xref: /linux/fs/dlm/lowcomms.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is its
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use either TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/file.h>
52 #include <linux/mutex.h>
53 #include <linux/sctp.h>
54 #include <net/sctp/user.h>
55 #include <net/ipv6.h>
56 
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61 
62 #define NEEDED_RMEM (4*1024*1024)
63 #define CONN_HASH_SIZE 32
64 
65 struct cbuf {
66 	unsigned int base;
67 	unsigned int len;
68 	unsigned int mask;
69 };
70 
71 static void cbuf_add(struct cbuf *cb, int n)
72 {
73 	cb->len += n;
74 }
75 
76 static int cbuf_data(struct cbuf *cb)
77 {
78 	return ((cb->base + cb->len) & cb->mask);
79 }
80 
81 static void cbuf_init(struct cbuf *cb, int size)
82 {
83 	cb->base = cb->len = 0;
84 	cb->mask = size-1;
85 }
86 
87 static void cbuf_eat(struct cbuf *cb, int n)
88 {
89 	cb->len  -= n;
90 	cb->base += n;
91 	cb->base &= cb->mask;
92 }
93 
94 static bool cbuf_empty(struct cbuf *cb)
95 {
96 	return cb->len == 0;
97 }
98 
99 struct connection {
100 	struct socket *sock;	/* NULL if not connected */
101 	uint32_t nodeid;	/* So we know who we are in the list */
102 	struct mutex sock_mutex;
103 	unsigned long flags;
104 #define CF_READ_PENDING 1
105 #define CF_WRITE_PENDING 2
106 #define CF_CONNECT_PENDING 3
107 #define CF_INIT_PENDING 4
108 #define CF_IS_OTHERCON 5
109 #define CF_CLOSE 6
110 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
111 	spinlock_t writequeue_lock;
112 	int (*rx_action) (struct connection *);	/* What to do when active */
113 	void (*connect_action) (struct connection *);	/* What to do to connect */
114 	struct page *rx_page;
115 	struct cbuf cb;
116 	int retries;
117 #define MAX_CONNECT_RETRIES 3
118 	int sctp_assoc;
119 	struct hlist_node list;
120 	struct connection *othercon;
121 	struct work_struct rwork; /* Receive workqueue */
122 	struct work_struct swork; /* Send workqueue */
123 };
124 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
125 
126 /* An entry waiting to be sent */
127 struct writequeue_entry {
128 	struct list_head list;
129 	struct page *page;
130 	int offset;
131 	int len;
132 	int end;
133 	int users;
134 	struct connection *con;
135 };
136 
137 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
138 static int dlm_local_count;
139 
140 /* Work queues */
141 static struct workqueue_struct *recv_workqueue;
142 static struct workqueue_struct *send_workqueue;
143 
144 static struct hlist_head connection_hash[CONN_HASH_SIZE];
145 static DEFINE_MUTEX(connections_lock);
146 static struct kmem_cache *con_cache;
147 
148 static void process_recv_sockets(struct work_struct *work);
149 static void process_send_sockets(struct work_struct *work);
150 
151 
152 /* This is deliberately very simple because most clusters have simple
153    sequential nodeids, so we should be able to go straight to a connection
154    struct in the array */
155 static inline int nodeid_hash(int nodeid)
156 {
157 	return nodeid & (CONN_HASH_SIZE-1);
158 }
159 
160 static struct connection *__find_con(int nodeid)
161 {
162 	int r;
163 	struct hlist_node *h;
164 	struct connection *con;
165 
166 	r = nodeid_hash(nodeid);
167 
168 	hlist_for_each_entry(con, h, &connection_hash[r], list) {
169 		if (con->nodeid == nodeid)
170 			return con;
171 	}
172 	return NULL;
173 }
174 
175 /*
176  * If 'allocation' is zero then we don't attempt to create a new
177  * connection structure for this node.
178  */
179 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
180 {
181 	struct connection *con = NULL;
182 	int r;
183 
184 	con = __find_con(nodeid);
185 	if (con || !alloc)
186 		return con;
187 
188 	con = kmem_cache_zalloc(con_cache, alloc);
189 	if (!con)
190 		return NULL;
191 
192 	r = nodeid_hash(nodeid);
193 	hlist_add_head(&con->list, &connection_hash[r]);
194 
195 	con->nodeid = nodeid;
196 	mutex_init(&con->sock_mutex);
197 	INIT_LIST_HEAD(&con->writequeue);
198 	spin_lock_init(&con->writequeue_lock);
199 	INIT_WORK(&con->swork, process_send_sockets);
200 	INIT_WORK(&con->rwork, process_recv_sockets);
201 
202 	/* Setup action pointers for child sockets */
203 	if (con->nodeid) {
204 		struct connection *zerocon = __find_con(0);
205 
206 		con->connect_action = zerocon->connect_action;
207 		if (!con->rx_action)
208 			con->rx_action = zerocon->rx_action;
209 	}
210 
211 	return con;
212 }
213 
214 /* Loop round all connections */
215 static void foreach_conn(void (*conn_func)(struct connection *c))
216 {
217 	int i;
218 	struct hlist_node *h, *n;
219 	struct connection *con;
220 
221 	for (i = 0; i < CONN_HASH_SIZE; i++) {
222 		hlist_for_each_entry_safe(con, h, n, &connection_hash[i], list){
223 			conn_func(con);
224 		}
225 	}
226 }
227 
228 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
229 {
230 	struct connection *con;
231 
232 	mutex_lock(&connections_lock);
233 	con = __nodeid2con(nodeid, allocation);
234 	mutex_unlock(&connections_lock);
235 
236 	return con;
237 }
238 
239 /* This is a bit drastic, but only called when things go wrong */
240 static struct connection *assoc2con(int assoc_id)
241 {
242 	int i;
243 	struct hlist_node *h;
244 	struct connection *con;
245 
246 	mutex_lock(&connections_lock);
247 
248 	for (i = 0 ; i < CONN_HASH_SIZE; i++) {
249 		hlist_for_each_entry(con, h, &connection_hash[i], list) {
250 			if (con && con->sctp_assoc == assoc_id) {
251 				mutex_unlock(&connections_lock);
252 				return con;
253 			}
254 		}
255 	}
256 	mutex_unlock(&connections_lock);
257 	return NULL;
258 }
259 
260 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
261 {
262 	struct sockaddr_storage addr;
263 	int error;
264 
265 	if (!dlm_local_count)
266 		return -1;
267 
268 	error = dlm_nodeid_to_addr(nodeid, &addr);
269 	if (error)
270 		return error;
271 
272 	if (dlm_local_addr[0]->ss_family == AF_INET) {
273 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
274 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
275 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
276 	} else {
277 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
278 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
279 		ipv6_addr_copy(&ret6->sin6_addr, &in6->sin6_addr);
280 	}
281 
282 	return 0;
283 }
284 
285 /* Data available on socket or listen socket received a connect */
286 static void lowcomms_data_ready(struct sock *sk, int count_unused)
287 {
288 	struct connection *con = sock2con(sk);
289 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
290 		queue_work(recv_workqueue, &con->rwork);
291 }
292 
293 static void lowcomms_write_space(struct sock *sk)
294 {
295 	struct connection *con = sock2con(sk);
296 
297 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
298 		queue_work(send_workqueue, &con->swork);
299 }
300 
301 static inline void lowcomms_connect_sock(struct connection *con)
302 {
303 	if (test_bit(CF_CLOSE, &con->flags))
304 		return;
305 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
306 		queue_work(send_workqueue, &con->swork);
307 }
308 
309 static void lowcomms_state_change(struct sock *sk)
310 {
311 	if (sk->sk_state == TCP_ESTABLISHED)
312 		lowcomms_write_space(sk);
313 }
314 
315 int dlm_lowcomms_connect_node(int nodeid)
316 {
317 	struct connection *con;
318 
319 	if (nodeid == dlm_our_nodeid())
320 		return 0;
321 
322 	con = nodeid2con(nodeid, GFP_NOFS);
323 	if (!con)
324 		return -ENOMEM;
325 	lowcomms_connect_sock(con);
326 	return 0;
327 }
328 
329 /* Make a socket active */
330 static int add_sock(struct socket *sock, struct connection *con)
331 {
332 	con->sock = sock;
333 
334 	/* Install a data_ready callback */
335 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
336 	con->sock->sk->sk_write_space = lowcomms_write_space;
337 	con->sock->sk->sk_state_change = lowcomms_state_change;
338 	con->sock->sk->sk_user_data = con;
339 	con->sock->sk->sk_allocation = GFP_NOFS;
340 	return 0;
341 }
342 
343 /* Add the port number to an IPv6 or 4 sockaddr and return the address
344    length */
345 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
346 			  int *addr_len)
347 {
348 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
349 	if (saddr->ss_family == AF_INET) {
350 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
351 		in4_addr->sin_port = cpu_to_be16(port);
352 		*addr_len = sizeof(struct sockaddr_in);
353 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
354 	} else {
355 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
356 		in6_addr->sin6_port = cpu_to_be16(port);
357 		*addr_len = sizeof(struct sockaddr_in6);
358 	}
359 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
360 }
361 
362 /* Close a remote connection and tidy up */
363 static void close_connection(struct connection *con, bool and_other)
364 {
365 	mutex_lock(&con->sock_mutex);
366 
367 	if (con->sock) {
368 		sock_release(con->sock);
369 		con->sock = NULL;
370 	}
371 	if (con->othercon && and_other) {
372 		/* Will only re-enter once. */
373 		close_connection(con->othercon, false);
374 	}
375 	if (con->rx_page) {
376 		__free_page(con->rx_page);
377 		con->rx_page = NULL;
378 	}
379 
380 	con->retries = 0;
381 	mutex_unlock(&con->sock_mutex);
382 }
383 
384 /* We only send shutdown messages to nodes that are not part of the cluster */
385 static void sctp_send_shutdown(sctp_assoc_t associd)
386 {
387 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
388 	struct msghdr outmessage;
389 	struct cmsghdr *cmsg;
390 	struct sctp_sndrcvinfo *sinfo;
391 	int ret;
392 	struct connection *con;
393 
394 	con = nodeid2con(0,0);
395 	BUG_ON(con == NULL);
396 
397 	outmessage.msg_name = NULL;
398 	outmessage.msg_namelen = 0;
399 	outmessage.msg_control = outcmsg;
400 	outmessage.msg_controllen = sizeof(outcmsg);
401 	outmessage.msg_flags = MSG_EOR;
402 
403 	cmsg = CMSG_FIRSTHDR(&outmessage);
404 	cmsg->cmsg_level = IPPROTO_SCTP;
405 	cmsg->cmsg_type = SCTP_SNDRCV;
406 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
407 	outmessage.msg_controllen = cmsg->cmsg_len;
408 	sinfo = CMSG_DATA(cmsg);
409 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
410 
411 	sinfo->sinfo_flags |= MSG_EOF;
412 	sinfo->sinfo_assoc_id = associd;
413 
414 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
415 
416 	if (ret != 0)
417 		log_print("send EOF to node failed: %d", ret);
418 }
419 
420 static void sctp_init_failed_foreach(struct connection *con)
421 {
422 	con->sctp_assoc = 0;
423 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
424 		if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags))
425 			queue_work(send_workqueue, &con->swork);
426 	}
427 }
428 
429 /* INIT failed but we don't know which node...
430    restart INIT on all pending nodes */
431 static void sctp_init_failed(void)
432 {
433 	mutex_lock(&connections_lock);
434 
435 	foreach_conn(sctp_init_failed_foreach);
436 
437 	mutex_unlock(&connections_lock);
438 }
439 
440 /* Something happened to an association */
441 static void process_sctp_notification(struct connection *con,
442 				      struct msghdr *msg, char *buf)
443 {
444 	union sctp_notification *sn = (union sctp_notification *)buf;
445 
446 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
447 		switch (sn->sn_assoc_change.sac_state) {
448 
449 		case SCTP_COMM_UP:
450 		case SCTP_RESTART:
451 		{
452 			/* Check that the new node is in the lockspace */
453 			struct sctp_prim prim;
454 			int nodeid;
455 			int prim_len, ret;
456 			int addr_len;
457 			struct connection *new_con;
458 			struct file *file;
459 			sctp_peeloff_arg_t parg;
460 			int parglen = sizeof(parg);
461 
462 			/*
463 			 * We get this before any data for an association.
464 			 * We verify that the node is in the cluster and
465 			 * then peel off a socket for it.
466 			 */
467 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
468 				log_print("COMM_UP for invalid assoc ID %d",
469 					 (int)sn->sn_assoc_change.sac_assoc_id);
470 				sctp_init_failed();
471 				return;
472 			}
473 			memset(&prim, 0, sizeof(struct sctp_prim));
474 			prim_len = sizeof(struct sctp_prim);
475 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
476 
477 			ret = kernel_getsockopt(con->sock,
478 						IPPROTO_SCTP,
479 						SCTP_PRIMARY_ADDR,
480 						(char*)&prim,
481 						&prim_len);
482 			if (ret < 0) {
483 				log_print("getsockopt/sctp_primary_addr on "
484 					  "new assoc %d failed : %d",
485 					  (int)sn->sn_assoc_change.sac_assoc_id,
486 					  ret);
487 
488 				/* Retry INIT later */
489 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
490 				if (new_con)
491 					clear_bit(CF_CONNECT_PENDING, &con->flags);
492 				return;
493 			}
494 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
495 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
496 				int i;
497 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
498 				log_print("reject connect from unknown addr");
499 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
500 					printk("%02x ", b[i]);
501 				printk("\n");
502 				sctp_send_shutdown(prim.ssp_assoc_id);
503 				return;
504 			}
505 
506 			new_con = nodeid2con(nodeid, GFP_NOFS);
507 			if (!new_con)
508 				return;
509 
510 			/* Peel off a new sock */
511 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
512 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
513 						SCTP_SOCKOPT_PEELOFF,
514 						(void *)&parg, &parglen);
515 			if (ret) {
516 				log_print("Can't peel off a socket for "
517 					  "connection %d to node %d: err=%d\n",
518 					  parg.associd, nodeid, ret);
519 			}
520 			file = fget(parg.sd);
521 			new_con->sock = SOCKET_I(file->f_dentry->d_inode);
522 			add_sock(new_con->sock, new_con);
523 			fput(file);
524 			put_unused_fd(parg.sd);
525 
526 			log_print("got new/restarted association %d nodeid %d",
527 				 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
528 
529 			/* Send any pending writes */
530 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
531 			clear_bit(CF_INIT_PENDING, &con->flags);
532 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
533 				queue_work(send_workqueue, &new_con->swork);
534 			}
535 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
536 				queue_work(recv_workqueue, &new_con->rwork);
537 		}
538 		break;
539 
540 		case SCTP_COMM_LOST:
541 		case SCTP_SHUTDOWN_COMP:
542 		{
543 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
544 			if (con) {
545 				con->sctp_assoc = 0;
546 			}
547 		}
548 		break;
549 
550 		/* We don't know which INIT failed, so clear the PENDING flags
551 		 * on them all.  if assoc_id is zero then it will then try
552 		 * again */
553 
554 		case SCTP_CANT_STR_ASSOC:
555 		{
556 			log_print("Can't start SCTP association - retrying");
557 			sctp_init_failed();
558 		}
559 		break;
560 
561 		default:
562 			log_print("unexpected SCTP assoc change id=%d state=%d",
563 				  (int)sn->sn_assoc_change.sac_assoc_id,
564 				  sn->sn_assoc_change.sac_state);
565 		}
566 	}
567 }
568 
569 /* Data received from remote end */
570 static int receive_from_sock(struct connection *con)
571 {
572 	int ret = 0;
573 	struct msghdr msg = {};
574 	struct kvec iov[2];
575 	unsigned len;
576 	int r;
577 	int call_again_soon = 0;
578 	int nvec;
579 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
580 
581 	mutex_lock(&con->sock_mutex);
582 
583 	if (con->sock == NULL) {
584 		ret = -EAGAIN;
585 		goto out_close;
586 	}
587 
588 	if (con->rx_page == NULL) {
589 		/*
590 		 * This doesn't need to be atomic, but I think it should
591 		 * improve performance if it is.
592 		 */
593 		con->rx_page = alloc_page(GFP_ATOMIC);
594 		if (con->rx_page == NULL)
595 			goto out_resched;
596 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
597 	}
598 
599 	/* Only SCTP needs these really */
600 	memset(&incmsg, 0, sizeof(incmsg));
601 	msg.msg_control = incmsg;
602 	msg.msg_controllen = sizeof(incmsg);
603 
604 	/*
605 	 * iov[0] is the bit of the circular buffer between the current end
606 	 * point (cb.base + cb.len) and the end of the buffer.
607 	 */
608 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
609 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
610 	iov[1].iov_len = 0;
611 	nvec = 1;
612 
613 	/*
614 	 * iov[1] is the bit of the circular buffer between the start of the
615 	 * buffer and the start of the currently used section (cb.base)
616 	 */
617 	if (cbuf_data(&con->cb) >= con->cb.base) {
618 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
619 		iov[1].iov_len = con->cb.base;
620 		iov[1].iov_base = page_address(con->rx_page);
621 		nvec = 2;
622 	}
623 	len = iov[0].iov_len + iov[1].iov_len;
624 
625 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
626 			       MSG_DONTWAIT | MSG_NOSIGNAL);
627 	if (ret <= 0)
628 		goto out_close;
629 
630 	/* Process SCTP notifications */
631 	if (msg.msg_flags & MSG_NOTIFICATION) {
632 		msg.msg_control = incmsg;
633 		msg.msg_controllen = sizeof(incmsg);
634 
635 		process_sctp_notification(con, &msg,
636 				page_address(con->rx_page) + con->cb.base);
637 		mutex_unlock(&con->sock_mutex);
638 		return 0;
639 	}
640 	BUG_ON(con->nodeid == 0);
641 
642 	if (ret == len)
643 		call_again_soon = 1;
644 	cbuf_add(&con->cb, ret);
645 	ret = dlm_process_incoming_buffer(con->nodeid,
646 					  page_address(con->rx_page),
647 					  con->cb.base, con->cb.len,
648 					  PAGE_CACHE_SIZE);
649 	if (ret == -EBADMSG) {
650 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
651 			  "iov_len=%u, iov_base[0]=%p, read=%d",
652 			  page_address(con->rx_page), con->cb.base, con->cb.len,
653 			  len, iov[0].iov_base, r);
654 	}
655 	if (ret < 0)
656 		goto out_close;
657 	cbuf_eat(&con->cb, ret);
658 
659 	if (cbuf_empty(&con->cb) && !call_again_soon) {
660 		__free_page(con->rx_page);
661 		con->rx_page = NULL;
662 	}
663 
664 	if (call_again_soon)
665 		goto out_resched;
666 	mutex_unlock(&con->sock_mutex);
667 	return 0;
668 
669 out_resched:
670 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
671 		queue_work(recv_workqueue, &con->rwork);
672 	mutex_unlock(&con->sock_mutex);
673 	return -EAGAIN;
674 
675 out_close:
676 	mutex_unlock(&con->sock_mutex);
677 	if (ret != -EAGAIN) {
678 		close_connection(con, false);
679 		/* Reconnect when there is something to send */
680 	}
681 	/* Don't return success if we really got EOF */
682 	if (ret == 0)
683 		ret = -EAGAIN;
684 
685 	return ret;
686 }
687 
688 /* Listening socket is busy, accept a connection */
689 static int tcp_accept_from_sock(struct connection *con)
690 {
691 	int result;
692 	struct sockaddr_storage peeraddr;
693 	struct socket *newsock;
694 	int len;
695 	int nodeid;
696 	struct connection *newcon;
697 	struct connection *addcon;
698 
699 	memset(&peeraddr, 0, sizeof(peeraddr));
700 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
701 				  IPPROTO_TCP, &newsock);
702 	if (result < 0)
703 		return -ENOMEM;
704 
705 	mutex_lock_nested(&con->sock_mutex, 0);
706 
707 	result = -ENOTCONN;
708 	if (con->sock == NULL)
709 		goto accept_err;
710 
711 	newsock->type = con->sock->type;
712 	newsock->ops = con->sock->ops;
713 
714 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
715 	if (result < 0)
716 		goto accept_err;
717 
718 	/* Get the connected socket's peer */
719 	memset(&peeraddr, 0, sizeof(peeraddr));
720 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
721 				  &len, 2)) {
722 		result = -ECONNABORTED;
723 		goto accept_err;
724 	}
725 
726 	/* Get the new node's NODEID */
727 	make_sockaddr(&peeraddr, 0, &len);
728 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
729 		log_print("connect from non cluster node");
730 		sock_release(newsock);
731 		mutex_unlock(&con->sock_mutex);
732 		return -1;
733 	}
734 
735 	log_print("got connection from %d", nodeid);
736 
737 	/*  Check to see if we already have a connection to this node. This
738 	 *  could happen if the two nodes initiate a connection at roughly
739 	 *  the same time and the connections cross on the wire.
740 	 *  In this case we store the incoming one in "othercon"
741 	 */
742 	newcon = nodeid2con(nodeid, GFP_NOFS);
743 	if (!newcon) {
744 		result = -ENOMEM;
745 		goto accept_err;
746 	}
747 	mutex_lock_nested(&newcon->sock_mutex, 1);
748 	if (newcon->sock) {
749 		struct connection *othercon = newcon->othercon;
750 
751 		if (!othercon) {
752 			othercon = kmem_cache_zalloc(con_cache, GFP_NOFS);
753 			if (!othercon) {
754 				log_print("failed to allocate incoming socket");
755 				mutex_unlock(&newcon->sock_mutex);
756 				result = -ENOMEM;
757 				goto accept_err;
758 			}
759 			othercon->nodeid = nodeid;
760 			othercon->rx_action = receive_from_sock;
761 			mutex_init(&othercon->sock_mutex);
762 			INIT_WORK(&othercon->swork, process_send_sockets);
763 			INIT_WORK(&othercon->rwork, process_recv_sockets);
764 			set_bit(CF_IS_OTHERCON, &othercon->flags);
765 		}
766 		if (!othercon->sock) {
767 			newcon->othercon = othercon;
768 			othercon->sock = newsock;
769 			newsock->sk->sk_user_data = othercon;
770 			add_sock(newsock, othercon);
771 			addcon = othercon;
772 		}
773 		else {
774 			printk("Extra connection from node %d attempted\n", nodeid);
775 			result = -EAGAIN;
776 			mutex_unlock(&newcon->sock_mutex);
777 			goto accept_err;
778 		}
779 	}
780 	else {
781 		newsock->sk->sk_user_data = newcon;
782 		newcon->rx_action = receive_from_sock;
783 		add_sock(newsock, newcon);
784 		addcon = newcon;
785 	}
786 
787 	mutex_unlock(&newcon->sock_mutex);
788 
789 	/*
790 	 * Add it to the active queue in case we got data
791 	 * beween processing the accept adding the socket
792 	 * to the read_sockets list
793 	 */
794 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
795 		queue_work(recv_workqueue, &addcon->rwork);
796 	mutex_unlock(&con->sock_mutex);
797 
798 	return 0;
799 
800 accept_err:
801 	mutex_unlock(&con->sock_mutex);
802 	sock_release(newsock);
803 
804 	if (result != -EAGAIN)
805 		log_print("error accepting connection from node: %d", result);
806 	return result;
807 }
808 
809 static void free_entry(struct writequeue_entry *e)
810 {
811 	__free_page(e->page);
812 	kfree(e);
813 }
814 
815 /* Initiate an SCTP association.
816    This is a special case of send_to_sock() in that we don't yet have a
817    peeled-off socket for this association, so we use the listening socket
818    and add the primary IP address of the remote node.
819  */
820 static void sctp_init_assoc(struct connection *con)
821 {
822 	struct sockaddr_storage rem_addr;
823 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
824 	struct msghdr outmessage;
825 	struct cmsghdr *cmsg;
826 	struct sctp_sndrcvinfo *sinfo;
827 	struct connection *base_con;
828 	struct writequeue_entry *e;
829 	int len, offset;
830 	int ret;
831 	int addrlen;
832 	struct kvec iov[1];
833 
834 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
835 		return;
836 
837 	if (con->retries++ > MAX_CONNECT_RETRIES)
838 		return;
839 
840 	log_print("Initiating association with node %d", con->nodeid);
841 
842 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
843 		log_print("no address for nodeid %d", con->nodeid);
844 		return;
845 	}
846 	base_con = nodeid2con(0, 0);
847 	BUG_ON(base_con == NULL);
848 
849 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
850 
851 	outmessage.msg_name = &rem_addr;
852 	outmessage.msg_namelen = addrlen;
853 	outmessage.msg_control = outcmsg;
854 	outmessage.msg_controllen = sizeof(outcmsg);
855 	outmessage.msg_flags = MSG_EOR;
856 
857 	spin_lock(&con->writequeue_lock);
858 	e = list_entry(con->writequeue.next, struct writequeue_entry,
859 		       list);
860 
861 	BUG_ON((struct list_head *) e == &con->writequeue);
862 
863 	len = e->len;
864 	offset = e->offset;
865 	spin_unlock(&con->writequeue_lock);
866 
867 	/* Send the first block off the write queue */
868 	iov[0].iov_base = page_address(e->page)+offset;
869 	iov[0].iov_len = len;
870 
871 	cmsg = CMSG_FIRSTHDR(&outmessage);
872 	cmsg->cmsg_level = IPPROTO_SCTP;
873 	cmsg->cmsg_type = SCTP_SNDRCV;
874 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
875 	sinfo = CMSG_DATA(cmsg);
876 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
877 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
878 	outmessage.msg_controllen = cmsg->cmsg_len;
879 
880 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
881 	if (ret < 0) {
882 		log_print("Send first packet to node %d failed: %d",
883 			  con->nodeid, ret);
884 
885 		/* Try again later */
886 		clear_bit(CF_CONNECT_PENDING, &con->flags);
887 		clear_bit(CF_INIT_PENDING, &con->flags);
888 	}
889 	else {
890 		spin_lock(&con->writequeue_lock);
891 		e->offset += ret;
892 		e->len -= ret;
893 
894 		if (e->len == 0 && e->users == 0) {
895 			list_del(&e->list);
896 			free_entry(e);
897 		}
898 		spin_unlock(&con->writequeue_lock);
899 	}
900 }
901 
902 /* Connect a new socket to its peer */
903 static void tcp_connect_to_sock(struct connection *con)
904 {
905 	int result = -EHOSTUNREACH;
906 	struct sockaddr_storage saddr, src_addr;
907 	int addr_len;
908 	struct socket *sock = NULL;
909 
910 	if (con->nodeid == 0) {
911 		log_print("attempt to connect sock 0 foiled");
912 		return;
913 	}
914 
915 	mutex_lock(&con->sock_mutex);
916 	if (con->retries++ > MAX_CONNECT_RETRIES)
917 		goto out;
918 
919 	/* Some odd races can cause double-connects, ignore them */
920 	if (con->sock) {
921 		result = 0;
922 		goto out;
923 	}
924 
925 	/* Create a socket to communicate with */
926 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
927 				  IPPROTO_TCP, &sock);
928 	if (result < 0)
929 		goto out_err;
930 
931 	memset(&saddr, 0, sizeof(saddr));
932 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
933 		goto out_err;
934 
935 	sock->sk->sk_user_data = con;
936 	con->rx_action = receive_from_sock;
937 	con->connect_action = tcp_connect_to_sock;
938 	add_sock(sock, con);
939 
940 	/* Bind to our cluster-known address connecting to avoid
941 	   routing problems */
942 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
943 	make_sockaddr(&src_addr, 0, &addr_len);
944 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
945 				 addr_len);
946 	if (result < 0) {
947 		log_print("could not bind for connect: %d", result);
948 		/* This *may* not indicate a critical error */
949 	}
950 
951 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
952 
953 	log_print("connecting to %d", con->nodeid);
954 	result =
955 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
956 				   O_NONBLOCK);
957 	if (result == -EINPROGRESS)
958 		result = 0;
959 	if (result == 0)
960 		goto out;
961 
962 out_err:
963 	if (con->sock) {
964 		sock_release(con->sock);
965 		con->sock = NULL;
966 	} else if (sock) {
967 		sock_release(sock);
968 	}
969 	/*
970 	 * Some errors are fatal and this list might need adjusting. For other
971 	 * errors we try again until the max number of retries is reached.
972 	 */
973 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
974 	    result != -ENETDOWN && result != -EINVAL
975 	    && result != -EPROTONOSUPPORT) {
976 		lowcomms_connect_sock(con);
977 		result = 0;
978 	}
979 out:
980 	mutex_unlock(&con->sock_mutex);
981 	return;
982 }
983 
984 static struct socket *tcp_create_listen_sock(struct connection *con,
985 					     struct sockaddr_storage *saddr)
986 {
987 	struct socket *sock = NULL;
988 	int result = 0;
989 	int one = 1;
990 	int addr_len;
991 
992 	if (dlm_local_addr[0]->ss_family == AF_INET)
993 		addr_len = sizeof(struct sockaddr_in);
994 	else
995 		addr_len = sizeof(struct sockaddr_in6);
996 
997 	/* Create a socket to communicate with */
998 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
999 				  IPPROTO_TCP, &sock);
1000 	if (result < 0) {
1001 		log_print("Can't create listening comms socket");
1002 		goto create_out;
1003 	}
1004 
1005 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
1006 				   (char *)&one, sizeof(one));
1007 
1008 	if (result < 0) {
1009 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
1010 	}
1011 	sock->sk->sk_user_data = con;
1012 	con->rx_action = tcp_accept_from_sock;
1013 	con->connect_action = tcp_connect_to_sock;
1014 	con->sock = sock;
1015 
1016 	/* Bind to our port */
1017 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1018 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1019 	if (result < 0) {
1020 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1021 		sock_release(sock);
1022 		sock = NULL;
1023 		con->sock = NULL;
1024 		goto create_out;
1025 	}
1026 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
1027 				 (char *)&one, sizeof(one));
1028 	if (result < 0) {
1029 		log_print("Set keepalive failed: %d", result);
1030 	}
1031 
1032 	result = sock->ops->listen(sock, 5);
1033 	if (result < 0) {
1034 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1035 		sock_release(sock);
1036 		sock = NULL;
1037 		goto create_out;
1038 	}
1039 
1040 create_out:
1041 	return sock;
1042 }
1043 
1044 /* Get local addresses */
1045 static void init_local(void)
1046 {
1047 	struct sockaddr_storage sas, *addr;
1048 	int i;
1049 
1050 	dlm_local_count = 0;
1051 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1052 		if (dlm_our_addr(&sas, i))
1053 			break;
1054 
1055 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1056 		if (!addr)
1057 			break;
1058 		memcpy(addr, &sas, sizeof(*addr));
1059 		dlm_local_addr[dlm_local_count++] = addr;
1060 	}
1061 }
1062 
1063 /* Bind to an IP address. SCTP allows multiple address so it can do
1064    multi-homing */
1065 static int add_sctp_bind_addr(struct connection *sctp_con,
1066 			      struct sockaddr_storage *addr,
1067 			      int addr_len, int num)
1068 {
1069 	int result = 0;
1070 
1071 	if (num == 1)
1072 		result = kernel_bind(sctp_con->sock,
1073 				     (struct sockaddr *) addr,
1074 				     addr_len);
1075 	else
1076 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1077 					   SCTP_SOCKOPT_BINDX_ADD,
1078 					   (char *)addr, addr_len);
1079 
1080 	if (result < 0)
1081 		log_print("Can't bind to port %d addr number %d",
1082 			  dlm_config.ci_tcp_port, num);
1083 
1084 	return result;
1085 }
1086 
1087 /* Initialise SCTP socket and bind to all interfaces */
1088 static int sctp_listen_for_all(void)
1089 {
1090 	struct socket *sock = NULL;
1091 	struct sockaddr_storage localaddr;
1092 	struct sctp_event_subscribe subscribe;
1093 	int result = -EINVAL, num = 1, i, addr_len;
1094 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1095 	int bufsize = NEEDED_RMEM;
1096 
1097 	if (!con)
1098 		return -ENOMEM;
1099 
1100 	log_print("Using SCTP for communications");
1101 
1102 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1103 				  IPPROTO_SCTP, &sock);
1104 	if (result < 0) {
1105 		log_print("Can't create comms socket, check SCTP is loaded");
1106 		goto out;
1107 	}
1108 
1109 	/* Listen for events */
1110 	memset(&subscribe, 0, sizeof(subscribe));
1111 	subscribe.sctp_data_io_event = 1;
1112 	subscribe.sctp_association_event = 1;
1113 	subscribe.sctp_send_failure_event = 1;
1114 	subscribe.sctp_shutdown_event = 1;
1115 	subscribe.sctp_partial_delivery_event = 1;
1116 
1117 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1118 				 (char *)&bufsize, sizeof(bufsize));
1119 	if (result)
1120 		log_print("Error increasing buffer space on socket %d", result);
1121 
1122 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1123 				   (char *)&subscribe, sizeof(subscribe));
1124 	if (result < 0) {
1125 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1126 			  result);
1127 		goto create_delsock;
1128 	}
1129 
1130 	/* Init con struct */
1131 	sock->sk->sk_user_data = con;
1132 	con->sock = sock;
1133 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1134 	con->rx_action = receive_from_sock;
1135 	con->connect_action = sctp_init_assoc;
1136 
1137 	/* Bind to all interfaces. */
1138 	for (i = 0; i < dlm_local_count; i++) {
1139 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1140 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1141 
1142 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1143 		if (result)
1144 			goto create_delsock;
1145 		++num;
1146 	}
1147 
1148 	result = sock->ops->listen(sock, 5);
1149 	if (result < 0) {
1150 		log_print("Can't set socket listening");
1151 		goto create_delsock;
1152 	}
1153 
1154 	return 0;
1155 
1156 create_delsock:
1157 	sock_release(sock);
1158 	con->sock = NULL;
1159 out:
1160 	return result;
1161 }
1162 
1163 static int tcp_listen_for_all(void)
1164 {
1165 	struct socket *sock = NULL;
1166 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1167 	int result = -EINVAL;
1168 
1169 	if (!con)
1170 		return -ENOMEM;
1171 
1172 	/* We don't support multi-homed hosts */
1173 	if (dlm_local_addr[1] != NULL) {
1174 		log_print("TCP protocol can't handle multi-homed hosts, "
1175 			  "try SCTP");
1176 		return -EINVAL;
1177 	}
1178 
1179 	log_print("Using TCP for communications");
1180 
1181 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1182 	if (sock) {
1183 		add_sock(sock, con);
1184 		result = 0;
1185 	}
1186 	else {
1187 		result = -EADDRINUSE;
1188 	}
1189 
1190 	return result;
1191 }
1192 
1193 
1194 
1195 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1196 						     gfp_t allocation)
1197 {
1198 	struct writequeue_entry *entry;
1199 
1200 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1201 	if (!entry)
1202 		return NULL;
1203 
1204 	entry->page = alloc_page(allocation);
1205 	if (!entry->page) {
1206 		kfree(entry);
1207 		return NULL;
1208 	}
1209 
1210 	entry->offset = 0;
1211 	entry->len = 0;
1212 	entry->end = 0;
1213 	entry->users = 0;
1214 	entry->con = con;
1215 
1216 	return entry;
1217 }
1218 
1219 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1220 {
1221 	struct connection *con;
1222 	struct writequeue_entry *e;
1223 	int offset = 0;
1224 	int users = 0;
1225 
1226 	con = nodeid2con(nodeid, allocation);
1227 	if (!con)
1228 		return NULL;
1229 
1230 	spin_lock(&con->writequeue_lock);
1231 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1232 	if ((&e->list == &con->writequeue) ||
1233 	    (PAGE_CACHE_SIZE - e->end < len)) {
1234 		e = NULL;
1235 	} else {
1236 		offset = e->end;
1237 		e->end += len;
1238 		users = e->users++;
1239 	}
1240 	spin_unlock(&con->writequeue_lock);
1241 
1242 	if (e) {
1243 	got_one:
1244 		*ppc = page_address(e->page) + offset;
1245 		return e;
1246 	}
1247 
1248 	e = new_writequeue_entry(con, allocation);
1249 	if (e) {
1250 		spin_lock(&con->writequeue_lock);
1251 		offset = e->end;
1252 		e->end += len;
1253 		users = e->users++;
1254 		list_add_tail(&e->list, &con->writequeue);
1255 		spin_unlock(&con->writequeue_lock);
1256 		goto got_one;
1257 	}
1258 	return NULL;
1259 }
1260 
1261 void dlm_lowcomms_commit_buffer(void *mh)
1262 {
1263 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1264 	struct connection *con = e->con;
1265 	int users;
1266 
1267 	spin_lock(&con->writequeue_lock);
1268 	users = --e->users;
1269 	if (users)
1270 		goto out;
1271 	e->len = e->end - e->offset;
1272 	spin_unlock(&con->writequeue_lock);
1273 
1274 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1275 		queue_work(send_workqueue, &con->swork);
1276 	}
1277 	return;
1278 
1279 out:
1280 	spin_unlock(&con->writequeue_lock);
1281 	return;
1282 }
1283 
1284 /* Send a message */
1285 static void send_to_sock(struct connection *con)
1286 {
1287 	int ret = 0;
1288 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1289 	struct writequeue_entry *e;
1290 	int len, offset;
1291 
1292 	mutex_lock(&con->sock_mutex);
1293 	if (con->sock == NULL)
1294 		goto out_connect;
1295 
1296 	spin_lock(&con->writequeue_lock);
1297 	for (;;) {
1298 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1299 			       list);
1300 		if ((struct list_head *) e == &con->writequeue)
1301 			break;
1302 
1303 		len = e->len;
1304 		offset = e->offset;
1305 		BUG_ON(len == 0 && e->users == 0);
1306 		spin_unlock(&con->writequeue_lock);
1307 
1308 		ret = 0;
1309 		if (len) {
1310 			ret = kernel_sendpage(con->sock, e->page, offset, len,
1311 					      msg_flags);
1312 			if (ret == -EAGAIN || ret == 0) {
1313 				cond_resched();
1314 				goto out;
1315 			}
1316 			if (ret <= 0)
1317 				goto send_error;
1318 		}
1319 			/* Don't starve people filling buffers */
1320 			cond_resched();
1321 
1322 		spin_lock(&con->writequeue_lock);
1323 		e->offset += ret;
1324 		e->len -= ret;
1325 
1326 		if (e->len == 0 && e->users == 0) {
1327 			list_del(&e->list);
1328 			free_entry(e);
1329 			continue;
1330 		}
1331 	}
1332 	spin_unlock(&con->writequeue_lock);
1333 out:
1334 	mutex_unlock(&con->sock_mutex);
1335 	return;
1336 
1337 send_error:
1338 	mutex_unlock(&con->sock_mutex);
1339 	close_connection(con, false);
1340 	lowcomms_connect_sock(con);
1341 	return;
1342 
1343 out_connect:
1344 	mutex_unlock(&con->sock_mutex);
1345 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1346 		lowcomms_connect_sock(con);
1347 	return;
1348 }
1349 
1350 static void clean_one_writequeue(struct connection *con)
1351 {
1352 	struct writequeue_entry *e, *safe;
1353 
1354 	spin_lock(&con->writequeue_lock);
1355 	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1356 		list_del(&e->list);
1357 		free_entry(e);
1358 	}
1359 	spin_unlock(&con->writequeue_lock);
1360 }
1361 
1362 /* Called from recovery when it knows that a node has
1363    left the cluster */
1364 int dlm_lowcomms_close(int nodeid)
1365 {
1366 	struct connection *con;
1367 
1368 	log_print("closing connection to node %d", nodeid);
1369 	con = nodeid2con(nodeid, 0);
1370 	if (con) {
1371 		clear_bit(CF_CONNECT_PENDING, &con->flags);
1372 		clear_bit(CF_WRITE_PENDING, &con->flags);
1373 		set_bit(CF_CLOSE, &con->flags);
1374 		if (cancel_work_sync(&con->swork))
1375 			log_print("canceled swork for node %d", nodeid);
1376 		if (cancel_work_sync(&con->rwork))
1377 			log_print("canceled rwork for node %d", nodeid);
1378 		clean_one_writequeue(con);
1379 		close_connection(con, true);
1380 	}
1381 	return 0;
1382 }
1383 
1384 /* Receive workqueue function */
1385 static void process_recv_sockets(struct work_struct *work)
1386 {
1387 	struct connection *con = container_of(work, struct connection, rwork);
1388 	int err;
1389 
1390 	clear_bit(CF_READ_PENDING, &con->flags);
1391 	do {
1392 		err = con->rx_action(con);
1393 	} while (!err);
1394 }
1395 
1396 /* Send workqueue function */
1397 static void process_send_sockets(struct work_struct *work)
1398 {
1399 	struct connection *con = container_of(work, struct connection, swork);
1400 
1401 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1402 		con->connect_action(con);
1403 		set_bit(CF_WRITE_PENDING, &con->flags);
1404 	}
1405 	if (test_and_clear_bit(CF_WRITE_PENDING, &con->flags))
1406 		send_to_sock(con);
1407 }
1408 
1409 
1410 /* Discard all entries on the write queues */
1411 static void clean_writequeues(void)
1412 {
1413 	foreach_conn(clean_one_writequeue);
1414 }
1415 
1416 static void work_stop(void)
1417 {
1418 	destroy_workqueue(recv_workqueue);
1419 	destroy_workqueue(send_workqueue);
1420 }
1421 
1422 static int work_start(void)
1423 {
1424 	int error;
1425 	recv_workqueue = create_workqueue("dlm_recv");
1426 	error = IS_ERR(recv_workqueue);
1427 	if (error) {
1428 		log_print("can't start dlm_recv %d", error);
1429 		return error;
1430 	}
1431 
1432 	send_workqueue = create_singlethread_workqueue("dlm_send");
1433 	error = IS_ERR(send_workqueue);
1434 	if (error) {
1435 		log_print("can't start dlm_send %d", error);
1436 		destroy_workqueue(recv_workqueue);
1437 		return error;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static void stop_conn(struct connection *con)
1444 {
1445 	con->flags |= 0x0F;
1446 	if (con->sock && con->sock->sk)
1447 		con->sock->sk->sk_user_data = NULL;
1448 }
1449 
1450 static void free_conn(struct connection *con)
1451 {
1452 	close_connection(con, true);
1453 	if (con->othercon)
1454 		kmem_cache_free(con_cache, con->othercon);
1455 	hlist_del(&con->list);
1456 	kmem_cache_free(con_cache, con);
1457 }
1458 
1459 void dlm_lowcomms_stop(void)
1460 {
1461 	/* Set all the flags to prevent any
1462 	   socket activity.
1463 	*/
1464 	mutex_lock(&connections_lock);
1465 	foreach_conn(stop_conn);
1466 	mutex_unlock(&connections_lock);
1467 
1468 	work_stop();
1469 
1470 	mutex_lock(&connections_lock);
1471 	clean_writequeues();
1472 
1473 	foreach_conn(free_conn);
1474 
1475 	mutex_unlock(&connections_lock);
1476 	kmem_cache_destroy(con_cache);
1477 }
1478 
1479 int dlm_lowcomms_start(void)
1480 {
1481 	int error = -EINVAL;
1482 	struct connection *con;
1483 	int i;
1484 
1485 	for (i = 0; i < CONN_HASH_SIZE; i++)
1486 		INIT_HLIST_HEAD(&connection_hash[i]);
1487 
1488 	init_local();
1489 	if (!dlm_local_count) {
1490 		error = -ENOTCONN;
1491 		log_print("no local IP address has been set");
1492 		goto out;
1493 	}
1494 
1495 	error = -ENOMEM;
1496 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1497 				      __alignof__(struct connection), 0,
1498 				      NULL);
1499 	if (!con_cache)
1500 		goto out;
1501 
1502 	/* Start listening */
1503 	if (dlm_config.ci_protocol == 0)
1504 		error = tcp_listen_for_all();
1505 	else
1506 		error = sctp_listen_for_all();
1507 	if (error)
1508 		goto fail_unlisten;
1509 
1510 	error = work_start();
1511 	if (error)
1512 		goto fail_unlisten;
1513 
1514 	return 0;
1515 
1516 fail_unlisten:
1517 	con = nodeid2con(0,0);
1518 	if (con) {
1519 		close_connection(con, false);
1520 		kmem_cache_free(con_cache, con);
1521 	}
1522 	kmem_cache_destroy(con_cache);
1523 
1524 out:
1525 	return error;
1526 }
1527