1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 akpm@zip.com.au 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 akpm@zip.com.au 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/bio.h> 31 #include <linux/wait.h> 32 #include <linux/err.h> 33 #include <linux/blkdev.h> 34 #include <linux/buffer_head.h> 35 #include <linux/rwsem.h> 36 #include <linux/uio.h> 37 #include <asm/atomic.h> 38 39 /* 40 * How many user pages to map in one call to get_user_pages(). This determines 41 * the size of a structure on the stack. 42 */ 43 #define DIO_PAGES 64 44 45 /* 46 * This code generally works in units of "dio_blocks". A dio_block is 47 * somewhere between the hard sector size and the filesystem block size. it 48 * is determined on a per-invocation basis. When talking to the filesystem 49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 51 * to bio_block quantities by shifting left by blkfactor. 52 * 53 * If blkfactor is zero then the user's request was aligned to the filesystem's 54 * blocksize. 55 * 56 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. 57 * This determines whether we need to do the fancy locking which prevents 58 * direct-IO from being able to read uninitialised disk blocks. If its zero 59 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is 60 * not held for the entire direct write (taken briefly, initially, during a 61 * direct read though, but its never held for the duration of a direct-IO). 62 */ 63 64 struct dio { 65 /* BIO submission state */ 66 struct bio *bio; /* bio under assembly */ 67 struct inode *inode; 68 int rw; 69 loff_t i_size; /* i_size when submitted */ 70 int lock_type; /* doesn't change */ 71 unsigned blkbits; /* doesn't change */ 72 unsigned blkfactor; /* When we're using an alignment which 73 is finer than the filesystem's soft 74 blocksize, this specifies how much 75 finer. blkfactor=2 means 1/4-block 76 alignment. Does not change */ 77 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 78 been performed at the start of a 79 write */ 80 int pages_in_io; /* approximate total IO pages */ 81 size_t size; /* total request size (doesn't change)*/ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 sector_t final_block_in_request;/* doesn't change */ 86 unsigned first_block_in_page; /* doesn't change, Used only once */ 87 int boundary; /* prev block is at a boundary */ 88 int reap_counter; /* rate limit reaping */ 89 get_block_t *get_block; /* block mapping function */ 90 dio_iodone_t *end_io; /* IO completion function */ 91 sector_t final_block_in_bio; /* current final block in bio + 1 */ 92 sector_t next_block_for_io; /* next block to be put under IO, 93 in dio_blocks units */ 94 struct buffer_head map_bh; /* last get_block() result */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 106 /* 107 * Page fetching state. These variables belong to dio_refill_pages(). 108 */ 109 int curr_page; /* changes */ 110 int total_pages; /* doesn't change */ 111 unsigned long curr_user_address;/* changes */ 112 113 /* 114 * Page queue. These variables belong to dio_refill_pages() and 115 * dio_get_page(). 116 */ 117 struct page *pages[DIO_PAGES]; /* page buffer */ 118 unsigned head; /* next page to process */ 119 unsigned tail; /* last valid page + 1 */ 120 int page_errors; /* errno from get_user_pages() */ 121 122 /* BIO completion state */ 123 spinlock_t bio_lock; /* protects BIO fields below */ 124 int bio_count; /* nr bios to be completed */ 125 int bios_in_flight; /* nr bios in flight */ 126 struct bio *bio_list; /* singly linked via bi_private */ 127 struct task_struct *waiter; /* waiting task (NULL if none) */ 128 129 /* AIO related stuff */ 130 struct kiocb *iocb; /* kiocb */ 131 int is_async; /* is IO async ? */ 132 int io_error; /* IO error in completion path */ 133 ssize_t result; /* IO result */ 134 }; 135 136 /* 137 * How many pages are in the queue? 138 */ 139 static inline unsigned dio_pages_present(struct dio *dio) 140 { 141 return dio->tail - dio->head; 142 } 143 144 /* 145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 146 */ 147 static int dio_refill_pages(struct dio *dio) 148 { 149 int ret; 150 int nr_pages; 151 152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 153 down_read(¤t->mm->mmap_sem); 154 ret = get_user_pages( 155 current, /* Task for fault acounting */ 156 current->mm, /* whose pages? */ 157 dio->curr_user_address, /* Where from? */ 158 nr_pages, /* How many pages? */ 159 dio->rw == READ, /* Write to memory? */ 160 0, /* force (?) */ 161 &dio->pages[0], 162 NULL); /* vmas */ 163 up_read(¤t->mm->mmap_sem); 164 165 if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) { 166 struct page *page = ZERO_PAGE(dio->curr_user_address); 167 /* 168 * A memory fault, but the filesystem has some outstanding 169 * mapped blocks. We need to use those blocks up to avoid 170 * leaking stale data in the file. 171 */ 172 if (dio->page_errors == 0) 173 dio->page_errors = ret; 174 page_cache_get(page); 175 dio->pages[0] = page; 176 dio->head = 0; 177 dio->tail = 1; 178 ret = 0; 179 goto out; 180 } 181 182 if (ret >= 0) { 183 dio->curr_user_address += ret * PAGE_SIZE; 184 dio->curr_page += ret; 185 dio->head = 0; 186 dio->tail = ret; 187 ret = 0; 188 } 189 out: 190 return ret; 191 } 192 193 /* 194 * Get another userspace page. Returns an ERR_PTR on error. Pages are 195 * buffered inside the dio so that we can call get_user_pages() against a 196 * decent number of pages, less frequently. To provide nicer use of the 197 * L1 cache. 198 */ 199 static struct page *dio_get_page(struct dio *dio) 200 { 201 if (dio_pages_present(dio) == 0) { 202 int ret; 203 204 ret = dio_refill_pages(dio); 205 if (ret) 206 return ERR_PTR(ret); 207 BUG_ON(dio_pages_present(dio) == 0); 208 } 209 return dio->pages[dio->head++]; 210 } 211 212 /* 213 * Called when all DIO BIO I/O has been completed - let the filesystem 214 * know, if it registered an interest earlier via get_block. Pass the 215 * private field of the map buffer_head so that filesystems can use it 216 * to hold additional state between get_block calls and dio_complete. 217 */ 218 static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes) 219 { 220 if (dio->end_io && dio->result) 221 dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private); 222 if (dio->lock_type == DIO_LOCKING) 223 up_read(&dio->inode->i_alloc_sem); 224 } 225 226 /* 227 * Called when a BIO has been processed. If the count goes to zero then IO is 228 * complete and we can signal this to the AIO layer. 229 */ 230 static void finished_one_bio(struct dio *dio) 231 { 232 unsigned long flags; 233 234 spin_lock_irqsave(&dio->bio_lock, flags); 235 if (dio->bio_count == 1) { 236 if (dio->is_async) { 237 ssize_t transferred; 238 loff_t offset; 239 240 /* 241 * Last reference to the dio is going away. 242 * Drop spinlock and complete the DIO. 243 */ 244 spin_unlock_irqrestore(&dio->bio_lock, flags); 245 246 /* Check for short read case */ 247 transferred = dio->result; 248 offset = dio->iocb->ki_pos; 249 250 if ((dio->rw == READ) && 251 ((offset + transferred) > dio->i_size)) 252 transferred = dio->i_size - offset; 253 254 /* check for error in completion path */ 255 if (dio->io_error) 256 transferred = dio->io_error; 257 258 dio_complete(dio, offset, transferred); 259 260 /* Complete AIO later if falling back to buffered i/o */ 261 if (dio->result == dio->size || 262 ((dio->rw == READ) && dio->result)) { 263 aio_complete(dio->iocb, transferred, 0); 264 kfree(dio); 265 return; 266 } else { 267 /* 268 * Falling back to buffered 269 */ 270 spin_lock_irqsave(&dio->bio_lock, flags); 271 dio->bio_count--; 272 if (dio->waiter) 273 wake_up_process(dio->waiter); 274 spin_unlock_irqrestore(&dio->bio_lock, flags); 275 return; 276 } 277 } 278 } 279 dio->bio_count--; 280 spin_unlock_irqrestore(&dio->bio_lock, flags); 281 } 282 283 static int dio_bio_complete(struct dio *dio, struct bio *bio); 284 /* 285 * Asynchronous IO callback. 286 */ 287 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) 288 { 289 struct dio *dio = bio->bi_private; 290 291 if (bio->bi_size) 292 return 1; 293 294 /* cleanup the bio */ 295 dio_bio_complete(dio, bio); 296 return 0; 297 } 298 299 /* 300 * The BIO completion handler simply queues the BIO up for the process-context 301 * handler. 302 * 303 * During I/O bi_private points at the dio. After I/O, bi_private is used to 304 * implement a singly-linked list of completed BIOs, at dio->bio_list. 305 */ 306 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) 307 { 308 struct dio *dio = bio->bi_private; 309 unsigned long flags; 310 311 if (bio->bi_size) 312 return 1; 313 314 spin_lock_irqsave(&dio->bio_lock, flags); 315 bio->bi_private = dio->bio_list; 316 dio->bio_list = bio; 317 dio->bios_in_flight--; 318 if (dio->waiter && dio->bios_in_flight == 0) 319 wake_up_process(dio->waiter); 320 spin_unlock_irqrestore(&dio->bio_lock, flags); 321 return 0; 322 } 323 324 static int 325 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 326 sector_t first_sector, int nr_vecs) 327 { 328 struct bio *bio; 329 330 bio = bio_alloc(GFP_KERNEL, nr_vecs); 331 if (bio == NULL) 332 return -ENOMEM; 333 334 bio->bi_bdev = bdev; 335 bio->bi_sector = first_sector; 336 if (dio->is_async) 337 bio->bi_end_io = dio_bio_end_aio; 338 else 339 bio->bi_end_io = dio_bio_end_io; 340 341 dio->bio = bio; 342 return 0; 343 } 344 345 /* 346 * In the AIO read case we speculatively dirty the pages before starting IO. 347 * During IO completion, any of these pages which happen to have been written 348 * back will be redirtied by bio_check_pages_dirty(). 349 */ 350 static void dio_bio_submit(struct dio *dio) 351 { 352 struct bio *bio = dio->bio; 353 unsigned long flags; 354 355 bio->bi_private = dio; 356 spin_lock_irqsave(&dio->bio_lock, flags); 357 dio->bio_count++; 358 dio->bios_in_flight++; 359 spin_unlock_irqrestore(&dio->bio_lock, flags); 360 if (dio->is_async && dio->rw == READ) 361 bio_set_pages_dirty(bio); 362 submit_bio(dio->rw, bio); 363 364 dio->bio = NULL; 365 dio->boundary = 0; 366 } 367 368 /* 369 * Release any resources in case of a failure 370 */ 371 static void dio_cleanup(struct dio *dio) 372 { 373 while (dio_pages_present(dio)) 374 page_cache_release(dio_get_page(dio)); 375 } 376 377 /* 378 * Wait for the next BIO to complete. Remove it and return it. 379 */ 380 static struct bio *dio_await_one(struct dio *dio) 381 { 382 unsigned long flags; 383 struct bio *bio; 384 385 spin_lock_irqsave(&dio->bio_lock, flags); 386 while (dio->bio_list == NULL) { 387 set_current_state(TASK_UNINTERRUPTIBLE); 388 if (dio->bio_list == NULL) { 389 dio->waiter = current; 390 spin_unlock_irqrestore(&dio->bio_lock, flags); 391 blk_run_address_space(dio->inode->i_mapping); 392 io_schedule(); 393 spin_lock_irqsave(&dio->bio_lock, flags); 394 dio->waiter = NULL; 395 } 396 set_current_state(TASK_RUNNING); 397 } 398 bio = dio->bio_list; 399 dio->bio_list = bio->bi_private; 400 spin_unlock_irqrestore(&dio->bio_lock, flags); 401 return bio; 402 } 403 404 /* 405 * Process one completed BIO. No locks are held. 406 */ 407 static int dio_bio_complete(struct dio *dio, struct bio *bio) 408 { 409 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 410 struct bio_vec *bvec = bio->bi_io_vec; 411 int page_no; 412 413 if (!uptodate) 414 dio->io_error = -EIO; 415 416 if (dio->is_async && dio->rw == READ) { 417 bio_check_pages_dirty(bio); /* transfers ownership */ 418 } else { 419 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 420 struct page *page = bvec[page_no].bv_page; 421 422 if (dio->rw == READ && !PageCompound(page)) 423 set_page_dirty_lock(page); 424 page_cache_release(page); 425 } 426 bio_put(bio); 427 } 428 finished_one_bio(dio); 429 return uptodate ? 0 : -EIO; 430 } 431 432 /* 433 * Wait on and process all in-flight BIOs. 434 */ 435 static int dio_await_completion(struct dio *dio) 436 { 437 int ret = 0; 438 439 if (dio->bio) 440 dio_bio_submit(dio); 441 442 /* 443 * The bio_lock is not held for the read of bio_count. 444 * This is ok since it is the dio_bio_complete() that changes 445 * bio_count. 446 */ 447 while (dio->bio_count) { 448 struct bio *bio = dio_await_one(dio); 449 int ret2; 450 451 ret2 = dio_bio_complete(dio, bio); 452 if (ret == 0) 453 ret = ret2; 454 } 455 return ret; 456 } 457 458 /* 459 * A really large O_DIRECT read or write can generate a lot of BIOs. So 460 * to keep the memory consumption sane we periodically reap any completed BIOs 461 * during the BIO generation phase. 462 * 463 * This also helps to limit the peak amount of pinned userspace memory. 464 */ 465 static int dio_bio_reap(struct dio *dio) 466 { 467 int ret = 0; 468 469 if (dio->reap_counter++ >= 64) { 470 while (dio->bio_list) { 471 unsigned long flags; 472 struct bio *bio; 473 int ret2; 474 475 spin_lock_irqsave(&dio->bio_lock, flags); 476 bio = dio->bio_list; 477 dio->bio_list = bio->bi_private; 478 spin_unlock_irqrestore(&dio->bio_lock, flags); 479 ret2 = dio_bio_complete(dio, bio); 480 if (ret == 0) 481 ret = ret2; 482 } 483 dio->reap_counter = 0; 484 } 485 return ret; 486 } 487 488 /* 489 * Call into the fs to map some more disk blocks. We record the current number 490 * of available blocks at dio->blocks_available. These are in units of the 491 * fs blocksize, (1 << inode->i_blkbits). 492 * 493 * The fs is allowed to map lots of blocks at once. If it wants to do that, 494 * it uses the passed inode-relative block number as the file offset, as usual. 495 * 496 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 497 * has remaining to do. The fs should not map more than this number of blocks. 498 * 499 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 500 * indicate how much contiguous disk space has been made available at 501 * bh->b_blocknr. 502 * 503 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 504 * This isn't very efficient... 505 * 506 * In the case of filesystem holes: the fs may return an arbitrarily-large 507 * hole by returning an appropriate value in b_size and by clearing 508 * buffer_mapped(). However the direct-io code will only process holes one 509 * block at a time - it will repeatedly call get_block() as it walks the hole. 510 */ 511 static int get_more_blocks(struct dio *dio) 512 { 513 int ret; 514 struct buffer_head *map_bh = &dio->map_bh; 515 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 516 unsigned long fs_count; /* Number of filesystem-sized blocks */ 517 unsigned long dio_count;/* Number of dio_block-sized blocks */ 518 unsigned long blkmask; 519 int create; 520 521 /* 522 * If there was a memory error and we've overwritten all the 523 * mapped blocks then we can now return that memory error 524 */ 525 ret = dio->page_errors; 526 if (ret == 0) { 527 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 528 fs_startblk = dio->block_in_file >> dio->blkfactor; 529 dio_count = dio->final_block_in_request - dio->block_in_file; 530 fs_count = dio_count >> dio->blkfactor; 531 blkmask = (1 << dio->blkfactor) - 1; 532 if (dio_count & blkmask) 533 fs_count++; 534 535 map_bh->b_state = 0; 536 map_bh->b_size = fs_count << dio->inode->i_blkbits; 537 538 create = dio->rw == WRITE; 539 if (dio->lock_type == DIO_LOCKING) { 540 if (dio->block_in_file < (i_size_read(dio->inode) >> 541 dio->blkbits)) 542 create = 0; 543 } else if (dio->lock_type == DIO_NO_LOCKING) { 544 create = 0; 545 } 546 547 /* 548 * For writes inside i_size we forbid block creations: only 549 * overwrites are permitted. We fall back to buffered writes 550 * at a higher level for inside-i_size block-instantiating 551 * writes. 552 */ 553 ret = (*dio->get_block)(dio->inode, fs_startblk, 554 map_bh, create); 555 } 556 return ret; 557 } 558 559 /* 560 * There is no bio. Make one now. 561 */ 562 static int dio_new_bio(struct dio *dio, sector_t start_sector) 563 { 564 sector_t sector; 565 int ret, nr_pages; 566 567 ret = dio_bio_reap(dio); 568 if (ret) 569 goto out; 570 sector = start_sector << (dio->blkbits - 9); 571 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 572 BUG_ON(nr_pages <= 0); 573 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 574 dio->boundary = 0; 575 out: 576 return ret; 577 } 578 579 /* 580 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 581 * that was successful then update final_block_in_bio and take a ref against 582 * the just-added page. 583 * 584 * Return zero on success. Non-zero means the caller needs to start a new BIO. 585 */ 586 static int dio_bio_add_page(struct dio *dio) 587 { 588 int ret; 589 590 ret = bio_add_page(dio->bio, dio->cur_page, 591 dio->cur_page_len, dio->cur_page_offset); 592 if (ret == dio->cur_page_len) { 593 /* 594 * Decrement count only, if we are done with this page 595 */ 596 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 597 dio->pages_in_io--; 598 page_cache_get(dio->cur_page); 599 dio->final_block_in_bio = dio->cur_page_block + 600 (dio->cur_page_len >> dio->blkbits); 601 ret = 0; 602 } else { 603 ret = 1; 604 } 605 return ret; 606 } 607 608 /* 609 * Put cur_page under IO. The section of cur_page which is described by 610 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 611 * starts on-disk at cur_page_block. 612 * 613 * We take a ref against the page here (on behalf of its presence in the bio). 614 * 615 * The caller of this function is responsible for removing cur_page from the 616 * dio, and for dropping the refcount which came from that presence. 617 */ 618 static int dio_send_cur_page(struct dio *dio) 619 { 620 int ret = 0; 621 622 if (dio->bio) { 623 /* 624 * See whether this new request is contiguous with the old 625 */ 626 if (dio->final_block_in_bio != dio->cur_page_block) 627 dio_bio_submit(dio); 628 /* 629 * Submit now if the underlying fs is about to perform a 630 * metadata read 631 */ 632 if (dio->boundary) 633 dio_bio_submit(dio); 634 } 635 636 if (dio->bio == NULL) { 637 ret = dio_new_bio(dio, dio->cur_page_block); 638 if (ret) 639 goto out; 640 } 641 642 if (dio_bio_add_page(dio) != 0) { 643 dio_bio_submit(dio); 644 ret = dio_new_bio(dio, dio->cur_page_block); 645 if (ret == 0) { 646 ret = dio_bio_add_page(dio); 647 BUG_ON(ret != 0); 648 } 649 } 650 out: 651 return ret; 652 } 653 654 /* 655 * An autonomous function to put a chunk of a page under deferred IO. 656 * 657 * The caller doesn't actually know (or care) whether this piece of page is in 658 * a BIO, or is under IO or whatever. We just take care of all possible 659 * situations here. The separation between the logic of do_direct_IO() and 660 * that of submit_page_section() is important for clarity. Please don't break. 661 * 662 * The chunk of page starts on-disk at blocknr. 663 * 664 * We perform deferred IO, by recording the last-submitted page inside our 665 * private part of the dio structure. If possible, we just expand the IO 666 * across that page here. 667 * 668 * If that doesn't work out then we put the old page into the bio and add this 669 * page to the dio instead. 670 */ 671 static int 672 submit_page_section(struct dio *dio, struct page *page, 673 unsigned offset, unsigned len, sector_t blocknr) 674 { 675 int ret = 0; 676 677 /* 678 * Can we just grow the current page's presence in the dio? 679 */ 680 if ( (dio->cur_page == page) && 681 (dio->cur_page_offset + dio->cur_page_len == offset) && 682 (dio->cur_page_block + 683 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 684 dio->cur_page_len += len; 685 686 /* 687 * If dio->boundary then we want to schedule the IO now to 688 * avoid metadata seeks. 689 */ 690 if (dio->boundary) { 691 ret = dio_send_cur_page(dio); 692 page_cache_release(dio->cur_page); 693 dio->cur_page = NULL; 694 } 695 goto out; 696 } 697 698 /* 699 * If there's a deferred page already there then send it. 700 */ 701 if (dio->cur_page) { 702 ret = dio_send_cur_page(dio); 703 page_cache_release(dio->cur_page); 704 dio->cur_page = NULL; 705 if (ret) 706 goto out; 707 } 708 709 page_cache_get(page); /* It is in dio */ 710 dio->cur_page = page; 711 dio->cur_page_offset = offset; 712 dio->cur_page_len = len; 713 dio->cur_page_block = blocknr; 714 out: 715 return ret; 716 } 717 718 /* 719 * Clean any dirty buffers in the blockdev mapping which alias newly-created 720 * file blocks. Only called for S_ISREG files - blockdevs do not set 721 * buffer_new 722 */ 723 static void clean_blockdev_aliases(struct dio *dio) 724 { 725 unsigned i; 726 unsigned nblocks; 727 728 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 729 730 for (i = 0; i < nblocks; i++) { 731 unmap_underlying_metadata(dio->map_bh.b_bdev, 732 dio->map_bh.b_blocknr + i); 733 } 734 } 735 736 /* 737 * If we are not writing the entire block and get_block() allocated 738 * the block for us, we need to fill-in the unused portion of the 739 * block with zeros. This happens only if user-buffer, fileoffset or 740 * io length is not filesystem block-size multiple. 741 * 742 * `end' is zero if we're doing the start of the IO, 1 at the end of the 743 * IO. 744 */ 745 static void dio_zero_block(struct dio *dio, int end) 746 { 747 unsigned dio_blocks_per_fs_block; 748 unsigned this_chunk_blocks; /* In dio_blocks */ 749 unsigned this_chunk_bytes; 750 struct page *page; 751 752 dio->start_zero_done = 1; 753 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 754 return; 755 756 dio_blocks_per_fs_block = 1 << dio->blkfactor; 757 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 758 759 if (!this_chunk_blocks) 760 return; 761 762 /* 763 * We need to zero out part of an fs block. It is either at the 764 * beginning or the end of the fs block. 765 */ 766 if (end) 767 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 768 769 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 770 771 page = ZERO_PAGE(dio->curr_user_address); 772 if (submit_page_section(dio, page, 0, this_chunk_bytes, 773 dio->next_block_for_io)) 774 return; 775 776 dio->next_block_for_io += this_chunk_blocks; 777 } 778 779 /* 780 * Walk the user pages, and the file, mapping blocks to disk and generating 781 * a sequence of (page,offset,len,block) mappings. These mappings are injected 782 * into submit_page_section(), which takes care of the next stage of submission 783 * 784 * Direct IO against a blockdev is different from a file. Because we can 785 * happily perform page-sized but 512-byte aligned IOs. It is important that 786 * blockdev IO be able to have fine alignment and large sizes. 787 * 788 * So what we do is to permit the ->get_block function to populate bh.b_size 789 * with the size of IO which is permitted at this offset and this i_blkbits. 790 * 791 * For best results, the blockdev should be set up with 512-byte i_blkbits and 792 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 793 * fine alignment but still allows this function to work in PAGE_SIZE units. 794 */ 795 static int do_direct_IO(struct dio *dio) 796 { 797 const unsigned blkbits = dio->blkbits; 798 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 799 struct page *page; 800 unsigned block_in_page; 801 struct buffer_head *map_bh = &dio->map_bh; 802 int ret = 0; 803 804 /* The I/O can start at any block offset within the first page */ 805 block_in_page = dio->first_block_in_page; 806 807 while (dio->block_in_file < dio->final_block_in_request) { 808 page = dio_get_page(dio); 809 if (IS_ERR(page)) { 810 ret = PTR_ERR(page); 811 goto out; 812 } 813 814 while (block_in_page < blocks_per_page) { 815 unsigned offset_in_page = block_in_page << blkbits; 816 unsigned this_chunk_bytes; /* # of bytes mapped */ 817 unsigned this_chunk_blocks; /* # of blocks */ 818 unsigned u; 819 820 if (dio->blocks_available == 0) { 821 /* 822 * Need to go and map some more disk 823 */ 824 unsigned long blkmask; 825 unsigned long dio_remainder; 826 827 ret = get_more_blocks(dio); 828 if (ret) { 829 page_cache_release(page); 830 goto out; 831 } 832 if (!buffer_mapped(map_bh)) 833 goto do_holes; 834 835 dio->blocks_available = 836 map_bh->b_size >> dio->blkbits; 837 dio->next_block_for_io = 838 map_bh->b_blocknr << dio->blkfactor; 839 if (buffer_new(map_bh)) 840 clean_blockdev_aliases(dio); 841 842 if (!dio->blkfactor) 843 goto do_holes; 844 845 blkmask = (1 << dio->blkfactor) - 1; 846 dio_remainder = (dio->block_in_file & blkmask); 847 848 /* 849 * If we are at the start of IO and that IO 850 * starts partway into a fs-block, 851 * dio_remainder will be non-zero. If the IO 852 * is a read then we can simply advance the IO 853 * cursor to the first block which is to be 854 * read. But if the IO is a write and the 855 * block was newly allocated we cannot do that; 856 * the start of the fs block must be zeroed out 857 * on-disk 858 */ 859 if (!buffer_new(map_bh)) 860 dio->next_block_for_io += dio_remainder; 861 dio->blocks_available -= dio_remainder; 862 } 863 do_holes: 864 /* Handle holes */ 865 if (!buffer_mapped(map_bh)) { 866 char *kaddr; 867 loff_t i_size_aligned; 868 869 /* AKPM: eargh, -ENOTBLK is a hack */ 870 if (dio->rw == WRITE) { 871 page_cache_release(page); 872 return -ENOTBLK; 873 } 874 875 /* 876 * Be sure to account for a partial block as the 877 * last block in the file 878 */ 879 i_size_aligned = ALIGN(i_size_read(dio->inode), 880 1 << blkbits); 881 if (dio->block_in_file >= 882 i_size_aligned >> blkbits) { 883 /* We hit eof */ 884 page_cache_release(page); 885 goto out; 886 } 887 kaddr = kmap_atomic(page, KM_USER0); 888 memset(kaddr + (block_in_page << blkbits), 889 0, 1 << blkbits); 890 flush_dcache_page(page); 891 kunmap_atomic(kaddr, KM_USER0); 892 dio->block_in_file++; 893 block_in_page++; 894 goto next_block; 895 } 896 897 /* 898 * If we're performing IO which has an alignment which 899 * is finer than the underlying fs, go check to see if 900 * we must zero out the start of this block. 901 */ 902 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 903 dio_zero_block(dio, 0); 904 905 /* 906 * Work out, in this_chunk_blocks, how much disk we 907 * can add to this page 908 */ 909 this_chunk_blocks = dio->blocks_available; 910 u = (PAGE_SIZE - offset_in_page) >> blkbits; 911 if (this_chunk_blocks > u) 912 this_chunk_blocks = u; 913 u = dio->final_block_in_request - dio->block_in_file; 914 if (this_chunk_blocks > u) 915 this_chunk_blocks = u; 916 this_chunk_bytes = this_chunk_blocks << blkbits; 917 BUG_ON(this_chunk_bytes == 0); 918 919 dio->boundary = buffer_boundary(map_bh); 920 ret = submit_page_section(dio, page, offset_in_page, 921 this_chunk_bytes, dio->next_block_for_io); 922 if (ret) { 923 page_cache_release(page); 924 goto out; 925 } 926 dio->next_block_for_io += this_chunk_blocks; 927 928 dio->block_in_file += this_chunk_blocks; 929 block_in_page += this_chunk_blocks; 930 dio->blocks_available -= this_chunk_blocks; 931 next_block: 932 BUG_ON(dio->block_in_file > dio->final_block_in_request); 933 if (dio->block_in_file == dio->final_block_in_request) 934 break; 935 } 936 937 /* Drop the ref which was taken in get_user_pages() */ 938 page_cache_release(page); 939 block_in_page = 0; 940 } 941 out: 942 return ret; 943 } 944 945 /* 946 * Releases both i_mutex and i_alloc_sem 947 */ 948 static ssize_t 949 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 950 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 951 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, 952 struct dio *dio) 953 { 954 unsigned long user_addr; 955 int seg; 956 ssize_t ret = 0; 957 ssize_t ret2; 958 size_t bytes; 959 960 dio->bio = NULL; 961 dio->inode = inode; 962 dio->rw = rw; 963 dio->blkbits = blkbits; 964 dio->blkfactor = inode->i_blkbits - blkbits; 965 dio->start_zero_done = 0; 966 dio->size = 0; 967 dio->block_in_file = offset >> blkbits; 968 dio->blocks_available = 0; 969 dio->cur_page = NULL; 970 971 dio->boundary = 0; 972 dio->reap_counter = 0; 973 dio->get_block = get_block; 974 dio->end_io = end_io; 975 dio->map_bh.b_private = NULL; 976 dio->final_block_in_bio = -1; 977 dio->next_block_for_io = -1; 978 979 dio->page_errors = 0; 980 dio->io_error = 0; 981 dio->result = 0; 982 dio->iocb = iocb; 983 dio->i_size = i_size_read(inode); 984 985 /* 986 * BIO completion state. 987 * 988 * ->bio_count starts out at one, and we decrement it to zero after all 989 * BIOs are submitted. This to avoid the situation where a really fast 990 * (or synchronous) device could take the count to zero while we're 991 * still submitting BIOs. 992 */ 993 dio->bio_count = 1; 994 dio->bios_in_flight = 0; 995 spin_lock_init(&dio->bio_lock); 996 dio->bio_list = NULL; 997 dio->waiter = NULL; 998 999 /* 1000 * In case of non-aligned buffers, we may need 2 more 1001 * pages since we need to zero out first and last block. 1002 */ 1003 if (unlikely(dio->blkfactor)) 1004 dio->pages_in_io = 2; 1005 else 1006 dio->pages_in_io = 0; 1007 1008 for (seg = 0; seg < nr_segs; seg++) { 1009 user_addr = (unsigned long)iov[seg].iov_base; 1010 dio->pages_in_io += 1011 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 1012 - user_addr/PAGE_SIZE); 1013 } 1014 1015 for (seg = 0; seg < nr_segs; seg++) { 1016 user_addr = (unsigned long)iov[seg].iov_base; 1017 dio->size += bytes = iov[seg].iov_len; 1018 1019 /* Index into the first page of the first block */ 1020 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1021 dio->final_block_in_request = dio->block_in_file + 1022 (bytes >> blkbits); 1023 /* Page fetching state */ 1024 dio->head = 0; 1025 dio->tail = 0; 1026 dio->curr_page = 0; 1027 1028 dio->total_pages = 0; 1029 if (user_addr & (PAGE_SIZE-1)) { 1030 dio->total_pages++; 1031 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1032 } 1033 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1034 dio->curr_user_address = user_addr; 1035 1036 ret = do_direct_IO(dio); 1037 1038 dio->result += iov[seg].iov_len - 1039 ((dio->final_block_in_request - dio->block_in_file) << 1040 blkbits); 1041 1042 if (ret) { 1043 dio_cleanup(dio); 1044 break; 1045 } 1046 } /* end iovec loop */ 1047 1048 if (ret == -ENOTBLK && rw == WRITE) { 1049 /* 1050 * The remaining part of the request will be 1051 * be handled by buffered I/O when we return 1052 */ 1053 ret = 0; 1054 } 1055 /* 1056 * There may be some unwritten disk at the end of a part-written 1057 * fs-block-sized block. Go zero that now. 1058 */ 1059 dio_zero_block(dio, 1); 1060 1061 if (dio->cur_page) { 1062 ret2 = dio_send_cur_page(dio); 1063 if (ret == 0) 1064 ret = ret2; 1065 page_cache_release(dio->cur_page); 1066 dio->cur_page = NULL; 1067 } 1068 if (dio->bio) 1069 dio_bio_submit(dio); 1070 1071 /* 1072 * It is possible that, we return short IO due to end of file. 1073 * In that case, we need to release all the pages we got hold on. 1074 */ 1075 dio_cleanup(dio); 1076 1077 /* 1078 * All block lookups have been performed. For READ requests 1079 * we can let i_mutex go now that its achieved its purpose 1080 * of protecting us from looking up uninitialized blocks. 1081 */ 1082 if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) 1083 mutex_unlock(&dio->inode->i_mutex); 1084 1085 /* 1086 * OK, all BIOs are submitted, so we can decrement bio_count to truly 1087 * reflect the number of to-be-processed BIOs. 1088 */ 1089 if (dio->is_async) { 1090 int should_wait = 0; 1091 1092 if (dio->result < dio->size && rw == WRITE) { 1093 dio->waiter = current; 1094 should_wait = 1; 1095 } 1096 if (ret == 0) 1097 ret = dio->result; 1098 finished_one_bio(dio); /* This can free the dio */ 1099 blk_run_address_space(inode->i_mapping); 1100 if (should_wait) { 1101 unsigned long flags; 1102 /* 1103 * Wait for already issued I/O to drain out and 1104 * release its references to user-space pages 1105 * before returning to fallback on buffered I/O 1106 */ 1107 1108 spin_lock_irqsave(&dio->bio_lock, flags); 1109 set_current_state(TASK_UNINTERRUPTIBLE); 1110 while (dio->bio_count) { 1111 spin_unlock_irqrestore(&dio->bio_lock, flags); 1112 io_schedule(); 1113 spin_lock_irqsave(&dio->bio_lock, flags); 1114 set_current_state(TASK_UNINTERRUPTIBLE); 1115 } 1116 spin_unlock_irqrestore(&dio->bio_lock, flags); 1117 set_current_state(TASK_RUNNING); 1118 kfree(dio); 1119 } 1120 } else { 1121 ssize_t transferred = 0; 1122 1123 finished_one_bio(dio); 1124 ret2 = dio_await_completion(dio); 1125 if (ret == 0) 1126 ret = ret2; 1127 if (ret == 0) 1128 ret = dio->page_errors; 1129 if (dio->result) { 1130 loff_t i_size = i_size_read(inode); 1131 1132 transferred = dio->result; 1133 /* 1134 * Adjust the return value if the read crossed a 1135 * non-block-aligned EOF. 1136 */ 1137 if (rw == READ && (offset + transferred > i_size)) 1138 transferred = i_size - offset; 1139 } 1140 dio_complete(dio, offset, transferred); 1141 if (ret == 0) 1142 ret = transferred; 1143 1144 /* We could have also come here on an AIO file extend */ 1145 if (!is_sync_kiocb(iocb) && rw == WRITE && 1146 ret >= 0 && dio->result == dio->size) 1147 /* 1148 * For AIO writes where we have completed the 1149 * i/o, we have to mark the the aio complete. 1150 */ 1151 aio_complete(iocb, ret, 0); 1152 kfree(dio); 1153 } 1154 return ret; 1155 } 1156 1157 /* 1158 * This is a library function for use by filesystem drivers. 1159 * The locking rules are governed by the dio_lock_type parameter. 1160 * 1161 * DIO_NO_LOCKING (no locking, for raw block device access) 1162 * For writes, i_mutex is not held on entry; it is never taken. 1163 * 1164 * DIO_LOCKING (simple locking for regular files) 1165 * For writes we are called under i_mutex and return with i_mutex held, even 1166 * though it is internally dropped. 1167 * For reads, i_mutex is not held on entry, but it is taken and dropped before 1168 * returning. 1169 * 1170 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of 1171 * uninitialised data, allowing parallel direct readers and writers) 1172 * For writes we are called without i_mutex, return without it, never touch it. 1173 * For reads we are called under i_mutex and return with i_mutex held, even 1174 * though it may be internally dropped. 1175 * 1176 * Additional i_alloc_sem locking requirements described inline below. 1177 */ 1178 ssize_t 1179 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1180 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1181 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1182 int dio_lock_type) 1183 { 1184 int seg; 1185 size_t size; 1186 unsigned long addr; 1187 unsigned blkbits = inode->i_blkbits; 1188 unsigned bdev_blkbits = 0; 1189 unsigned blocksize_mask = (1 << blkbits) - 1; 1190 ssize_t retval = -EINVAL; 1191 loff_t end = offset; 1192 struct dio *dio; 1193 int release_i_mutex = 0; 1194 int acquire_i_mutex = 0; 1195 1196 if (rw & WRITE) 1197 current->flags |= PF_SYNCWRITE; 1198 1199 if (bdev) 1200 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); 1201 1202 if (offset & blocksize_mask) { 1203 if (bdev) 1204 blkbits = bdev_blkbits; 1205 blocksize_mask = (1 << blkbits) - 1; 1206 if (offset & blocksize_mask) 1207 goto out; 1208 } 1209 1210 /* Check the memory alignment. Blocks cannot straddle pages */ 1211 for (seg = 0; seg < nr_segs; seg++) { 1212 addr = (unsigned long)iov[seg].iov_base; 1213 size = iov[seg].iov_len; 1214 end += size; 1215 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1216 if (bdev) 1217 blkbits = bdev_blkbits; 1218 blocksize_mask = (1 << blkbits) - 1; 1219 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1220 goto out; 1221 } 1222 } 1223 1224 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 1225 retval = -ENOMEM; 1226 if (!dio) 1227 goto out; 1228 1229 /* 1230 * For block device access DIO_NO_LOCKING is used, 1231 * neither readers nor writers do any locking at all 1232 * For regular files using DIO_LOCKING, 1233 * readers need to grab i_mutex and i_alloc_sem 1234 * writers need to grab i_alloc_sem only (i_mutex is already held) 1235 * For regular files using DIO_OWN_LOCKING, 1236 * neither readers nor writers take any locks here 1237 */ 1238 dio->lock_type = dio_lock_type; 1239 if (dio_lock_type != DIO_NO_LOCKING) { 1240 /* watch out for a 0 len io from a tricksy fs */ 1241 if (rw == READ && end > offset) { 1242 struct address_space *mapping; 1243 1244 mapping = iocb->ki_filp->f_mapping; 1245 if (dio_lock_type != DIO_OWN_LOCKING) { 1246 mutex_lock(&inode->i_mutex); 1247 release_i_mutex = 1; 1248 } 1249 1250 retval = filemap_write_and_wait_range(mapping, offset, 1251 end - 1); 1252 if (retval) { 1253 kfree(dio); 1254 goto out; 1255 } 1256 1257 if (dio_lock_type == DIO_OWN_LOCKING) { 1258 mutex_unlock(&inode->i_mutex); 1259 acquire_i_mutex = 1; 1260 } 1261 } 1262 1263 if (dio_lock_type == DIO_LOCKING) 1264 down_read(&inode->i_alloc_sem); 1265 } 1266 1267 /* 1268 * For file extending writes updating i_size before data 1269 * writeouts complete can expose uninitialized blocks. So 1270 * even for AIO, we need to wait for i/o to complete before 1271 * returning in this case. 1272 */ 1273 dio->is_async = !is_sync_kiocb(iocb) && !((rw == WRITE) && 1274 (end > i_size_read(inode))); 1275 1276 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1277 nr_segs, blkbits, get_block, end_io, dio); 1278 1279 if (rw == READ && dio_lock_type == DIO_LOCKING) 1280 release_i_mutex = 0; 1281 1282 out: 1283 if (release_i_mutex) 1284 mutex_unlock(&inode->i_mutex); 1285 else if (acquire_i_mutex) 1286 mutex_lock(&inode->i_mutex); 1287 if (rw & WRITE) 1288 current->flags &= ~PF_SYNCWRITE; 1289 return retval; 1290 } 1291 EXPORT_SYMBOL(__blockdev_direct_IO); 1292