1 // SPDX-License-Identifier: GPL-2.0-only 2 /****************************************************************************** 3 ******************************************************************************* 4 ** 5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved. 7 ** 8 ** 9 ******************************************************************************* 10 ******************************************************************************/ 11 12 /* 13 * lowcomms.c 14 * 15 * This is the "low-level" comms layer. 16 * 17 * It is responsible for sending/receiving messages 18 * from other nodes in the cluster. 19 * 20 * Cluster nodes are referred to by their nodeids. nodeids are 21 * simply 32 bit numbers to the locking module - if they need to 22 * be expanded for the cluster infrastructure then that is its 23 * responsibility. It is this layer's 24 * responsibility to resolve these into IP address or 25 * whatever it needs for inter-node communication. 26 * 27 * The comms level is two kernel threads that deal mainly with 28 * the receiving of messages from other nodes and passing them 29 * up to the mid-level comms layer (which understands the 30 * message format) for execution by the locking core, and 31 * a send thread which does all the setting up of connections 32 * to remote nodes and the sending of data. Threads are not allowed 33 * to send their own data because it may cause them to wait in times 34 * of high load. Also, this way, the sending thread can collect together 35 * messages bound for one node and send them in one block. 36 * 37 * lowcomms will choose to use either TCP or SCTP as its transport layer 38 * depending on the configuration variable 'protocol'. This should be set 39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a 40 * cluster-wide mechanism as it must be the same on all nodes of the cluster 41 * for the DLM to function. 42 * 43 */ 44 45 #include <asm/ioctls.h> 46 #include <net/sock.h> 47 #include <net/tcp.h> 48 #include <linux/pagemap.h> 49 #include <linux/file.h> 50 #include <linux/mutex.h> 51 #include <linux/sctp.h> 52 #include <linux/slab.h> 53 #include <net/sctp/sctp.h> 54 #include <net/ipv6.h> 55 56 #include <trace/events/dlm.h> 57 #include <trace/events/sock.h> 58 59 #include "dlm_internal.h" 60 #include "lowcomms.h" 61 #include "midcomms.h" 62 #include "memory.h" 63 #include "config.h" 64 65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000) 66 #define NEEDED_RMEM (4*1024*1024) 67 68 struct connection { 69 struct socket *sock; /* NULL if not connected */ 70 uint32_t nodeid; /* So we know who we are in the list */ 71 /* this semaphore is used to allow parallel recv/send in read 72 * lock mode. When we release a sock we need to held the write lock. 73 * 74 * However this is locking code and not nice. When we remove the 75 * othercon handling we can look into other mechanism to synchronize 76 * io handling to call sock_release() at the right time. 77 */ 78 struct rw_semaphore sock_lock; 79 unsigned long flags; 80 #define CF_APP_LIMITED 0 81 #define CF_RECV_PENDING 1 82 #define CF_SEND_PENDING 2 83 #define CF_RECV_INTR 3 84 #define CF_IO_STOP 4 85 #define CF_IS_OTHERCON 5 86 struct list_head writequeue; /* List of outgoing writequeue_entries */ 87 spinlock_t writequeue_lock; 88 int retries; 89 struct hlist_node list; 90 /* due some connect()/accept() races we currently have this cross over 91 * connection attempt second connection for one node. 92 * 93 * There is a solution to avoid the race by introducing a connect 94 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to 95 * connect. Otherside can connect but will only be considered that 96 * the other side wants to have a reconnect. 97 * 98 * However changing to this behaviour will break backwards compatible. 99 * In a DLM protocol major version upgrade we should remove this! 100 */ 101 struct connection *othercon; 102 struct work_struct rwork; /* receive worker */ 103 struct work_struct swork; /* send worker */ 104 wait_queue_head_t shutdown_wait; 105 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE]; 106 int rx_leftover; 107 int mark; 108 int addr_count; 109 int curr_addr_index; 110 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT]; 111 spinlock_t addrs_lock; 112 struct rcu_head rcu; 113 }; 114 #define sock2con(x) ((struct connection *)(x)->sk_user_data) 115 116 struct listen_connection { 117 struct socket *sock; 118 struct work_struct rwork; 119 }; 120 121 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end) 122 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset) 123 124 /* An entry waiting to be sent */ 125 struct writequeue_entry { 126 struct list_head list; 127 struct page *page; 128 int offset; 129 int len; 130 int end; 131 int users; 132 bool dirty; 133 struct connection *con; 134 struct list_head msgs; 135 struct kref ref; 136 }; 137 138 struct dlm_msg { 139 struct writequeue_entry *entry; 140 struct dlm_msg *orig_msg; 141 bool retransmit; 142 void *ppc; 143 int len; 144 int idx; /* new()/commit() idx exchange */ 145 146 struct list_head list; 147 struct kref ref; 148 }; 149 150 struct processqueue_entry { 151 unsigned char *buf; 152 int nodeid; 153 int buflen; 154 155 struct list_head list; 156 }; 157 158 struct dlm_proto_ops { 159 bool try_new_addr; 160 const char *name; 161 int proto; 162 163 int (*connect)(struct connection *con, struct socket *sock, 164 struct sockaddr *addr, int addr_len); 165 void (*sockopts)(struct socket *sock); 166 int (*bind)(struct socket *sock); 167 int (*listen_validate)(void); 168 void (*listen_sockopts)(struct socket *sock); 169 int (*listen_bind)(struct socket *sock); 170 }; 171 172 static struct listen_sock_callbacks { 173 void (*sk_error_report)(struct sock *); 174 void (*sk_data_ready)(struct sock *); 175 void (*sk_state_change)(struct sock *); 176 void (*sk_write_space)(struct sock *); 177 } listen_sock; 178 179 static struct listen_connection listen_con; 180 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT]; 181 static int dlm_local_count; 182 183 /* Work queues */ 184 static struct workqueue_struct *io_workqueue; 185 static struct workqueue_struct *process_workqueue; 186 187 static struct hlist_head connection_hash[CONN_HASH_SIZE]; 188 static DEFINE_SPINLOCK(connections_lock); 189 DEFINE_STATIC_SRCU(connections_srcu); 190 191 static const struct dlm_proto_ops *dlm_proto_ops; 192 193 #define DLM_IO_SUCCESS 0 194 #define DLM_IO_END 1 195 #define DLM_IO_EOF 2 196 #define DLM_IO_RESCHED 3 197 198 static void process_recv_sockets(struct work_struct *work); 199 static void process_send_sockets(struct work_struct *work); 200 static void process_dlm_messages(struct work_struct *work); 201 202 static DECLARE_WORK(process_work, process_dlm_messages); 203 static DEFINE_SPINLOCK(processqueue_lock); 204 static bool process_dlm_messages_pending; 205 static LIST_HEAD(processqueue); 206 207 bool dlm_lowcomms_is_running(void) 208 { 209 return !!listen_con.sock; 210 } 211 212 static void lowcomms_queue_swork(struct connection *con) 213 { 214 assert_spin_locked(&con->writequeue_lock); 215 216 if (!test_bit(CF_IO_STOP, &con->flags) && 217 !test_bit(CF_APP_LIMITED, &con->flags) && 218 !test_and_set_bit(CF_SEND_PENDING, &con->flags)) 219 queue_work(io_workqueue, &con->swork); 220 } 221 222 static void lowcomms_queue_rwork(struct connection *con) 223 { 224 #ifdef CONFIG_LOCKDEP 225 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk)); 226 #endif 227 228 if (!test_bit(CF_IO_STOP, &con->flags) && 229 !test_and_set_bit(CF_RECV_PENDING, &con->flags)) 230 queue_work(io_workqueue, &con->rwork); 231 } 232 233 static void writequeue_entry_ctor(void *data) 234 { 235 struct writequeue_entry *entry = data; 236 237 INIT_LIST_HEAD(&entry->msgs); 238 } 239 240 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void) 241 { 242 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry), 243 0, 0, writequeue_entry_ctor); 244 } 245 246 struct kmem_cache *dlm_lowcomms_msg_cache_create(void) 247 { 248 return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL); 249 } 250 251 /* need to held writequeue_lock */ 252 static struct writequeue_entry *con_next_wq(struct connection *con) 253 { 254 struct writequeue_entry *e; 255 256 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry, 257 list); 258 /* if len is zero nothing is to send, if there are users filling 259 * buffers we wait until the users are done so we can send more. 260 */ 261 if (!e || e->users || e->len == 0) 262 return NULL; 263 264 return e; 265 } 266 267 static struct connection *__find_con(int nodeid, int r) 268 { 269 struct connection *con; 270 271 hlist_for_each_entry_rcu(con, &connection_hash[r], list) { 272 if (con->nodeid == nodeid) 273 return con; 274 } 275 276 return NULL; 277 } 278 279 static void dlm_con_init(struct connection *con, int nodeid) 280 { 281 con->nodeid = nodeid; 282 init_rwsem(&con->sock_lock); 283 INIT_LIST_HEAD(&con->writequeue); 284 spin_lock_init(&con->writequeue_lock); 285 INIT_WORK(&con->swork, process_send_sockets); 286 INIT_WORK(&con->rwork, process_recv_sockets); 287 spin_lock_init(&con->addrs_lock); 288 init_waitqueue_head(&con->shutdown_wait); 289 } 290 291 /* 292 * If 'allocation' is zero then we don't attempt to create a new 293 * connection structure for this node. 294 */ 295 static struct connection *nodeid2con(int nodeid, gfp_t alloc) 296 { 297 struct connection *con, *tmp; 298 int r; 299 300 r = nodeid_hash(nodeid); 301 con = __find_con(nodeid, r); 302 if (con || !alloc) 303 return con; 304 305 con = kzalloc(sizeof(*con), alloc); 306 if (!con) 307 return NULL; 308 309 dlm_con_init(con, nodeid); 310 311 spin_lock(&connections_lock); 312 /* Because multiple workqueues/threads calls this function it can 313 * race on multiple cpu's. Instead of locking hot path __find_con() 314 * we just check in rare cases of recently added nodes again 315 * under protection of connections_lock. If this is the case we 316 * abort our connection creation and return the existing connection. 317 */ 318 tmp = __find_con(nodeid, r); 319 if (tmp) { 320 spin_unlock(&connections_lock); 321 kfree(con); 322 return tmp; 323 } 324 325 hlist_add_head_rcu(&con->list, &connection_hash[r]); 326 spin_unlock(&connections_lock); 327 328 return con; 329 } 330 331 static int addr_compare(const struct sockaddr_storage *x, 332 const struct sockaddr_storage *y) 333 { 334 switch (x->ss_family) { 335 case AF_INET: { 336 struct sockaddr_in *sinx = (struct sockaddr_in *)x; 337 struct sockaddr_in *siny = (struct sockaddr_in *)y; 338 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr) 339 return 0; 340 if (sinx->sin_port != siny->sin_port) 341 return 0; 342 break; 343 } 344 case AF_INET6: { 345 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x; 346 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y; 347 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr)) 348 return 0; 349 if (sinx->sin6_port != siny->sin6_port) 350 return 0; 351 break; 352 } 353 default: 354 return 0; 355 } 356 return 1; 357 } 358 359 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out, 360 struct sockaddr *sa_out, bool try_new_addr, 361 unsigned int *mark) 362 { 363 struct sockaddr_storage sas; 364 struct connection *con; 365 int idx; 366 367 if (!dlm_local_count) 368 return -1; 369 370 idx = srcu_read_lock(&connections_srcu); 371 con = nodeid2con(nodeid, 0); 372 if (!con) { 373 srcu_read_unlock(&connections_srcu, idx); 374 return -ENOENT; 375 } 376 377 spin_lock(&con->addrs_lock); 378 if (!con->addr_count) { 379 spin_unlock(&con->addrs_lock); 380 srcu_read_unlock(&connections_srcu, idx); 381 return -ENOENT; 382 } 383 384 memcpy(&sas, &con->addr[con->curr_addr_index], 385 sizeof(struct sockaddr_storage)); 386 387 if (try_new_addr) { 388 con->curr_addr_index++; 389 if (con->curr_addr_index == con->addr_count) 390 con->curr_addr_index = 0; 391 } 392 393 *mark = con->mark; 394 spin_unlock(&con->addrs_lock); 395 396 if (sas_out) 397 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage)); 398 399 if (!sa_out) { 400 srcu_read_unlock(&connections_srcu, idx); 401 return 0; 402 } 403 404 if (dlm_local_addr[0].ss_family == AF_INET) { 405 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas; 406 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out; 407 ret4->sin_addr.s_addr = in4->sin_addr.s_addr; 408 } else { 409 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas; 410 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out; 411 ret6->sin6_addr = in6->sin6_addr; 412 } 413 414 srcu_read_unlock(&connections_srcu, idx); 415 return 0; 416 } 417 418 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid, 419 unsigned int *mark) 420 { 421 struct connection *con; 422 int i, idx, addr_i; 423 424 idx = srcu_read_lock(&connections_srcu); 425 for (i = 0; i < CONN_HASH_SIZE; i++) { 426 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 427 WARN_ON_ONCE(!con->addr_count); 428 429 spin_lock(&con->addrs_lock); 430 for (addr_i = 0; addr_i < con->addr_count; addr_i++) { 431 if (addr_compare(&con->addr[addr_i], addr)) { 432 *nodeid = con->nodeid; 433 *mark = con->mark; 434 spin_unlock(&con->addrs_lock); 435 srcu_read_unlock(&connections_srcu, idx); 436 return 0; 437 } 438 } 439 spin_unlock(&con->addrs_lock); 440 } 441 } 442 srcu_read_unlock(&connections_srcu, idx); 443 444 return -ENOENT; 445 } 446 447 static bool dlm_lowcomms_con_has_addr(const struct connection *con, 448 const struct sockaddr_storage *addr) 449 { 450 int i; 451 452 for (i = 0; i < con->addr_count; i++) { 453 if (addr_compare(&con->addr[i], addr)) 454 return true; 455 } 456 457 return false; 458 } 459 460 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len) 461 { 462 struct connection *con; 463 bool ret, idx; 464 465 idx = srcu_read_lock(&connections_srcu); 466 con = nodeid2con(nodeid, GFP_NOFS); 467 if (!con) { 468 srcu_read_unlock(&connections_srcu, idx); 469 return -ENOMEM; 470 } 471 472 spin_lock(&con->addrs_lock); 473 if (!con->addr_count) { 474 memcpy(&con->addr[0], addr, sizeof(*addr)); 475 con->addr_count = 1; 476 con->mark = dlm_config.ci_mark; 477 spin_unlock(&con->addrs_lock); 478 srcu_read_unlock(&connections_srcu, idx); 479 return 0; 480 } 481 482 ret = dlm_lowcomms_con_has_addr(con, addr); 483 if (ret) { 484 spin_unlock(&con->addrs_lock); 485 srcu_read_unlock(&connections_srcu, idx); 486 return -EEXIST; 487 } 488 489 if (con->addr_count >= DLM_MAX_ADDR_COUNT) { 490 spin_unlock(&con->addrs_lock); 491 srcu_read_unlock(&connections_srcu, idx); 492 return -ENOSPC; 493 } 494 495 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr)); 496 srcu_read_unlock(&connections_srcu, idx); 497 spin_unlock(&con->addrs_lock); 498 return 0; 499 } 500 501 /* Data available on socket or listen socket received a connect */ 502 static void lowcomms_data_ready(struct sock *sk) 503 { 504 struct connection *con = sock2con(sk); 505 506 trace_sk_data_ready(sk); 507 508 set_bit(CF_RECV_INTR, &con->flags); 509 lowcomms_queue_rwork(con); 510 } 511 512 static void lowcomms_write_space(struct sock *sk) 513 { 514 struct connection *con = sock2con(sk); 515 516 clear_bit(SOCK_NOSPACE, &con->sock->flags); 517 518 spin_lock_bh(&con->writequeue_lock); 519 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) { 520 con->sock->sk->sk_write_pending--; 521 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags); 522 } 523 524 lowcomms_queue_swork(con); 525 spin_unlock_bh(&con->writequeue_lock); 526 } 527 528 static void lowcomms_state_change(struct sock *sk) 529 { 530 /* SCTP layer is not calling sk_data_ready when the connection 531 * is done, so we catch the signal through here. 532 */ 533 if (sk->sk_shutdown == RCV_SHUTDOWN) 534 lowcomms_data_ready(sk); 535 } 536 537 static void lowcomms_listen_data_ready(struct sock *sk) 538 { 539 trace_sk_data_ready(sk); 540 541 queue_work(io_workqueue, &listen_con.rwork); 542 } 543 544 int dlm_lowcomms_connect_node(int nodeid) 545 { 546 struct connection *con; 547 int idx; 548 549 idx = srcu_read_lock(&connections_srcu); 550 con = nodeid2con(nodeid, 0); 551 if (WARN_ON_ONCE(!con)) { 552 srcu_read_unlock(&connections_srcu, idx); 553 return -ENOENT; 554 } 555 556 down_read(&con->sock_lock); 557 if (!con->sock) { 558 spin_lock_bh(&con->writequeue_lock); 559 lowcomms_queue_swork(con); 560 spin_unlock_bh(&con->writequeue_lock); 561 } 562 up_read(&con->sock_lock); 563 srcu_read_unlock(&connections_srcu, idx); 564 565 cond_resched(); 566 return 0; 567 } 568 569 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark) 570 { 571 struct connection *con; 572 int idx; 573 574 idx = srcu_read_lock(&connections_srcu); 575 con = nodeid2con(nodeid, 0); 576 if (!con) { 577 srcu_read_unlock(&connections_srcu, idx); 578 return -ENOENT; 579 } 580 581 spin_lock(&con->addrs_lock); 582 con->mark = mark; 583 spin_unlock(&con->addrs_lock); 584 srcu_read_unlock(&connections_srcu, idx); 585 return 0; 586 } 587 588 static void lowcomms_error_report(struct sock *sk) 589 { 590 struct connection *con = sock2con(sk); 591 struct inet_sock *inet; 592 593 inet = inet_sk(sk); 594 switch (sk->sk_family) { 595 case AF_INET: 596 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 597 "sending to node %d at %pI4, dport %d, " 598 "sk_err=%d/%d\n", dlm_our_nodeid(), 599 con->nodeid, &inet->inet_daddr, 600 ntohs(inet->inet_dport), sk->sk_err, 601 READ_ONCE(sk->sk_err_soft)); 602 break; 603 #if IS_ENABLED(CONFIG_IPV6) 604 case AF_INET6: 605 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 606 "sending to node %d at %pI6c, " 607 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(), 608 con->nodeid, &sk->sk_v6_daddr, 609 ntohs(inet->inet_dport), sk->sk_err, 610 READ_ONCE(sk->sk_err_soft)); 611 break; 612 #endif 613 default: 614 printk_ratelimited(KERN_ERR "dlm: node %d: socket error " 615 "invalid socket family %d set, " 616 "sk_err=%d/%d\n", dlm_our_nodeid(), 617 sk->sk_family, sk->sk_err, 618 READ_ONCE(sk->sk_err_soft)); 619 break; 620 } 621 622 dlm_midcomms_unack_msg_resend(con->nodeid); 623 624 listen_sock.sk_error_report(sk); 625 } 626 627 static void restore_callbacks(struct sock *sk) 628 { 629 #ifdef CONFIG_LOCKDEP 630 WARN_ON_ONCE(!lockdep_sock_is_held(sk)); 631 #endif 632 633 sk->sk_user_data = NULL; 634 sk->sk_data_ready = listen_sock.sk_data_ready; 635 sk->sk_state_change = listen_sock.sk_state_change; 636 sk->sk_write_space = listen_sock.sk_write_space; 637 sk->sk_error_report = listen_sock.sk_error_report; 638 } 639 640 /* Make a socket active */ 641 static void add_sock(struct socket *sock, struct connection *con) 642 { 643 struct sock *sk = sock->sk; 644 645 lock_sock(sk); 646 con->sock = sock; 647 648 sk->sk_user_data = con; 649 sk->sk_data_ready = lowcomms_data_ready; 650 sk->sk_write_space = lowcomms_write_space; 651 if (dlm_config.ci_protocol == DLM_PROTO_SCTP) 652 sk->sk_state_change = lowcomms_state_change; 653 sk->sk_allocation = GFP_NOFS; 654 sk->sk_use_task_frag = false; 655 sk->sk_error_report = lowcomms_error_report; 656 release_sock(sk); 657 } 658 659 /* Add the port number to an IPv6 or 4 sockaddr and return the address 660 length */ 661 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port, 662 int *addr_len) 663 { 664 saddr->ss_family = dlm_local_addr[0].ss_family; 665 if (saddr->ss_family == AF_INET) { 666 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr; 667 in4_addr->sin_port = cpu_to_be16(port); 668 *addr_len = sizeof(struct sockaddr_in); 669 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero)); 670 } else { 671 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr; 672 in6_addr->sin6_port = cpu_to_be16(port); 673 *addr_len = sizeof(struct sockaddr_in6); 674 } 675 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len); 676 } 677 678 static void dlm_page_release(struct kref *kref) 679 { 680 struct writequeue_entry *e = container_of(kref, struct writequeue_entry, 681 ref); 682 683 __free_page(e->page); 684 dlm_free_writequeue(e); 685 } 686 687 static void dlm_msg_release(struct kref *kref) 688 { 689 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref); 690 691 kref_put(&msg->entry->ref, dlm_page_release); 692 dlm_free_msg(msg); 693 } 694 695 static void free_entry(struct writequeue_entry *e) 696 { 697 struct dlm_msg *msg, *tmp; 698 699 list_for_each_entry_safe(msg, tmp, &e->msgs, list) { 700 if (msg->orig_msg) { 701 msg->orig_msg->retransmit = false; 702 kref_put(&msg->orig_msg->ref, dlm_msg_release); 703 } 704 705 list_del(&msg->list); 706 kref_put(&msg->ref, dlm_msg_release); 707 } 708 709 list_del(&e->list); 710 kref_put(&e->ref, dlm_page_release); 711 } 712 713 static void dlm_close_sock(struct socket **sock) 714 { 715 lock_sock((*sock)->sk); 716 restore_callbacks((*sock)->sk); 717 release_sock((*sock)->sk); 718 719 sock_release(*sock); 720 *sock = NULL; 721 } 722 723 static void allow_connection_io(struct connection *con) 724 { 725 if (con->othercon) 726 clear_bit(CF_IO_STOP, &con->othercon->flags); 727 clear_bit(CF_IO_STOP, &con->flags); 728 } 729 730 static void stop_connection_io(struct connection *con) 731 { 732 if (con->othercon) 733 stop_connection_io(con->othercon); 734 735 spin_lock_bh(&con->writequeue_lock); 736 set_bit(CF_IO_STOP, &con->flags); 737 spin_unlock_bh(&con->writequeue_lock); 738 739 down_write(&con->sock_lock); 740 if (con->sock) { 741 lock_sock(con->sock->sk); 742 restore_callbacks(con->sock->sk); 743 release_sock(con->sock->sk); 744 } 745 up_write(&con->sock_lock); 746 747 cancel_work_sync(&con->swork); 748 cancel_work_sync(&con->rwork); 749 } 750 751 /* Close a remote connection and tidy up */ 752 static void close_connection(struct connection *con, bool and_other) 753 { 754 struct writequeue_entry *e; 755 756 if (con->othercon && and_other) 757 close_connection(con->othercon, false); 758 759 down_write(&con->sock_lock); 760 if (!con->sock) { 761 up_write(&con->sock_lock); 762 return; 763 } 764 765 dlm_close_sock(&con->sock); 766 767 /* if we send a writequeue entry only a half way, we drop the 768 * whole entry because reconnection and that we not start of the 769 * middle of a msg which will confuse the other end. 770 * 771 * we can always drop messages because retransmits, but what we 772 * cannot allow is to transmit half messages which may be processed 773 * at the other side. 774 * 775 * our policy is to start on a clean state when disconnects, we don't 776 * know what's send/received on transport layer in this case. 777 */ 778 spin_lock_bh(&con->writequeue_lock); 779 if (!list_empty(&con->writequeue)) { 780 e = list_first_entry(&con->writequeue, struct writequeue_entry, 781 list); 782 if (e->dirty) 783 free_entry(e); 784 } 785 spin_unlock_bh(&con->writequeue_lock); 786 787 con->rx_leftover = 0; 788 con->retries = 0; 789 clear_bit(CF_APP_LIMITED, &con->flags); 790 clear_bit(CF_RECV_PENDING, &con->flags); 791 clear_bit(CF_SEND_PENDING, &con->flags); 792 up_write(&con->sock_lock); 793 } 794 795 static void shutdown_connection(struct connection *con, bool and_other) 796 { 797 int ret; 798 799 if (con->othercon && and_other) 800 shutdown_connection(con->othercon, false); 801 802 flush_workqueue(io_workqueue); 803 down_read(&con->sock_lock); 804 /* nothing to shutdown */ 805 if (!con->sock) { 806 up_read(&con->sock_lock); 807 return; 808 } 809 810 ret = kernel_sock_shutdown(con->sock, SHUT_WR); 811 up_read(&con->sock_lock); 812 if (ret) { 813 log_print("Connection %p failed to shutdown: %d will force close", 814 con, ret); 815 goto force_close; 816 } else { 817 ret = wait_event_timeout(con->shutdown_wait, !con->sock, 818 DLM_SHUTDOWN_WAIT_TIMEOUT); 819 if (ret == 0) { 820 log_print("Connection %p shutdown timed out, will force close", 821 con); 822 goto force_close; 823 } 824 } 825 826 return; 827 828 force_close: 829 close_connection(con, false); 830 } 831 832 static struct processqueue_entry *new_processqueue_entry(int nodeid, 833 int buflen) 834 { 835 struct processqueue_entry *pentry; 836 837 pentry = kmalloc(sizeof(*pentry), GFP_NOFS); 838 if (!pentry) 839 return NULL; 840 841 pentry->buf = kmalloc(buflen, GFP_NOFS); 842 if (!pentry->buf) { 843 kfree(pentry); 844 return NULL; 845 } 846 847 pentry->nodeid = nodeid; 848 return pentry; 849 } 850 851 static void free_processqueue_entry(struct processqueue_entry *pentry) 852 { 853 kfree(pentry->buf); 854 kfree(pentry); 855 } 856 857 struct dlm_processed_nodes { 858 int nodeid; 859 860 struct list_head list; 861 }; 862 863 static void process_dlm_messages(struct work_struct *work) 864 { 865 struct processqueue_entry *pentry; 866 LIST_HEAD(processed_nodes); 867 868 spin_lock(&processqueue_lock); 869 pentry = list_first_entry_or_null(&processqueue, 870 struct processqueue_entry, list); 871 if (WARN_ON_ONCE(!pentry)) { 872 process_dlm_messages_pending = false; 873 spin_unlock(&processqueue_lock); 874 return; 875 } 876 877 list_del(&pentry->list); 878 spin_unlock(&processqueue_lock); 879 880 for (;;) { 881 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf, 882 pentry->buflen); 883 free_processqueue_entry(pentry); 884 885 spin_lock(&processqueue_lock); 886 pentry = list_first_entry_or_null(&processqueue, 887 struct processqueue_entry, list); 888 if (!pentry) { 889 process_dlm_messages_pending = false; 890 spin_unlock(&processqueue_lock); 891 break; 892 } 893 894 list_del(&pentry->list); 895 spin_unlock(&processqueue_lock); 896 } 897 } 898 899 /* Data received from remote end */ 900 static int receive_from_sock(struct connection *con, int buflen) 901 { 902 struct processqueue_entry *pentry; 903 int ret, buflen_real; 904 struct msghdr msg; 905 struct kvec iov; 906 907 pentry = new_processqueue_entry(con->nodeid, buflen); 908 if (!pentry) 909 return DLM_IO_RESCHED; 910 911 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover); 912 913 /* calculate new buffer parameter regarding last receive and 914 * possible leftover bytes 915 */ 916 iov.iov_base = pentry->buf + con->rx_leftover; 917 iov.iov_len = buflen - con->rx_leftover; 918 919 memset(&msg, 0, sizeof(msg)); 920 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL; 921 clear_bit(CF_RECV_INTR, &con->flags); 922 again: 923 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len, 924 msg.msg_flags); 925 trace_dlm_recv(con->nodeid, ret); 926 if (ret == -EAGAIN) { 927 lock_sock(con->sock->sk); 928 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) { 929 release_sock(con->sock->sk); 930 goto again; 931 } 932 933 clear_bit(CF_RECV_PENDING, &con->flags); 934 release_sock(con->sock->sk); 935 free_processqueue_entry(pentry); 936 return DLM_IO_END; 937 } else if (ret == 0) { 938 /* close will clear CF_RECV_PENDING */ 939 free_processqueue_entry(pentry); 940 return DLM_IO_EOF; 941 } else if (ret < 0) { 942 free_processqueue_entry(pentry); 943 return ret; 944 } 945 946 /* new buflen according readed bytes and leftover from last receive */ 947 buflen_real = ret + con->rx_leftover; 948 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf, 949 buflen_real); 950 if (ret < 0) { 951 free_processqueue_entry(pentry); 952 return ret; 953 } 954 955 pentry->buflen = ret; 956 957 /* calculate leftover bytes from process and put it into begin of 958 * the receive buffer, so next receive we have the full message 959 * at the start address of the receive buffer. 960 */ 961 con->rx_leftover = buflen_real - ret; 962 memmove(con->rx_leftover_buf, pentry->buf + ret, 963 con->rx_leftover); 964 965 spin_lock(&processqueue_lock); 966 list_add_tail(&pentry->list, &processqueue); 967 if (!process_dlm_messages_pending) { 968 process_dlm_messages_pending = true; 969 queue_work(process_workqueue, &process_work); 970 } 971 spin_unlock(&processqueue_lock); 972 973 return DLM_IO_SUCCESS; 974 } 975 976 /* Listening socket is busy, accept a connection */ 977 static int accept_from_sock(void) 978 { 979 struct sockaddr_storage peeraddr; 980 int len, idx, result, nodeid; 981 struct connection *newcon; 982 struct socket *newsock; 983 unsigned int mark; 984 985 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK); 986 if (result == -EAGAIN) 987 return DLM_IO_END; 988 else if (result < 0) 989 goto accept_err; 990 991 /* Get the connected socket's peer */ 992 memset(&peeraddr, 0, sizeof(peeraddr)); 993 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2); 994 if (len < 0) { 995 result = -ECONNABORTED; 996 goto accept_err; 997 } 998 999 /* Get the new node's NODEID */ 1000 make_sockaddr(&peeraddr, 0, &len); 1001 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) { 1002 switch (peeraddr.ss_family) { 1003 case AF_INET: { 1004 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr; 1005 1006 log_print("connect from non cluster IPv4 node %pI4", 1007 &sin->sin_addr); 1008 break; 1009 } 1010 #if IS_ENABLED(CONFIG_IPV6) 1011 case AF_INET6: { 1012 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr; 1013 1014 log_print("connect from non cluster IPv6 node %pI6c", 1015 &sin6->sin6_addr); 1016 break; 1017 } 1018 #endif 1019 default: 1020 log_print("invalid family from non cluster node"); 1021 break; 1022 } 1023 1024 sock_release(newsock); 1025 return -1; 1026 } 1027 1028 log_print("got connection from %d", nodeid); 1029 1030 /* Check to see if we already have a connection to this node. This 1031 * could happen if the two nodes initiate a connection at roughly 1032 * the same time and the connections cross on the wire. 1033 * In this case we store the incoming one in "othercon" 1034 */ 1035 idx = srcu_read_lock(&connections_srcu); 1036 newcon = nodeid2con(nodeid, 0); 1037 if (WARN_ON_ONCE(!newcon)) { 1038 srcu_read_unlock(&connections_srcu, idx); 1039 result = -ENOENT; 1040 goto accept_err; 1041 } 1042 1043 sock_set_mark(newsock->sk, mark); 1044 1045 down_write(&newcon->sock_lock); 1046 if (newcon->sock) { 1047 struct connection *othercon = newcon->othercon; 1048 1049 if (!othercon) { 1050 othercon = kzalloc(sizeof(*othercon), GFP_NOFS); 1051 if (!othercon) { 1052 log_print("failed to allocate incoming socket"); 1053 up_write(&newcon->sock_lock); 1054 srcu_read_unlock(&connections_srcu, idx); 1055 result = -ENOMEM; 1056 goto accept_err; 1057 } 1058 1059 dlm_con_init(othercon, nodeid); 1060 lockdep_set_subclass(&othercon->sock_lock, 1); 1061 newcon->othercon = othercon; 1062 set_bit(CF_IS_OTHERCON, &othercon->flags); 1063 } else { 1064 /* close other sock con if we have something new */ 1065 close_connection(othercon, false); 1066 } 1067 1068 down_write(&othercon->sock_lock); 1069 add_sock(newsock, othercon); 1070 1071 /* check if we receved something while adding */ 1072 lock_sock(othercon->sock->sk); 1073 lowcomms_queue_rwork(othercon); 1074 release_sock(othercon->sock->sk); 1075 up_write(&othercon->sock_lock); 1076 } 1077 else { 1078 /* accept copies the sk after we've saved the callbacks, so we 1079 don't want to save them a second time or comm errors will 1080 result in calling sk_error_report recursively. */ 1081 add_sock(newsock, newcon); 1082 1083 /* check if we receved something while adding */ 1084 lock_sock(newcon->sock->sk); 1085 lowcomms_queue_rwork(newcon); 1086 release_sock(newcon->sock->sk); 1087 } 1088 up_write(&newcon->sock_lock); 1089 srcu_read_unlock(&connections_srcu, idx); 1090 1091 return DLM_IO_SUCCESS; 1092 1093 accept_err: 1094 if (newsock) 1095 sock_release(newsock); 1096 1097 return result; 1098 } 1099 1100 /* 1101 * writequeue_entry_complete - try to delete and free write queue entry 1102 * @e: write queue entry to try to delete 1103 * @completed: bytes completed 1104 * 1105 * writequeue_lock must be held. 1106 */ 1107 static void writequeue_entry_complete(struct writequeue_entry *e, int completed) 1108 { 1109 e->offset += completed; 1110 e->len -= completed; 1111 /* signal that page was half way transmitted */ 1112 e->dirty = true; 1113 1114 if (e->len == 0 && e->users == 0) 1115 free_entry(e); 1116 } 1117 1118 /* 1119 * sctp_bind_addrs - bind a SCTP socket to all our addresses 1120 */ 1121 static int sctp_bind_addrs(struct socket *sock, uint16_t port) 1122 { 1123 struct sockaddr_storage localaddr; 1124 struct sockaddr *addr = (struct sockaddr *)&localaddr; 1125 int i, addr_len, result = 0; 1126 1127 for (i = 0; i < dlm_local_count; i++) { 1128 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr)); 1129 make_sockaddr(&localaddr, port, &addr_len); 1130 1131 if (!i) 1132 result = kernel_bind(sock, addr, addr_len); 1133 else 1134 result = sock_bind_add(sock->sk, addr, addr_len); 1135 1136 if (result < 0) { 1137 log_print("Can't bind to %d addr number %d, %d.\n", 1138 port, i + 1, result); 1139 break; 1140 } 1141 } 1142 return result; 1143 } 1144 1145 /* Get local addresses */ 1146 static void init_local(void) 1147 { 1148 struct sockaddr_storage sas; 1149 int i; 1150 1151 dlm_local_count = 0; 1152 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) { 1153 if (dlm_our_addr(&sas, i)) 1154 break; 1155 1156 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas)); 1157 } 1158 } 1159 1160 static struct writequeue_entry *new_writequeue_entry(struct connection *con) 1161 { 1162 struct writequeue_entry *entry; 1163 1164 entry = dlm_allocate_writequeue(); 1165 if (!entry) 1166 return NULL; 1167 1168 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 1169 if (!entry->page) { 1170 dlm_free_writequeue(entry); 1171 return NULL; 1172 } 1173 1174 entry->offset = 0; 1175 entry->len = 0; 1176 entry->end = 0; 1177 entry->dirty = false; 1178 entry->con = con; 1179 entry->users = 1; 1180 kref_init(&entry->ref); 1181 return entry; 1182 } 1183 1184 static struct writequeue_entry *new_wq_entry(struct connection *con, int len, 1185 char **ppc, void (*cb)(void *data), 1186 void *data) 1187 { 1188 struct writequeue_entry *e; 1189 1190 spin_lock_bh(&con->writequeue_lock); 1191 if (!list_empty(&con->writequeue)) { 1192 e = list_last_entry(&con->writequeue, struct writequeue_entry, list); 1193 if (DLM_WQ_REMAIN_BYTES(e) >= len) { 1194 kref_get(&e->ref); 1195 1196 *ppc = page_address(e->page) + e->end; 1197 if (cb) 1198 cb(data); 1199 1200 e->end += len; 1201 e->users++; 1202 goto out; 1203 } 1204 } 1205 1206 e = new_writequeue_entry(con); 1207 if (!e) 1208 goto out; 1209 1210 kref_get(&e->ref); 1211 *ppc = page_address(e->page); 1212 e->end += len; 1213 if (cb) 1214 cb(data); 1215 1216 list_add_tail(&e->list, &con->writequeue); 1217 1218 out: 1219 spin_unlock_bh(&con->writequeue_lock); 1220 return e; 1221 }; 1222 1223 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len, 1224 gfp_t allocation, char **ppc, 1225 void (*cb)(void *data), 1226 void *data) 1227 { 1228 struct writequeue_entry *e; 1229 struct dlm_msg *msg; 1230 1231 msg = dlm_allocate_msg(allocation); 1232 if (!msg) 1233 return NULL; 1234 1235 kref_init(&msg->ref); 1236 1237 e = new_wq_entry(con, len, ppc, cb, data); 1238 if (!e) { 1239 dlm_free_msg(msg); 1240 return NULL; 1241 } 1242 1243 msg->retransmit = false; 1244 msg->orig_msg = NULL; 1245 msg->ppc = *ppc; 1246 msg->len = len; 1247 msg->entry = e; 1248 1249 return msg; 1250 } 1251 1252 /* avoid false positive for nodes_srcu, unlock happens in 1253 * dlm_lowcomms_commit_msg which is a must call if success 1254 */ 1255 #ifndef __CHECKER__ 1256 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation, 1257 char **ppc, void (*cb)(void *data), 1258 void *data) 1259 { 1260 struct connection *con; 1261 struct dlm_msg *msg; 1262 int idx; 1263 1264 if (len > DLM_MAX_SOCKET_BUFSIZE || 1265 len < sizeof(struct dlm_header)) { 1266 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE); 1267 log_print("failed to allocate a buffer of size %d", len); 1268 WARN_ON_ONCE(1); 1269 return NULL; 1270 } 1271 1272 idx = srcu_read_lock(&connections_srcu); 1273 con = nodeid2con(nodeid, 0); 1274 if (WARN_ON_ONCE(!con)) { 1275 srcu_read_unlock(&connections_srcu, idx); 1276 return NULL; 1277 } 1278 1279 msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data); 1280 if (!msg) { 1281 srcu_read_unlock(&connections_srcu, idx); 1282 return NULL; 1283 } 1284 1285 /* for dlm_lowcomms_commit_msg() */ 1286 kref_get(&msg->ref); 1287 /* we assume if successful commit must called */ 1288 msg->idx = idx; 1289 return msg; 1290 } 1291 #endif 1292 1293 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1294 { 1295 struct writequeue_entry *e = msg->entry; 1296 struct connection *con = e->con; 1297 int users; 1298 1299 spin_lock_bh(&con->writequeue_lock); 1300 kref_get(&msg->ref); 1301 list_add(&msg->list, &e->msgs); 1302 1303 users = --e->users; 1304 if (users) 1305 goto out; 1306 1307 e->len = DLM_WQ_LENGTH_BYTES(e); 1308 1309 lowcomms_queue_swork(con); 1310 1311 out: 1312 spin_unlock_bh(&con->writequeue_lock); 1313 return; 1314 } 1315 1316 /* avoid false positive for nodes_srcu, lock was happen in 1317 * dlm_lowcomms_new_msg 1318 */ 1319 #ifndef __CHECKER__ 1320 void dlm_lowcomms_commit_msg(struct dlm_msg *msg) 1321 { 1322 _dlm_lowcomms_commit_msg(msg); 1323 srcu_read_unlock(&connections_srcu, msg->idx); 1324 /* because dlm_lowcomms_new_msg() */ 1325 kref_put(&msg->ref, dlm_msg_release); 1326 } 1327 #endif 1328 1329 void dlm_lowcomms_put_msg(struct dlm_msg *msg) 1330 { 1331 kref_put(&msg->ref, dlm_msg_release); 1332 } 1333 1334 /* does not held connections_srcu, usage lowcomms_error_report only */ 1335 int dlm_lowcomms_resend_msg(struct dlm_msg *msg) 1336 { 1337 struct dlm_msg *msg_resend; 1338 char *ppc; 1339 1340 if (msg->retransmit) 1341 return 1; 1342 1343 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, 1344 GFP_ATOMIC, &ppc, NULL, NULL); 1345 if (!msg_resend) 1346 return -ENOMEM; 1347 1348 msg->retransmit = true; 1349 kref_get(&msg->ref); 1350 msg_resend->orig_msg = msg; 1351 1352 memcpy(ppc, msg->ppc, msg->len); 1353 _dlm_lowcomms_commit_msg(msg_resend); 1354 dlm_lowcomms_put_msg(msg_resend); 1355 1356 return 0; 1357 } 1358 1359 /* Send a message */ 1360 static int send_to_sock(struct connection *con) 1361 { 1362 struct writequeue_entry *e; 1363 struct bio_vec bvec; 1364 struct msghdr msg = { 1365 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL, 1366 }; 1367 int len, offset, ret; 1368 1369 spin_lock_bh(&con->writequeue_lock); 1370 e = con_next_wq(con); 1371 if (!e) { 1372 clear_bit(CF_SEND_PENDING, &con->flags); 1373 spin_unlock_bh(&con->writequeue_lock); 1374 return DLM_IO_END; 1375 } 1376 1377 len = e->len; 1378 offset = e->offset; 1379 WARN_ON_ONCE(len == 0 && e->users == 0); 1380 spin_unlock_bh(&con->writequeue_lock); 1381 1382 bvec_set_page(&bvec, e->page, len, offset); 1383 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); 1384 ret = sock_sendmsg(con->sock, &msg); 1385 trace_dlm_send(con->nodeid, ret); 1386 if (ret == -EAGAIN || ret == 0) { 1387 lock_sock(con->sock->sk); 1388 spin_lock_bh(&con->writequeue_lock); 1389 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) && 1390 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) { 1391 /* Notify TCP that we're limited by the 1392 * application window size. 1393 */ 1394 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags); 1395 con->sock->sk->sk_write_pending++; 1396 1397 clear_bit(CF_SEND_PENDING, &con->flags); 1398 spin_unlock_bh(&con->writequeue_lock); 1399 release_sock(con->sock->sk); 1400 1401 /* wait for write_space() event */ 1402 return DLM_IO_END; 1403 } 1404 spin_unlock_bh(&con->writequeue_lock); 1405 release_sock(con->sock->sk); 1406 1407 return DLM_IO_RESCHED; 1408 } else if (ret < 0) { 1409 return ret; 1410 } 1411 1412 spin_lock_bh(&con->writequeue_lock); 1413 writequeue_entry_complete(e, ret); 1414 spin_unlock_bh(&con->writequeue_lock); 1415 1416 return DLM_IO_SUCCESS; 1417 } 1418 1419 static void clean_one_writequeue(struct connection *con) 1420 { 1421 struct writequeue_entry *e, *safe; 1422 1423 spin_lock_bh(&con->writequeue_lock); 1424 list_for_each_entry_safe(e, safe, &con->writequeue, list) { 1425 free_entry(e); 1426 } 1427 spin_unlock_bh(&con->writequeue_lock); 1428 } 1429 1430 static void connection_release(struct rcu_head *rcu) 1431 { 1432 struct connection *con = container_of(rcu, struct connection, rcu); 1433 1434 WARN_ON_ONCE(!list_empty(&con->writequeue)); 1435 WARN_ON_ONCE(con->sock); 1436 kfree(con); 1437 } 1438 1439 /* Called from recovery when it knows that a node has 1440 left the cluster */ 1441 int dlm_lowcomms_close(int nodeid) 1442 { 1443 struct connection *con; 1444 int idx; 1445 1446 log_print("closing connection to node %d", nodeid); 1447 1448 idx = srcu_read_lock(&connections_srcu); 1449 con = nodeid2con(nodeid, 0); 1450 if (WARN_ON_ONCE(!con)) { 1451 srcu_read_unlock(&connections_srcu, idx); 1452 return -ENOENT; 1453 } 1454 1455 stop_connection_io(con); 1456 log_print("io handling for node: %d stopped", nodeid); 1457 close_connection(con, true); 1458 1459 spin_lock(&connections_lock); 1460 hlist_del_rcu(&con->list); 1461 spin_unlock(&connections_lock); 1462 1463 clean_one_writequeue(con); 1464 call_srcu(&connections_srcu, &con->rcu, connection_release); 1465 if (con->othercon) { 1466 clean_one_writequeue(con->othercon); 1467 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release); 1468 } 1469 srcu_read_unlock(&connections_srcu, idx); 1470 1471 /* for debugging we print when we are done to compare with other 1472 * messages in between. This function need to be correctly synchronized 1473 * with io handling 1474 */ 1475 log_print("closing connection to node %d done", nodeid); 1476 1477 return 0; 1478 } 1479 1480 /* Receive worker function */ 1481 static void process_recv_sockets(struct work_struct *work) 1482 { 1483 struct connection *con = container_of(work, struct connection, rwork); 1484 int ret, buflen; 1485 1486 down_read(&con->sock_lock); 1487 if (!con->sock) { 1488 up_read(&con->sock_lock); 1489 return; 1490 } 1491 1492 buflen = READ_ONCE(dlm_config.ci_buffer_size); 1493 do { 1494 ret = receive_from_sock(con, buflen); 1495 } while (ret == DLM_IO_SUCCESS); 1496 up_read(&con->sock_lock); 1497 1498 switch (ret) { 1499 case DLM_IO_END: 1500 /* CF_RECV_PENDING cleared */ 1501 break; 1502 case DLM_IO_EOF: 1503 close_connection(con, false); 1504 wake_up(&con->shutdown_wait); 1505 /* CF_RECV_PENDING cleared */ 1506 break; 1507 case DLM_IO_RESCHED: 1508 cond_resched(); 1509 queue_work(io_workqueue, &con->rwork); 1510 /* CF_RECV_PENDING not cleared */ 1511 break; 1512 default: 1513 if (ret < 0) { 1514 if (test_bit(CF_IS_OTHERCON, &con->flags)) { 1515 close_connection(con, false); 1516 } else { 1517 spin_lock_bh(&con->writequeue_lock); 1518 lowcomms_queue_swork(con); 1519 spin_unlock_bh(&con->writequeue_lock); 1520 } 1521 1522 /* CF_RECV_PENDING cleared for othercon 1523 * we trigger send queue if not already done 1524 * and process_send_sockets will handle it 1525 */ 1526 break; 1527 } 1528 1529 WARN_ON_ONCE(1); 1530 break; 1531 } 1532 } 1533 1534 static void process_listen_recv_socket(struct work_struct *work) 1535 { 1536 int ret; 1537 1538 if (WARN_ON_ONCE(!listen_con.sock)) 1539 return; 1540 1541 do { 1542 ret = accept_from_sock(); 1543 } while (ret == DLM_IO_SUCCESS); 1544 1545 if (ret < 0) 1546 log_print("critical error accepting connection: %d", ret); 1547 } 1548 1549 static int dlm_connect(struct connection *con) 1550 { 1551 struct sockaddr_storage addr; 1552 int result, addr_len; 1553 struct socket *sock; 1554 unsigned int mark; 1555 1556 memset(&addr, 0, sizeof(addr)); 1557 result = nodeid_to_addr(con->nodeid, &addr, NULL, 1558 dlm_proto_ops->try_new_addr, &mark); 1559 if (result < 0) { 1560 log_print("no address for nodeid %d", con->nodeid); 1561 return result; 1562 } 1563 1564 /* Create a socket to communicate with */ 1565 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1566 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1567 if (result < 0) 1568 return result; 1569 1570 sock_set_mark(sock->sk, mark); 1571 dlm_proto_ops->sockopts(sock); 1572 1573 result = dlm_proto_ops->bind(sock); 1574 if (result < 0) { 1575 sock_release(sock); 1576 return result; 1577 } 1578 1579 add_sock(sock, con); 1580 1581 log_print_ratelimited("connecting to %d", con->nodeid); 1582 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len); 1583 result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr, 1584 addr_len); 1585 switch (result) { 1586 case -EINPROGRESS: 1587 /* not an error */ 1588 fallthrough; 1589 case 0: 1590 break; 1591 default: 1592 if (result < 0) 1593 dlm_close_sock(&con->sock); 1594 1595 break; 1596 } 1597 1598 return result; 1599 } 1600 1601 /* Send worker function */ 1602 static void process_send_sockets(struct work_struct *work) 1603 { 1604 struct connection *con = container_of(work, struct connection, swork); 1605 int ret; 1606 1607 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags)); 1608 1609 down_read(&con->sock_lock); 1610 if (!con->sock) { 1611 up_read(&con->sock_lock); 1612 down_write(&con->sock_lock); 1613 if (!con->sock) { 1614 ret = dlm_connect(con); 1615 switch (ret) { 1616 case 0: 1617 break; 1618 case -EINPROGRESS: 1619 /* avoid spamming resched on connection 1620 * we might can switch to a state_change 1621 * event based mechanism if established 1622 */ 1623 msleep(100); 1624 break; 1625 default: 1626 /* CF_SEND_PENDING not cleared */ 1627 up_write(&con->sock_lock); 1628 log_print("connect to node %d try %d error %d", 1629 con->nodeid, con->retries++, ret); 1630 msleep(1000); 1631 /* For now we try forever to reconnect. In 1632 * future we should send a event to cluster 1633 * manager to fence itself after certain amount 1634 * of retries. 1635 */ 1636 queue_work(io_workqueue, &con->swork); 1637 return; 1638 } 1639 } 1640 downgrade_write(&con->sock_lock); 1641 } 1642 1643 do { 1644 ret = send_to_sock(con); 1645 } while (ret == DLM_IO_SUCCESS); 1646 up_read(&con->sock_lock); 1647 1648 switch (ret) { 1649 case DLM_IO_END: 1650 /* CF_SEND_PENDING cleared */ 1651 break; 1652 case DLM_IO_RESCHED: 1653 /* CF_SEND_PENDING not cleared */ 1654 cond_resched(); 1655 queue_work(io_workqueue, &con->swork); 1656 break; 1657 default: 1658 if (ret < 0) { 1659 close_connection(con, false); 1660 1661 /* CF_SEND_PENDING cleared */ 1662 spin_lock_bh(&con->writequeue_lock); 1663 lowcomms_queue_swork(con); 1664 spin_unlock_bh(&con->writequeue_lock); 1665 break; 1666 } 1667 1668 WARN_ON_ONCE(1); 1669 break; 1670 } 1671 } 1672 1673 static void work_stop(void) 1674 { 1675 if (io_workqueue) { 1676 destroy_workqueue(io_workqueue); 1677 io_workqueue = NULL; 1678 } 1679 1680 if (process_workqueue) { 1681 destroy_workqueue(process_workqueue); 1682 process_workqueue = NULL; 1683 } 1684 } 1685 1686 static int work_start(void) 1687 { 1688 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM | 1689 WQ_UNBOUND, 0); 1690 if (!io_workqueue) { 1691 log_print("can't start dlm_io"); 1692 return -ENOMEM; 1693 } 1694 1695 /* ordered dlm message process queue, 1696 * should be converted to a tasklet 1697 */ 1698 process_workqueue = alloc_ordered_workqueue("dlm_process", 1699 WQ_HIGHPRI | WQ_MEM_RECLAIM); 1700 if (!process_workqueue) { 1701 log_print("can't start dlm_process"); 1702 destroy_workqueue(io_workqueue); 1703 io_workqueue = NULL; 1704 return -ENOMEM; 1705 } 1706 1707 return 0; 1708 } 1709 1710 void dlm_lowcomms_shutdown(void) 1711 { 1712 struct connection *con; 1713 int i, idx; 1714 1715 /* stop lowcomms_listen_data_ready calls */ 1716 lock_sock(listen_con.sock->sk); 1717 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready; 1718 release_sock(listen_con.sock->sk); 1719 1720 cancel_work_sync(&listen_con.rwork); 1721 dlm_close_sock(&listen_con.sock); 1722 1723 idx = srcu_read_lock(&connections_srcu); 1724 for (i = 0; i < CONN_HASH_SIZE; i++) { 1725 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 1726 shutdown_connection(con, true); 1727 stop_connection_io(con); 1728 flush_workqueue(process_workqueue); 1729 close_connection(con, true); 1730 1731 clean_one_writequeue(con); 1732 if (con->othercon) 1733 clean_one_writequeue(con->othercon); 1734 allow_connection_io(con); 1735 } 1736 } 1737 srcu_read_unlock(&connections_srcu, idx); 1738 } 1739 1740 void dlm_lowcomms_stop(void) 1741 { 1742 work_stop(); 1743 dlm_proto_ops = NULL; 1744 } 1745 1746 static int dlm_listen_for_all(void) 1747 { 1748 struct socket *sock; 1749 int result; 1750 1751 log_print("Using %s for communications", 1752 dlm_proto_ops->name); 1753 1754 result = dlm_proto_ops->listen_validate(); 1755 if (result < 0) 1756 return result; 1757 1758 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family, 1759 SOCK_STREAM, dlm_proto_ops->proto, &sock); 1760 if (result < 0) { 1761 log_print("Can't create comms socket: %d", result); 1762 return result; 1763 } 1764 1765 sock_set_mark(sock->sk, dlm_config.ci_mark); 1766 dlm_proto_ops->listen_sockopts(sock); 1767 1768 result = dlm_proto_ops->listen_bind(sock); 1769 if (result < 0) 1770 goto out; 1771 1772 lock_sock(sock->sk); 1773 listen_sock.sk_data_ready = sock->sk->sk_data_ready; 1774 listen_sock.sk_write_space = sock->sk->sk_write_space; 1775 listen_sock.sk_error_report = sock->sk->sk_error_report; 1776 listen_sock.sk_state_change = sock->sk->sk_state_change; 1777 1778 listen_con.sock = sock; 1779 1780 sock->sk->sk_allocation = GFP_NOFS; 1781 sock->sk->sk_use_task_frag = false; 1782 sock->sk->sk_data_ready = lowcomms_listen_data_ready; 1783 release_sock(sock->sk); 1784 1785 result = sock->ops->listen(sock, 128); 1786 if (result < 0) { 1787 dlm_close_sock(&listen_con.sock); 1788 return result; 1789 } 1790 1791 return 0; 1792 1793 out: 1794 sock_release(sock); 1795 return result; 1796 } 1797 1798 static int dlm_tcp_bind(struct socket *sock) 1799 { 1800 struct sockaddr_storage src_addr; 1801 int result, addr_len; 1802 1803 /* Bind to our cluster-known address connecting to avoid 1804 * routing problems. 1805 */ 1806 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr)); 1807 make_sockaddr(&src_addr, 0, &addr_len); 1808 1809 result = sock->ops->bind(sock, (struct sockaddr *)&src_addr, 1810 addr_len); 1811 if (result < 0) { 1812 /* This *may* not indicate a critical error */ 1813 log_print("could not bind for connect: %d", result); 1814 } 1815 1816 return 0; 1817 } 1818 1819 static int dlm_tcp_connect(struct connection *con, struct socket *sock, 1820 struct sockaddr *addr, int addr_len) 1821 { 1822 return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK); 1823 } 1824 1825 static int dlm_tcp_listen_validate(void) 1826 { 1827 /* We don't support multi-homed hosts */ 1828 if (dlm_local_count > 1) { 1829 log_print("TCP protocol can't handle multi-homed hosts, try SCTP"); 1830 return -EINVAL; 1831 } 1832 1833 return 0; 1834 } 1835 1836 static void dlm_tcp_sockopts(struct socket *sock) 1837 { 1838 /* Turn off Nagle's algorithm */ 1839 tcp_sock_set_nodelay(sock->sk); 1840 } 1841 1842 static void dlm_tcp_listen_sockopts(struct socket *sock) 1843 { 1844 dlm_tcp_sockopts(sock); 1845 sock_set_reuseaddr(sock->sk); 1846 } 1847 1848 static int dlm_tcp_listen_bind(struct socket *sock) 1849 { 1850 int addr_len; 1851 1852 /* Bind to our port */ 1853 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len); 1854 return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0], 1855 addr_len); 1856 } 1857 1858 static const struct dlm_proto_ops dlm_tcp_ops = { 1859 .name = "TCP", 1860 .proto = IPPROTO_TCP, 1861 .connect = dlm_tcp_connect, 1862 .sockopts = dlm_tcp_sockopts, 1863 .bind = dlm_tcp_bind, 1864 .listen_validate = dlm_tcp_listen_validate, 1865 .listen_sockopts = dlm_tcp_listen_sockopts, 1866 .listen_bind = dlm_tcp_listen_bind, 1867 }; 1868 1869 static int dlm_sctp_bind(struct socket *sock) 1870 { 1871 return sctp_bind_addrs(sock, 0); 1872 } 1873 1874 static int dlm_sctp_connect(struct connection *con, struct socket *sock, 1875 struct sockaddr *addr, int addr_len) 1876 { 1877 int ret; 1878 1879 /* 1880 * Make sock->ops->connect() function return in specified time, 1881 * since O_NONBLOCK argument in connect() function does not work here, 1882 * then, we should restore the default value of this attribute. 1883 */ 1884 sock_set_sndtimeo(sock->sk, 5); 1885 ret = sock->ops->connect(sock, addr, addr_len, 0); 1886 sock_set_sndtimeo(sock->sk, 0); 1887 return ret; 1888 } 1889 1890 static int dlm_sctp_listen_validate(void) 1891 { 1892 if (!IS_ENABLED(CONFIG_IP_SCTP)) { 1893 log_print("SCTP is not enabled by this kernel"); 1894 return -EOPNOTSUPP; 1895 } 1896 1897 request_module("sctp"); 1898 return 0; 1899 } 1900 1901 static int dlm_sctp_bind_listen(struct socket *sock) 1902 { 1903 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port); 1904 } 1905 1906 static void dlm_sctp_sockopts(struct socket *sock) 1907 { 1908 /* Turn off Nagle's algorithm */ 1909 sctp_sock_set_nodelay(sock->sk); 1910 sock_set_rcvbuf(sock->sk, NEEDED_RMEM); 1911 } 1912 1913 static const struct dlm_proto_ops dlm_sctp_ops = { 1914 .name = "SCTP", 1915 .proto = IPPROTO_SCTP, 1916 .try_new_addr = true, 1917 .connect = dlm_sctp_connect, 1918 .sockopts = dlm_sctp_sockopts, 1919 .bind = dlm_sctp_bind, 1920 .listen_validate = dlm_sctp_listen_validate, 1921 .listen_sockopts = dlm_sctp_sockopts, 1922 .listen_bind = dlm_sctp_bind_listen, 1923 }; 1924 1925 int dlm_lowcomms_start(void) 1926 { 1927 int error; 1928 1929 init_local(); 1930 if (!dlm_local_count) { 1931 error = -ENOTCONN; 1932 log_print("no local IP address has been set"); 1933 goto fail; 1934 } 1935 1936 error = work_start(); 1937 if (error) 1938 goto fail; 1939 1940 /* Start listening */ 1941 switch (dlm_config.ci_protocol) { 1942 case DLM_PROTO_TCP: 1943 dlm_proto_ops = &dlm_tcp_ops; 1944 break; 1945 case DLM_PROTO_SCTP: 1946 dlm_proto_ops = &dlm_sctp_ops; 1947 break; 1948 default: 1949 log_print("Invalid protocol identifier %d set", 1950 dlm_config.ci_protocol); 1951 error = -EINVAL; 1952 goto fail_proto_ops; 1953 } 1954 1955 error = dlm_listen_for_all(); 1956 if (error) 1957 goto fail_listen; 1958 1959 return 0; 1960 1961 fail_listen: 1962 dlm_proto_ops = NULL; 1963 fail_proto_ops: 1964 work_stop(); 1965 fail: 1966 return error; 1967 } 1968 1969 void dlm_lowcomms_init(void) 1970 { 1971 int i; 1972 1973 for (i = 0; i < CONN_HASH_SIZE; i++) 1974 INIT_HLIST_HEAD(&connection_hash[i]); 1975 1976 INIT_WORK(&listen_con.rwork, process_listen_recv_socket); 1977 } 1978 1979 void dlm_lowcomms_exit(void) 1980 { 1981 struct connection *con; 1982 int i, idx; 1983 1984 idx = srcu_read_lock(&connections_srcu); 1985 for (i = 0; i < CONN_HASH_SIZE; i++) { 1986 hlist_for_each_entry_rcu(con, &connection_hash[i], list) { 1987 spin_lock(&connections_lock); 1988 hlist_del_rcu(&con->list); 1989 spin_unlock(&connections_lock); 1990 1991 if (con->othercon) 1992 call_srcu(&connections_srcu, &con->othercon->rcu, 1993 connection_release); 1994 call_srcu(&connections_srcu, &con->rcu, connection_release); 1995 } 1996 } 1997 srcu_read_unlock(&connections_srcu, idx); 1998 } 1999