1524 		free_entry(e);
1525 	}
1526 	spin_unlock(&con->writequeue_lock);
1527 }
1528 
1529 /* Called from recovery when it knows that a node has
1530    left the cluster */
1531 int dlm_lowcomms_close(int nodeid)
1532 {
1533 	struct connection *con;
1534 	struct dlm_node_addr *na;
1535 
1536 	log_print("closing connection to node %d", nodeid);
1537 	con = nodeid2con(nodeid, 0);
1538 	if (con) {
1539 		set_bit(CF_CLOSE, &con->flags);
1540 		close_connection(con, true, true, true);
1541 		clean_one_writequeue(con);
1542 		if (con->othercon)
1543 			clean_one_writequeue(con->othercon);
1544 	}
1545 
1546 	spin_lock(&dlm_node_addrs_spin);
1547 	na = find_node_addr(nodeid);
1548 	if (na) {
1549 		list_del(&na->list);
1550 		while (na->addr_count--)
1551 			kfree(na->addr[na->addr_count]);
1552 		kfree(na);
1553 	}
1554 	spin_unlock(&dlm_node_addrs_spin);
1555 
1556 	return 0;
1557 }
1558 
1559 /* Receive workqueue function */
1560 static void process_recv_sockets(struct work_struct *work)
1561 {
1562 	struct connection *con = container_of(work, struct connection, rwork);
1563 	int err;
1564 
1565 	clear_bit(CF_READ_PENDING, &con->flags);
1566 	do {
1567 		err = receive_from_sock(con);
1568 	} while (!err);
1569 }
1570 
1571 static void process_listen_recv_socket(struct work_struct *work)
1572 {
1573 	accept_from_sock(&listen_con);
1574 }
1575 
1576 /* Send workqueue function */
1577 static void process_send_sockets(struct work_struct *work)
1578 {
1579 	struct connection *con = container_of(work, struct connection, swork);
1580 
1581 	clear_bit(CF_WRITE_PENDING, &con->flags);
1582 	if (con->sock == NULL) /* not mutex protected so check it inside too */
1583 		con->connect_action(con);
1584 	if (!list_empty(&con->writequeue))
1585 		send_to_sock(con);
1586 }
1587 
1588 static void work_stop(void)
1589 {
1590 	if (recv_workqueue)
1591 		destroy_workqueue(recv_workqueue);
1592 	if (send_workqueue)
1593 		destroy_workqueue(send_workqueue);
1594 }
1595 
1596 static int work_start(void)
1597 {
1598 	recv_workqueue = alloc_workqueue("dlm_recv",
1599 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1600 	if (!recv_workqueue) {
1601 		log_print("can't start dlm_recv");
1602 		return -ENOMEM;
1603 	}
1604 
1605 	send_workqueue = alloc_workqueue("dlm_send",
1606 					 WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1607 	if (!send_workqueue) {
1608 		log_print("can't start dlm_send");
1609 		destroy_workqueue(recv_workqueue);
1610 		return -ENOMEM;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static void shutdown_conn(struct connection *con)
1617 {
1618 	if (con->shutdown_action)
1619 		con->shutdown_action(con);
1620 }
1621 
1622 void dlm_lowcomms_shutdown(void)
1623 {
1624 	/* Set all the flags to prevent any
1625 	 * socket activity.
1626 	 */
1627 	dlm_allow_conn = 0;
1628 
1629 	if (recv_workqueue)
1630 		flush_workqueue(recv_workqueue);
1631 	if (send_workqueue)
1632 		flush_workqueue(send_workqueue);
1633 
1634 	dlm_close_sock(&listen_con.sock);
1635 
1636 	foreach_conn(shutdown_conn);
1637 }
1638 
1639 static void _stop_conn(struct connection *con, bool and_other)
1640 {
1641 	mutex_lock(&con->sock_mutex);
1642 	set_bit(CF_CLOSE, &con->flags);
1643 	set_bit(CF_READ_PENDING, &con->flags);
1644 	set_bit(CF_WRITE_PENDING, &con->flags);
1645 	if (con->sock && con->sock->sk) {
1646 		write_lock_bh(&con->sock->sk->sk_callback_lock);
1647 		con->sock->sk->sk_user_data = NULL;
1648 		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1649 	}
1650 	if (con->othercon && and_other)
1651 		_stop_conn(con->othercon, false);
1652 	mutex_unlock(&con->sock_mutex);
1653 }
1654 
1655 static void stop_conn(struct connection *con)
1656 {
1657 	_stop_conn(con, true);
1658 }
1659 
1660 static void connection_release(struct rcu_head *rcu)
1661 {
1662 	struct connection *con = container_of(rcu, struct connection, rcu);
1663 
1664 	kfree(con->rx_buf);
1665 	kfree(con);
1666 }
1667 
1668 static void free_conn(struct connection *con)
1669 {
1670 	close_connection(con, true, true, true);
1671 	spin_lock(&connections_lock);
1672 	hlist_del_rcu(&con->list);
1673 	spin_unlock(&connections_lock);
1674 	if (con->othercon) {
1675 		clean_one_writequeue(con->othercon);
1676 		call_srcu(&connections_srcu, &con->othercon->rcu,
1677 			  connection_release);
1678 	}
1679 	clean_one_writequeue(con);
1680 	call_srcu(&connections_srcu, &con->rcu, connection_release);
1681 }
1682 
1683 static void work_flush(void)
1684 {
1685 	int ok, idx;
1686 	int i;
1687 	struct connection *con;
1688 
1689 	do {
1690 		ok = 1;
1691 		foreach_conn(stop_conn);
1692 		if (recv_workqueue)
1693 			flush_workqueue(recv_workqueue);
1694 		if (send_workqueue)
1695 			flush_workqueue(send_workqueue);
1696 		idx = srcu_read_lock(&connections_srcu);
1697 		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1698 			hlist_for_each_entry_rcu(con, &connection_hash[i],
1699 						 list) {
1700 				ok &= test_bit(CF_READ_PENDING, &con->flags);
1701 				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1702 				if (con->othercon) {
1703 					ok &= test_bit(CF_READ_PENDING,
1704 						       &con->othercon->flags);
1705 					ok &= test_bit(CF_WRITE_PENDING,
1706 						       &con->othercon->flags);
1707 				}
1708 			}
1709 		}
1710 		srcu_read_unlock(&connections_srcu, idx);
1711 	} while (!ok);
1712 }
1713 
1714 void dlm_lowcomms_stop(void)
1715 {
1716 	work_flush();
1717 	foreach_conn(free_conn);
1718 	work_stop();
1719 	deinit_local();
1720 }
1721 
1722 int dlm_lowcomms_start(void)
1723 {
1724 	int error = -EINVAL;
1725 	int i;
1726 
1727 	for (i = 0; i < CONN_HASH_SIZE; i++)
1728 		INIT_HLIST_HEAD(&connection_hash[i]);
1729 
1730 	init_local();
1731 	if (!dlm_local_count) {
1732 		error = -ENOTCONN;
1733 		log_print("no local IP address has been set");
1734 		goto fail;
1735 	}
1736 
1737 	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1738 
1739 	error = work_start();
1740 	if (error)
1741 		goto fail;
1742 
1743 	dlm_allow_conn = 1;
1744 
1745 	/* Start listening */
1746 	if (dlm_config.ci_protocol == 0)
1747 		error = tcp_listen_for_all();
1748 	else
1749 		error = sctp_listen_for_all(&listen_con);
1750 	if (error)
1751 		goto fail_unlisten;
1752 
1753 	return 0;
1754 
1755 fail_unlisten:
1756 	dlm_allow_conn = 0;
1757 	dlm_close_sock(&listen_con.sock);
1758 fail:
1759 	return error;
1760 }
1761 
1762 void dlm_lowcomms_exit(void)
1763 {
1764 	struct dlm_node_addr *na, *safe;
1765 
1766 	spin_lock(&dlm_node_addrs_spin);
1767 	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
1768 		list_del(&na->list);
1769 		while (na->addr_count--)
1770 			kfree(na->addr[na->addr_count]);
1771 		kfree(na);
1772 	}
1773 	spin_unlock(&dlm_node_addrs_spin);
1774 }
1775