xref: /linux/fs/direct-io.c (revision e6f2a617ac53bc0753b885ffb94379ff48b2e2df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 /*
43  * How many user pages to map in one call to get_user_pages().  This determines
44  * the size of a structure in the slab cache
45  */
46 #define DIO_PAGES	64
47 
48 /*
49  * Flags for dio_complete()
50  */
51 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
52 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
53 
54 /*
55  * This code generally works in units of "dio_blocks".  A dio_block is
56  * somewhere between the hard sector size and the filesystem block size.  it
57  * is determined on a per-invocation basis.   When talking to the filesystem
58  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
59  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
60  * to bio_block quantities by shifting left by blkfactor.
61  *
62  * If blkfactor is zero then the user's request was aligned to the filesystem's
63  * blocksize.
64  */
65 
66 /* dio_state only used in the submission path */
67 
68 struct dio_submit {
69 	struct bio *bio;		/* bio under assembly */
70 	unsigned blkbits;		/* doesn't change */
71 	unsigned blkfactor;		/* When we're using an alignment which
72 					   is finer than the filesystem's soft
73 					   blocksize, this specifies how much
74 					   finer.  blkfactor=2 means 1/4-block
75 					   alignment.  Does not change */
76 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
77 					   been performed at the start of a
78 					   write */
79 	int pages_in_io;		/* approximate total IO pages */
80 	sector_t block_in_file;		/* Current offset into the underlying
81 					   file in dio_block units. */
82 	unsigned blocks_available;	/* At block_in_file.  changes */
83 	int reap_counter;		/* rate limit reaping */
84 	sector_t final_block_in_request;/* doesn't change */
85 	int boundary;			/* prev block is at a boundary */
86 	get_block_t *get_block;		/* block mapping function */
87 	dio_submit_t *submit_io;	/* IO submition function */
88 
89 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
90 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
91 	sector_t next_block_for_io;	/* next block to be put under IO,
92 					   in dio_blocks units */
93 
94 	/*
95 	 * Deferred addition of a page to the dio.  These variables are
96 	 * private to dio_send_cur_page(), submit_page_section() and
97 	 * dio_bio_add_page().
98 	 */
99 	struct page *cur_page;		/* The page */
100 	unsigned cur_page_offset;	/* Offset into it, in bytes */
101 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
102 	sector_t cur_page_block;	/* Where it starts */
103 	loff_t cur_page_fs_offset;	/* Offset in file */
104 
105 	struct iov_iter *iter;
106 	/*
107 	 * Page queue.  These variables belong to dio_refill_pages() and
108 	 * dio_get_page().
109 	 */
110 	unsigned head;			/* next page to process */
111 	unsigned tail;			/* last valid page + 1 */
112 	size_t from, to;
113 };
114 
115 /* dio_state communicated between submission path and end_io */
116 struct dio {
117 	int flags;			/* doesn't change */
118 	int op;
119 	int op_flags;
120 	blk_qc_t bio_cookie;
121 	struct gendisk *bio_disk;
122 	struct inode *inode;
123 	loff_t i_size;			/* i_size when submitted */
124 	dio_iodone_t *end_io;		/* IO completion function */
125 
126 	void *private;			/* copy from map_bh.b_private */
127 
128 	/* BIO completion state */
129 	spinlock_t bio_lock;		/* protects BIO fields below */
130 	int page_errors;		/* errno from get_user_pages() */
131 	int is_async;			/* is IO async ? */
132 	bool defer_completion;		/* defer AIO completion to workqueue? */
133 	bool should_dirty;		/* if pages should be dirtied */
134 	int io_error;			/* IO error in completion path */
135 	unsigned long refcount;		/* direct_io_worker() and bios */
136 	struct bio *bio_list;		/* singly linked via bi_private */
137 	struct task_struct *waiter;	/* waiting task (NULL if none) */
138 
139 	/* AIO related stuff */
140 	struct kiocb *iocb;		/* kiocb */
141 	ssize_t result;                 /* IO result */
142 
143 	/*
144 	 * pages[] (and any fields placed after it) are not zeroed out at
145 	 * allocation time.  Don't add new fields after pages[] unless you
146 	 * wish that they not be zeroed.
147 	 */
148 	union {
149 		struct page *pages[DIO_PAGES];	/* page buffer */
150 		struct work_struct complete_work;/* deferred AIO completion */
151 	};
152 } ____cacheline_aligned_in_smp;
153 
154 static struct kmem_cache *dio_cache __read_mostly;
155 
156 /*
157  * How many pages are in the queue?
158  */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 	return sdio->tail - sdio->head;
162 }
163 
164 /*
165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166  */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 	ssize_t ret;
170 
171 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
172 				&sdio->from);
173 
174 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
175 		struct page *page = ZERO_PAGE(0);
176 		/*
177 		 * A memory fault, but the filesystem has some outstanding
178 		 * mapped blocks.  We need to use those blocks up to avoid
179 		 * leaking stale data in the file.
180 		 */
181 		if (dio->page_errors == 0)
182 			dio->page_errors = ret;
183 		get_page(page);
184 		dio->pages[0] = page;
185 		sdio->head = 0;
186 		sdio->tail = 1;
187 		sdio->from = 0;
188 		sdio->to = PAGE_SIZE;
189 		return 0;
190 	}
191 
192 	if (ret >= 0) {
193 		iov_iter_advance(sdio->iter, ret);
194 		ret += sdio->from;
195 		sdio->head = 0;
196 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 		return 0;
199 	}
200 	return ret;
201 }
202 
203 /*
204  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
205  * buffered inside the dio so that we can call get_user_pages() against a
206  * decent number of pages, less frequently.  To provide nicer use of the
207  * L1 cache.
208  */
209 static inline struct page *dio_get_page(struct dio *dio,
210 					struct dio_submit *sdio)
211 {
212 	if (dio_pages_present(sdio) == 0) {
213 		int ret;
214 
215 		ret = dio_refill_pages(dio, sdio);
216 		if (ret)
217 			return ERR_PTR(ret);
218 		BUG_ON(dio_pages_present(sdio) == 0);
219 	}
220 	return dio->pages[sdio->head];
221 }
222 
223 /*
224  * dio_complete() - called when all DIO BIO I/O has been completed
225  *
226  * This drops i_dio_count, lets interested parties know that a DIO operation
227  * has completed, and calculates the resulting return code for the operation.
228  *
229  * It lets the filesystem know if it registered an interest earlier via
230  * get_block.  Pass the private field of the map buffer_head so that
231  * filesystems can use it to hold additional state between get_block calls and
232  * dio_complete.
233  */
234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
235 {
236 	loff_t offset = dio->iocb->ki_pos;
237 	ssize_t transferred = 0;
238 	int err;
239 
240 	/*
241 	 * AIO submission can race with bio completion to get here while
242 	 * expecting to have the last io completed by bio completion.
243 	 * In that case -EIOCBQUEUED is in fact not an error we want
244 	 * to preserve through this call.
245 	 */
246 	if (ret == -EIOCBQUEUED)
247 		ret = 0;
248 
249 	if (dio->result) {
250 		transferred = dio->result;
251 
252 		/* Check for short read case */
253 		if ((dio->op == REQ_OP_READ) &&
254 		    ((offset + transferred) > dio->i_size))
255 			transferred = dio->i_size - offset;
256 		/* ignore EFAULT if some IO has been done */
257 		if (unlikely(ret == -EFAULT) && transferred)
258 			ret = 0;
259 	}
260 
261 	if (ret == 0)
262 		ret = dio->page_errors;
263 	if (ret == 0)
264 		ret = dio->io_error;
265 	if (ret == 0)
266 		ret = transferred;
267 
268 	if (dio->end_io) {
269 		// XXX: ki_pos??
270 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
271 		if (err)
272 			ret = err;
273 	}
274 
275 	/*
276 	 * Try again to invalidate clean pages which might have been cached by
277 	 * non-direct readahead, or faulted in by get_user_pages() if the source
278 	 * of the write was an mmap'ed region of the file we're writing.  Either
279 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
280 	 * this invalidation fails, tough, the write still worked...
281 	 *
282 	 * And this page cache invalidation has to be after dio->end_io(), as
283 	 * some filesystems convert unwritten extents to real allocations in
284 	 * end_io() when necessary, otherwise a racing buffer read would cache
285 	 * zeros from unwritten extents.
286 	 */
287 	if (flags & DIO_COMPLETE_INVALIDATE &&
288 	    ret > 0 && dio->op == REQ_OP_WRITE &&
289 	    dio->inode->i_mapping->nrpages) {
290 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
291 					offset >> PAGE_SHIFT,
292 					(offset + ret - 1) >> PAGE_SHIFT);
293 		if (err)
294 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
295 	}
296 
297 	inode_dio_end(dio->inode);
298 
299 	if (flags & DIO_COMPLETE_ASYNC) {
300 		/*
301 		 * generic_write_sync expects ki_pos to have been updated
302 		 * already, but the submission path only does this for
303 		 * synchronous I/O.
304 		 */
305 		dio->iocb->ki_pos += transferred;
306 
307 		if (ret > 0 && dio->op == REQ_OP_WRITE)
308 			ret = generic_write_sync(dio->iocb, ret);
309 		dio->iocb->ki_complete(dio->iocb, ret, 0);
310 	}
311 
312 	kmem_cache_free(dio_cache, dio);
313 	return ret;
314 }
315 
316 static void dio_aio_complete_work(struct work_struct *work)
317 {
318 	struct dio *dio = container_of(work, struct dio, complete_work);
319 
320 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
321 }
322 
323 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
324 
325 /*
326  * Asynchronous IO callback.
327  */
328 static void dio_bio_end_aio(struct bio *bio)
329 {
330 	struct dio *dio = bio->bi_private;
331 	unsigned long remaining;
332 	unsigned long flags;
333 	bool defer_completion = false;
334 
335 	/* cleanup the bio */
336 	dio_bio_complete(dio, bio);
337 
338 	spin_lock_irqsave(&dio->bio_lock, flags);
339 	remaining = --dio->refcount;
340 	if (remaining == 1 && dio->waiter)
341 		wake_up_process(dio->waiter);
342 	spin_unlock_irqrestore(&dio->bio_lock, flags);
343 
344 	if (remaining == 0) {
345 		/*
346 		 * Defer completion when defer_completion is set or
347 		 * when the inode has pages mapped and this is AIO write.
348 		 * We need to invalidate those pages because there is a
349 		 * chance they contain stale data in the case buffered IO
350 		 * went in between AIO submission and completion into the
351 		 * same region.
352 		 */
353 		if (dio->result)
354 			defer_completion = dio->defer_completion ||
355 					   (dio->op == REQ_OP_WRITE &&
356 					    dio->inode->i_mapping->nrpages);
357 		if (defer_completion) {
358 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
359 			queue_work(dio->inode->i_sb->s_dio_done_wq,
360 				   &dio->complete_work);
361 		} else {
362 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
363 		}
364 	}
365 }
366 
367 /*
368  * The BIO completion handler simply queues the BIO up for the process-context
369  * handler.
370  *
371  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
372  * implement a singly-linked list of completed BIOs, at dio->bio_list.
373  */
374 static void dio_bio_end_io(struct bio *bio)
375 {
376 	struct dio *dio = bio->bi_private;
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(&dio->bio_lock, flags);
380 	bio->bi_private = dio->bio_list;
381 	dio->bio_list = bio;
382 	if (--dio->refcount == 1 && dio->waiter)
383 		wake_up_process(dio->waiter);
384 	spin_unlock_irqrestore(&dio->bio_lock, flags);
385 }
386 
387 /**
388  * dio_end_io - handle the end io action for the given bio
389  * @bio: The direct io bio thats being completed
390  *
391  * This is meant to be called by any filesystem that uses their own dio_submit_t
392  * so that the DIO specific endio actions are dealt with after the filesystem
393  * has done it's completion work.
394  */
395 void dio_end_io(struct bio *bio)
396 {
397 	struct dio *dio = bio->bi_private;
398 
399 	if (dio->is_async)
400 		dio_bio_end_aio(bio);
401 	else
402 		dio_bio_end_io(bio);
403 }
404 EXPORT_SYMBOL_GPL(dio_end_io);
405 
406 static inline void
407 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
408 	      struct block_device *bdev,
409 	      sector_t first_sector, int nr_vecs)
410 {
411 	struct bio *bio;
412 
413 	/*
414 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
415 	 * we request a valid number of vectors.
416 	 */
417 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
418 
419 	bio_set_dev(bio, bdev);
420 	bio->bi_iter.bi_sector = first_sector;
421 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
422 	if (dio->is_async)
423 		bio->bi_end_io = dio_bio_end_aio;
424 	else
425 		bio->bi_end_io = dio_bio_end_io;
426 
427 	bio->bi_write_hint = dio->iocb->ki_hint;
428 
429 	sdio->bio = bio;
430 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
431 }
432 
433 /*
434  * In the AIO read case we speculatively dirty the pages before starting IO.
435  * During IO completion, any of these pages which happen to have been written
436  * back will be redirtied by bio_check_pages_dirty().
437  *
438  * bios hold a dio reference between submit_bio and ->end_io.
439  */
440 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
441 {
442 	struct bio *bio = sdio->bio;
443 	unsigned long flags;
444 
445 	bio->bi_private = dio;
446 
447 	spin_lock_irqsave(&dio->bio_lock, flags);
448 	dio->refcount++;
449 	spin_unlock_irqrestore(&dio->bio_lock, flags);
450 
451 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
452 		bio_set_pages_dirty(bio);
453 
454 	dio->bio_disk = bio->bi_disk;
455 
456 	if (sdio->submit_io) {
457 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
458 		dio->bio_cookie = BLK_QC_T_NONE;
459 	} else
460 		dio->bio_cookie = submit_bio(bio);
461 
462 	sdio->bio = NULL;
463 	sdio->boundary = 0;
464 	sdio->logical_offset_in_bio = 0;
465 }
466 
467 /*
468  * Release any resources in case of a failure
469  */
470 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
471 {
472 	while (sdio->head < sdio->tail)
473 		put_page(dio->pages[sdio->head++]);
474 }
475 
476 /*
477  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
478  * returned once all BIOs have been completed.  This must only be called once
479  * all bios have been issued so that dio->refcount can only decrease.  This
480  * requires that that the caller hold a reference on the dio.
481  */
482 static struct bio *dio_await_one(struct dio *dio)
483 {
484 	unsigned long flags;
485 	struct bio *bio = NULL;
486 
487 	spin_lock_irqsave(&dio->bio_lock, flags);
488 
489 	/*
490 	 * Wait as long as the list is empty and there are bios in flight.  bio
491 	 * completion drops the count, maybe adds to the list, and wakes while
492 	 * holding the bio_lock so we don't need set_current_state()'s barrier
493 	 * and can call it after testing our condition.
494 	 */
495 	while (dio->refcount > 1 && dio->bio_list == NULL) {
496 		__set_current_state(TASK_UNINTERRUPTIBLE);
497 		dio->waiter = current;
498 		spin_unlock_irqrestore(&dio->bio_lock, flags);
499 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
500 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
501 			io_schedule();
502 		/* wake up sets us TASK_RUNNING */
503 		spin_lock_irqsave(&dio->bio_lock, flags);
504 		dio->waiter = NULL;
505 	}
506 	if (dio->bio_list) {
507 		bio = dio->bio_list;
508 		dio->bio_list = bio->bi_private;
509 	}
510 	spin_unlock_irqrestore(&dio->bio_lock, flags);
511 	return bio;
512 }
513 
514 /*
515  * Process one completed BIO.  No locks are held.
516  */
517 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
518 {
519 	blk_status_t err = bio->bi_status;
520 	bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
521 
522 	if (err) {
523 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
524 			dio->io_error = -EAGAIN;
525 		else
526 			dio->io_error = -EIO;
527 	}
528 
529 	if (dio->is_async && should_dirty) {
530 		bio_check_pages_dirty(bio);	/* transfers ownership */
531 	} else {
532 		bio_release_pages(bio, should_dirty);
533 		bio_put(bio);
534 	}
535 	return err;
536 }
537 
538 /*
539  * Wait on and process all in-flight BIOs.  This must only be called once
540  * all bios have been issued so that the refcount can only decrease.
541  * This just waits for all bios to make it through dio_bio_complete.  IO
542  * errors are propagated through dio->io_error and should be propagated via
543  * dio_complete().
544  */
545 static void dio_await_completion(struct dio *dio)
546 {
547 	struct bio *bio;
548 	do {
549 		bio = dio_await_one(dio);
550 		if (bio)
551 			dio_bio_complete(dio, bio);
552 	} while (bio);
553 }
554 
555 /*
556  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
557  * to keep the memory consumption sane we periodically reap any completed BIOs
558  * during the BIO generation phase.
559  *
560  * This also helps to limit the peak amount of pinned userspace memory.
561  */
562 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
563 {
564 	int ret = 0;
565 
566 	if (sdio->reap_counter++ >= 64) {
567 		while (dio->bio_list) {
568 			unsigned long flags;
569 			struct bio *bio;
570 			int ret2;
571 
572 			spin_lock_irqsave(&dio->bio_lock, flags);
573 			bio = dio->bio_list;
574 			dio->bio_list = bio->bi_private;
575 			spin_unlock_irqrestore(&dio->bio_lock, flags);
576 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
577 			if (ret == 0)
578 				ret = ret2;
579 		}
580 		sdio->reap_counter = 0;
581 	}
582 	return ret;
583 }
584 
585 /*
586  * Create workqueue for deferred direct IO completions. We allocate the
587  * workqueue when it's first needed. This avoids creating workqueue for
588  * filesystems that don't need it and also allows us to create the workqueue
589  * late enough so the we can include s_id in the name of the workqueue.
590  */
591 int sb_init_dio_done_wq(struct super_block *sb)
592 {
593 	struct workqueue_struct *old;
594 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
595 						      WQ_MEM_RECLAIM, 0,
596 						      sb->s_id);
597 	if (!wq)
598 		return -ENOMEM;
599 	/*
600 	 * This has to be atomic as more DIOs can race to create the workqueue
601 	 */
602 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
603 	/* Someone created workqueue before us? Free ours... */
604 	if (old)
605 		destroy_workqueue(wq);
606 	return 0;
607 }
608 
609 static int dio_set_defer_completion(struct dio *dio)
610 {
611 	struct super_block *sb = dio->inode->i_sb;
612 
613 	if (dio->defer_completion)
614 		return 0;
615 	dio->defer_completion = true;
616 	if (!sb->s_dio_done_wq)
617 		return sb_init_dio_done_wq(sb);
618 	return 0;
619 }
620 
621 /*
622  * Call into the fs to map some more disk blocks.  We record the current number
623  * of available blocks at sdio->blocks_available.  These are in units of the
624  * fs blocksize, i_blocksize(inode).
625  *
626  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
627  * it uses the passed inode-relative block number as the file offset, as usual.
628  *
629  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
630  * has remaining to do.  The fs should not map more than this number of blocks.
631  *
632  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
633  * indicate how much contiguous disk space has been made available at
634  * bh->b_blocknr.
635  *
636  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
637  * This isn't very efficient...
638  *
639  * In the case of filesystem holes: the fs may return an arbitrarily-large
640  * hole by returning an appropriate value in b_size and by clearing
641  * buffer_mapped().  However the direct-io code will only process holes one
642  * block at a time - it will repeatedly call get_block() as it walks the hole.
643  */
644 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
645 			   struct buffer_head *map_bh)
646 {
647 	int ret;
648 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
649 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
650 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
651 	int create;
652 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
653 	loff_t i_size;
654 
655 	/*
656 	 * If there was a memory error and we've overwritten all the
657 	 * mapped blocks then we can now return that memory error
658 	 */
659 	ret = dio->page_errors;
660 	if (ret == 0) {
661 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
662 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
663 		fs_endblk = (sdio->final_block_in_request - 1) >>
664 					sdio->blkfactor;
665 		fs_count = fs_endblk - fs_startblk + 1;
666 
667 		map_bh->b_state = 0;
668 		map_bh->b_size = fs_count << i_blkbits;
669 
670 		/*
671 		 * For writes that could fill holes inside i_size on a
672 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
673 		 * overwrites are permitted. We will return early to the caller
674 		 * once we see an unmapped buffer head returned, and the caller
675 		 * will fall back to buffered I/O.
676 		 *
677 		 * Otherwise the decision is left to the get_blocks method,
678 		 * which may decide to handle it or also return an unmapped
679 		 * buffer head.
680 		 */
681 		create = dio->op == REQ_OP_WRITE;
682 		if (dio->flags & DIO_SKIP_HOLES) {
683 			i_size = i_size_read(dio->inode);
684 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
685 				create = 0;
686 		}
687 
688 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
689 						map_bh, create);
690 
691 		/* Store for completion */
692 		dio->private = map_bh->b_private;
693 
694 		if (ret == 0 && buffer_defer_completion(map_bh))
695 			ret = dio_set_defer_completion(dio);
696 	}
697 	return ret;
698 }
699 
700 /*
701  * There is no bio.  Make one now.
702  */
703 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
704 		sector_t start_sector, struct buffer_head *map_bh)
705 {
706 	sector_t sector;
707 	int ret, nr_pages;
708 
709 	ret = dio_bio_reap(dio, sdio);
710 	if (ret)
711 		goto out;
712 	sector = start_sector << (sdio->blkbits - 9);
713 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
714 	BUG_ON(nr_pages <= 0);
715 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
716 	sdio->boundary = 0;
717 out:
718 	return ret;
719 }
720 
721 /*
722  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
723  * that was successful then update final_block_in_bio and take a ref against
724  * the just-added page.
725  *
726  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
727  */
728 static inline int dio_bio_add_page(struct dio_submit *sdio)
729 {
730 	int ret;
731 
732 	ret = bio_add_page(sdio->bio, sdio->cur_page,
733 			sdio->cur_page_len, sdio->cur_page_offset);
734 	if (ret == sdio->cur_page_len) {
735 		/*
736 		 * Decrement count only, if we are done with this page
737 		 */
738 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
739 			sdio->pages_in_io--;
740 		get_page(sdio->cur_page);
741 		sdio->final_block_in_bio = sdio->cur_page_block +
742 			(sdio->cur_page_len >> sdio->blkbits);
743 		ret = 0;
744 	} else {
745 		ret = 1;
746 	}
747 	return ret;
748 }
749 
750 /*
751  * Put cur_page under IO.  The section of cur_page which is described by
752  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
753  * starts on-disk at cur_page_block.
754  *
755  * We take a ref against the page here (on behalf of its presence in the bio).
756  *
757  * The caller of this function is responsible for removing cur_page from the
758  * dio, and for dropping the refcount which came from that presence.
759  */
760 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
761 		struct buffer_head *map_bh)
762 {
763 	int ret = 0;
764 
765 	if (sdio->bio) {
766 		loff_t cur_offset = sdio->cur_page_fs_offset;
767 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
768 			sdio->bio->bi_iter.bi_size;
769 
770 		/*
771 		 * See whether this new request is contiguous with the old.
772 		 *
773 		 * Btrfs cannot handle having logically non-contiguous requests
774 		 * submitted.  For example if you have
775 		 *
776 		 * Logical:  [0-4095][HOLE][8192-12287]
777 		 * Physical: [0-4095]      [4096-8191]
778 		 *
779 		 * We cannot submit those pages together as one BIO.  So if our
780 		 * current logical offset in the file does not equal what would
781 		 * be the next logical offset in the bio, submit the bio we
782 		 * have.
783 		 */
784 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
785 		    cur_offset != bio_next_offset)
786 			dio_bio_submit(dio, sdio);
787 	}
788 
789 	if (sdio->bio == NULL) {
790 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
791 		if (ret)
792 			goto out;
793 	}
794 
795 	if (dio_bio_add_page(sdio) != 0) {
796 		dio_bio_submit(dio, sdio);
797 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
798 		if (ret == 0) {
799 			ret = dio_bio_add_page(sdio);
800 			BUG_ON(ret != 0);
801 		}
802 	}
803 out:
804 	return ret;
805 }
806 
807 /*
808  * An autonomous function to put a chunk of a page under deferred IO.
809  *
810  * The caller doesn't actually know (or care) whether this piece of page is in
811  * a BIO, or is under IO or whatever.  We just take care of all possible
812  * situations here.  The separation between the logic of do_direct_IO() and
813  * that of submit_page_section() is important for clarity.  Please don't break.
814  *
815  * The chunk of page starts on-disk at blocknr.
816  *
817  * We perform deferred IO, by recording the last-submitted page inside our
818  * private part of the dio structure.  If possible, we just expand the IO
819  * across that page here.
820  *
821  * If that doesn't work out then we put the old page into the bio and add this
822  * page to the dio instead.
823  */
824 static inline int
825 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
826 		    unsigned offset, unsigned len, sector_t blocknr,
827 		    struct buffer_head *map_bh)
828 {
829 	int ret = 0;
830 
831 	if (dio->op == REQ_OP_WRITE) {
832 		/*
833 		 * Read accounting is performed in submit_bio()
834 		 */
835 		task_io_account_write(len);
836 	}
837 
838 	/*
839 	 * Can we just grow the current page's presence in the dio?
840 	 */
841 	if (sdio->cur_page == page &&
842 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
843 	    sdio->cur_page_block +
844 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
845 		sdio->cur_page_len += len;
846 		goto out;
847 	}
848 
849 	/*
850 	 * If there's a deferred page already there then send it.
851 	 */
852 	if (sdio->cur_page) {
853 		ret = dio_send_cur_page(dio, sdio, map_bh);
854 		put_page(sdio->cur_page);
855 		sdio->cur_page = NULL;
856 		if (ret)
857 			return ret;
858 	}
859 
860 	get_page(page);		/* It is in dio */
861 	sdio->cur_page = page;
862 	sdio->cur_page_offset = offset;
863 	sdio->cur_page_len = len;
864 	sdio->cur_page_block = blocknr;
865 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
866 out:
867 	/*
868 	 * If sdio->boundary then we want to schedule the IO now to
869 	 * avoid metadata seeks.
870 	 */
871 	if (sdio->boundary) {
872 		ret = dio_send_cur_page(dio, sdio, map_bh);
873 		if (sdio->bio)
874 			dio_bio_submit(dio, sdio);
875 		put_page(sdio->cur_page);
876 		sdio->cur_page = NULL;
877 	}
878 	return ret;
879 }
880 
881 /*
882  * If we are not writing the entire block and get_block() allocated
883  * the block for us, we need to fill-in the unused portion of the
884  * block with zeros. This happens only if user-buffer, fileoffset or
885  * io length is not filesystem block-size multiple.
886  *
887  * `end' is zero if we're doing the start of the IO, 1 at the end of the
888  * IO.
889  */
890 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
891 		int end, struct buffer_head *map_bh)
892 {
893 	unsigned dio_blocks_per_fs_block;
894 	unsigned this_chunk_blocks;	/* In dio_blocks */
895 	unsigned this_chunk_bytes;
896 	struct page *page;
897 
898 	sdio->start_zero_done = 1;
899 	if (!sdio->blkfactor || !buffer_new(map_bh))
900 		return;
901 
902 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
903 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
904 
905 	if (!this_chunk_blocks)
906 		return;
907 
908 	/*
909 	 * We need to zero out part of an fs block.  It is either at the
910 	 * beginning or the end of the fs block.
911 	 */
912 	if (end)
913 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
914 
915 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
916 
917 	page = ZERO_PAGE(0);
918 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
919 				sdio->next_block_for_io, map_bh))
920 		return;
921 
922 	sdio->next_block_for_io += this_chunk_blocks;
923 }
924 
925 /*
926  * Walk the user pages, and the file, mapping blocks to disk and generating
927  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
928  * into submit_page_section(), which takes care of the next stage of submission
929  *
930  * Direct IO against a blockdev is different from a file.  Because we can
931  * happily perform page-sized but 512-byte aligned IOs.  It is important that
932  * blockdev IO be able to have fine alignment and large sizes.
933  *
934  * So what we do is to permit the ->get_block function to populate bh.b_size
935  * with the size of IO which is permitted at this offset and this i_blkbits.
936  *
937  * For best results, the blockdev should be set up with 512-byte i_blkbits and
938  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
939  * fine alignment but still allows this function to work in PAGE_SIZE units.
940  */
941 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
942 			struct buffer_head *map_bh)
943 {
944 	const unsigned blkbits = sdio->blkbits;
945 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
946 	int ret = 0;
947 
948 	while (sdio->block_in_file < sdio->final_block_in_request) {
949 		struct page *page;
950 		size_t from, to;
951 
952 		page = dio_get_page(dio, sdio);
953 		if (IS_ERR(page)) {
954 			ret = PTR_ERR(page);
955 			goto out;
956 		}
957 		from = sdio->head ? 0 : sdio->from;
958 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
959 		sdio->head++;
960 
961 		while (from < to) {
962 			unsigned this_chunk_bytes;	/* # of bytes mapped */
963 			unsigned this_chunk_blocks;	/* # of blocks */
964 			unsigned u;
965 
966 			if (sdio->blocks_available == 0) {
967 				/*
968 				 * Need to go and map some more disk
969 				 */
970 				unsigned long blkmask;
971 				unsigned long dio_remainder;
972 
973 				ret = get_more_blocks(dio, sdio, map_bh);
974 				if (ret) {
975 					put_page(page);
976 					goto out;
977 				}
978 				if (!buffer_mapped(map_bh))
979 					goto do_holes;
980 
981 				sdio->blocks_available =
982 						map_bh->b_size >> blkbits;
983 				sdio->next_block_for_io =
984 					map_bh->b_blocknr << sdio->blkfactor;
985 				if (buffer_new(map_bh)) {
986 					clean_bdev_aliases(
987 						map_bh->b_bdev,
988 						map_bh->b_blocknr,
989 						map_bh->b_size >> i_blkbits);
990 				}
991 
992 				if (!sdio->blkfactor)
993 					goto do_holes;
994 
995 				blkmask = (1 << sdio->blkfactor) - 1;
996 				dio_remainder = (sdio->block_in_file & blkmask);
997 
998 				/*
999 				 * If we are at the start of IO and that IO
1000 				 * starts partway into a fs-block,
1001 				 * dio_remainder will be non-zero.  If the IO
1002 				 * is a read then we can simply advance the IO
1003 				 * cursor to the first block which is to be
1004 				 * read.  But if the IO is a write and the
1005 				 * block was newly allocated we cannot do that;
1006 				 * the start of the fs block must be zeroed out
1007 				 * on-disk
1008 				 */
1009 				if (!buffer_new(map_bh))
1010 					sdio->next_block_for_io += dio_remainder;
1011 				sdio->blocks_available -= dio_remainder;
1012 			}
1013 do_holes:
1014 			/* Handle holes */
1015 			if (!buffer_mapped(map_bh)) {
1016 				loff_t i_size_aligned;
1017 
1018 				/* AKPM: eargh, -ENOTBLK is a hack */
1019 				if (dio->op == REQ_OP_WRITE) {
1020 					put_page(page);
1021 					return -ENOTBLK;
1022 				}
1023 
1024 				/*
1025 				 * Be sure to account for a partial block as the
1026 				 * last block in the file
1027 				 */
1028 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1029 							1 << blkbits);
1030 				if (sdio->block_in_file >=
1031 						i_size_aligned >> blkbits) {
1032 					/* We hit eof */
1033 					put_page(page);
1034 					goto out;
1035 				}
1036 				zero_user(page, from, 1 << blkbits);
1037 				sdio->block_in_file++;
1038 				from += 1 << blkbits;
1039 				dio->result += 1 << blkbits;
1040 				goto next_block;
1041 			}
1042 
1043 			/*
1044 			 * If we're performing IO which has an alignment which
1045 			 * is finer than the underlying fs, go check to see if
1046 			 * we must zero out the start of this block.
1047 			 */
1048 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1049 				dio_zero_block(dio, sdio, 0, map_bh);
1050 
1051 			/*
1052 			 * Work out, in this_chunk_blocks, how much disk we
1053 			 * can add to this page
1054 			 */
1055 			this_chunk_blocks = sdio->blocks_available;
1056 			u = (to - from) >> blkbits;
1057 			if (this_chunk_blocks > u)
1058 				this_chunk_blocks = u;
1059 			u = sdio->final_block_in_request - sdio->block_in_file;
1060 			if (this_chunk_blocks > u)
1061 				this_chunk_blocks = u;
1062 			this_chunk_bytes = this_chunk_blocks << blkbits;
1063 			BUG_ON(this_chunk_bytes == 0);
1064 
1065 			if (this_chunk_blocks == sdio->blocks_available)
1066 				sdio->boundary = buffer_boundary(map_bh);
1067 			ret = submit_page_section(dio, sdio, page,
1068 						  from,
1069 						  this_chunk_bytes,
1070 						  sdio->next_block_for_io,
1071 						  map_bh);
1072 			if (ret) {
1073 				put_page(page);
1074 				goto out;
1075 			}
1076 			sdio->next_block_for_io += this_chunk_blocks;
1077 
1078 			sdio->block_in_file += this_chunk_blocks;
1079 			from += this_chunk_bytes;
1080 			dio->result += this_chunk_bytes;
1081 			sdio->blocks_available -= this_chunk_blocks;
1082 next_block:
1083 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1084 			if (sdio->block_in_file == sdio->final_block_in_request)
1085 				break;
1086 		}
1087 
1088 		/* Drop the ref which was taken in get_user_pages() */
1089 		put_page(page);
1090 	}
1091 out:
1092 	return ret;
1093 }
1094 
1095 static inline int drop_refcount(struct dio *dio)
1096 {
1097 	int ret2;
1098 	unsigned long flags;
1099 
1100 	/*
1101 	 * Sync will always be dropping the final ref and completing the
1102 	 * operation.  AIO can if it was a broken operation described above or
1103 	 * in fact if all the bios race to complete before we get here.  In
1104 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1105 	 * return code that the caller will hand to ->complete().
1106 	 *
1107 	 * This is managed by the bio_lock instead of being an atomic_t so that
1108 	 * completion paths can drop their ref and use the remaining count to
1109 	 * decide to wake the submission path atomically.
1110 	 */
1111 	spin_lock_irqsave(&dio->bio_lock, flags);
1112 	ret2 = --dio->refcount;
1113 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1114 	return ret2;
1115 }
1116 
1117 /*
1118  * This is a library function for use by filesystem drivers.
1119  *
1120  * The locking rules are governed by the flags parameter:
1121  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1122  *    scheme for dumb filesystems.
1123  *    For writes this function is called under i_mutex and returns with
1124  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1125  *    taken and dropped again before returning.
1126  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1127  *    internal locking but rather rely on the filesystem to synchronize
1128  *    direct I/O reads/writes versus each other and truncate.
1129  *
1130  * To help with locking against truncate we incremented the i_dio_count
1131  * counter before starting direct I/O, and decrement it once we are done.
1132  * Truncate can wait for it to reach zero to provide exclusion.  It is
1133  * expected that filesystem provide exclusion between new direct I/O
1134  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1135  * but other filesystems need to take care of this on their own.
1136  *
1137  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1138  * is always inlined. Otherwise gcc is unable to split the structure into
1139  * individual fields and will generate much worse code. This is important
1140  * for the whole file.
1141  */
1142 static inline ssize_t
1143 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1144 		      struct block_device *bdev, struct iov_iter *iter,
1145 		      get_block_t get_block, dio_iodone_t end_io,
1146 		      dio_submit_t submit_io, int flags)
1147 {
1148 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1149 	unsigned blkbits = i_blkbits;
1150 	unsigned blocksize_mask = (1 << blkbits) - 1;
1151 	ssize_t retval = -EINVAL;
1152 	const size_t count = iov_iter_count(iter);
1153 	loff_t offset = iocb->ki_pos;
1154 	const loff_t end = offset + count;
1155 	struct dio *dio;
1156 	struct dio_submit sdio = { 0, };
1157 	struct buffer_head map_bh = { 0, };
1158 	struct blk_plug plug;
1159 	unsigned long align = offset | iov_iter_alignment(iter);
1160 
1161 	/*
1162 	 * Avoid references to bdev if not absolutely needed to give
1163 	 * the early prefetch in the caller enough time.
1164 	 */
1165 
1166 	if (align & blocksize_mask) {
1167 		if (bdev)
1168 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1169 		blocksize_mask = (1 << blkbits) - 1;
1170 		if (align & blocksize_mask)
1171 			goto out;
1172 	}
1173 
1174 	/* watch out for a 0 len io from a tricksy fs */
1175 	if (iov_iter_rw(iter) == READ && !count)
1176 		return 0;
1177 
1178 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1179 	retval = -ENOMEM;
1180 	if (!dio)
1181 		goto out;
1182 	/*
1183 	 * Believe it or not, zeroing out the page array caused a .5%
1184 	 * performance regression in a database benchmark.  So, we take
1185 	 * care to only zero out what's needed.
1186 	 */
1187 	memset(dio, 0, offsetof(struct dio, pages));
1188 
1189 	dio->flags = flags;
1190 	if (dio->flags & DIO_LOCKING) {
1191 		if (iov_iter_rw(iter) == READ) {
1192 			struct address_space *mapping =
1193 					iocb->ki_filp->f_mapping;
1194 
1195 			/* will be released by direct_io_worker */
1196 			inode_lock(inode);
1197 
1198 			retval = filemap_write_and_wait_range(mapping, offset,
1199 							      end - 1);
1200 			if (retval) {
1201 				inode_unlock(inode);
1202 				kmem_cache_free(dio_cache, dio);
1203 				goto out;
1204 			}
1205 		}
1206 	}
1207 
1208 	/* Once we sampled i_size check for reads beyond EOF */
1209 	dio->i_size = i_size_read(inode);
1210 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1211 		if (dio->flags & DIO_LOCKING)
1212 			inode_unlock(inode);
1213 		kmem_cache_free(dio_cache, dio);
1214 		retval = 0;
1215 		goto out;
1216 	}
1217 
1218 	/*
1219 	 * For file extending writes updating i_size before data writeouts
1220 	 * complete can expose uninitialized blocks in dumb filesystems.
1221 	 * In that case we need to wait for I/O completion even if asked
1222 	 * for an asynchronous write.
1223 	 */
1224 	if (is_sync_kiocb(iocb))
1225 		dio->is_async = false;
1226 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1227 		dio->is_async = false;
1228 	else
1229 		dio->is_async = true;
1230 
1231 	dio->inode = inode;
1232 	if (iov_iter_rw(iter) == WRITE) {
1233 		dio->op = REQ_OP_WRITE;
1234 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1235 		if (iocb->ki_flags & IOCB_NOWAIT)
1236 			dio->op_flags |= REQ_NOWAIT;
1237 	} else {
1238 		dio->op = REQ_OP_READ;
1239 	}
1240 	if (iocb->ki_flags & IOCB_HIPRI)
1241 		dio->op_flags |= REQ_HIPRI;
1242 
1243 	/*
1244 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1245 	 * so that we can call ->fsync.
1246 	 */
1247 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1248 		retval = 0;
1249 		if (iocb->ki_flags & IOCB_DSYNC)
1250 			retval = dio_set_defer_completion(dio);
1251 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1252 			/*
1253 			 * In case of AIO write racing with buffered read we
1254 			 * need to defer completion. We can't decide this now,
1255 			 * however the workqueue needs to be initialized here.
1256 			 */
1257 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1258 		}
1259 		if (retval) {
1260 			/*
1261 			 * We grab i_mutex only for reads so we don't have
1262 			 * to release it here
1263 			 */
1264 			kmem_cache_free(dio_cache, dio);
1265 			goto out;
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * Will be decremented at I/O completion time.
1271 	 */
1272 	inode_dio_begin(inode);
1273 
1274 	retval = 0;
1275 	sdio.blkbits = blkbits;
1276 	sdio.blkfactor = i_blkbits - blkbits;
1277 	sdio.block_in_file = offset >> blkbits;
1278 
1279 	sdio.get_block = get_block;
1280 	dio->end_io = end_io;
1281 	sdio.submit_io = submit_io;
1282 	sdio.final_block_in_bio = -1;
1283 	sdio.next_block_for_io = -1;
1284 
1285 	dio->iocb = iocb;
1286 
1287 	spin_lock_init(&dio->bio_lock);
1288 	dio->refcount = 1;
1289 
1290 	dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1291 	sdio.iter = iter;
1292 	sdio.final_block_in_request = end >> blkbits;
1293 
1294 	/*
1295 	 * In case of non-aligned buffers, we may need 2 more
1296 	 * pages since we need to zero out first and last block.
1297 	 */
1298 	if (unlikely(sdio.blkfactor))
1299 		sdio.pages_in_io = 2;
1300 
1301 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1302 
1303 	blk_start_plug(&plug);
1304 
1305 	retval = do_direct_IO(dio, &sdio, &map_bh);
1306 	if (retval)
1307 		dio_cleanup(dio, &sdio);
1308 
1309 	if (retval == -ENOTBLK) {
1310 		/*
1311 		 * The remaining part of the request will be
1312 		 * be handled by buffered I/O when we return
1313 		 */
1314 		retval = 0;
1315 	}
1316 	/*
1317 	 * There may be some unwritten disk at the end of a part-written
1318 	 * fs-block-sized block.  Go zero that now.
1319 	 */
1320 	dio_zero_block(dio, &sdio, 1, &map_bh);
1321 
1322 	if (sdio.cur_page) {
1323 		ssize_t ret2;
1324 
1325 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1326 		if (retval == 0)
1327 			retval = ret2;
1328 		put_page(sdio.cur_page);
1329 		sdio.cur_page = NULL;
1330 	}
1331 	if (sdio.bio)
1332 		dio_bio_submit(dio, &sdio);
1333 
1334 	blk_finish_plug(&plug);
1335 
1336 	/*
1337 	 * It is possible that, we return short IO due to end of file.
1338 	 * In that case, we need to release all the pages we got hold on.
1339 	 */
1340 	dio_cleanup(dio, &sdio);
1341 
1342 	/*
1343 	 * All block lookups have been performed. For READ requests
1344 	 * we can let i_mutex go now that its achieved its purpose
1345 	 * of protecting us from looking up uninitialized blocks.
1346 	 */
1347 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1348 		inode_unlock(dio->inode);
1349 
1350 	/*
1351 	 * The only time we want to leave bios in flight is when a successful
1352 	 * partial aio read or full aio write have been setup.  In that case
1353 	 * bio completion will call aio_complete.  The only time it's safe to
1354 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1355 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1356 	 */
1357 	BUG_ON(retval == -EIOCBQUEUED);
1358 	if (dio->is_async && retval == 0 && dio->result &&
1359 	    (iov_iter_rw(iter) == READ || dio->result == count))
1360 		retval = -EIOCBQUEUED;
1361 	else
1362 		dio_await_completion(dio);
1363 
1364 	if (drop_refcount(dio) == 0) {
1365 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1366 	} else
1367 		BUG_ON(retval != -EIOCBQUEUED);
1368 
1369 out:
1370 	return retval;
1371 }
1372 
1373 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1374 			     struct block_device *bdev, struct iov_iter *iter,
1375 			     get_block_t get_block,
1376 			     dio_iodone_t end_io, dio_submit_t submit_io,
1377 			     int flags)
1378 {
1379 	/*
1380 	 * The block device state is needed in the end to finally
1381 	 * submit everything.  Since it's likely to be cache cold
1382 	 * prefetch it here as first thing to hide some of the
1383 	 * latency.
1384 	 *
1385 	 * Attempt to prefetch the pieces we likely need later.
1386 	 */
1387 	prefetch(&bdev->bd_disk->part_tbl);
1388 	prefetch(bdev->bd_queue);
1389 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1390 
1391 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1392 				     end_io, submit_io, flags);
1393 }
1394 
1395 EXPORT_SYMBOL(__blockdev_direct_IO);
1396 
1397 static __init int dio_init(void)
1398 {
1399 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1400 	return 0;
1401 }
1402 module_init(dio_init)
1403