1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 akpm@zip.com.au 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 akpm@zip.com.au 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/bio.h> 31 #include <linux/wait.h> 32 #include <linux/err.h> 33 #include <linux/blkdev.h> 34 #include <linux/buffer_head.h> 35 #include <linux/rwsem.h> 36 #include <linux/uio.h> 37 #include <asm/atomic.h> 38 39 /* 40 * How many user pages to map in one call to get_user_pages(). This determines 41 * the size of a structure on the stack. 42 */ 43 #define DIO_PAGES 64 44 45 /* 46 * This code generally works in units of "dio_blocks". A dio_block is 47 * somewhere between the hard sector size and the filesystem block size. it 48 * is determined on a per-invocation basis. When talking to the filesystem 49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 51 * to bio_block quantities by shifting left by blkfactor. 52 * 53 * If blkfactor is zero then the user's request was aligned to the filesystem's 54 * blocksize. 55 * 56 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. 57 * This determines whether we need to do the fancy locking which prevents 58 * direct-IO from being able to read uninitialised disk blocks. If its zero 59 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_sem is 60 * not held for the entire direct write (taken briefly, initially, during a 61 * direct read though, but its never held for the duration of a direct-IO). 62 */ 63 64 struct dio { 65 /* BIO submission state */ 66 struct bio *bio; /* bio under assembly */ 67 struct inode *inode; 68 int rw; 69 loff_t i_size; /* i_size when submitted */ 70 int lock_type; /* doesn't change */ 71 unsigned blkbits; /* doesn't change */ 72 unsigned blkfactor; /* When we're using an alignment which 73 is finer than the filesystem's soft 74 blocksize, this specifies how much 75 finer. blkfactor=2 means 1/4-block 76 alignment. Does not change */ 77 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 78 been performed at the start of a 79 write */ 80 int pages_in_io; /* approximate total IO pages */ 81 size_t size; /* total request size (doesn't change)*/ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 sector_t final_block_in_request;/* doesn't change */ 86 unsigned first_block_in_page; /* doesn't change, Used only once */ 87 int boundary; /* prev block is at a boundary */ 88 int reap_counter; /* rate limit reaping */ 89 get_blocks_t *get_blocks; /* block mapping function */ 90 dio_iodone_t *end_io; /* IO completion function */ 91 sector_t final_block_in_bio; /* current final block in bio + 1 */ 92 sector_t next_block_for_io; /* next block to be put under IO, 93 in dio_blocks units */ 94 struct buffer_head map_bh; /* last get_blocks() result */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 106 /* 107 * Page fetching state. These variables belong to dio_refill_pages(). 108 */ 109 int curr_page; /* changes */ 110 int total_pages; /* doesn't change */ 111 unsigned long curr_user_address;/* changes */ 112 113 /* 114 * Page queue. These variables belong to dio_refill_pages() and 115 * dio_get_page(). 116 */ 117 struct page *pages[DIO_PAGES]; /* page buffer */ 118 unsigned head; /* next page to process */ 119 unsigned tail; /* last valid page + 1 */ 120 int page_errors; /* errno from get_user_pages() */ 121 122 /* BIO completion state */ 123 spinlock_t bio_lock; /* protects BIO fields below */ 124 int bio_count; /* nr bios to be completed */ 125 int bios_in_flight; /* nr bios in flight */ 126 struct bio *bio_list; /* singly linked via bi_private */ 127 struct task_struct *waiter; /* waiting task (NULL if none) */ 128 129 /* AIO related stuff */ 130 struct kiocb *iocb; /* kiocb */ 131 int is_async; /* is IO async ? */ 132 ssize_t result; /* IO result */ 133 }; 134 135 /* 136 * How many pages are in the queue? 137 */ 138 static inline unsigned dio_pages_present(struct dio *dio) 139 { 140 return dio->tail - dio->head; 141 } 142 143 /* 144 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 145 */ 146 static int dio_refill_pages(struct dio *dio) 147 { 148 int ret; 149 int nr_pages; 150 151 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 152 down_read(¤t->mm->mmap_sem); 153 ret = get_user_pages( 154 current, /* Task for fault acounting */ 155 current->mm, /* whose pages? */ 156 dio->curr_user_address, /* Where from? */ 157 nr_pages, /* How many pages? */ 158 dio->rw == READ, /* Write to memory? */ 159 0, /* force (?) */ 160 &dio->pages[0], 161 NULL); /* vmas */ 162 up_read(¤t->mm->mmap_sem); 163 164 if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) { 165 /* 166 * A memory fault, but the filesystem has some outstanding 167 * mapped blocks. We need to use those blocks up to avoid 168 * leaking stale data in the file. 169 */ 170 if (dio->page_errors == 0) 171 dio->page_errors = ret; 172 dio->pages[0] = ZERO_PAGE(dio->curr_user_address); 173 dio->head = 0; 174 dio->tail = 1; 175 ret = 0; 176 goto out; 177 } 178 179 if (ret >= 0) { 180 dio->curr_user_address += ret * PAGE_SIZE; 181 dio->curr_page += ret; 182 dio->head = 0; 183 dio->tail = ret; 184 ret = 0; 185 } 186 out: 187 return ret; 188 } 189 190 /* 191 * Get another userspace page. Returns an ERR_PTR on error. Pages are 192 * buffered inside the dio so that we can call get_user_pages() against a 193 * decent number of pages, less frequently. To provide nicer use of the 194 * L1 cache. 195 */ 196 static struct page *dio_get_page(struct dio *dio) 197 { 198 if (dio_pages_present(dio) == 0) { 199 int ret; 200 201 ret = dio_refill_pages(dio); 202 if (ret) 203 return ERR_PTR(ret); 204 BUG_ON(dio_pages_present(dio) == 0); 205 } 206 return dio->pages[dio->head++]; 207 } 208 209 /* 210 * Called when all DIO BIO I/O has been completed - let the filesystem 211 * know, if it registered an interest earlier via get_blocks. Pass the 212 * private field of the map buffer_head so that filesystems can use it 213 * to hold additional state between get_blocks calls and dio_complete. 214 */ 215 static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes) 216 { 217 if (dio->end_io && dio->result) 218 dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private); 219 if (dio->lock_type == DIO_LOCKING) 220 up_read(&dio->inode->i_alloc_sem); 221 } 222 223 /* 224 * Called when a BIO has been processed. If the count goes to zero then IO is 225 * complete and we can signal this to the AIO layer. 226 */ 227 static void finished_one_bio(struct dio *dio) 228 { 229 unsigned long flags; 230 231 spin_lock_irqsave(&dio->bio_lock, flags); 232 if (dio->bio_count == 1) { 233 if (dio->is_async) { 234 ssize_t transferred; 235 loff_t offset; 236 237 /* 238 * Last reference to the dio is going away. 239 * Drop spinlock and complete the DIO. 240 */ 241 spin_unlock_irqrestore(&dio->bio_lock, flags); 242 243 /* Check for short read case */ 244 transferred = dio->result; 245 offset = dio->iocb->ki_pos; 246 247 if ((dio->rw == READ) && 248 ((offset + transferred) > dio->i_size)) 249 transferred = dio->i_size - offset; 250 251 dio_complete(dio, offset, transferred); 252 253 /* Complete AIO later if falling back to buffered i/o */ 254 if (dio->result == dio->size || 255 ((dio->rw == READ) && dio->result)) { 256 aio_complete(dio->iocb, transferred, 0); 257 kfree(dio); 258 return; 259 } else { 260 /* 261 * Falling back to buffered 262 */ 263 spin_lock_irqsave(&dio->bio_lock, flags); 264 dio->bio_count--; 265 if (dio->waiter) 266 wake_up_process(dio->waiter); 267 spin_unlock_irqrestore(&dio->bio_lock, flags); 268 return; 269 } 270 } 271 } 272 dio->bio_count--; 273 spin_unlock_irqrestore(&dio->bio_lock, flags); 274 } 275 276 static int dio_bio_complete(struct dio *dio, struct bio *bio); 277 /* 278 * Asynchronous IO callback. 279 */ 280 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) 281 { 282 struct dio *dio = bio->bi_private; 283 284 if (bio->bi_size) 285 return 1; 286 287 /* cleanup the bio */ 288 dio_bio_complete(dio, bio); 289 return 0; 290 } 291 292 /* 293 * The BIO completion handler simply queues the BIO up for the process-context 294 * handler. 295 * 296 * During I/O bi_private points at the dio. After I/O, bi_private is used to 297 * implement a singly-linked list of completed BIOs, at dio->bio_list. 298 */ 299 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) 300 { 301 struct dio *dio = bio->bi_private; 302 unsigned long flags; 303 304 if (bio->bi_size) 305 return 1; 306 307 spin_lock_irqsave(&dio->bio_lock, flags); 308 bio->bi_private = dio->bio_list; 309 dio->bio_list = bio; 310 dio->bios_in_flight--; 311 if (dio->waiter && dio->bios_in_flight == 0) 312 wake_up_process(dio->waiter); 313 spin_unlock_irqrestore(&dio->bio_lock, flags); 314 return 0; 315 } 316 317 static int 318 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 319 sector_t first_sector, int nr_vecs) 320 { 321 struct bio *bio; 322 323 bio = bio_alloc(GFP_KERNEL, nr_vecs); 324 if (bio == NULL) 325 return -ENOMEM; 326 327 bio->bi_bdev = bdev; 328 bio->bi_sector = first_sector; 329 if (dio->is_async) 330 bio->bi_end_io = dio_bio_end_aio; 331 else 332 bio->bi_end_io = dio_bio_end_io; 333 334 dio->bio = bio; 335 return 0; 336 } 337 338 /* 339 * In the AIO read case we speculatively dirty the pages before starting IO. 340 * During IO completion, any of these pages which happen to have been written 341 * back will be redirtied by bio_check_pages_dirty(). 342 */ 343 static void dio_bio_submit(struct dio *dio) 344 { 345 struct bio *bio = dio->bio; 346 unsigned long flags; 347 348 bio->bi_private = dio; 349 spin_lock_irqsave(&dio->bio_lock, flags); 350 dio->bio_count++; 351 dio->bios_in_flight++; 352 spin_unlock_irqrestore(&dio->bio_lock, flags); 353 if (dio->is_async && dio->rw == READ) 354 bio_set_pages_dirty(bio); 355 submit_bio(dio->rw, bio); 356 357 dio->bio = NULL; 358 dio->boundary = 0; 359 } 360 361 /* 362 * Release any resources in case of a failure 363 */ 364 static void dio_cleanup(struct dio *dio) 365 { 366 while (dio_pages_present(dio)) 367 page_cache_release(dio_get_page(dio)); 368 } 369 370 /* 371 * Wait for the next BIO to complete. Remove it and return it. 372 */ 373 static struct bio *dio_await_one(struct dio *dio) 374 { 375 unsigned long flags; 376 struct bio *bio; 377 378 spin_lock_irqsave(&dio->bio_lock, flags); 379 while (dio->bio_list == NULL) { 380 set_current_state(TASK_UNINTERRUPTIBLE); 381 if (dio->bio_list == NULL) { 382 dio->waiter = current; 383 spin_unlock_irqrestore(&dio->bio_lock, flags); 384 blk_run_address_space(dio->inode->i_mapping); 385 io_schedule(); 386 spin_lock_irqsave(&dio->bio_lock, flags); 387 dio->waiter = NULL; 388 } 389 set_current_state(TASK_RUNNING); 390 } 391 bio = dio->bio_list; 392 dio->bio_list = bio->bi_private; 393 spin_unlock_irqrestore(&dio->bio_lock, flags); 394 return bio; 395 } 396 397 /* 398 * Process one completed BIO. No locks are held. 399 */ 400 static int dio_bio_complete(struct dio *dio, struct bio *bio) 401 { 402 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 403 struct bio_vec *bvec = bio->bi_io_vec; 404 int page_no; 405 406 if (!uptodate) 407 dio->result = -EIO; 408 409 if (dio->is_async && dio->rw == READ) { 410 bio_check_pages_dirty(bio); /* transfers ownership */ 411 } else { 412 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 413 struct page *page = bvec[page_no].bv_page; 414 415 if (dio->rw == READ && !PageCompound(page)) 416 set_page_dirty_lock(page); 417 page_cache_release(page); 418 } 419 bio_put(bio); 420 } 421 finished_one_bio(dio); 422 return uptodate ? 0 : -EIO; 423 } 424 425 /* 426 * Wait on and process all in-flight BIOs. 427 */ 428 static int dio_await_completion(struct dio *dio) 429 { 430 int ret = 0; 431 432 if (dio->bio) 433 dio_bio_submit(dio); 434 435 /* 436 * The bio_lock is not held for the read of bio_count. 437 * This is ok since it is the dio_bio_complete() that changes 438 * bio_count. 439 */ 440 while (dio->bio_count) { 441 struct bio *bio = dio_await_one(dio); 442 int ret2; 443 444 ret2 = dio_bio_complete(dio, bio); 445 if (ret == 0) 446 ret = ret2; 447 } 448 return ret; 449 } 450 451 /* 452 * A really large O_DIRECT read or write can generate a lot of BIOs. So 453 * to keep the memory consumption sane we periodically reap any completed BIOs 454 * during the BIO generation phase. 455 * 456 * This also helps to limit the peak amount of pinned userspace memory. 457 */ 458 static int dio_bio_reap(struct dio *dio) 459 { 460 int ret = 0; 461 462 if (dio->reap_counter++ >= 64) { 463 while (dio->bio_list) { 464 unsigned long flags; 465 struct bio *bio; 466 int ret2; 467 468 spin_lock_irqsave(&dio->bio_lock, flags); 469 bio = dio->bio_list; 470 dio->bio_list = bio->bi_private; 471 spin_unlock_irqrestore(&dio->bio_lock, flags); 472 ret2 = dio_bio_complete(dio, bio); 473 if (ret == 0) 474 ret = ret2; 475 } 476 dio->reap_counter = 0; 477 } 478 return ret; 479 } 480 481 /* 482 * Call into the fs to map some more disk blocks. We record the current number 483 * of available blocks at dio->blocks_available. These are in units of the 484 * fs blocksize, (1 << inode->i_blkbits). 485 * 486 * The fs is allowed to map lots of blocks at once. If it wants to do that, 487 * it uses the passed inode-relative block number as the file offset, as usual. 488 * 489 * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io 490 * has remaining to do. The fs should not map more than this number of blocks. 491 * 492 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 493 * indicate how much contiguous disk space has been made available at 494 * bh->b_blocknr. 495 * 496 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 497 * This isn't very efficient... 498 * 499 * In the case of filesystem holes: the fs may return an arbitrarily-large 500 * hole by returning an appropriate value in b_size and by clearing 501 * buffer_mapped(). However the direct-io code will only process holes one 502 * block at a time - it will repeatedly call get_blocks() as it walks the hole. 503 */ 504 static int get_more_blocks(struct dio *dio) 505 { 506 int ret; 507 struct buffer_head *map_bh = &dio->map_bh; 508 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 509 unsigned long fs_count; /* Number of filesystem-sized blocks */ 510 unsigned long dio_count;/* Number of dio_block-sized blocks */ 511 unsigned long blkmask; 512 int create; 513 514 /* 515 * If there was a memory error and we've overwritten all the 516 * mapped blocks then we can now return that memory error 517 */ 518 ret = dio->page_errors; 519 if (ret == 0) { 520 map_bh->b_state = 0; 521 map_bh->b_size = 0; 522 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 523 fs_startblk = dio->block_in_file >> dio->blkfactor; 524 dio_count = dio->final_block_in_request - dio->block_in_file; 525 fs_count = dio_count >> dio->blkfactor; 526 blkmask = (1 << dio->blkfactor) - 1; 527 if (dio_count & blkmask) 528 fs_count++; 529 530 create = dio->rw == WRITE; 531 if (dio->lock_type == DIO_LOCKING) { 532 if (dio->block_in_file < (i_size_read(dio->inode) >> 533 dio->blkbits)) 534 create = 0; 535 } else if (dio->lock_type == DIO_NO_LOCKING) { 536 create = 0; 537 } 538 /* 539 * For writes inside i_size we forbid block creations: only 540 * overwrites are permitted. We fall back to buffered writes 541 * at a higher level for inside-i_size block-instantiating 542 * writes. 543 */ 544 ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count, 545 map_bh, create); 546 } 547 return ret; 548 } 549 550 /* 551 * There is no bio. Make one now. 552 */ 553 static int dio_new_bio(struct dio *dio, sector_t start_sector) 554 { 555 sector_t sector; 556 int ret, nr_pages; 557 558 ret = dio_bio_reap(dio); 559 if (ret) 560 goto out; 561 sector = start_sector << (dio->blkbits - 9); 562 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 563 BUG_ON(nr_pages <= 0); 564 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 565 dio->boundary = 0; 566 out: 567 return ret; 568 } 569 570 /* 571 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 572 * that was successful then update final_block_in_bio and take a ref against 573 * the just-added page. 574 * 575 * Return zero on success. Non-zero means the caller needs to start a new BIO. 576 */ 577 static int dio_bio_add_page(struct dio *dio) 578 { 579 int ret; 580 581 ret = bio_add_page(dio->bio, dio->cur_page, 582 dio->cur_page_len, dio->cur_page_offset); 583 if (ret == dio->cur_page_len) { 584 /* 585 * Decrement count only, if we are done with this page 586 */ 587 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 588 dio->pages_in_io--; 589 page_cache_get(dio->cur_page); 590 dio->final_block_in_bio = dio->cur_page_block + 591 (dio->cur_page_len >> dio->blkbits); 592 ret = 0; 593 } else { 594 ret = 1; 595 } 596 return ret; 597 } 598 599 /* 600 * Put cur_page under IO. The section of cur_page which is described by 601 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 602 * starts on-disk at cur_page_block. 603 * 604 * We take a ref against the page here (on behalf of its presence in the bio). 605 * 606 * The caller of this function is responsible for removing cur_page from the 607 * dio, and for dropping the refcount which came from that presence. 608 */ 609 static int dio_send_cur_page(struct dio *dio) 610 { 611 int ret = 0; 612 613 if (dio->bio) { 614 /* 615 * See whether this new request is contiguous with the old 616 */ 617 if (dio->final_block_in_bio != dio->cur_page_block) 618 dio_bio_submit(dio); 619 /* 620 * Submit now if the underlying fs is about to perform a 621 * metadata read 622 */ 623 if (dio->boundary) 624 dio_bio_submit(dio); 625 } 626 627 if (dio->bio == NULL) { 628 ret = dio_new_bio(dio, dio->cur_page_block); 629 if (ret) 630 goto out; 631 } 632 633 if (dio_bio_add_page(dio) != 0) { 634 dio_bio_submit(dio); 635 ret = dio_new_bio(dio, dio->cur_page_block); 636 if (ret == 0) { 637 ret = dio_bio_add_page(dio); 638 BUG_ON(ret != 0); 639 } 640 } 641 out: 642 return ret; 643 } 644 645 /* 646 * An autonomous function to put a chunk of a page under deferred IO. 647 * 648 * The caller doesn't actually know (or care) whether this piece of page is in 649 * a BIO, or is under IO or whatever. We just take care of all possible 650 * situations here. The separation between the logic of do_direct_IO() and 651 * that of submit_page_section() is important for clarity. Please don't break. 652 * 653 * The chunk of page starts on-disk at blocknr. 654 * 655 * We perform deferred IO, by recording the last-submitted page inside our 656 * private part of the dio structure. If possible, we just expand the IO 657 * across that page here. 658 * 659 * If that doesn't work out then we put the old page into the bio and add this 660 * page to the dio instead. 661 */ 662 static int 663 submit_page_section(struct dio *dio, struct page *page, 664 unsigned offset, unsigned len, sector_t blocknr) 665 { 666 int ret = 0; 667 668 /* 669 * Can we just grow the current page's presence in the dio? 670 */ 671 if ( (dio->cur_page == page) && 672 (dio->cur_page_offset + dio->cur_page_len == offset) && 673 (dio->cur_page_block + 674 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 675 dio->cur_page_len += len; 676 677 /* 678 * If dio->boundary then we want to schedule the IO now to 679 * avoid metadata seeks. 680 */ 681 if (dio->boundary) { 682 ret = dio_send_cur_page(dio); 683 page_cache_release(dio->cur_page); 684 dio->cur_page = NULL; 685 } 686 goto out; 687 } 688 689 /* 690 * If there's a deferred page already there then send it. 691 */ 692 if (dio->cur_page) { 693 ret = dio_send_cur_page(dio); 694 page_cache_release(dio->cur_page); 695 dio->cur_page = NULL; 696 if (ret) 697 goto out; 698 } 699 700 page_cache_get(page); /* It is in dio */ 701 dio->cur_page = page; 702 dio->cur_page_offset = offset; 703 dio->cur_page_len = len; 704 dio->cur_page_block = blocknr; 705 out: 706 return ret; 707 } 708 709 /* 710 * Clean any dirty buffers in the blockdev mapping which alias newly-created 711 * file blocks. Only called for S_ISREG files - blockdevs do not set 712 * buffer_new 713 */ 714 static void clean_blockdev_aliases(struct dio *dio) 715 { 716 unsigned i; 717 unsigned nblocks; 718 719 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 720 721 for (i = 0; i < nblocks; i++) { 722 unmap_underlying_metadata(dio->map_bh.b_bdev, 723 dio->map_bh.b_blocknr + i); 724 } 725 } 726 727 /* 728 * If we are not writing the entire block and get_block() allocated 729 * the block for us, we need to fill-in the unused portion of the 730 * block with zeros. This happens only if user-buffer, fileoffset or 731 * io length is not filesystem block-size multiple. 732 * 733 * `end' is zero if we're doing the start of the IO, 1 at the end of the 734 * IO. 735 */ 736 static void dio_zero_block(struct dio *dio, int end) 737 { 738 unsigned dio_blocks_per_fs_block; 739 unsigned this_chunk_blocks; /* In dio_blocks */ 740 unsigned this_chunk_bytes; 741 struct page *page; 742 743 dio->start_zero_done = 1; 744 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 745 return; 746 747 dio_blocks_per_fs_block = 1 << dio->blkfactor; 748 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 749 750 if (!this_chunk_blocks) 751 return; 752 753 /* 754 * We need to zero out part of an fs block. It is either at the 755 * beginning or the end of the fs block. 756 */ 757 if (end) 758 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 759 760 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 761 762 page = ZERO_PAGE(dio->curr_user_address); 763 if (submit_page_section(dio, page, 0, this_chunk_bytes, 764 dio->next_block_for_io)) 765 return; 766 767 dio->next_block_for_io += this_chunk_blocks; 768 } 769 770 /* 771 * Walk the user pages, and the file, mapping blocks to disk and generating 772 * a sequence of (page,offset,len,block) mappings. These mappings are injected 773 * into submit_page_section(), which takes care of the next stage of submission 774 * 775 * Direct IO against a blockdev is different from a file. Because we can 776 * happily perform page-sized but 512-byte aligned IOs. It is important that 777 * blockdev IO be able to have fine alignment and large sizes. 778 * 779 * So what we do is to permit the ->get_blocks function to populate bh.b_size 780 * with the size of IO which is permitted at this offset and this i_blkbits. 781 * 782 * For best results, the blockdev should be set up with 512-byte i_blkbits and 783 * it should set b_size to PAGE_SIZE or more inside get_blocks(). This gives 784 * fine alignment but still allows this function to work in PAGE_SIZE units. 785 */ 786 static int do_direct_IO(struct dio *dio) 787 { 788 const unsigned blkbits = dio->blkbits; 789 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 790 struct page *page; 791 unsigned block_in_page; 792 struct buffer_head *map_bh = &dio->map_bh; 793 int ret = 0; 794 795 /* The I/O can start at any block offset within the first page */ 796 block_in_page = dio->first_block_in_page; 797 798 while (dio->block_in_file < dio->final_block_in_request) { 799 page = dio_get_page(dio); 800 if (IS_ERR(page)) { 801 ret = PTR_ERR(page); 802 goto out; 803 } 804 805 while (block_in_page < blocks_per_page) { 806 unsigned offset_in_page = block_in_page << blkbits; 807 unsigned this_chunk_bytes; /* # of bytes mapped */ 808 unsigned this_chunk_blocks; /* # of blocks */ 809 unsigned u; 810 811 if (dio->blocks_available == 0) { 812 /* 813 * Need to go and map some more disk 814 */ 815 unsigned long blkmask; 816 unsigned long dio_remainder; 817 818 ret = get_more_blocks(dio); 819 if (ret) { 820 page_cache_release(page); 821 goto out; 822 } 823 if (!buffer_mapped(map_bh)) 824 goto do_holes; 825 826 dio->blocks_available = 827 map_bh->b_size >> dio->blkbits; 828 dio->next_block_for_io = 829 map_bh->b_blocknr << dio->blkfactor; 830 if (buffer_new(map_bh)) 831 clean_blockdev_aliases(dio); 832 833 if (!dio->blkfactor) 834 goto do_holes; 835 836 blkmask = (1 << dio->blkfactor) - 1; 837 dio_remainder = (dio->block_in_file & blkmask); 838 839 /* 840 * If we are at the start of IO and that IO 841 * starts partway into a fs-block, 842 * dio_remainder will be non-zero. If the IO 843 * is a read then we can simply advance the IO 844 * cursor to the first block which is to be 845 * read. But if the IO is a write and the 846 * block was newly allocated we cannot do that; 847 * the start of the fs block must be zeroed out 848 * on-disk 849 */ 850 if (!buffer_new(map_bh)) 851 dio->next_block_for_io += dio_remainder; 852 dio->blocks_available -= dio_remainder; 853 } 854 do_holes: 855 /* Handle holes */ 856 if (!buffer_mapped(map_bh)) { 857 char *kaddr; 858 859 /* AKPM: eargh, -ENOTBLK is a hack */ 860 if (dio->rw == WRITE) { 861 page_cache_release(page); 862 return -ENOTBLK; 863 } 864 865 if (dio->block_in_file >= 866 i_size_read(dio->inode)>>blkbits) { 867 /* We hit eof */ 868 page_cache_release(page); 869 goto out; 870 } 871 kaddr = kmap_atomic(page, KM_USER0); 872 memset(kaddr + (block_in_page << blkbits), 873 0, 1 << blkbits); 874 flush_dcache_page(page); 875 kunmap_atomic(kaddr, KM_USER0); 876 dio->block_in_file++; 877 block_in_page++; 878 goto next_block; 879 } 880 881 /* 882 * If we're performing IO which has an alignment which 883 * is finer than the underlying fs, go check to see if 884 * we must zero out the start of this block. 885 */ 886 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 887 dio_zero_block(dio, 0); 888 889 /* 890 * Work out, in this_chunk_blocks, how much disk we 891 * can add to this page 892 */ 893 this_chunk_blocks = dio->blocks_available; 894 u = (PAGE_SIZE - offset_in_page) >> blkbits; 895 if (this_chunk_blocks > u) 896 this_chunk_blocks = u; 897 u = dio->final_block_in_request - dio->block_in_file; 898 if (this_chunk_blocks > u) 899 this_chunk_blocks = u; 900 this_chunk_bytes = this_chunk_blocks << blkbits; 901 BUG_ON(this_chunk_bytes == 0); 902 903 dio->boundary = buffer_boundary(map_bh); 904 ret = submit_page_section(dio, page, offset_in_page, 905 this_chunk_bytes, dio->next_block_for_io); 906 if (ret) { 907 page_cache_release(page); 908 goto out; 909 } 910 dio->next_block_for_io += this_chunk_blocks; 911 912 dio->block_in_file += this_chunk_blocks; 913 block_in_page += this_chunk_blocks; 914 dio->blocks_available -= this_chunk_blocks; 915 next_block: 916 if (dio->block_in_file > dio->final_block_in_request) 917 BUG(); 918 if (dio->block_in_file == dio->final_block_in_request) 919 break; 920 } 921 922 /* Drop the ref which was taken in get_user_pages() */ 923 page_cache_release(page); 924 block_in_page = 0; 925 } 926 out: 927 return ret; 928 } 929 930 /* 931 * Releases both i_sem and i_alloc_sem 932 */ 933 static ssize_t 934 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 935 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 936 unsigned blkbits, get_blocks_t get_blocks, dio_iodone_t end_io, 937 struct dio *dio) 938 { 939 unsigned long user_addr; 940 int seg; 941 ssize_t ret = 0; 942 ssize_t ret2; 943 size_t bytes; 944 945 dio->bio = NULL; 946 dio->inode = inode; 947 dio->rw = rw; 948 dio->blkbits = blkbits; 949 dio->blkfactor = inode->i_blkbits - blkbits; 950 dio->start_zero_done = 0; 951 dio->size = 0; 952 dio->block_in_file = offset >> blkbits; 953 dio->blocks_available = 0; 954 dio->cur_page = NULL; 955 956 dio->boundary = 0; 957 dio->reap_counter = 0; 958 dio->get_blocks = get_blocks; 959 dio->end_io = end_io; 960 dio->map_bh.b_private = NULL; 961 dio->final_block_in_bio = -1; 962 dio->next_block_for_io = -1; 963 964 dio->page_errors = 0; 965 dio->result = 0; 966 dio->iocb = iocb; 967 dio->i_size = i_size_read(inode); 968 969 /* 970 * BIO completion state. 971 * 972 * ->bio_count starts out at one, and we decrement it to zero after all 973 * BIOs are submitted. This to avoid the situation where a really fast 974 * (or synchronous) device could take the count to zero while we're 975 * still submitting BIOs. 976 */ 977 dio->bio_count = 1; 978 dio->bios_in_flight = 0; 979 spin_lock_init(&dio->bio_lock); 980 dio->bio_list = NULL; 981 dio->waiter = NULL; 982 983 /* 984 * In case of non-aligned buffers, we may need 2 more 985 * pages since we need to zero out first and last block. 986 */ 987 if (unlikely(dio->blkfactor)) 988 dio->pages_in_io = 2; 989 else 990 dio->pages_in_io = 0; 991 992 for (seg = 0; seg < nr_segs; seg++) { 993 user_addr = (unsigned long)iov[seg].iov_base; 994 dio->pages_in_io += 995 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 996 - user_addr/PAGE_SIZE); 997 } 998 999 for (seg = 0; seg < nr_segs; seg++) { 1000 user_addr = (unsigned long)iov[seg].iov_base; 1001 dio->size += bytes = iov[seg].iov_len; 1002 1003 /* Index into the first page of the first block */ 1004 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1005 dio->final_block_in_request = dio->block_in_file + 1006 (bytes >> blkbits); 1007 /* Page fetching state */ 1008 dio->head = 0; 1009 dio->tail = 0; 1010 dio->curr_page = 0; 1011 1012 dio->total_pages = 0; 1013 if (user_addr & (PAGE_SIZE-1)) { 1014 dio->total_pages++; 1015 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1016 } 1017 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1018 dio->curr_user_address = user_addr; 1019 1020 ret = do_direct_IO(dio); 1021 1022 dio->result += iov[seg].iov_len - 1023 ((dio->final_block_in_request - dio->block_in_file) << 1024 blkbits); 1025 1026 if (ret) { 1027 dio_cleanup(dio); 1028 break; 1029 } 1030 } /* end iovec loop */ 1031 1032 if (ret == -ENOTBLK && rw == WRITE) { 1033 /* 1034 * The remaining part of the request will be 1035 * be handled by buffered I/O when we return 1036 */ 1037 ret = 0; 1038 } 1039 /* 1040 * There may be some unwritten disk at the end of a part-written 1041 * fs-block-sized block. Go zero that now. 1042 */ 1043 dio_zero_block(dio, 1); 1044 1045 if (dio->cur_page) { 1046 ret2 = dio_send_cur_page(dio); 1047 if (ret == 0) 1048 ret = ret2; 1049 page_cache_release(dio->cur_page); 1050 dio->cur_page = NULL; 1051 } 1052 if (dio->bio) 1053 dio_bio_submit(dio); 1054 1055 /* 1056 * It is possible that, we return short IO due to end of file. 1057 * In that case, we need to release all the pages we got hold on. 1058 */ 1059 dio_cleanup(dio); 1060 1061 /* 1062 * All block lookups have been performed. For READ requests 1063 * we can let i_sem go now that its achieved its purpose 1064 * of protecting us from looking up uninitialized blocks. 1065 */ 1066 if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) 1067 up(&dio->inode->i_sem); 1068 1069 /* 1070 * OK, all BIOs are submitted, so we can decrement bio_count to truly 1071 * reflect the number of to-be-processed BIOs. 1072 */ 1073 if (dio->is_async) { 1074 int should_wait = 0; 1075 1076 if (dio->result < dio->size && rw == WRITE) { 1077 dio->waiter = current; 1078 should_wait = 1; 1079 } 1080 if (ret == 0) 1081 ret = dio->result; 1082 finished_one_bio(dio); /* This can free the dio */ 1083 blk_run_address_space(inode->i_mapping); 1084 if (should_wait) { 1085 unsigned long flags; 1086 /* 1087 * Wait for already issued I/O to drain out and 1088 * release its references to user-space pages 1089 * before returning to fallback on buffered I/O 1090 */ 1091 1092 spin_lock_irqsave(&dio->bio_lock, flags); 1093 set_current_state(TASK_UNINTERRUPTIBLE); 1094 while (dio->bio_count) { 1095 spin_unlock_irqrestore(&dio->bio_lock, flags); 1096 io_schedule(); 1097 spin_lock_irqsave(&dio->bio_lock, flags); 1098 set_current_state(TASK_UNINTERRUPTIBLE); 1099 } 1100 spin_unlock_irqrestore(&dio->bio_lock, flags); 1101 set_current_state(TASK_RUNNING); 1102 kfree(dio); 1103 } 1104 } else { 1105 ssize_t transferred = 0; 1106 1107 finished_one_bio(dio); 1108 ret2 = dio_await_completion(dio); 1109 if (ret == 0) 1110 ret = ret2; 1111 if (ret == 0) 1112 ret = dio->page_errors; 1113 if (dio->result) { 1114 loff_t i_size = i_size_read(inode); 1115 1116 transferred = dio->result; 1117 /* 1118 * Adjust the return value if the read crossed a 1119 * non-block-aligned EOF. 1120 */ 1121 if (rw == READ && (offset + transferred > i_size)) 1122 transferred = i_size - offset; 1123 } 1124 dio_complete(dio, offset, transferred); 1125 if (ret == 0) 1126 ret = transferred; 1127 1128 /* We could have also come here on an AIO file extend */ 1129 if (!is_sync_kiocb(iocb) && rw == WRITE && 1130 ret >= 0 && dio->result == dio->size) 1131 /* 1132 * For AIO writes where we have completed the 1133 * i/o, we have to mark the the aio complete. 1134 */ 1135 aio_complete(iocb, ret, 0); 1136 kfree(dio); 1137 } 1138 return ret; 1139 } 1140 1141 /* 1142 * This is a library function for use by filesystem drivers. 1143 * The locking rules are governed by the dio_lock_type parameter. 1144 * 1145 * DIO_NO_LOCKING (no locking, for raw block device access) 1146 * For writes, i_sem is not held on entry; it is never taken. 1147 * 1148 * DIO_LOCKING (simple locking for regular files) 1149 * For writes we are called under i_sem and return with i_sem held, even though 1150 * it is internally dropped. 1151 * For reads, i_sem is not held on entry, but it is taken and dropped before 1152 * returning. 1153 * 1154 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of 1155 * uninitialised data, allowing parallel direct readers and writers) 1156 * For writes we are called without i_sem, return without it, never touch it. 1157 * For reads, i_sem is held on entry and will be released before returning. 1158 * 1159 * Additional i_alloc_sem locking requirements described inline below. 1160 */ 1161 ssize_t 1162 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1163 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1164 unsigned long nr_segs, get_blocks_t get_blocks, dio_iodone_t end_io, 1165 int dio_lock_type) 1166 { 1167 int seg; 1168 size_t size; 1169 unsigned long addr; 1170 unsigned blkbits = inode->i_blkbits; 1171 unsigned bdev_blkbits = 0; 1172 unsigned blocksize_mask = (1 << blkbits) - 1; 1173 ssize_t retval = -EINVAL; 1174 loff_t end = offset; 1175 struct dio *dio; 1176 int reader_with_isem = (rw == READ && dio_lock_type == DIO_OWN_LOCKING); 1177 1178 if (rw & WRITE) 1179 current->flags |= PF_SYNCWRITE; 1180 1181 if (bdev) 1182 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); 1183 1184 if (offset & blocksize_mask) { 1185 if (bdev) 1186 blkbits = bdev_blkbits; 1187 blocksize_mask = (1 << blkbits) - 1; 1188 if (offset & blocksize_mask) 1189 goto out; 1190 } 1191 1192 /* Check the memory alignment. Blocks cannot straddle pages */ 1193 for (seg = 0; seg < nr_segs; seg++) { 1194 addr = (unsigned long)iov[seg].iov_base; 1195 size = iov[seg].iov_len; 1196 end += size; 1197 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1198 if (bdev) 1199 blkbits = bdev_blkbits; 1200 blocksize_mask = (1 << blkbits) - 1; 1201 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1202 goto out; 1203 } 1204 } 1205 1206 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 1207 retval = -ENOMEM; 1208 if (!dio) 1209 goto out; 1210 1211 /* 1212 * For block device access DIO_NO_LOCKING is used, 1213 * neither readers nor writers do any locking at all 1214 * For regular files using DIO_LOCKING, 1215 * readers need to grab i_sem and i_alloc_sem 1216 * writers need to grab i_alloc_sem only (i_sem is already held) 1217 * For regular files using DIO_OWN_LOCKING, 1218 * neither readers nor writers take any locks here 1219 * (i_sem is already held and release for writers here) 1220 */ 1221 dio->lock_type = dio_lock_type; 1222 if (dio_lock_type != DIO_NO_LOCKING) { 1223 /* watch out for a 0 len io from a tricksy fs */ 1224 if (rw == READ && end > offset) { 1225 struct address_space *mapping; 1226 1227 mapping = iocb->ki_filp->f_mapping; 1228 if (dio_lock_type != DIO_OWN_LOCKING) { 1229 down(&inode->i_sem); 1230 reader_with_isem = 1; 1231 } 1232 1233 retval = filemap_write_and_wait_range(mapping, offset, 1234 end - 1); 1235 if (retval) { 1236 kfree(dio); 1237 goto out; 1238 } 1239 1240 if (dio_lock_type == DIO_OWN_LOCKING) { 1241 up(&inode->i_sem); 1242 reader_with_isem = 0; 1243 } 1244 } 1245 1246 if (dio_lock_type == DIO_LOCKING) 1247 down_read(&inode->i_alloc_sem); 1248 } 1249 1250 /* 1251 * For file extending writes updating i_size before data 1252 * writeouts complete can expose uninitialized blocks. So 1253 * even for AIO, we need to wait for i/o to complete before 1254 * returning in this case. 1255 */ 1256 dio->is_async = !is_sync_kiocb(iocb) && !((rw == WRITE) && 1257 (end > i_size_read(inode))); 1258 1259 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1260 nr_segs, blkbits, get_blocks, end_io, dio); 1261 1262 if (rw == READ && dio_lock_type == DIO_LOCKING) 1263 reader_with_isem = 0; 1264 1265 out: 1266 if (reader_with_isem) 1267 up(&inode->i_sem); 1268 if (rw & WRITE) 1269 current->flags &= ~PF_SYNCWRITE; 1270 return retval; 1271 } 1272 EXPORT_SYMBOL(__blockdev_direct_IO); 1273