xref: /linux/fs/dlm/lowcomms.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /******************************************************************************
2 *******************************************************************************
3 **
4 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
5 **  Copyright (C) 2004-2007 Red Hat, Inc.  All rights reserved.
6 **
7 **  This copyrighted material is made available to anyone wishing to use,
8 **  modify, copy, or redistribute it subject to the terms and conditions
9 **  of the GNU General Public License v.2.
10 **
11 *******************************************************************************
12 ******************************************************************************/
13 
14 /*
15  * lowcomms.c
16  *
17  * This is the "low-level" comms layer.
18  *
19  * It is responsible for sending/receiving messages
20  * from other nodes in the cluster.
21  *
22  * Cluster nodes are referred to by their nodeids. nodeids are
23  * simply 32 bit numbers to the locking module - if they need to
24  * be expanded for the cluster infrastructure then that is it's
25  * responsibility. It is this layer's
26  * responsibility to resolve these into IP address or
27  * whatever it needs for inter-node communication.
28  *
29  * The comms level is two kernel threads that deal mainly with
30  * the receiving of messages from other nodes and passing them
31  * up to the mid-level comms layer (which understands the
32  * message format) for execution by the locking core, and
33  * a send thread which does all the setting up of connections
34  * to remote nodes and the sending of data. Threads are not allowed
35  * to send their own data because it may cause them to wait in times
36  * of high load. Also, this way, the sending thread can collect together
37  * messages bound for one node and send them in one block.
38  *
39  * lowcomms will choose to use wither TCP or SCTP as its transport layer
40  * depending on the configuration variable 'protocol'. This should be set
41  * to 0 (default) for TCP or 1 for SCTP. It shouldbe configured using a
42  * cluster-wide mechanism as it must be the same on all nodes of the cluster
43  * for the DLM to function.
44  *
45  */
46 
47 #include <asm/ioctls.h>
48 #include <net/sock.h>
49 #include <net/tcp.h>
50 #include <linux/pagemap.h>
51 #include <linux/idr.h>
52 #include <linux/file.h>
53 #include <linux/mutex.h>
54 #include <linux/sctp.h>
55 #include <net/sctp/user.h>
56 
57 #include "dlm_internal.h"
58 #include "lowcomms.h"
59 #include "midcomms.h"
60 #include "config.h"
61 
62 #define NEEDED_RMEM (4*1024*1024)
63 
64 struct cbuf {
65 	unsigned int base;
66 	unsigned int len;
67 	unsigned int mask;
68 };
69 
70 static void cbuf_add(struct cbuf *cb, int n)
71 {
72 	cb->len += n;
73 }
74 
75 static int cbuf_data(struct cbuf *cb)
76 {
77 	return ((cb->base + cb->len) & cb->mask);
78 }
79 
80 static void cbuf_init(struct cbuf *cb, int size)
81 {
82 	cb->base = cb->len = 0;
83 	cb->mask = size-1;
84 }
85 
86 static void cbuf_eat(struct cbuf *cb, int n)
87 {
88 	cb->len  -= n;
89 	cb->base += n;
90 	cb->base &= cb->mask;
91 }
92 
93 static bool cbuf_empty(struct cbuf *cb)
94 {
95 	return cb->len == 0;
96 }
97 
98 struct connection {
99 	struct socket *sock;	/* NULL if not connected */
100 	uint32_t nodeid;	/* So we know who we are in the list */
101 	struct mutex sock_mutex;
102 	unsigned long flags;
103 #define CF_READ_PENDING 1
104 #define CF_WRITE_PENDING 2
105 #define CF_CONNECT_PENDING 3
106 #define CF_INIT_PENDING 4
107 #define CF_IS_OTHERCON 5
108 	struct list_head writequeue;  /* List of outgoing writequeue_entries */
109 	spinlock_t writequeue_lock;
110 	int (*rx_action) (struct connection *);	/* What to do when active */
111 	void (*connect_action) (struct connection *);	/* What to do to connect */
112 	struct page *rx_page;
113 	struct cbuf cb;
114 	int retries;
115 #define MAX_CONNECT_RETRIES 3
116 	int sctp_assoc;
117 	struct connection *othercon;
118 	struct work_struct rwork; /* Receive workqueue */
119 	struct work_struct swork; /* Send workqueue */
120 };
121 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
122 
123 /* An entry waiting to be sent */
124 struct writequeue_entry {
125 	struct list_head list;
126 	struct page *page;
127 	int offset;
128 	int len;
129 	int end;
130 	int users;
131 	struct connection *con;
132 };
133 
134 static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
135 static int dlm_local_count;
136 
137 /* Work queues */
138 static struct workqueue_struct *recv_workqueue;
139 static struct workqueue_struct *send_workqueue;
140 
141 static DEFINE_IDR(connections_idr);
142 static DEFINE_MUTEX(connections_lock);
143 static int max_nodeid;
144 static struct kmem_cache *con_cache;
145 
146 static void process_recv_sockets(struct work_struct *work);
147 static void process_send_sockets(struct work_struct *work);
148 
149 /*
150  * If 'allocation' is zero then we don't attempt to create a new
151  * connection structure for this node.
152  */
153 static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
154 {
155 	struct connection *con = NULL;
156 	int r;
157 	int n;
158 
159 	con = idr_find(&connections_idr, nodeid);
160 	if (con || !alloc)
161 		return con;
162 
163 	r = idr_pre_get(&connections_idr, alloc);
164 	if (!r)
165 		return NULL;
166 
167 	con = kmem_cache_zalloc(con_cache, alloc);
168 	if (!con)
169 		return NULL;
170 
171 	r = idr_get_new_above(&connections_idr, con, nodeid, &n);
172 	if (r) {
173 		kmem_cache_free(con_cache, con);
174 		return NULL;
175 	}
176 
177 	if (n != nodeid) {
178 		idr_remove(&connections_idr, n);
179 		kmem_cache_free(con_cache, con);
180 		return NULL;
181 	}
182 
183 	con->nodeid = nodeid;
184 	mutex_init(&con->sock_mutex);
185 	INIT_LIST_HEAD(&con->writequeue);
186 	spin_lock_init(&con->writequeue_lock);
187 	INIT_WORK(&con->swork, process_send_sockets);
188 	INIT_WORK(&con->rwork, process_recv_sockets);
189 
190 	/* Setup action pointers for child sockets */
191 	if (con->nodeid) {
192 		struct connection *zerocon = idr_find(&connections_idr, 0);
193 
194 		con->connect_action = zerocon->connect_action;
195 		if (!con->rx_action)
196 			con->rx_action = zerocon->rx_action;
197 	}
198 
199 	if (nodeid > max_nodeid)
200 		max_nodeid = nodeid;
201 
202 	return con;
203 }
204 
205 static struct connection *nodeid2con(int nodeid, gfp_t allocation)
206 {
207 	struct connection *con;
208 
209 	mutex_lock(&connections_lock);
210 	con = __nodeid2con(nodeid, allocation);
211 	mutex_unlock(&connections_lock);
212 
213 	return con;
214 }
215 
216 /* This is a bit drastic, but only called when things go wrong */
217 static struct connection *assoc2con(int assoc_id)
218 {
219 	int i;
220 	struct connection *con;
221 
222 	mutex_lock(&connections_lock);
223 	for (i=0; i<=max_nodeid; i++) {
224 		con = __nodeid2con(i, 0);
225 		if (con && con->sctp_assoc == assoc_id) {
226 			mutex_unlock(&connections_lock);
227 			return con;
228 		}
229 	}
230 	mutex_unlock(&connections_lock);
231 	return NULL;
232 }
233 
234 static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
235 {
236 	struct sockaddr_storage addr;
237 	int error;
238 
239 	if (!dlm_local_count)
240 		return -1;
241 
242 	error = dlm_nodeid_to_addr(nodeid, &addr);
243 	if (error)
244 		return error;
245 
246 	if (dlm_local_addr[0]->ss_family == AF_INET) {
247 		struct sockaddr_in *in4  = (struct sockaddr_in *) &addr;
248 		struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
249 		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
250 	} else {
251 		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &addr;
252 		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
253 		memcpy(&ret6->sin6_addr, &in6->sin6_addr,
254 		       sizeof(in6->sin6_addr));
255 	}
256 
257 	return 0;
258 }
259 
260 /* Data available on socket or listen socket received a connect */
261 static void lowcomms_data_ready(struct sock *sk, int count_unused)
262 {
263 	struct connection *con = sock2con(sk);
264 	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
265 		queue_work(recv_workqueue, &con->rwork);
266 }
267 
268 static void lowcomms_write_space(struct sock *sk)
269 {
270 	struct connection *con = sock2con(sk);
271 
272 	if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
273 		queue_work(send_workqueue, &con->swork);
274 }
275 
276 static inline void lowcomms_connect_sock(struct connection *con)
277 {
278 	if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
279 		queue_work(send_workqueue, &con->swork);
280 }
281 
282 static void lowcomms_state_change(struct sock *sk)
283 {
284 	if (sk->sk_state == TCP_ESTABLISHED)
285 		lowcomms_write_space(sk);
286 }
287 
288 /* Make a socket active */
289 static int add_sock(struct socket *sock, struct connection *con)
290 {
291 	con->sock = sock;
292 
293 	/* Install a data_ready callback */
294 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
295 	con->sock->sk->sk_write_space = lowcomms_write_space;
296 	con->sock->sk->sk_state_change = lowcomms_state_change;
297 	con->sock->sk->sk_user_data = con;
298 	return 0;
299 }
300 
301 /* Add the port number to an IPv6 or 4 sockaddr and return the address
302    length */
303 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
304 			  int *addr_len)
305 {
306 	saddr->ss_family =  dlm_local_addr[0]->ss_family;
307 	if (saddr->ss_family == AF_INET) {
308 		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
309 		in4_addr->sin_port = cpu_to_be16(port);
310 		*addr_len = sizeof(struct sockaddr_in);
311 		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
312 	} else {
313 		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
314 		in6_addr->sin6_port = cpu_to_be16(port);
315 		*addr_len = sizeof(struct sockaddr_in6);
316 	}
317 	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
318 }
319 
320 /* Close a remote connection and tidy up */
321 static void close_connection(struct connection *con, bool and_other)
322 {
323 	mutex_lock(&con->sock_mutex);
324 
325 	if (con->sock) {
326 		sock_release(con->sock);
327 		con->sock = NULL;
328 	}
329 	if (con->othercon && and_other) {
330 		/* Will only re-enter once. */
331 		close_connection(con->othercon, false);
332 	}
333 	if (con->rx_page) {
334 		__free_page(con->rx_page);
335 		con->rx_page = NULL;
336 	}
337 
338 	con->retries = 0;
339 	mutex_unlock(&con->sock_mutex);
340 }
341 
342 /* We only send shutdown messages to nodes that are not part of the cluster */
343 static void sctp_send_shutdown(sctp_assoc_t associd)
344 {
345 	static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
346 	struct msghdr outmessage;
347 	struct cmsghdr *cmsg;
348 	struct sctp_sndrcvinfo *sinfo;
349 	int ret;
350 	struct connection *con;
351 
352 	con = nodeid2con(0,0);
353 	BUG_ON(con == NULL);
354 
355 	outmessage.msg_name = NULL;
356 	outmessage.msg_namelen = 0;
357 	outmessage.msg_control = outcmsg;
358 	outmessage.msg_controllen = sizeof(outcmsg);
359 	outmessage.msg_flags = MSG_EOR;
360 
361 	cmsg = CMSG_FIRSTHDR(&outmessage);
362 	cmsg->cmsg_level = IPPROTO_SCTP;
363 	cmsg->cmsg_type = SCTP_SNDRCV;
364 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
365 	outmessage.msg_controllen = cmsg->cmsg_len;
366 	sinfo = CMSG_DATA(cmsg);
367 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
368 
369 	sinfo->sinfo_flags |= MSG_EOF;
370 	sinfo->sinfo_assoc_id = associd;
371 
372 	ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
373 
374 	if (ret != 0)
375 		log_print("send EOF to node failed: %d", ret);
376 }
377 
378 /* INIT failed but we don't know which node...
379    restart INIT on all pending nodes */
380 static void sctp_init_failed(void)
381 {
382 	int i;
383 	struct connection *con;
384 
385 	mutex_lock(&connections_lock);
386 	for (i=1; i<=max_nodeid; i++) {
387 		con = __nodeid2con(i, 0);
388 		if (!con)
389 			continue;
390 		con->sctp_assoc = 0;
391 		if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
392 			if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
393 				queue_work(send_workqueue, &con->swork);
394 			}
395 		}
396 	}
397 	mutex_unlock(&connections_lock);
398 }
399 
400 /* Something happened to an association */
401 static void process_sctp_notification(struct connection *con,
402 				      struct msghdr *msg, char *buf)
403 {
404 	union sctp_notification *sn = (union sctp_notification *)buf;
405 
406 	if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
407 		switch (sn->sn_assoc_change.sac_state) {
408 
409 		case SCTP_COMM_UP:
410 		case SCTP_RESTART:
411 		{
412 			/* Check that the new node is in the lockspace */
413 			struct sctp_prim prim;
414 			int nodeid;
415 			int prim_len, ret;
416 			int addr_len;
417 			struct connection *new_con;
418 			struct file *file;
419 			sctp_peeloff_arg_t parg;
420 			int parglen = sizeof(parg);
421 
422 			/*
423 			 * We get this before any data for an association.
424 			 * We verify that the node is in the cluster and
425 			 * then peel off a socket for it.
426 			 */
427 			if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
428 				log_print("COMM_UP for invalid assoc ID %d",
429 					 (int)sn->sn_assoc_change.sac_assoc_id);
430 				sctp_init_failed();
431 				return;
432 			}
433 			memset(&prim, 0, sizeof(struct sctp_prim));
434 			prim_len = sizeof(struct sctp_prim);
435 			prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
436 
437 			ret = kernel_getsockopt(con->sock,
438 						IPPROTO_SCTP,
439 						SCTP_PRIMARY_ADDR,
440 						(char*)&prim,
441 						&prim_len);
442 			if (ret < 0) {
443 				log_print("getsockopt/sctp_primary_addr on "
444 					  "new assoc %d failed : %d",
445 					  (int)sn->sn_assoc_change.sac_assoc_id,
446 					  ret);
447 
448 				/* Retry INIT later */
449 				new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
450 				if (new_con)
451 					clear_bit(CF_CONNECT_PENDING, &con->flags);
452 				return;
453 			}
454 			make_sockaddr(&prim.ssp_addr, 0, &addr_len);
455 			if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
456 				int i;
457 				unsigned char *b=(unsigned char *)&prim.ssp_addr;
458 				log_print("reject connect from unknown addr");
459 				for (i=0; i<sizeof(struct sockaddr_storage);i++)
460 					printk("%02x ", b[i]);
461 				printk("\n");
462 				sctp_send_shutdown(prim.ssp_assoc_id);
463 				return;
464 			}
465 
466 			new_con = nodeid2con(nodeid, GFP_KERNEL);
467 			if (!new_con)
468 				return;
469 
470 			/* Peel off a new sock */
471 			parg.associd = sn->sn_assoc_change.sac_assoc_id;
472 			ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
473 						SCTP_SOCKOPT_PEELOFF,
474 						(void *)&parg, &parglen);
475 			if (ret) {
476 				log_print("Can't peel off a socket for "
477 					  "connection %d to node %d: err=%d\n",
478 					  parg.associd, nodeid, ret);
479 			}
480 			file = fget(parg.sd);
481 			new_con->sock = SOCKET_I(file->f_dentry->d_inode);
482 			add_sock(new_con->sock, new_con);
483 			fput(file);
484 			put_unused_fd(parg.sd);
485 
486 			log_print("got new/restarted association %d nodeid %d",
487 				 (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
488 
489 			/* Send any pending writes */
490 			clear_bit(CF_CONNECT_PENDING, &new_con->flags);
491 			clear_bit(CF_INIT_PENDING, &con->flags);
492 			if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
493 				queue_work(send_workqueue, &new_con->swork);
494 			}
495 			if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
496 				queue_work(recv_workqueue, &new_con->rwork);
497 		}
498 		break;
499 
500 		case SCTP_COMM_LOST:
501 		case SCTP_SHUTDOWN_COMP:
502 		{
503 			con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
504 			if (con) {
505 				con->sctp_assoc = 0;
506 			}
507 		}
508 		break;
509 
510 		/* We don't know which INIT failed, so clear the PENDING flags
511 		 * on them all.  if assoc_id is zero then it will then try
512 		 * again */
513 
514 		case SCTP_CANT_STR_ASSOC:
515 		{
516 			log_print("Can't start SCTP association - retrying");
517 			sctp_init_failed();
518 		}
519 		break;
520 
521 		default:
522 			log_print("unexpected SCTP assoc change id=%d state=%d",
523 				  (int)sn->sn_assoc_change.sac_assoc_id,
524 				  sn->sn_assoc_change.sac_state);
525 		}
526 	}
527 }
528 
529 /* Data received from remote end */
530 static int receive_from_sock(struct connection *con)
531 {
532 	int ret = 0;
533 	struct msghdr msg = {};
534 	struct kvec iov[2];
535 	unsigned len;
536 	int r;
537 	int call_again_soon = 0;
538 	int nvec;
539 	char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
540 
541 	mutex_lock(&con->sock_mutex);
542 
543 	if (con->sock == NULL) {
544 		ret = -EAGAIN;
545 		goto out_close;
546 	}
547 
548 	if (con->rx_page == NULL) {
549 		/*
550 		 * This doesn't need to be atomic, but I think it should
551 		 * improve performance if it is.
552 		 */
553 		con->rx_page = alloc_page(GFP_ATOMIC);
554 		if (con->rx_page == NULL)
555 			goto out_resched;
556 		cbuf_init(&con->cb, PAGE_CACHE_SIZE);
557 	}
558 
559 	/* Only SCTP needs these really */
560 	memset(&incmsg, 0, sizeof(incmsg));
561 	msg.msg_control = incmsg;
562 	msg.msg_controllen = sizeof(incmsg);
563 
564 	/*
565 	 * iov[0] is the bit of the circular buffer between the current end
566 	 * point (cb.base + cb.len) and the end of the buffer.
567 	 */
568 	iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
569 	iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
570 	iov[1].iov_len = 0;
571 	nvec = 1;
572 
573 	/*
574 	 * iov[1] is the bit of the circular buffer between the start of the
575 	 * buffer and the start of the currently used section (cb.base)
576 	 */
577 	if (cbuf_data(&con->cb) >= con->cb.base) {
578 		iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
579 		iov[1].iov_len = con->cb.base;
580 		iov[1].iov_base = page_address(con->rx_page);
581 		nvec = 2;
582 	}
583 	len = iov[0].iov_len + iov[1].iov_len;
584 
585 	r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
586 			       MSG_DONTWAIT | MSG_NOSIGNAL);
587 	if (ret <= 0)
588 		goto out_close;
589 
590 	/* Process SCTP notifications */
591 	if (msg.msg_flags & MSG_NOTIFICATION) {
592 		msg.msg_control = incmsg;
593 		msg.msg_controllen = sizeof(incmsg);
594 
595 		process_sctp_notification(con, &msg,
596 				page_address(con->rx_page) + con->cb.base);
597 		mutex_unlock(&con->sock_mutex);
598 		return 0;
599 	}
600 	BUG_ON(con->nodeid == 0);
601 
602 	if (ret == len)
603 		call_again_soon = 1;
604 	cbuf_add(&con->cb, ret);
605 	ret = dlm_process_incoming_buffer(con->nodeid,
606 					  page_address(con->rx_page),
607 					  con->cb.base, con->cb.len,
608 					  PAGE_CACHE_SIZE);
609 	if (ret == -EBADMSG) {
610 		log_print("lowcomms: addr=%p, base=%u, len=%u, "
611 			  "iov_len=%u, iov_base[0]=%p, read=%d",
612 			  page_address(con->rx_page), con->cb.base, con->cb.len,
613 			  len, iov[0].iov_base, r);
614 	}
615 	if (ret < 0)
616 		goto out_close;
617 	cbuf_eat(&con->cb, ret);
618 
619 	if (cbuf_empty(&con->cb) && !call_again_soon) {
620 		__free_page(con->rx_page);
621 		con->rx_page = NULL;
622 	}
623 
624 	if (call_again_soon)
625 		goto out_resched;
626 	mutex_unlock(&con->sock_mutex);
627 	return 0;
628 
629 out_resched:
630 	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
631 		queue_work(recv_workqueue, &con->rwork);
632 	mutex_unlock(&con->sock_mutex);
633 	return -EAGAIN;
634 
635 out_close:
636 	mutex_unlock(&con->sock_mutex);
637 	if (ret != -EAGAIN) {
638 		close_connection(con, false);
639 		/* Reconnect when there is something to send */
640 	}
641 	/* Don't return success if we really got EOF */
642 	if (ret == 0)
643 		ret = -EAGAIN;
644 
645 	return ret;
646 }
647 
648 /* Listening socket is busy, accept a connection */
649 static int tcp_accept_from_sock(struct connection *con)
650 {
651 	int result;
652 	struct sockaddr_storage peeraddr;
653 	struct socket *newsock;
654 	int len;
655 	int nodeid;
656 	struct connection *newcon;
657 	struct connection *addcon;
658 
659 	memset(&peeraddr, 0, sizeof(peeraddr));
660 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
661 				  IPPROTO_TCP, &newsock);
662 	if (result < 0)
663 		return -ENOMEM;
664 
665 	mutex_lock_nested(&con->sock_mutex, 0);
666 
667 	result = -ENOTCONN;
668 	if (con->sock == NULL)
669 		goto accept_err;
670 
671 	newsock->type = con->sock->type;
672 	newsock->ops = con->sock->ops;
673 
674 	result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
675 	if (result < 0)
676 		goto accept_err;
677 
678 	/* Get the connected socket's peer */
679 	memset(&peeraddr, 0, sizeof(peeraddr));
680 	if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
681 				  &len, 2)) {
682 		result = -ECONNABORTED;
683 		goto accept_err;
684 	}
685 
686 	/* Get the new node's NODEID */
687 	make_sockaddr(&peeraddr, 0, &len);
688 	if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
689 		log_print("connect from non cluster node");
690 		sock_release(newsock);
691 		mutex_unlock(&con->sock_mutex);
692 		return -1;
693 	}
694 
695 	log_print("got connection from %d", nodeid);
696 
697 	/*  Check to see if we already have a connection to this node. This
698 	 *  could happen if the two nodes initiate a connection at roughly
699 	 *  the same time and the connections cross on the wire.
700 	 *  In this case we store the incoming one in "othercon"
701 	 */
702 	newcon = nodeid2con(nodeid, GFP_KERNEL);
703 	if (!newcon) {
704 		result = -ENOMEM;
705 		goto accept_err;
706 	}
707 	mutex_lock_nested(&newcon->sock_mutex, 1);
708 	if (newcon->sock) {
709 		struct connection *othercon = newcon->othercon;
710 
711 		if (!othercon) {
712 			othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
713 			if (!othercon) {
714 				log_print("failed to allocate incoming socket");
715 				mutex_unlock(&newcon->sock_mutex);
716 				result = -ENOMEM;
717 				goto accept_err;
718 			}
719 			othercon->nodeid = nodeid;
720 			othercon->rx_action = receive_from_sock;
721 			mutex_init(&othercon->sock_mutex);
722 			INIT_WORK(&othercon->swork, process_send_sockets);
723 			INIT_WORK(&othercon->rwork, process_recv_sockets);
724 			set_bit(CF_IS_OTHERCON, &othercon->flags);
725 		}
726 		if (!othercon->sock) {
727 			newcon->othercon = othercon;
728 			othercon->sock = newsock;
729 			newsock->sk->sk_user_data = othercon;
730 			add_sock(newsock, othercon);
731 			addcon = othercon;
732 		}
733 		else {
734 			printk("Extra connection from node %d attempted\n", nodeid);
735 			result = -EAGAIN;
736 			mutex_unlock(&newcon->sock_mutex);
737 			goto accept_err;
738 		}
739 	}
740 	else {
741 		newsock->sk->sk_user_data = newcon;
742 		newcon->rx_action = receive_from_sock;
743 		add_sock(newsock, newcon);
744 		addcon = newcon;
745 	}
746 
747 	mutex_unlock(&newcon->sock_mutex);
748 
749 	/*
750 	 * Add it to the active queue in case we got data
751 	 * beween processing the accept adding the socket
752 	 * to the read_sockets list
753 	 */
754 	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
755 		queue_work(recv_workqueue, &addcon->rwork);
756 	mutex_unlock(&con->sock_mutex);
757 
758 	return 0;
759 
760 accept_err:
761 	mutex_unlock(&con->sock_mutex);
762 	sock_release(newsock);
763 
764 	if (result != -EAGAIN)
765 		log_print("error accepting connection from node: %d", result);
766 	return result;
767 }
768 
769 static void free_entry(struct writequeue_entry *e)
770 {
771 	__free_page(e->page);
772 	kfree(e);
773 }
774 
775 /* Initiate an SCTP association.
776    This is a special case of send_to_sock() in that we don't yet have a
777    peeled-off socket for this association, so we use the listening socket
778    and add the primary IP address of the remote node.
779  */
780 static void sctp_init_assoc(struct connection *con)
781 {
782 	struct sockaddr_storage rem_addr;
783 	char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
784 	struct msghdr outmessage;
785 	struct cmsghdr *cmsg;
786 	struct sctp_sndrcvinfo *sinfo;
787 	struct connection *base_con;
788 	struct writequeue_entry *e;
789 	int len, offset;
790 	int ret;
791 	int addrlen;
792 	struct kvec iov[1];
793 
794 	if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
795 		return;
796 
797 	if (con->retries++ > MAX_CONNECT_RETRIES)
798 		return;
799 
800 	log_print("Initiating association with node %d", con->nodeid);
801 
802 	if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
803 		log_print("no address for nodeid %d", con->nodeid);
804 		return;
805 	}
806 	base_con = nodeid2con(0, 0);
807 	BUG_ON(base_con == NULL);
808 
809 	make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
810 
811 	outmessage.msg_name = &rem_addr;
812 	outmessage.msg_namelen = addrlen;
813 	outmessage.msg_control = outcmsg;
814 	outmessage.msg_controllen = sizeof(outcmsg);
815 	outmessage.msg_flags = MSG_EOR;
816 
817 	spin_lock(&con->writequeue_lock);
818 	e = list_entry(con->writequeue.next, struct writequeue_entry,
819 		       list);
820 
821 	BUG_ON((struct list_head *) e == &con->writequeue);
822 
823 	len = e->len;
824 	offset = e->offset;
825 	spin_unlock(&con->writequeue_lock);
826 	kmap(e->page);
827 
828 	/* Send the first block off the write queue */
829 	iov[0].iov_base = page_address(e->page)+offset;
830 	iov[0].iov_len = len;
831 
832 	cmsg = CMSG_FIRSTHDR(&outmessage);
833 	cmsg->cmsg_level = IPPROTO_SCTP;
834 	cmsg->cmsg_type = SCTP_SNDRCV;
835 	cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
836 	sinfo = CMSG_DATA(cmsg);
837 	memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
838 	sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
839 	outmessage.msg_controllen = cmsg->cmsg_len;
840 
841 	ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
842 	if (ret < 0) {
843 		log_print("Send first packet to node %d failed: %d",
844 			  con->nodeid, ret);
845 
846 		/* Try again later */
847 		clear_bit(CF_CONNECT_PENDING, &con->flags);
848 		clear_bit(CF_INIT_PENDING, &con->flags);
849 	}
850 	else {
851 		spin_lock(&con->writequeue_lock);
852 		e->offset += ret;
853 		e->len -= ret;
854 
855 		if (e->len == 0 && e->users == 0) {
856 			list_del(&e->list);
857 			kunmap(e->page);
858 			free_entry(e);
859 		}
860 		spin_unlock(&con->writequeue_lock);
861 	}
862 }
863 
864 /* Connect a new socket to its peer */
865 static void tcp_connect_to_sock(struct connection *con)
866 {
867 	int result = -EHOSTUNREACH;
868 	struct sockaddr_storage saddr, src_addr;
869 	int addr_len;
870 	struct socket *sock;
871 
872 	if (con->nodeid == 0) {
873 		log_print("attempt to connect sock 0 foiled");
874 		return;
875 	}
876 
877 	mutex_lock(&con->sock_mutex);
878 	if (con->retries++ > MAX_CONNECT_RETRIES)
879 		goto out;
880 
881 	/* Some odd races can cause double-connects, ignore them */
882 	if (con->sock) {
883 		result = 0;
884 		goto out;
885 	}
886 
887 	/* Create a socket to communicate with */
888 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
889 				  IPPROTO_TCP, &sock);
890 	if (result < 0)
891 		goto out_err;
892 
893 	memset(&saddr, 0, sizeof(saddr));
894 	if (dlm_nodeid_to_addr(con->nodeid, &saddr))
895 		goto out_err;
896 
897 	sock->sk->sk_user_data = con;
898 	con->rx_action = receive_from_sock;
899 	con->connect_action = tcp_connect_to_sock;
900 	add_sock(sock, con);
901 
902 	/* Bind to our cluster-known address connecting to avoid
903 	   routing problems */
904 	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
905 	make_sockaddr(&src_addr, 0, &addr_len);
906 	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
907 				 addr_len);
908 	if (result < 0) {
909 		log_print("could not bind for connect: %d", result);
910 		/* This *may* not indicate a critical error */
911 	}
912 
913 	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
914 
915 	log_print("connecting to %d", con->nodeid);
916 	result =
917 		sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
918 				   O_NONBLOCK);
919 	if (result == -EINPROGRESS)
920 		result = 0;
921 	if (result == 0)
922 		goto out;
923 
924 out_err:
925 	if (con->sock) {
926 		sock_release(con->sock);
927 		con->sock = NULL;
928 	}
929 	/*
930 	 * Some errors are fatal and this list might need adjusting. For other
931 	 * errors we try again until the max number of retries is reached.
932 	 */
933 	if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
934 	    result != -ENETDOWN && result != -EINVAL
935 	    && result != -EPROTONOSUPPORT) {
936 		lowcomms_connect_sock(con);
937 		result = 0;
938 	}
939 out:
940 	mutex_unlock(&con->sock_mutex);
941 	return;
942 }
943 
944 static struct socket *tcp_create_listen_sock(struct connection *con,
945 					     struct sockaddr_storage *saddr)
946 {
947 	struct socket *sock = NULL;
948 	int result = 0;
949 	int one = 1;
950 	int addr_len;
951 
952 	if (dlm_local_addr[0]->ss_family == AF_INET)
953 		addr_len = sizeof(struct sockaddr_in);
954 	else
955 		addr_len = sizeof(struct sockaddr_in6);
956 
957 	/* Create a socket to communicate with */
958 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
959 				  IPPROTO_TCP, &sock);
960 	if (result < 0) {
961 		log_print("Can't create listening comms socket");
962 		goto create_out;
963 	}
964 
965 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
966 				   (char *)&one, sizeof(one));
967 
968 	if (result < 0) {
969 		log_print("Failed to set SO_REUSEADDR on socket: %d", result);
970 	}
971 	sock->sk->sk_user_data = con;
972 	con->rx_action = tcp_accept_from_sock;
973 	con->connect_action = tcp_connect_to_sock;
974 	con->sock = sock;
975 
976 	/* Bind to our port */
977 	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
978 	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
979 	if (result < 0) {
980 		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
981 		sock_release(sock);
982 		sock = NULL;
983 		con->sock = NULL;
984 		goto create_out;
985 	}
986 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
987 				 (char *)&one, sizeof(one));
988 	if (result < 0) {
989 		log_print("Set keepalive failed: %d", result);
990 	}
991 
992 	result = sock->ops->listen(sock, 5);
993 	if (result < 0) {
994 		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
995 		sock_release(sock);
996 		sock = NULL;
997 		goto create_out;
998 	}
999 
1000 create_out:
1001 	return sock;
1002 }
1003 
1004 /* Get local addresses */
1005 static void init_local(void)
1006 {
1007 	struct sockaddr_storage sas, *addr;
1008 	int i;
1009 
1010 	dlm_local_count = 0;
1011 	for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
1012 		if (dlm_our_addr(&sas, i))
1013 			break;
1014 
1015 		addr = kmalloc(sizeof(*addr), GFP_KERNEL);
1016 		if (!addr)
1017 			break;
1018 		memcpy(addr, &sas, sizeof(*addr));
1019 		dlm_local_addr[dlm_local_count++] = addr;
1020 	}
1021 }
1022 
1023 /* Bind to an IP address. SCTP allows multiple address so it can do
1024    multi-homing */
1025 static int add_sctp_bind_addr(struct connection *sctp_con,
1026 			      struct sockaddr_storage *addr,
1027 			      int addr_len, int num)
1028 {
1029 	int result = 0;
1030 
1031 	if (num == 1)
1032 		result = kernel_bind(sctp_con->sock,
1033 				     (struct sockaddr *) addr,
1034 				     addr_len);
1035 	else
1036 		result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
1037 					   SCTP_SOCKOPT_BINDX_ADD,
1038 					   (char *)addr, addr_len);
1039 
1040 	if (result < 0)
1041 		log_print("Can't bind to port %d addr number %d",
1042 			  dlm_config.ci_tcp_port, num);
1043 
1044 	return result;
1045 }
1046 
1047 /* Initialise SCTP socket and bind to all interfaces */
1048 static int sctp_listen_for_all(void)
1049 {
1050 	struct socket *sock = NULL;
1051 	struct sockaddr_storage localaddr;
1052 	struct sctp_event_subscribe subscribe;
1053 	int result = -EINVAL, num = 1, i, addr_len;
1054 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1055 	int bufsize = NEEDED_RMEM;
1056 
1057 	if (!con)
1058 		return -ENOMEM;
1059 
1060 	log_print("Using SCTP for communications");
1061 
1062 	result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
1063 				  IPPROTO_SCTP, &sock);
1064 	if (result < 0) {
1065 		log_print("Can't create comms socket, check SCTP is loaded");
1066 		goto out;
1067 	}
1068 
1069 	/* Listen for events */
1070 	memset(&subscribe, 0, sizeof(subscribe));
1071 	subscribe.sctp_data_io_event = 1;
1072 	subscribe.sctp_association_event = 1;
1073 	subscribe.sctp_send_failure_event = 1;
1074 	subscribe.sctp_shutdown_event = 1;
1075 	subscribe.sctp_partial_delivery_event = 1;
1076 
1077 	result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
1078 				 (char *)&bufsize, sizeof(bufsize));
1079 	if (result)
1080 		log_print("Error increasing buffer space on socket %d", result);
1081 
1082 	result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
1083 				   (char *)&subscribe, sizeof(subscribe));
1084 	if (result < 0) {
1085 		log_print("Failed to set SCTP_EVENTS on socket: result=%d",
1086 			  result);
1087 		goto create_delsock;
1088 	}
1089 
1090 	/* Init con struct */
1091 	sock->sk->sk_user_data = con;
1092 	con->sock = sock;
1093 	con->sock->sk->sk_data_ready = lowcomms_data_ready;
1094 	con->rx_action = receive_from_sock;
1095 	con->connect_action = sctp_init_assoc;
1096 
1097 	/* Bind to all interfaces. */
1098 	for (i = 0; i < dlm_local_count; i++) {
1099 		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1100 		make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
1101 
1102 		result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
1103 		if (result)
1104 			goto create_delsock;
1105 		++num;
1106 	}
1107 
1108 	result = sock->ops->listen(sock, 5);
1109 	if (result < 0) {
1110 		log_print("Can't set socket listening");
1111 		goto create_delsock;
1112 	}
1113 
1114 	return 0;
1115 
1116 create_delsock:
1117 	sock_release(sock);
1118 	con->sock = NULL;
1119 out:
1120 	return result;
1121 }
1122 
1123 static int tcp_listen_for_all(void)
1124 {
1125 	struct socket *sock = NULL;
1126 	struct connection *con = nodeid2con(0, GFP_KERNEL);
1127 	int result = -EINVAL;
1128 
1129 	if (!con)
1130 		return -ENOMEM;
1131 
1132 	/* We don't support multi-homed hosts */
1133 	if (dlm_local_addr[1] != NULL) {
1134 		log_print("TCP protocol can't handle multi-homed hosts, "
1135 			  "try SCTP");
1136 		return -EINVAL;
1137 	}
1138 
1139 	log_print("Using TCP for communications");
1140 
1141 	sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
1142 	if (sock) {
1143 		add_sock(sock, con);
1144 		result = 0;
1145 	}
1146 	else {
1147 		result = -EADDRINUSE;
1148 	}
1149 
1150 	return result;
1151 }
1152 
1153 
1154 
1155 static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1156 						     gfp_t allocation)
1157 {
1158 	struct writequeue_entry *entry;
1159 
1160 	entry = kmalloc(sizeof(struct writequeue_entry), allocation);
1161 	if (!entry)
1162 		return NULL;
1163 
1164 	entry->page = alloc_page(allocation);
1165 	if (!entry->page) {
1166 		kfree(entry);
1167 		return NULL;
1168 	}
1169 
1170 	entry->offset = 0;
1171 	entry->len = 0;
1172 	entry->end = 0;
1173 	entry->users = 0;
1174 	entry->con = con;
1175 
1176 	return entry;
1177 }
1178 
1179 void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
1180 {
1181 	struct connection *con;
1182 	struct writequeue_entry *e;
1183 	int offset = 0;
1184 	int users = 0;
1185 
1186 	con = nodeid2con(nodeid, allocation);
1187 	if (!con)
1188 		return NULL;
1189 
1190 	spin_lock(&con->writequeue_lock);
1191 	e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
1192 	if ((&e->list == &con->writequeue) ||
1193 	    (PAGE_CACHE_SIZE - e->end < len)) {
1194 		e = NULL;
1195 	} else {
1196 		offset = e->end;
1197 		e->end += len;
1198 		users = e->users++;
1199 	}
1200 	spin_unlock(&con->writequeue_lock);
1201 
1202 	if (e) {
1203 	got_one:
1204 		if (users == 0)
1205 			kmap(e->page);
1206 		*ppc = page_address(e->page) + offset;
1207 		return e;
1208 	}
1209 
1210 	e = new_writequeue_entry(con, allocation);
1211 	if (e) {
1212 		spin_lock(&con->writequeue_lock);
1213 		offset = e->end;
1214 		e->end += len;
1215 		users = e->users++;
1216 		list_add_tail(&e->list, &con->writequeue);
1217 		spin_unlock(&con->writequeue_lock);
1218 		goto got_one;
1219 	}
1220 	return NULL;
1221 }
1222 
1223 void dlm_lowcomms_commit_buffer(void *mh)
1224 {
1225 	struct writequeue_entry *e = (struct writequeue_entry *)mh;
1226 	struct connection *con = e->con;
1227 	int users;
1228 
1229 	spin_lock(&con->writequeue_lock);
1230 	users = --e->users;
1231 	if (users)
1232 		goto out;
1233 	e->len = e->end - e->offset;
1234 	kunmap(e->page);
1235 	spin_unlock(&con->writequeue_lock);
1236 
1237 	if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
1238 		queue_work(send_workqueue, &con->swork);
1239 	}
1240 	return;
1241 
1242 out:
1243 	spin_unlock(&con->writequeue_lock);
1244 	return;
1245 }
1246 
1247 /* Send a message */
1248 static void send_to_sock(struct connection *con)
1249 {
1250 	int ret = 0;
1251 	ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
1252 	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1253 	struct writequeue_entry *e;
1254 	int len, offset;
1255 
1256 	mutex_lock(&con->sock_mutex);
1257 	if (con->sock == NULL)
1258 		goto out_connect;
1259 
1260 	sendpage = con->sock->ops->sendpage;
1261 
1262 	spin_lock(&con->writequeue_lock);
1263 	for (;;) {
1264 		e = list_entry(con->writequeue.next, struct writequeue_entry,
1265 			       list);
1266 		if ((struct list_head *) e == &con->writequeue)
1267 			break;
1268 
1269 		len = e->len;
1270 		offset = e->offset;
1271 		BUG_ON(len == 0 && e->users == 0);
1272 		spin_unlock(&con->writequeue_lock);
1273 		kmap(e->page);
1274 
1275 		ret = 0;
1276 		if (len) {
1277 			ret = sendpage(con->sock, e->page, offset, len,
1278 				       msg_flags);
1279 			if (ret == -EAGAIN || ret == 0) {
1280 				cond_resched();
1281 				goto out;
1282 			}
1283 			if (ret <= 0)
1284 				goto send_error;
1285 		}
1286 			/* Don't starve people filling buffers */
1287 			cond_resched();
1288 
1289 		spin_lock(&con->writequeue_lock);
1290 		e->offset += ret;
1291 		e->len -= ret;
1292 
1293 		if (e->len == 0 && e->users == 0) {
1294 			list_del(&e->list);
1295 			kunmap(e->page);
1296 			free_entry(e);
1297 			continue;
1298 		}
1299 	}
1300 	spin_unlock(&con->writequeue_lock);
1301 out:
1302 	mutex_unlock(&con->sock_mutex);
1303 	return;
1304 
1305 send_error:
1306 	mutex_unlock(&con->sock_mutex);
1307 	close_connection(con, false);
1308 	lowcomms_connect_sock(con);
1309 	return;
1310 
1311 out_connect:
1312 	mutex_unlock(&con->sock_mutex);
1313 	if (!test_bit(CF_INIT_PENDING, &con->flags))
1314 		lowcomms_connect_sock(con);
1315 	return;
1316 }
1317 
1318 static void clean_one_writequeue(struct connection *con)
1319 {
1320 	struct list_head *list;
1321 	struct list_head *temp;
1322 
1323 	spin_lock(&con->writequeue_lock);
1324 	list_for_each_safe(list, temp, &con->writequeue) {
1325 		struct writequeue_entry *e =
1326 			list_entry(list, struct writequeue_entry, list);
1327 		list_del(&e->list);
1328 		free_entry(e);
1329 	}
1330 	spin_unlock(&con->writequeue_lock);
1331 }
1332 
1333 /* Called from recovery when it knows that a node has
1334    left the cluster */
1335 int dlm_lowcomms_close(int nodeid)
1336 {
1337 	struct connection *con;
1338 
1339 	log_print("closing connection to node %d", nodeid);
1340 	con = nodeid2con(nodeid, 0);
1341 	if (con) {
1342 		clean_one_writequeue(con);
1343 		close_connection(con, true);
1344 	}
1345 	return 0;
1346 }
1347 
1348 /* Receive workqueue function */
1349 static void process_recv_sockets(struct work_struct *work)
1350 {
1351 	struct connection *con = container_of(work, struct connection, rwork);
1352 	int err;
1353 
1354 	clear_bit(CF_READ_PENDING, &con->flags);
1355 	do {
1356 		err = con->rx_action(con);
1357 	} while (!err);
1358 }
1359 
1360 /* Send workqueue function */
1361 static void process_send_sockets(struct work_struct *work)
1362 {
1363 	struct connection *con = container_of(work, struct connection, swork);
1364 
1365 	if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
1366 		con->connect_action(con);
1367 	}
1368 	clear_bit(CF_WRITE_PENDING, &con->flags);
1369 	send_to_sock(con);
1370 }
1371 
1372 
1373 /* Discard all entries on the write queues */
1374 static void clean_writequeues(void)
1375 {
1376 	int nodeid;
1377 
1378 	for (nodeid = 1; nodeid <= max_nodeid; nodeid++) {
1379 		struct connection *con = __nodeid2con(nodeid, 0);
1380 
1381 		if (con)
1382 			clean_one_writequeue(con);
1383 	}
1384 }
1385 
1386 static void work_stop(void)
1387 {
1388 	destroy_workqueue(recv_workqueue);
1389 	destroy_workqueue(send_workqueue);
1390 }
1391 
1392 static int work_start(void)
1393 {
1394 	int error;
1395 	recv_workqueue = create_workqueue("dlm_recv");
1396 	error = IS_ERR(recv_workqueue);
1397 	if (error) {
1398 		log_print("can't start dlm_recv %d", error);
1399 		return error;
1400 	}
1401 
1402 	send_workqueue = create_singlethread_workqueue("dlm_send");
1403 	error = IS_ERR(send_workqueue);
1404 	if (error) {
1405 		log_print("can't start dlm_send %d", error);
1406 		destroy_workqueue(recv_workqueue);
1407 		return error;
1408 	}
1409 
1410 	return 0;
1411 }
1412 
1413 void dlm_lowcomms_stop(void)
1414 {
1415 	int i;
1416 	struct connection *con;
1417 
1418 	/* Set all the flags to prevent any
1419 	   socket activity.
1420 	*/
1421 	mutex_lock(&connections_lock);
1422 	for (i = 0; i <= max_nodeid; i++) {
1423 		con = __nodeid2con(i, 0);
1424 		if (con) {
1425 			con->flags |= 0x0F;
1426 			if (con->sock)
1427 				con->sock->sk->sk_user_data = NULL;
1428 		}
1429 	}
1430 	mutex_unlock(&connections_lock);
1431 
1432 	work_stop();
1433 
1434 	mutex_lock(&connections_lock);
1435 	clean_writequeues();
1436 
1437 	for (i = 0; i <= max_nodeid; i++) {
1438 		con = __nodeid2con(i, 0);
1439 		if (con) {
1440 			close_connection(con, true);
1441 			if (con->othercon)
1442 				kmem_cache_free(con_cache, con->othercon);
1443 			kmem_cache_free(con_cache, con);
1444 		}
1445 	}
1446 	max_nodeid = 0;
1447 	mutex_unlock(&connections_lock);
1448 	kmem_cache_destroy(con_cache);
1449 	idr_init(&connections_idr);
1450 }
1451 
1452 int dlm_lowcomms_start(void)
1453 {
1454 	int error = -EINVAL;
1455 	struct connection *con;
1456 
1457 	init_local();
1458 	if (!dlm_local_count) {
1459 		error = -ENOTCONN;
1460 		log_print("no local IP address has been set");
1461 		goto out;
1462 	}
1463 
1464 	error = -ENOMEM;
1465 	con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
1466 				      __alignof__(struct connection), 0,
1467 				      NULL);
1468 	if (!con_cache)
1469 		goto out;
1470 
1471 	/* Start listening */
1472 	if (dlm_config.ci_protocol == 0)
1473 		error = tcp_listen_for_all();
1474 	else
1475 		error = sctp_listen_for_all();
1476 	if (error)
1477 		goto fail_unlisten;
1478 
1479 	error = work_start();
1480 	if (error)
1481 		goto fail_unlisten;
1482 
1483 	return 0;
1484 
1485 fail_unlisten:
1486 	con = nodeid2con(0,0);
1487 	if (con) {
1488 		close_connection(con, false);
1489 		kmem_cache_free(con_cache, con);
1490 	}
1491 	kmem_cache_destroy(con_cache);
1492 
1493 out:
1494 	return error;
1495 }
1496