xref: /linux/fs/direct-io.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 #include "internal.h"
43 
44 /*
45  * How many user pages to map in one call to iov_iter_extract_pages().  This
46  * determines the size of a structure in the slab cache
47  */
48 #define DIO_PAGES	64
49 
50 /*
51  * Flags for dio_complete()
52  */
53 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55 
56 /*
57  * This code generally works in units of "dio_blocks".  A dio_block is
58  * somewhere between the hard sector size and the filesystem block size.  it
59  * is determined on a per-invocation basis.   When talking to the filesystem
60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62  * to bio_block quantities by shifting left by blkfactor.
63  *
64  * If blkfactor is zero then the user's request was aligned to the filesystem's
65  * blocksize.
66  */
67 
68 /* dio_state only used in the submission path */
69 
70 struct dio_submit {
71 	struct bio *bio;		/* bio under assembly */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	int reap_counter;		/* rate limit reaping */
86 	sector_t final_block_in_request;/* doesn't change */
87 	int boundary;			/* prev block is at a boundary */
88 	get_block_t *get_block;		/* block mapping function */
89 
90 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
91 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
92 	sector_t next_block_for_io;	/* next block to be put under IO,
93 					   in dio_blocks units */
94 
95 	/*
96 	 * Deferred addition of a page to the dio.  These variables are
97 	 * private to dio_send_cur_page(), submit_page_section() and
98 	 * dio_bio_add_page().
99 	 */
100 	struct page *cur_page;		/* The page */
101 	unsigned cur_page_offset;	/* Offset into it, in bytes */
102 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
103 	sector_t cur_page_block;	/* Where it starts */
104 	loff_t cur_page_fs_offset;	/* Offset in file */
105 
106 	struct iov_iter *iter;
107 	/*
108 	 * Page queue.  These variables belong to dio_refill_pages() and
109 	 * dio_get_page().
110 	 */
111 	unsigned head;			/* next page to process */
112 	unsigned tail;			/* last valid page + 1 */
113 	size_t from, to;
114 };
115 
116 /* dio_state communicated between submission path and end_io */
117 struct dio {
118 	int flags;			/* doesn't change */
119 	blk_opf_t opf;			/* request operation type and flags */
120 	struct gendisk *bio_disk;
121 	struct inode *inode;
122 	loff_t i_size;			/* i_size when submitted */
123 	dio_iodone_t *end_io;		/* IO completion function */
124 	bool is_pinned;			/* T if we have pins on the pages */
125 
126 	void *private;			/* copy from map_bh.b_private */
127 
128 	/* BIO completion state */
129 	spinlock_t bio_lock;		/* protects BIO fields below */
130 	int page_errors;		/* err from iov_iter_extract_pages() */
131 	int is_async;			/* is IO async ? */
132 	bool defer_completion;		/* defer AIO completion to workqueue? */
133 	bool should_dirty;		/* if pages should be dirtied */
134 	int io_error;			/* IO error in completion path */
135 	unsigned long refcount;		/* direct_io_worker() and bios */
136 	struct bio *bio_list;		/* singly linked via bi_private */
137 	struct task_struct *waiter;	/* waiting task (NULL if none) */
138 
139 	/* AIO related stuff */
140 	struct kiocb *iocb;		/* kiocb */
141 	ssize_t result;                 /* IO result */
142 
143 	/*
144 	 * pages[] (and any fields placed after it) are not zeroed out at
145 	 * allocation time.  Don't add new fields after pages[] unless you
146 	 * wish that they not be zeroed.
147 	 */
148 	union {
149 		struct page *pages[DIO_PAGES];	/* page buffer */
150 		struct work_struct complete_work;/* deferred AIO completion */
151 	};
152 } ____cacheline_aligned_in_smp;
153 
154 static struct kmem_cache *dio_cache __ro_after_init;
155 
156 /*
157  * How many pages are in the queue?
158  */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 	return sdio->tail - sdio->head;
162 }
163 
164 /*
165  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
166  */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 	struct page **pages = dio->pages;
170 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
171 	ssize_t ret;
172 
173 	ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
174 				     DIO_PAGES, 0, &sdio->from);
175 
176 	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
177 		/*
178 		 * A memory fault, but the filesystem has some outstanding
179 		 * mapped blocks.  We need to use those blocks up to avoid
180 		 * leaking stale data in the file.
181 		 */
182 		if (dio->page_errors == 0)
183 			dio->page_errors = ret;
184 		dio->pages[0] = ZERO_PAGE(0);
185 		sdio->head = 0;
186 		sdio->tail = 1;
187 		sdio->from = 0;
188 		sdio->to = PAGE_SIZE;
189 		return 0;
190 	}
191 
192 	if (ret >= 0) {
193 		ret += sdio->from;
194 		sdio->head = 0;
195 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 		return 0;
198 	}
199 	return ret;
200 }
201 
202 /*
203  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204  * buffered inside the dio so that we can call iov_iter_extract_pages()
205  * against a decent number of pages, less frequently.  To provide nicer use of
206  * the L1 cache.
207  */
208 static inline struct page *dio_get_page(struct dio *dio,
209 					struct dio_submit *sdio)
210 {
211 	if (dio_pages_present(sdio) == 0) {
212 		int ret;
213 
214 		ret = dio_refill_pages(dio, sdio);
215 		if (ret)
216 			return ERR_PTR(ret);
217 		BUG_ON(dio_pages_present(sdio) == 0);
218 	}
219 	return dio->pages[sdio->head];
220 }
221 
222 static void dio_pin_page(struct dio *dio, struct page *page)
223 {
224 	if (dio->is_pinned)
225 		folio_add_pin(page_folio(page));
226 }
227 
228 static void dio_unpin_page(struct dio *dio, struct page *page)
229 {
230 	if (dio->is_pinned)
231 		unpin_user_page(page);
232 }
233 
234 /*
235  * dio_complete() - called when all DIO BIO I/O has been completed
236  *
237  * This drops i_dio_count, lets interested parties know that a DIO operation
238  * has completed, and calculates the resulting return code for the operation.
239  *
240  * It lets the filesystem know if it registered an interest earlier via
241  * get_block.  Pass the private field of the map buffer_head so that
242  * filesystems can use it to hold additional state between get_block calls and
243  * dio_complete.
244  */
245 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
246 {
247 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
248 	loff_t offset = dio->iocb->ki_pos;
249 	ssize_t transferred = 0;
250 	int err;
251 
252 	/*
253 	 * AIO submission can race with bio completion to get here while
254 	 * expecting to have the last io completed by bio completion.
255 	 * In that case -EIOCBQUEUED is in fact not an error we want
256 	 * to preserve through this call.
257 	 */
258 	if (ret == -EIOCBQUEUED)
259 		ret = 0;
260 
261 	if (dio->result) {
262 		transferred = dio->result;
263 
264 		/* Check for short read case */
265 		if (dio_op == REQ_OP_READ &&
266 		    ((offset + transferred) > dio->i_size))
267 			transferred = dio->i_size - offset;
268 		/* ignore EFAULT if some IO has been done */
269 		if (unlikely(ret == -EFAULT) && transferred)
270 			ret = 0;
271 	}
272 
273 	if (ret == 0)
274 		ret = dio->page_errors;
275 	if (ret == 0)
276 		ret = dio->io_error;
277 	if (ret == 0)
278 		ret = transferred;
279 
280 	if (dio->end_io) {
281 		// XXX: ki_pos??
282 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
283 		if (err)
284 			ret = err;
285 	}
286 
287 	/*
288 	 * Try again to invalidate clean pages which might have been cached by
289 	 * non-direct readahead, or faulted in by get_user_pages() if the source
290 	 * of the write was an mmap'ed region of the file we're writing.  Either
291 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
292 	 * this invalidation fails, tough, the write still worked...
293 	 *
294 	 * And this page cache invalidation has to be after dio->end_io(), as
295 	 * some filesystems convert unwritten extents to real allocations in
296 	 * end_io() when necessary, otherwise a racing buffer read would cache
297 	 * zeros from unwritten extents.
298 	 */
299 	if (flags & DIO_COMPLETE_INVALIDATE &&
300 	    ret > 0 && dio_op == REQ_OP_WRITE)
301 		kiocb_invalidate_post_direct_write(dio->iocb, ret);
302 
303 	inode_dio_end(dio->inode);
304 
305 	if (flags & DIO_COMPLETE_ASYNC) {
306 		/*
307 		 * generic_write_sync expects ki_pos to have been updated
308 		 * already, but the submission path only does this for
309 		 * synchronous I/O.
310 		 */
311 		dio->iocb->ki_pos += transferred;
312 
313 		if (ret > 0 && dio_op == REQ_OP_WRITE)
314 			ret = generic_write_sync(dio->iocb, ret);
315 		dio->iocb->ki_complete(dio->iocb, ret);
316 	}
317 
318 	kmem_cache_free(dio_cache, dio);
319 	return ret;
320 }
321 
322 static void dio_aio_complete_work(struct work_struct *work)
323 {
324 	struct dio *dio = container_of(work, struct dio, complete_work);
325 
326 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
327 }
328 
329 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
330 
331 /*
332  * Asynchronous IO callback.
333  */
334 static void dio_bio_end_aio(struct bio *bio)
335 {
336 	struct dio *dio = bio->bi_private;
337 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
338 	unsigned long remaining;
339 	unsigned long flags;
340 	bool defer_completion = false;
341 
342 	/* cleanup the bio */
343 	dio_bio_complete(dio, bio);
344 
345 	spin_lock_irqsave(&dio->bio_lock, flags);
346 	remaining = --dio->refcount;
347 	if (remaining == 1 && dio->waiter)
348 		wake_up_process(dio->waiter);
349 	spin_unlock_irqrestore(&dio->bio_lock, flags);
350 
351 	if (remaining == 0) {
352 		/*
353 		 * Defer completion when defer_completion is set or
354 		 * when the inode has pages mapped and this is AIO write.
355 		 * We need to invalidate those pages because there is a
356 		 * chance they contain stale data in the case buffered IO
357 		 * went in between AIO submission and completion into the
358 		 * same region.
359 		 */
360 		if (dio->result)
361 			defer_completion = dio->defer_completion ||
362 					   (dio_op == REQ_OP_WRITE &&
363 					    dio->inode->i_mapping->nrpages);
364 		if (defer_completion) {
365 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
366 			queue_work(dio->inode->i_sb->s_dio_done_wq,
367 				   &dio->complete_work);
368 		} else {
369 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
370 		}
371 	}
372 }
373 
374 /*
375  * The BIO completion handler simply queues the BIO up for the process-context
376  * handler.
377  *
378  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
379  * implement a singly-linked list of completed BIOs, at dio->bio_list.
380  */
381 static void dio_bio_end_io(struct bio *bio)
382 {
383 	struct dio *dio = bio->bi_private;
384 	unsigned long flags;
385 
386 	spin_lock_irqsave(&dio->bio_lock, flags);
387 	bio->bi_private = dio->bio_list;
388 	dio->bio_list = bio;
389 	if (--dio->refcount == 1 && dio->waiter)
390 		wake_up_process(dio->waiter);
391 	spin_unlock_irqrestore(&dio->bio_lock, flags);
392 }
393 
394 static inline void
395 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
396 	      struct block_device *bdev,
397 	      sector_t first_sector, int nr_vecs)
398 {
399 	struct bio *bio;
400 
401 	/*
402 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
403 	 * we request a valid number of vectors.
404 	 */
405 	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
406 	bio->bi_iter.bi_sector = first_sector;
407 	if (dio->is_async)
408 		bio->bi_end_io = dio_bio_end_aio;
409 	else
410 		bio->bi_end_io = dio_bio_end_io;
411 	if (dio->is_pinned)
412 		bio_set_flag(bio, BIO_PAGE_PINNED);
413 	bio->bi_write_hint = file_inode(dio->iocb->ki_filp)->i_write_hint;
414 
415 	sdio->bio = bio;
416 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
417 }
418 
419 /*
420  * In the AIO read case we speculatively dirty the pages before starting IO.
421  * During IO completion, any of these pages which happen to have been written
422  * back will be redirtied by bio_check_pages_dirty().
423  *
424  * bios hold a dio reference between submit_bio and ->end_io.
425  */
426 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
427 {
428 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
429 	struct bio *bio = sdio->bio;
430 	unsigned long flags;
431 
432 	bio->bi_private = dio;
433 
434 	spin_lock_irqsave(&dio->bio_lock, flags);
435 	dio->refcount++;
436 	spin_unlock_irqrestore(&dio->bio_lock, flags);
437 
438 	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
439 		bio_set_pages_dirty(bio);
440 
441 	dio->bio_disk = bio->bi_bdev->bd_disk;
442 
443 	submit_bio(bio);
444 
445 	sdio->bio = NULL;
446 	sdio->boundary = 0;
447 	sdio->logical_offset_in_bio = 0;
448 }
449 
450 /*
451  * Release any resources in case of a failure
452  */
453 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
454 {
455 	if (dio->is_pinned)
456 		unpin_user_pages(dio->pages + sdio->head,
457 				 sdio->tail - sdio->head);
458 	sdio->head = sdio->tail;
459 }
460 
461 /*
462  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
463  * returned once all BIOs have been completed.  This must only be called once
464  * all bios have been issued so that dio->refcount can only decrease.  This
465  * requires that the caller hold a reference on the dio.
466  */
467 static struct bio *dio_await_one(struct dio *dio)
468 {
469 	unsigned long flags;
470 	struct bio *bio = NULL;
471 
472 	spin_lock_irqsave(&dio->bio_lock, flags);
473 
474 	/*
475 	 * Wait as long as the list is empty and there are bios in flight.  bio
476 	 * completion drops the count, maybe adds to the list, and wakes while
477 	 * holding the bio_lock so we don't need set_current_state()'s barrier
478 	 * and can call it after testing our condition.
479 	 */
480 	while (dio->refcount > 1 && dio->bio_list == NULL) {
481 		__set_current_state(TASK_UNINTERRUPTIBLE);
482 		dio->waiter = current;
483 		spin_unlock_irqrestore(&dio->bio_lock, flags);
484 		blk_io_schedule();
485 		/* wake up sets us TASK_RUNNING */
486 		spin_lock_irqsave(&dio->bio_lock, flags);
487 		dio->waiter = NULL;
488 	}
489 	if (dio->bio_list) {
490 		bio = dio->bio_list;
491 		dio->bio_list = bio->bi_private;
492 	}
493 	spin_unlock_irqrestore(&dio->bio_lock, flags);
494 	return bio;
495 }
496 
497 /*
498  * Process one completed BIO.  No locks are held.
499  */
500 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
501 {
502 	blk_status_t err = bio->bi_status;
503 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
504 	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
505 
506 	if (err) {
507 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
508 			dio->io_error = -EAGAIN;
509 		else
510 			dio->io_error = -EIO;
511 	}
512 
513 	if (dio->is_async && should_dirty) {
514 		bio_check_pages_dirty(bio);	/* transfers ownership */
515 	} else {
516 		bio_release_pages(bio, should_dirty);
517 		bio_put(bio);
518 	}
519 	return err;
520 }
521 
522 /*
523  * Wait on and process all in-flight BIOs.  This must only be called once
524  * all bios have been issued so that the refcount can only decrease.
525  * This just waits for all bios to make it through dio_bio_complete.  IO
526  * errors are propagated through dio->io_error and should be propagated via
527  * dio_complete().
528  */
529 static void dio_await_completion(struct dio *dio)
530 {
531 	struct bio *bio;
532 	do {
533 		bio = dio_await_one(dio);
534 		if (bio)
535 			dio_bio_complete(dio, bio);
536 	} while (bio);
537 }
538 
539 /*
540  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
541  * to keep the memory consumption sane we periodically reap any completed BIOs
542  * during the BIO generation phase.
543  *
544  * This also helps to limit the peak amount of pinned userspace memory.
545  */
546 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
547 {
548 	int ret = 0;
549 
550 	if (sdio->reap_counter++ >= 64) {
551 		while (dio->bio_list) {
552 			unsigned long flags;
553 			struct bio *bio;
554 			int ret2;
555 
556 			spin_lock_irqsave(&dio->bio_lock, flags);
557 			bio = dio->bio_list;
558 			dio->bio_list = bio->bi_private;
559 			spin_unlock_irqrestore(&dio->bio_lock, flags);
560 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
561 			if (ret == 0)
562 				ret = ret2;
563 		}
564 		sdio->reap_counter = 0;
565 	}
566 	return ret;
567 }
568 
569 static int dio_set_defer_completion(struct dio *dio)
570 {
571 	struct super_block *sb = dio->inode->i_sb;
572 
573 	if (dio->defer_completion)
574 		return 0;
575 	dio->defer_completion = true;
576 	if (!sb->s_dio_done_wq)
577 		return sb_init_dio_done_wq(sb);
578 	return 0;
579 }
580 
581 /*
582  * Call into the fs to map some more disk blocks.  We record the current number
583  * of available blocks at sdio->blocks_available.  These are in units of the
584  * fs blocksize, i_blocksize(inode).
585  *
586  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
587  * it uses the passed inode-relative block number as the file offset, as usual.
588  *
589  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
590  * has remaining to do.  The fs should not map more than this number of blocks.
591  *
592  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
593  * indicate how much contiguous disk space has been made available at
594  * bh->b_blocknr.
595  *
596  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
597  * This isn't very efficient...
598  *
599  * In the case of filesystem holes: the fs may return an arbitrarily-large
600  * hole by returning an appropriate value in b_size and by clearing
601  * buffer_mapped().  However the direct-io code will only process holes one
602  * block at a time - it will repeatedly call get_block() as it walks the hole.
603  */
604 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
605 			   struct buffer_head *map_bh)
606 {
607 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
608 	int ret;
609 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
610 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
611 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
612 	int create;
613 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
614 	loff_t i_size;
615 
616 	/*
617 	 * If there was a memory error and we've overwritten all the
618 	 * mapped blocks then we can now return that memory error
619 	 */
620 	ret = dio->page_errors;
621 	if (ret == 0) {
622 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
623 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
624 		fs_endblk = (sdio->final_block_in_request - 1) >>
625 					sdio->blkfactor;
626 		fs_count = fs_endblk - fs_startblk + 1;
627 
628 		map_bh->b_state = 0;
629 		map_bh->b_size = fs_count << i_blkbits;
630 
631 		/*
632 		 * For writes that could fill holes inside i_size on a
633 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
634 		 * overwrites are permitted. We will return early to the caller
635 		 * once we see an unmapped buffer head returned, and the caller
636 		 * will fall back to buffered I/O.
637 		 *
638 		 * Otherwise the decision is left to the get_blocks method,
639 		 * which may decide to handle it or also return an unmapped
640 		 * buffer head.
641 		 */
642 		create = dio_op == REQ_OP_WRITE;
643 		if (dio->flags & DIO_SKIP_HOLES) {
644 			i_size = i_size_read(dio->inode);
645 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
646 				create = 0;
647 		}
648 
649 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
650 						map_bh, create);
651 
652 		/* Store for completion */
653 		dio->private = map_bh->b_private;
654 
655 		if (ret == 0 && buffer_defer_completion(map_bh))
656 			ret = dio_set_defer_completion(dio);
657 	}
658 	return ret;
659 }
660 
661 /*
662  * There is no bio.  Make one now.
663  */
664 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
665 		sector_t start_sector, struct buffer_head *map_bh)
666 {
667 	sector_t sector;
668 	int ret, nr_pages;
669 
670 	ret = dio_bio_reap(dio, sdio);
671 	if (ret)
672 		goto out;
673 	sector = start_sector << (sdio->blkbits - 9);
674 	nr_pages = bio_max_segs(sdio->pages_in_io);
675 	BUG_ON(nr_pages <= 0);
676 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
677 	sdio->boundary = 0;
678 out:
679 	return ret;
680 }
681 
682 /*
683  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
684  * that was successful then update final_block_in_bio and take a ref against
685  * the just-added page.
686  *
687  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
688  */
689 static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
690 {
691 	int ret;
692 
693 	ret = bio_add_page(sdio->bio, sdio->cur_page,
694 			sdio->cur_page_len, sdio->cur_page_offset);
695 	if (ret == sdio->cur_page_len) {
696 		/*
697 		 * Decrement count only, if we are done with this page
698 		 */
699 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
700 			sdio->pages_in_io--;
701 		dio_pin_page(dio, sdio->cur_page);
702 		sdio->final_block_in_bio = sdio->cur_page_block +
703 			(sdio->cur_page_len >> sdio->blkbits);
704 		ret = 0;
705 	} else {
706 		ret = 1;
707 	}
708 	return ret;
709 }
710 
711 /*
712  * Put cur_page under IO.  The section of cur_page which is described by
713  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
714  * starts on-disk at cur_page_block.
715  *
716  * We take a ref against the page here (on behalf of its presence in the bio).
717  *
718  * The caller of this function is responsible for removing cur_page from the
719  * dio, and for dropping the refcount which came from that presence.
720  */
721 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
722 		struct buffer_head *map_bh)
723 {
724 	int ret = 0;
725 
726 	if (sdio->bio) {
727 		loff_t cur_offset = sdio->cur_page_fs_offset;
728 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
729 			sdio->bio->bi_iter.bi_size;
730 
731 		/*
732 		 * See whether this new request is contiguous with the old.
733 		 *
734 		 * Btrfs cannot handle having logically non-contiguous requests
735 		 * submitted.  For example if you have
736 		 *
737 		 * Logical:  [0-4095][HOLE][8192-12287]
738 		 * Physical: [0-4095]      [4096-8191]
739 		 *
740 		 * We cannot submit those pages together as one BIO.  So if our
741 		 * current logical offset in the file does not equal what would
742 		 * be the next logical offset in the bio, submit the bio we
743 		 * have.
744 		 */
745 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
746 		    cur_offset != bio_next_offset)
747 			dio_bio_submit(dio, sdio);
748 	}
749 
750 	if (sdio->bio == NULL) {
751 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
752 		if (ret)
753 			goto out;
754 	}
755 
756 	if (dio_bio_add_page(dio, sdio) != 0) {
757 		dio_bio_submit(dio, sdio);
758 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
759 		if (ret == 0) {
760 			ret = dio_bio_add_page(dio, sdio);
761 			BUG_ON(ret != 0);
762 		}
763 	}
764 out:
765 	return ret;
766 }
767 
768 /*
769  * An autonomous function to put a chunk of a page under deferred IO.
770  *
771  * The caller doesn't actually know (or care) whether this piece of page is in
772  * a BIO, or is under IO or whatever.  We just take care of all possible
773  * situations here.  The separation between the logic of do_direct_IO() and
774  * that of submit_page_section() is important for clarity.  Please don't break.
775  *
776  * The chunk of page starts on-disk at blocknr.
777  *
778  * We perform deferred IO, by recording the last-submitted page inside our
779  * private part of the dio structure.  If possible, we just expand the IO
780  * across that page here.
781  *
782  * If that doesn't work out then we put the old page into the bio and add this
783  * page to the dio instead.
784  */
785 static inline int
786 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
787 		    unsigned offset, unsigned len, sector_t blocknr,
788 		    struct buffer_head *map_bh)
789 {
790 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
791 	int ret = 0;
792 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
793 
794 	if (dio_op == REQ_OP_WRITE) {
795 		/*
796 		 * Read accounting is performed in submit_bio()
797 		 */
798 		task_io_account_write(len);
799 	}
800 
801 	/*
802 	 * Can we just grow the current page's presence in the dio?
803 	 */
804 	if (sdio->cur_page == page &&
805 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
806 	    sdio->cur_page_block +
807 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
808 		sdio->cur_page_len += len;
809 		goto out;
810 	}
811 
812 	/*
813 	 * If there's a deferred page already there then send it.
814 	 */
815 	if (sdio->cur_page) {
816 		ret = dio_send_cur_page(dio, sdio, map_bh);
817 		dio_unpin_page(dio, sdio->cur_page);
818 		sdio->cur_page = NULL;
819 		if (ret)
820 			return ret;
821 	}
822 
823 	dio_pin_page(dio, page);		/* It is in dio */
824 	sdio->cur_page = page;
825 	sdio->cur_page_offset = offset;
826 	sdio->cur_page_len = len;
827 	sdio->cur_page_block = blocknr;
828 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
829 out:
830 	/*
831 	 * If boundary then we want to schedule the IO now to
832 	 * avoid metadata seeks.
833 	 */
834 	if (boundary) {
835 		ret = dio_send_cur_page(dio, sdio, map_bh);
836 		if (sdio->bio)
837 			dio_bio_submit(dio, sdio);
838 		dio_unpin_page(dio, sdio->cur_page);
839 		sdio->cur_page = NULL;
840 	}
841 	return ret;
842 }
843 
844 /*
845  * If we are not writing the entire block and get_block() allocated
846  * the block for us, we need to fill-in the unused portion of the
847  * block with zeros. This happens only if user-buffer, fileoffset or
848  * io length is not filesystem block-size multiple.
849  *
850  * `end' is zero if we're doing the start of the IO, 1 at the end of the
851  * IO.
852  */
853 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
854 		int end, struct buffer_head *map_bh)
855 {
856 	unsigned dio_blocks_per_fs_block;
857 	unsigned this_chunk_blocks;	/* In dio_blocks */
858 	unsigned this_chunk_bytes;
859 	struct page *page;
860 
861 	sdio->start_zero_done = 1;
862 	if (!sdio->blkfactor || !buffer_new(map_bh))
863 		return;
864 
865 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
866 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
867 
868 	if (!this_chunk_blocks)
869 		return;
870 
871 	/*
872 	 * We need to zero out part of an fs block.  It is either at the
873 	 * beginning or the end of the fs block.
874 	 */
875 	if (end)
876 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
877 
878 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
879 
880 	page = ZERO_PAGE(0);
881 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
882 				sdio->next_block_for_io, map_bh))
883 		return;
884 
885 	sdio->next_block_for_io += this_chunk_blocks;
886 }
887 
888 /*
889  * Walk the user pages, and the file, mapping blocks to disk and generating
890  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
891  * into submit_page_section(), which takes care of the next stage of submission
892  *
893  * Direct IO against a blockdev is different from a file.  Because we can
894  * happily perform page-sized but 512-byte aligned IOs.  It is important that
895  * blockdev IO be able to have fine alignment and large sizes.
896  *
897  * So what we do is to permit the ->get_block function to populate bh.b_size
898  * with the size of IO which is permitted at this offset and this i_blkbits.
899  *
900  * For best results, the blockdev should be set up with 512-byte i_blkbits and
901  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
902  * fine alignment but still allows this function to work in PAGE_SIZE units.
903  */
904 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
905 			struct buffer_head *map_bh)
906 {
907 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
908 	const unsigned blkbits = sdio->blkbits;
909 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
910 	int ret = 0;
911 
912 	while (sdio->block_in_file < sdio->final_block_in_request) {
913 		struct page *page;
914 		size_t from, to;
915 
916 		page = dio_get_page(dio, sdio);
917 		if (IS_ERR(page)) {
918 			ret = PTR_ERR(page);
919 			goto out;
920 		}
921 		from = sdio->head ? 0 : sdio->from;
922 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
923 		sdio->head++;
924 
925 		while (from < to) {
926 			unsigned this_chunk_bytes;	/* # of bytes mapped */
927 			unsigned this_chunk_blocks;	/* # of blocks */
928 			unsigned u;
929 
930 			if (sdio->blocks_available == 0) {
931 				/*
932 				 * Need to go and map some more disk
933 				 */
934 				unsigned long blkmask;
935 				unsigned long dio_remainder;
936 
937 				ret = get_more_blocks(dio, sdio, map_bh);
938 				if (ret) {
939 					dio_unpin_page(dio, page);
940 					goto out;
941 				}
942 				if (!buffer_mapped(map_bh))
943 					goto do_holes;
944 
945 				sdio->blocks_available =
946 						map_bh->b_size >> blkbits;
947 				sdio->next_block_for_io =
948 					map_bh->b_blocknr << sdio->blkfactor;
949 				if (buffer_new(map_bh)) {
950 					clean_bdev_aliases(
951 						map_bh->b_bdev,
952 						map_bh->b_blocknr,
953 						map_bh->b_size >> i_blkbits);
954 				}
955 
956 				if (!sdio->blkfactor)
957 					goto do_holes;
958 
959 				blkmask = (1 << sdio->blkfactor) - 1;
960 				dio_remainder = (sdio->block_in_file & blkmask);
961 
962 				/*
963 				 * If we are at the start of IO and that IO
964 				 * starts partway into a fs-block,
965 				 * dio_remainder will be non-zero.  If the IO
966 				 * is a read then we can simply advance the IO
967 				 * cursor to the first block which is to be
968 				 * read.  But if the IO is a write and the
969 				 * block was newly allocated we cannot do that;
970 				 * the start of the fs block must be zeroed out
971 				 * on-disk
972 				 */
973 				if (!buffer_new(map_bh))
974 					sdio->next_block_for_io += dio_remainder;
975 				sdio->blocks_available -= dio_remainder;
976 			}
977 do_holes:
978 			/* Handle holes */
979 			if (!buffer_mapped(map_bh)) {
980 				loff_t i_size_aligned;
981 
982 				/* AKPM: eargh, -ENOTBLK is a hack */
983 				if (dio_op == REQ_OP_WRITE) {
984 					dio_unpin_page(dio, page);
985 					return -ENOTBLK;
986 				}
987 
988 				/*
989 				 * Be sure to account for a partial block as the
990 				 * last block in the file
991 				 */
992 				i_size_aligned = ALIGN(i_size_read(dio->inode),
993 							1 << blkbits);
994 				if (sdio->block_in_file >=
995 						i_size_aligned >> blkbits) {
996 					/* We hit eof */
997 					dio_unpin_page(dio, page);
998 					goto out;
999 				}
1000 				zero_user(page, from, 1 << blkbits);
1001 				sdio->block_in_file++;
1002 				from += 1 << blkbits;
1003 				dio->result += 1 << blkbits;
1004 				goto next_block;
1005 			}
1006 
1007 			/*
1008 			 * If we're performing IO which has an alignment which
1009 			 * is finer than the underlying fs, go check to see if
1010 			 * we must zero out the start of this block.
1011 			 */
1012 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1013 				dio_zero_block(dio, sdio, 0, map_bh);
1014 
1015 			/*
1016 			 * Work out, in this_chunk_blocks, how much disk we
1017 			 * can add to this page
1018 			 */
1019 			this_chunk_blocks = sdio->blocks_available;
1020 			u = (to - from) >> blkbits;
1021 			if (this_chunk_blocks > u)
1022 				this_chunk_blocks = u;
1023 			u = sdio->final_block_in_request - sdio->block_in_file;
1024 			if (this_chunk_blocks > u)
1025 				this_chunk_blocks = u;
1026 			this_chunk_bytes = this_chunk_blocks << blkbits;
1027 			BUG_ON(this_chunk_bytes == 0);
1028 
1029 			if (this_chunk_blocks == sdio->blocks_available)
1030 				sdio->boundary = buffer_boundary(map_bh);
1031 			ret = submit_page_section(dio, sdio, page,
1032 						  from,
1033 						  this_chunk_bytes,
1034 						  sdio->next_block_for_io,
1035 						  map_bh);
1036 			if (ret) {
1037 				dio_unpin_page(dio, page);
1038 				goto out;
1039 			}
1040 			sdio->next_block_for_io += this_chunk_blocks;
1041 
1042 			sdio->block_in_file += this_chunk_blocks;
1043 			from += this_chunk_bytes;
1044 			dio->result += this_chunk_bytes;
1045 			sdio->blocks_available -= this_chunk_blocks;
1046 next_block:
1047 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1048 			if (sdio->block_in_file == sdio->final_block_in_request)
1049 				break;
1050 		}
1051 
1052 		/* Drop the pin which was taken in get_user_pages() */
1053 		dio_unpin_page(dio, page);
1054 	}
1055 out:
1056 	return ret;
1057 }
1058 
1059 static inline int drop_refcount(struct dio *dio)
1060 {
1061 	int ret2;
1062 	unsigned long flags;
1063 
1064 	/*
1065 	 * Sync will always be dropping the final ref and completing the
1066 	 * operation.  AIO can if it was a broken operation described above or
1067 	 * in fact if all the bios race to complete before we get here.  In
1068 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1069 	 * return code that the caller will hand to ->complete().
1070 	 *
1071 	 * This is managed by the bio_lock instead of being an atomic_t so that
1072 	 * completion paths can drop their ref and use the remaining count to
1073 	 * decide to wake the submission path atomically.
1074 	 */
1075 	spin_lock_irqsave(&dio->bio_lock, flags);
1076 	ret2 = --dio->refcount;
1077 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1078 	return ret2;
1079 }
1080 
1081 /*
1082  * This is a library function for use by filesystem drivers.
1083  *
1084  * The locking rules are governed by the flags parameter:
1085  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1086  *    scheme for dumb filesystems.
1087  *    For writes this function is called under i_mutex and returns with
1088  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1089  *    taken and dropped again before returning.
1090  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1091  *    internal locking but rather rely on the filesystem to synchronize
1092  *    direct I/O reads/writes versus each other and truncate.
1093  *
1094  * To help with locking against truncate we incremented the i_dio_count
1095  * counter before starting direct I/O, and decrement it once we are done.
1096  * Truncate can wait for it to reach zero to provide exclusion.  It is
1097  * expected that filesystem provide exclusion between new direct I/O
1098  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1099  * but other filesystems need to take care of this on their own.
1100  *
1101  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1102  * is always inlined. Otherwise gcc is unable to split the structure into
1103  * individual fields and will generate much worse code. This is important
1104  * for the whole file.
1105  */
1106 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1107 		struct block_device *bdev, struct iov_iter *iter,
1108 		get_block_t get_block, dio_iodone_t end_io,
1109 		int flags)
1110 {
1111 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1112 	unsigned blkbits = i_blkbits;
1113 	unsigned blocksize_mask = (1 << blkbits) - 1;
1114 	ssize_t retval = -EINVAL;
1115 	const size_t count = iov_iter_count(iter);
1116 	loff_t offset = iocb->ki_pos;
1117 	const loff_t end = offset + count;
1118 	struct dio *dio;
1119 	struct dio_submit sdio = { NULL, };
1120 	struct buffer_head map_bh = { 0, };
1121 	struct blk_plug plug;
1122 	unsigned long align = offset | iov_iter_alignment(iter);
1123 
1124 	/*
1125 	 * Avoid references to bdev if not absolutely needed to give
1126 	 * the early prefetch in the caller enough time.
1127 	 */
1128 
1129 	/* watch out for a 0 len io from a tricksy fs */
1130 	if (iov_iter_rw(iter) == READ && !count)
1131 		return 0;
1132 
1133 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1134 	if (!dio)
1135 		return -ENOMEM;
1136 	/*
1137 	 * Believe it or not, zeroing out the page array caused a .5%
1138 	 * performance regression in a database benchmark.  So, we take
1139 	 * care to only zero out what's needed.
1140 	 */
1141 	memset(dio, 0, offsetof(struct dio, pages));
1142 
1143 	dio->flags = flags;
1144 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1145 		/* will be released by direct_io_worker */
1146 		inode_lock(inode);
1147 	}
1148 	dio->is_pinned = iov_iter_extract_will_pin(iter);
1149 
1150 	/* Once we sampled i_size check for reads beyond EOF */
1151 	dio->i_size = i_size_read(inode);
1152 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1153 		retval = 0;
1154 		goto fail_dio;
1155 	}
1156 
1157 	if (align & blocksize_mask) {
1158 		if (bdev)
1159 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1160 		blocksize_mask = (1 << blkbits) - 1;
1161 		if (align & blocksize_mask)
1162 			goto fail_dio;
1163 	}
1164 
1165 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1166 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1167 
1168 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1169 		if (retval)
1170 			goto fail_dio;
1171 	}
1172 
1173 	/*
1174 	 * For file extending writes updating i_size before data writeouts
1175 	 * complete can expose uninitialized blocks in dumb filesystems.
1176 	 * In that case we need to wait for I/O completion even if asked
1177 	 * for an asynchronous write.
1178 	 */
1179 	if (is_sync_kiocb(iocb))
1180 		dio->is_async = false;
1181 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1182 		dio->is_async = false;
1183 	else
1184 		dio->is_async = true;
1185 
1186 	dio->inode = inode;
1187 	if (iov_iter_rw(iter) == WRITE) {
1188 		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1189 		if (iocb->ki_flags & IOCB_NOWAIT)
1190 			dio->opf |= REQ_NOWAIT;
1191 	} else {
1192 		dio->opf = REQ_OP_READ;
1193 	}
1194 
1195 	/*
1196 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1197 	 * so that we can call ->fsync.
1198 	 */
1199 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1200 		retval = 0;
1201 		if (iocb_is_dsync(iocb))
1202 			retval = dio_set_defer_completion(dio);
1203 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1204 			/*
1205 			 * In case of AIO write racing with buffered read we
1206 			 * need to defer completion. We can't decide this now,
1207 			 * however the workqueue needs to be initialized here.
1208 			 */
1209 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1210 		}
1211 		if (retval)
1212 			goto fail_dio;
1213 	}
1214 
1215 	/*
1216 	 * Will be decremented at I/O completion time.
1217 	 */
1218 	inode_dio_begin(inode);
1219 
1220 	retval = 0;
1221 	sdio.blkbits = blkbits;
1222 	sdio.blkfactor = i_blkbits - blkbits;
1223 	sdio.block_in_file = offset >> blkbits;
1224 
1225 	sdio.get_block = get_block;
1226 	dio->end_io = end_io;
1227 	sdio.final_block_in_bio = -1;
1228 	sdio.next_block_for_io = -1;
1229 
1230 	dio->iocb = iocb;
1231 
1232 	spin_lock_init(&dio->bio_lock);
1233 	dio->refcount = 1;
1234 
1235 	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1236 	sdio.iter = iter;
1237 	sdio.final_block_in_request = end >> blkbits;
1238 
1239 	/*
1240 	 * In case of non-aligned buffers, we may need 2 more
1241 	 * pages since we need to zero out first and last block.
1242 	 */
1243 	if (unlikely(sdio.blkfactor))
1244 		sdio.pages_in_io = 2;
1245 
1246 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1247 
1248 	blk_start_plug(&plug);
1249 
1250 	retval = do_direct_IO(dio, &sdio, &map_bh);
1251 	if (retval)
1252 		dio_cleanup(dio, &sdio);
1253 
1254 	if (retval == -ENOTBLK) {
1255 		/*
1256 		 * The remaining part of the request will be
1257 		 * handled by buffered I/O when we return
1258 		 */
1259 		retval = 0;
1260 	}
1261 	/*
1262 	 * There may be some unwritten disk at the end of a part-written
1263 	 * fs-block-sized block.  Go zero that now.
1264 	 */
1265 	dio_zero_block(dio, &sdio, 1, &map_bh);
1266 
1267 	if (sdio.cur_page) {
1268 		ssize_t ret2;
1269 
1270 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1271 		if (retval == 0)
1272 			retval = ret2;
1273 		dio_unpin_page(dio, sdio.cur_page);
1274 		sdio.cur_page = NULL;
1275 	}
1276 	if (sdio.bio)
1277 		dio_bio_submit(dio, &sdio);
1278 
1279 	blk_finish_plug(&plug);
1280 
1281 	/*
1282 	 * It is possible that, we return short IO due to end of file.
1283 	 * In that case, we need to release all the pages we got hold on.
1284 	 */
1285 	dio_cleanup(dio, &sdio);
1286 
1287 	/*
1288 	 * All block lookups have been performed. For READ requests
1289 	 * we can let i_mutex go now that its achieved its purpose
1290 	 * of protecting us from looking up uninitialized blocks.
1291 	 */
1292 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1293 		inode_unlock(dio->inode);
1294 
1295 	/*
1296 	 * The only time we want to leave bios in flight is when a successful
1297 	 * partial aio read or full aio write have been setup.  In that case
1298 	 * bio completion will call aio_complete.  The only time it's safe to
1299 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1300 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1301 	 */
1302 	BUG_ON(retval == -EIOCBQUEUED);
1303 	if (dio->is_async && retval == 0 && dio->result &&
1304 	    (iov_iter_rw(iter) == READ || dio->result == count))
1305 		retval = -EIOCBQUEUED;
1306 	else
1307 		dio_await_completion(dio);
1308 
1309 	if (drop_refcount(dio) == 0) {
1310 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1311 	} else
1312 		BUG_ON(retval != -EIOCBQUEUED);
1313 
1314 	return retval;
1315 
1316 fail_dio:
1317 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1318 		inode_unlock(inode);
1319 
1320 	kmem_cache_free(dio_cache, dio);
1321 	return retval;
1322 }
1323 EXPORT_SYMBOL(__blockdev_direct_IO);
1324 
1325 static __init int dio_init(void)
1326 {
1327 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1328 	return 0;
1329 }
1330 module_init(dio_init)
1331