xref: /linux/fs/direct-io.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 
41 #include "internal.h"
42 
43 /*
44  * How many user pages to map in one call to iov_iter_extract_pages().  This
45  * determines the size of a structure in the slab cache
46  */
47 #define DIO_PAGES	64
48 
49 /*
50  * Flags for dio_complete()
51  */
52 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
53 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
54 
55 /*
56  * This code generally works in units of "dio_blocks".  A dio_block is
57  * somewhere between the hard sector size and the filesystem block size.  it
58  * is determined on a per-invocation basis.   When talking to the filesystem
59  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
60  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
61  * to bio_block quantities by shifting left by blkfactor.
62  *
63  * If blkfactor is zero then the user's request was aligned to the filesystem's
64  * blocksize.
65  */
66 
67 /* dio_state only used in the submission path */
68 
69 struct dio_submit {
70 	struct bio *bio;		/* bio under assembly */
71 	unsigned blkbits;		/* doesn't change */
72 	unsigned blkfactor;		/* When we're using an alignment which
73 					   is finer than the filesystem's soft
74 					   blocksize, this specifies how much
75 					   finer.  blkfactor=2 means 1/4-block
76 					   alignment.  Does not change */
77 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
78 					   been performed at the start of a
79 					   write */
80 	int pages_in_io;		/* approximate total IO pages */
81 	sector_t block_in_file;		/* Current offset into the underlying
82 					   file in dio_block units. */
83 	unsigned blocks_available;	/* At block_in_file.  changes */
84 	int reap_counter;		/* rate limit reaping */
85 	sector_t final_block_in_request;/* doesn't change */
86 	int boundary;			/* prev block is at a boundary */
87 	get_block_t *get_block;		/* block mapping function */
88 
89 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
90 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
91 	sector_t next_block_for_io;	/* next block to be put under IO,
92 					   in dio_blocks units */
93 
94 	/*
95 	 * Deferred addition of a page to the dio.  These variables are
96 	 * private to dio_send_cur_page(), submit_page_section() and
97 	 * dio_bio_add_page().
98 	 */
99 	struct page *cur_page;		/* The page */
100 	unsigned cur_page_offset;	/* Offset into it, in bytes */
101 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
102 	sector_t cur_page_block;	/* Where it starts */
103 	loff_t cur_page_fs_offset;	/* Offset in file */
104 
105 	struct iov_iter *iter;
106 	/*
107 	 * Page queue.  These variables belong to dio_refill_pages() and
108 	 * dio_get_page().
109 	 */
110 	unsigned head;			/* next page to process */
111 	unsigned tail;			/* last valid page + 1 */
112 	size_t from, to;
113 };
114 
115 /* dio_state communicated between submission path and end_io */
116 struct dio {
117 	int flags;			/* doesn't change */
118 	blk_opf_t opf;			/* request operation type and flags */
119 	struct gendisk *bio_disk;
120 	struct inode *inode;
121 	loff_t i_size;			/* i_size when submitted */
122 	dio_iodone_t *end_io;		/* IO completion function */
123 	bool is_pinned;			/* T if we have pins on the pages */
124 
125 	void *private;			/* copy from map_bh.b_private */
126 
127 	/* BIO completion state */
128 	spinlock_t bio_lock;		/* protects BIO fields below */
129 	int page_errors;		/* err from iov_iter_extract_pages() */
130 	int is_async;			/* is IO async ? */
131 	bool defer_completion;		/* defer AIO completion to workqueue? */
132 	bool should_dirty;		/* if pages should be dirtied */
133 	int io_error;			/* IO error in completion path */
134 	unsigned long refcount;		/* direct_io_worker() and bios */
135 	struct bio *bio_list;		/* singly linked via bi_private */
136 	struct task_struct *waiter;	/* waiting task (NULL if none) */
137 
138 	/* AIO related stuff */
139 	struct kiocb *iocb;		/* kiocb */
140 	ssize_t result;                 /* IO result */
141 
142 	/*
143 	 * pages[] (and any fields placed after it) are not zeroed out at
144 	 * allocation time.  Don't add new fields after pages[] unless you
145 	 * wish that they not be zeroed.
146 	 */
147 	union {
148 		struct page *pages[DIO_PAGES];	/* page buffer */
149 		struct work_struct complete_work;/* deferred AIO completion */
150 	};
151 } ____cacheline_aligned_in_smp;
152 
153 static struct kmem_cache *dio_cache __ro_after_init;
154 
155 /*
156  * How many pages are in the queue?
157  */
158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
159 {
160 	return sdio->tail - sdio->head;
161 }
162 
163 /*
164  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
165  */
166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
167 {
168 	struct page **pages = dio->pages;
169 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
170 	ssize_t ret;
171 
172 	ret = iov_iter_extract_pages(sdio->iter, &pages, LONG_MAX,
173 				     DIO_PAGES, 0, &sdio->from);
174 
175 	if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) {
176 		/*
177 		 * A memory fault, but the filesystem has some outstanding
178 		 * mapped blocks.  We need to use those blocks up to avoid
179 		 * leaking stale data in the file.
180 		 */
181 		if (dio->page_errors == 0)
182 			dio->page_errors = ret;
183 		dio->pages[0] = ZERO_PAGE(0);
184 		sdio->head = 0;
185 		sdio->tail = 1;
186 		sdio->from = 0;
187 		sdio->to = PAGE_SIZE;
188 		return 0;
189 	}
190 
191 	if (ret >= 0) {
192 		ret += sdio->from;
193 		sdio->head = 0;
194 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
195 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
196 		return 0;
197 	}
198 	return ret;
199 }
200 
201 /*
202  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
203  * buffered inside the dio so that we can call iov_iter_extract_pages()
204  * against a decent number of pages, less frequently.  To provide nicer use of
205  * the L1 cache.
206  */
207 static inline struct page *dio_get_page(struct dio *dio,
208 					struct dio_submit *sdio)
209 {
210 	if (dio_pages_present(sdio) == 0) {
211 		int ret;
212 
213 		ret = dio_refill_pages(dio, sdio);
214 		if (ret)
215 			return ERR_PTR(ret);
216 		BUG_ON(dio_pages_present(sdio) == 0);
217 	}
218 	return dio->pages[sdio->head];
219 }
220 
221 static void dio_pin_page(struct dio *dio, struct page *page)
222 {
223 	if (dio->is_pinned)
224 		folio_add_pin(page_folio(page));
225 }
226 
227 static void dio_unpin_page(struct dio *dio, struct page *page)
228 {
229 	if (dio->is_pinned)
230 		unpin_user_page(page);
231 }
232 
233 /*
234  * dio_complete() - called when all DIO BIO I/O has been completed
235  *
236  * This drops i_dio_count, lets interested parties know that a DIO operation
237  * has completed, and calculates the resulting return code for the operation.
238  *
239  * It lets the filesystem know if it registered an interest earlier via
240  * get_block.  Pass the private field of the map buffer_head so that
241  * filesystems can use it to hold additional state between get_block calls and
242  * dio_complete.
243  */
244 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
245 {
246 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
247 	loff_t offset = dio->iocb->ki_pos;
248 	ssize_t transferred = 0;
249 	int err;
250 
251 	/*
252 	 * AIO submission can race with bio completion to get here while
253 	 * expecting to have the last io completed by bio completion.
254 	 * In that case -EIOCBQUEUED is in fact not an error we want
255 	 * to preserve through this call.
256 	 */
257 	if (ret == -EIOCBQUEUED)
258 		ret = 0;
259 
260 	if (dio->result) {
261 		transferred = dio->result;
262 
263 		/* Check for short read case */
264 		if (dio_op == REQ_OP_READ &&
265 		    ((offset + transferred) > dio->i_size))
266 			transferred = dio->i_size - offset;
267 		/* ignore EFAULT if some IO has been done */
268 		if (unlikely(ret == -EFAULT) && transferred)
269 			ret = 0;
270 	}
271 
272 	if (ret == 0)
273 		ret = dio->page_errors;
274 	if (ret == 0)
275 		ret = dio->io_error;
276 	if (ret == 0)
277 		ret = transferred;
278 
279 	if (dio->end_io) {
280 		// XXX: ki_pos??
281 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
282 		if (err)
283 			ret = err;
284 	}
285 
286 	/*
287 	 * Try again to invalidate clean pages which might have been cached by
288 	 * non-direct readahead, or faulted in by get_user_pages() if the source
289 	 * of the write was an mmap'ed region of the file we're writing.  Either
290 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
291 	 * this invalidation fails, tough, the write still worked...
292 	 *
293 	 * And this page cache invalidation has to be after dio->end_io(), as
294 	 * some filesystems convert unwritten extents to real allocations in
295 	 * end_io() when necessary, otherwise a racing buffer read would cache
296 	 * zeros from unwritten extents.
297 	 */
298 	if (flags & DIO_COMPLETE_INVALIDATE &&
299 	    ret > 0 && dio_op == REQ_OP_WRITE)
300 		kiocb_invalidate_post_direct_write(dio->iocb, ret);
301 
302 	inode_dio_end(dio->inode);
303 
304 	if (flags & DIO_COMPLETE_ASYNC) {
305 		/*
306 		 * generic_write_sync expects ki_pos to have been updated
307 		 * already, but the submission path only does this for
308 		 * synchronous I/O.
309 		 */
310 		dio->iocb->ki_pos += transferred;
311 
312 		if (ret > 0 && dio_op == REQ_OP_WRITE)
313 			ret = generic_write_sync(dio->iocb, ret);
314 		dio->iocb->ki_complete(dio->iocb, ret);
315 	}
316 
317 	kmem_cache_free(dio_cache, dio);
318 	return ret;
319 }
320 
321 static void dio_aio_complete_work(struct work_struct *work)
322 {
323 	struct dio *dio = container_of(work, struct dio, complete_work);
324 
325 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
326 }
327 
328 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
329 
330 /*
331  * Asynchronous IO callback.
332  */
333 static void dio_bio_end_aio(struct bio *bio)
334 {
335 	struct dio *dio = bio->bi_private;
336 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
337 	unsigned long remaining;
338 	unsigned long flags;
339 	bool defer_completion = false;
340 
341 	/* cleanup the bio */
342 	dio_bio_complete(dio, bio);
343 
344 	spin_lock_irqsave(&dio->bio_lock, flags);
345 	remaining = --dio->refcount;
346 	if (remaining == 1 && dio->waiter)
347 		wake_up_process(dio->waiter);
348 	spin_unlock_irqrestore(&dio->bio_lock, flags);
349 
350 	if (remaining == 0) {
351 		/*
352 		 * Defer completion when defer_completion is set or
353 		 * when the inode has pages mapped and this is AIO write.
354 		 * We need to invalidate those pages because there is a
355 		 * chance they contain stale data in the case buffered IO
356 		 * went in between AIO submission and completion into the
357 		 * same region.
358 		 */
359 		if (dio->result)
360 			defer_completion = dio->defer_completion ||
361 					   (dio_op == REQ_OP_WRITE &&
362 					    dio->inode->i_mapping->nrpages);
363 		if (defer_completion) {
364 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
365 			queue_work(dio->inode->i_sb->s_dio_done_wq,
366 				   &dio->complete_work);
367 		} else {
368 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
369 		}
370 	}
371 }
372 
373 /*
374  * The BIO completion handler simply queues the BIO up for the process-context
375  * handler.
376  *
377  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
378  * implement a singly-linked list of completed BIOs, at dio->bio_list.
379  */
380 static void dio_bio_end_io(struct bio *bio)
381 {
382 	struct dio *dio = bio->bi_private;
383 	unsigned long flags;
384 
385 	spin_lock_irqsave(&dio->bio_lock, flags);
386 	bio->bi_private = dio->bio_list;
387 	dio->bio_list = bio;
388 	if (--dio->refcount == 1 && dio->waiter)
389 		wake_up_process(dio->waiter);
390 	spin_unlock_irqrestore(&dio->bio_lock, flags);
391 }
392 
393 static inline void
394 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
395 	      struct block_device *bdev,
396 	      sector_t first_sector, int nr_vecs)
397 {
398 	struct bio *bio;
399 
400 	/*
401 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
402 	 * we request a valid number of vectors.
403 	 */
404 	bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL);
405 	bio->bi_iter.bi_sector = first_sector;
406 	if (dio->is_async)
407 		bio->bi_end_io = dio_bio_end_aio;
408 	else
409 		bio->bi_end_io = dio_bio_end_io;
410 	if (dio->is_pinned)
411 		bio_set_flag(bio, BIO_PAGE_PINNED);
412 	bio->bi_write_hint = file_inode(dio->iocb->ki_filp)->i_write_hint;
413 
414 	sdio->bio = bio;
415 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
416 }
417 
418 /*
419  * In the AIO read case we speculatively dirty the pages before starting IO.
420  * During IO completion, any of these pages which happen to have been written
421  * back will be redirtied by bio_check_pages_dirty().
422  *
423  * bios hold a dio reference between submit_bio and ->end_io.
424  */
425 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
426 {
427 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
428 	struct bio *bio = sdio->bio;
429 	unsigned long flags;
430 
431 	bio->bi_private = dio;
432 
433 	spin_lock_irqsave(&dio->bio_lock, flags);
434 	dio->refcount++;
435 	spin_unlock_irqrestore(&dio->bio_lock, flags);
436 
437 	if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty)
438 		bio_set_pages_dirty(bio);
439 
440 	dio->bio_disk = bio->bi_bdev->bd_disk;
441 
442 	submit_bio(bio);
443 
444 	sdio->bio = NULL;
445 	sdio->boundary = 0;
446 	sdio->logical_offset_in_bio = 0;
447 }
448 
449 /*
450  * Release any resources in case of a failure
451  */
452 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
453 {
454 	if (dio->is_pinned)
455 		unpin_user_pages(dio->pages + sdio->head,
456 				 sdio->tail - sdio->head);
457 	sdio->head = sdio->tail;
458 }
459 
460 /*
461  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
462  * returned once all BIOs have been completed.  This must only be called once
463  * all bios have been issued so that dio->refcount can only decrease.  This
464  * requires that the caller hold a reference on the dio.
465  */
466 static struct bio *dio_await_one(struct dio *dio)
467 {
468 	unsigned long flags;
469 	struct bio *bio = NULL;
470 
471 	spin_lock_irqsave(&dio->bio_lock, flags);
472 
473 	/*
474 	 * Wait as long as the list is empty and there are bios in flight.  bio
475 	 * completion drops the count, maybe adds to the list, and wakes while
476 	 * holding the bio_lock so we don't need set_current_state()'s barrier
477 	 * and can call it after testing our condition.
478 	 */
479 	while (dio->refcount > 1 && dio->bio_list == NULL) {
480 		__set_current_state(TASK_UNINTERRUPTIBLE);
481 		dio->waiter = current;
482 		spin_unlock_irqrestore(&dio->bio_lock, flags);
483 		blk_io_schedule();
484 		/* wake up sets us TASK_RUNNING */
485 		spin_lock_irqsave(&dio->bio_lock, flags);
486 		dio->waiter = NULL;
487 	}
488 	if (dio->bio_list) {
489 		bio = dio->bio_list;
490 		dio->bio_list = bio->bi_private;
491 	}
492 	spin_unlock_irqrestore(&dio->bio_lock, flags);
493 	return bio;
494 }
495 
496 /*
497  * Process one completed BIO.  No locks are held.
498  */
499 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
500 {
501 	blk_status_t err = bio->bi_status;
502 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
503 	bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty;
504 
505 	if (err) {
506 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
507 			dio->io_error = -EAGAIN;
508 		else
509 			dio->io_error = -EIO;
510 	}
511 
512 	if (dio->is_async && should_dirty) {
513 		bio_check_pages_dirty(bio);	/* transfers ownership */
514 	} else {
515 		bio_release_pages(bio, should_dirty);
516 		bio_put(bio);
517 	}
518 	return err;
519 }
520 
521 /*
522  * Wait on and process all in-flight BIOs.  This must only be called once
523  * all bios have been issued so that the refcount can only decrease.
524  * This just waits for all bios to make it through dio_bio_complete.  IO
525  * errors are propagated through dio->io_error and should be propagated via
526  * dio_complete().
527  */
528 static void dio_await_completion(struct dio *dio)
529 {
530 	struct bio *bio;
531 	do {
532 		bio = dio_await_one(dio);
533 		if (bio)
534 			dio_bio_complete(dio, bio);
535 	} while (bio);
536 }
537 
538 /*
539  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
540  * to keep the memory consumption sane we periodically reap any completed BIOs
541  * during the BIO generation phase.
542  *
543  * This also helps to limit the peak amount of pinned userspace memory.
544  */
545 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
546 {
547 	int ret = 0;
548 
549 	if (sdio->reap_counter++ >= 64) {
550 		while (dio->bio_list) {
551 			unsigned long flags;
552 			struct bio *bio;
553 			int ret2;
554 
555 			spin_lock_irqsave(&dio->bio_lock, flags);
556 			bio = dio->bio_list;
557 			dio->bio_list = bio->bi_private;
558 			spin_unlock_irqrestore(&dio->bio_lock, flags);
559 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
560 			if (ret == 0)
561 				ret = ret2;
562 		}
563 		sdio->reap_counter = 0;
564 	}
565 	return ret;
566 }
567 
568 static int dio_set_defer_completion(struct dio *dio)
569 {
570 	struct super_block *sb = dio->inode->i_sb;
571 
572 	if (dio->defer_completion)
573 		return 0;
574 	dio->defer_completion = true;
575 	if (!sb->s_dio_done_wq)
576 		return sb_init_dio_done_wq(sb);
577 	return 0;
578 }
579 
580 /*
581  * Call into the fs to map some more disk blocks.  We record the current number
582  * of available blocks at sdio->blocks_available.  These are in units of the
583  * fs blocksize, i_blocksize(inode).
584  *
585  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
586  * it uses the passed inode-relative block number as the file offset, as usual.
587  *
588  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
589  * has remaining to do.  The fs should not map more than this number of blocks.
590  *
591  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
592  * indicate how much contiguous disk space has been made available at
593  * bh->b_blocknr.
594  *
595  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
596  * This isn't very efficient...
597  *
598  * In the case of filesystem holes: the fs may return an arbitrarily-large
599  * hole by returning an appropriate value in b_size and by clearing
600  * buffer_mapped().  However the direct-io code will only process holes one
601  * block at a time - it will repeatedly call get_block() as it walks the hole.
602  */
603 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
604 			   struct buffer_head *map_bh)
605 {
606 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
607 	int ret;
608 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
609 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
610 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
611 	int create;
612 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
613 	loff_t i_size;
614 
615 	/*
616 	 * If there was a memory error and we've overwritten all the
617 	 * mapped blocks then we can now return that memory error
618 	 */
619 	ret = dio->page_errors;
620 	if (ret == 0) {
621 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
622 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
623 		fs_endblk = (sdio->final_block_in_request - 1) >>
624 					sdio->blkfactor;
625 		fs_count = fs_endblk - fs_startblk + 1;
626 
627 		map_bh->b_state = 0;
628 		map_bh->b_size = fs_count << i_blkbits;
629 
630 		/*
631 		 * For writes that could fill holes inside i_size on a
632 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
633 		 * overwrites are permitted. We will return early to the caller
634 		 * once we see an unmapped buffer head returned, and the caller
635 		 * will fall back to buffered I/O.
636 		 *
637 		 * Otherwise the decision is left to the get_blocks method,
638 		 * which may decide to handle it or also return an unmapped
639 		 * buffer head.
640 		 */
641 		create = dio_op == REQ_OP_WRITE;
642 		if (dio->flags & DIO_SKIP_HOLES) {
643 			i_size = i_size_read(dio->inode);
644 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
645 				create = 0;
646 		}
647 
648 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
649 						map_bh, create);
650 
651 		/* Store for completion */
652 		dio->private = map_bh->b_private;
653 
654 		if (ret == 0 && buffer_defer_completion(map_bh))
655 			ret = dio_set_defer_completion(dio);
656 	}
657 	return ret;
658 }
659 
660 /*
661  * There is no bio.  Make one now.
662  */
663 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
664 		sector_t start_sector, struct buffer_head *map_bh)
665 {
666 	sector_t sector;
667 	int ret, nr_pages;
668 
669 	ret = dio_bio_reap(dio, sdio);
670 	if (ret)
671 		goto out;
672 	sector = start_sector << (sdio->blkbits - 9);
673 	nr_pages = bio_max_segs(sdio->pages_in_io);
674 	BUG_ON(nr_pages <= 0);
675 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
676 	sdio->boundary = 0;
677 out:
678 	return ret;
679 }
680 
681 /*
682  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
683  * that was successful then update final_block_in_bio and take a ref against
684  * the just-added page.
685  *
686  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
687  */
688 static inline int dio_bio_add_page(struct dio *dio, struct dio_submit *sdio)
689 {
690 	int ret;
691 
692 	ret = bio_add_page(sdio->bio, sdio->cur_page,
693 			sdio->cur_page_len, sdio->cur_page_offset);
694 	if (ret == sdio->cur_page_len) {
695 		/*
696 		 * Decrement count only, if we are done with this page
697 		 */
698 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
699 			sdio->pages_in_io--;
700 		dio_pin_page(dio, sdio->cur_page);
701 		sdio->final_block_in_bio = sdio->cur_page_block +
702 			(sdio->cur_page_len >> sdio->blkbits);
703 		ret = 0;
704 	} else {
705 		ret = 1;
706 	}
707 	return ret;
708 }
709 
710 /*
711  * Put cur_page under IO.  The section of cur_page which is described by
712  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
713  * starts on-disk at cur_page_block.
714  *
715  * We take a ref against the page here (on behalf of its presence in the bio).
716  *
717  * The caller of this function is responsible for removing cur_page from the
718  * dio, and for dropping the refcount which came from that presence.
719  */
720 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
721 		struct buffer_head *map_bh)
722 {
723 	int ret = 0;
724 
725 	if (sdio->bio) {
726 		loff_t cur_offset = sdio->cur_page_fs_offset;
727 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
728 			sdio->bio->bi_iter.bi_size;
729 
730 		/*
731 		 * See whether this new request is contiguous with the old.
732 		 *
733 		 * Btrfs cannot handle having logically non-contiguous requests
734 		 * submitted.  For example if you have
735 		 *
736 		 * Logical:  [0-4095][HOLE][8192-12287]
737 		 * Physical: [0-4095]      [4096-8191]
738 		 *
739 		 * We cannot submit those pages together as one BIO.  So if our
740 		 * current logical offset in the file does not equal what would
741 		 * be the next logical offset in the bio, submit the bio we
742 		 * have.
743 		 */
744 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
745 		    cur_offset != bio_next_offset)
746 			dio_bio_submit(dio, sdio);
747 	}
748 
749 	if (sdio->bio == NULL) {
750 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
751 		if (ret)
752 			goto out;
753 	}
754 
755 	if (dio_bio_add_page(dio, sdio) != 0) {
756 		dio_bio_submit(dio, sdio);
757 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
758 		if (ret == 0) {
759 			ret = dio_bio_add_page(dio, sdio);
760 			BUG_ON(ret != 0);
761 		}
762 	}
763 out:
764 	return ret;
765 }
766 
767 /*
768  * An autonomous function to put a chunk of a page under deferred IO.
769  *
770  * The caller doesn't actually know (or care) whether this piece of page is in
771  * a BIO, or is under IO or whatever.  We just take care of all possible
772  * situations here.  The separation between the logic of do_direct_IO() and
773  * that of submit_page_section() is important for clarity.  Please don't break.
774  *
775  * The chunk of page starts on-disk at blocknr.
776  *
777  * We perform deferred IO, by recording the last-submitted page inside our
778  * private part of the dio structure.  If possible, we just expand the IO
779  * across that page here.
780  *
781  * If that doesn't work out then we put the old page into the bio and add this
782  * page to the dio instead.
783  */
784 static inline int
785 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
786 		    unsigned offset, unsigned len, sector_t blocknr,
787 		    struct buffer_head *map_bh)
788 {
789 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
790 	int ret = 0;
791 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
792 
793 	if (dio_op == REQ_OP_WRITE) {
794 		/*
795 		 * Read accounting is performed in submit_bio()
796 		 */
797 		task_io_account_write(len);
798 	}
799 
800 	/*
801 	 * Can we just grow the current page's presence in the dio?
802 	 */
803 	if (sdio->cur_page == page &&
804 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
805 	    sdio->cur_page_block +
806 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
807 		sdio->cur_page_len += len;
808 		goto out;
809 	}
810 
811 	/*
812 	 * If there's a deferred page already there then send it.
813 	 */
814 	if (sdio->cur_page) {
815 		ret = dio_send_cur_page(dio, sdio, map_bh);
816 		dio_unpin_page(dio, sdio->cur_page);
817 		sdio->cur_page = NULL;
818 		if (ret)
819 			return ret;
820 	}
821 
822 	dio_pin_page(dio, page);		/* It is in dio */
823 	sdio->cur_page = page;
824 	sdio->cur_page_offset = offset;
825 	sdio->cur_page_len = len;
826 	sdio->cur_page_block = blocknr;
827 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
828 out:
829 	/*
830 	 * If boundary then we want to schedule the IO now to
831 	 * avoid metadata seeks.
832 	 */
833 	if (boundary) {
834 		ret = dio_send_cur_page(dio, sdio, map_bh);
835 		if (sdio->bio)
836 			dio_bio_submit(dio, sdio);
837 		dio_unpin_page(dio, sdio->cur_page);
838 		sdio->cur_page = NULL;
839 	}
840 	return ret;
841 }
842 
843 /*
844  * If we are not writing the entire block and get_block() allocated
845  * the block for us, we need to fill-in the unused portion of the
846  * block with zeros. This happens only if user-buffer, fileoffset or
847  * io length is not filesystem block-size multiple.
848  *
849  * `end' is zero if we're doing the start of the IO, 1 at the end of the
850  * IO.
851  */
852 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
853 		int end, struct buffer_head *map_bh)
854 {
855 	unsigned dio_blocks_per_fs_block;
856 	unsigned this_chunk_blocks;	/* In dio_blocks */
857 	unsigned this_chunk_bytes;
858 	struct page *page;
859 
860 	sdio->start_zero_done = 1;
861 	if (!sdio->blkfactor || !buffer_new(map_bh))
862 		return;
863 
864 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
865 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
866 
867 	if (!this_chunk_blocks)
868 		return;
869 
870 	/*
871 	 * We need to zero out part of an fs block.  It is either at the
872 	 * beginning or the end of the fs block.
873 	 */
874 	if (end)
875 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
876 
877 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
878 
879 	page = ZERO_PAGE(0);
880 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
881 				sdio->next_block_for_io, map_bh))
882 		return;
883 
884 	sdio->next_block_for_io += this_chunk_blocks;
885 }
886 
887 /*
888  * Walk the user pages, and the file, mapping blocks to disk and generating
889  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
890  * into submit_page_section(), which takes care of the next stage of submission
891  *
892  * Direct IO against a blockdev is different from a file.  Because we can
893  * happily perform page-sized but 512-byte aligned IOs.  It is important that
894  * blockdev IO be able to have fine alignment and large sizes.
895  *
896  * So what we do is to permit the ->get_block function to populate bh.b_size
897  * with the size of IO which is permitted at this offset and this i_blkbits.
898  *
899  * For best results, the blockdev should be set up with 512-byte i_blkbits and
900  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
901  * fine alignment but still allows this function to work in PAGE_SIZE units.
902  */
903 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
904 			struct buffer_head *map_bh)
905 {
906 	const enum req_op dio_op = dio->opf & REQ_OP_MASK;
907 	const unsigned blkbits = sdio->blkbits;
908 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
909 	int ret = 0;
910 
911 	while (sdio->block_in_file < sdio->final_block_in_request) {
912 		struct page *page;
913 		size_t from, to;
914 
915 		page = dio_get_page(dio, sdio);
916 		if (IS_ERR(page)) {
917 			ret = PTR_ERR(page);
918 			goto out;
919 		}
920 		from = sdio->head ? 0 : sdio->from;
921 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
922 		sdio->head++;
923 
924 		while (from < to) {
925 			unsigned this_chunk_bytes;	/* # of bytes mapped */
926 			unsigned this_chunk_blocks;	/* # of blocks */
927 			unsigned u;
928 
929 			if (sdio->blocks_available == 0) {
930 				/*
931 				 * Need to go and map some more disk
932 				 */
933 				unsigned long blkmask;
934 				unsigned long dio_remainder;
935 
936 				ret = get_more_blocks(dio, sdio, map_bh);
937 				if (ret) {
938 					dio_unpin_page(dio, page);
939 					goto out;
940 				}
941 				if (!buffer_mapped(map_bh))
942 					goto do_holes;
943 
944 				sdio->blocks_available =
945 						map_bh->b_size >> blkbits;
946 				sdio->next_block_for_io =
947 					map_bh->b_blocknr << sdio->blkfactor;
948 				if (buffer_new(map_bh)) {
949 					clean_bdev_aliases(
950 						map_bh->b_bdev,
951 						map_bh->b_blocknr,
952 						map_bh->b_size >> i_blkbits);
953 				}
954 
955 				if (!sdio->blkfactor)
956 					goto do_holes;
957 
958 				blkmask = (1 << sdio->blkfactor) - 1;
959 				dio_remainder = (sdio->block_in_file & blkmask);
960 
961 				/*
962 				 * If we are at the start of IO and that IO
963 				 * starts partway into a fs-block,
964 				 * dio_remainder will be non-zero.  If the IO
965 				 * is a read then we can simply advance the IO
966 				 * cursor to the first block which is to be
967 				 * read.  But if the IO is a write and the
968 				 * block was newly allocated we cannot do that;
969 				 * the start of the fs block must be zeroed out
970 				 * on-disk
971 				 */
972 				if (!buffer_new(map_bh))
973 					sdio->next_block_for_io += dio_remainder;
974 				sdio->blocks_available -= dio_remainder;
975 			}
976 do_holes:
977 			/* Handle holes */
978 			if (!buffer_mapped(map_bh)) {
979 				loff_t i_size_aligned;
980 
981 				/* AKPM: eargh, -ENOTBLK is a hack */
982 				if (dio_op == REQ_OP_WRITE) {
983 					dio_unpin_page(dio, page);
984 					return -ENOTBLK;
985 				}
986 
987 				/*
988 				 * Be sure to account for a partial block as the
989 				 * last block in the file
990 				 */
991 				i_size_aligned = ALIGN(i_size_read(dio->inode),
992 							1 << blkbits);
993 				if (sdio->block_in_file >=
994 						i_size_aligned >> blkbits) {
995 					/* We hit eof */
996 					dio_unpin_page(dio, page);
997 					goto out;
998 				}
999 				zero_user(page, from, 1 << blkbits);
1000 				sdio->block_in_file++;
1001 				from += 1 << blkbits;
1002 				dio->result += 1 << blkbits;
1003 				goto next_block;
1004 			}
1005 
1006 			/*
1007 			 * If we're performing IO which has an alignment which
1008 			 * is finer than the underlying fs, go check to see if
1009 			 * we must zero out the start of this block.
1010 			 */
1011 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1012 				dio_zero_block(dio, sdio, 0, map_bh);
1013 
1014 			/*
1015 			 * Work out, in this_chunk_blocks, how much disk we
1016 			 * can add to this page
1017 			 */
1018 			this_chunk_blocks = sdio->blocks_available;
1019 			u = (to - from) >> blkbits;
1020 			if (this_chunk_blocks > u)
1021 				this_chunk_blocks = u;
1022 			u = sdio->final_block_in_request - sdio->block_in_file;
1023 			if (this_chunk_blocks > u)
1024 				this_chunk_blocks = u;
1025 			this_chunk_bytes = this_chunk_blocks << blkbits;
1026 			BUG_ON(this_chunk_bytes == 0);
1027 
1028 			if (this_chunk_blocks == sdio->blocks_available)
1029 				sdio->boundary = buffer_boundary(map_bh);
1030 			ret = submit_page_section(dio, sdio, page,
1031 						  from,
1032 						  this_chunk_bytes,
1033 						  sdio->next_block_for_io,
1034 						  map_bh);
1035 			if (ret) {
1036 				dio_unpin_page(dio, page);
1037 				goto out;
1038 			}
1039 			sdio->next_block_for_io += this_chunk_blocks;
1040 
1041 			sdio->block_in_file += this_chunk_blocks;
1042 			from += this_chunk_bytes;
1043 			dio->result += this_chunk_bytes;
1044 			sdio->blocks_available -= this_chunk_blocks;
1045 next_block:
1046 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1047 			if (sdio->block_in_file == sdio->final_block_in_request)
1048 				break;
1049 		}
1050 
1051 		/* Drop the pin which was taken in get_user_pages() */
1052 		dio_unpin_page(dio, page);
1053 	}
1054 out:
1055 	return ret;
1056 }
1057 
1058 static inline int drop_refcount(struct dio *dio)
1059 {
1060 	int ret2;
1061 	unsigned long flags;
1062 
1063 	/*
1064 	 * Sync will always be dropping the final ref and completing the
1065 	 * operation.  AIO can if it was a broken operation described above or
1066 	 * in fact if all the bios race to complete before we get here.  In
1067 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1068 	 * return code that the caller will hand to ->complete().
1069 	 *
1070 	 * This is managed by the bio_lock instead of being an atomic_t so that
1071 	 * completion paths can drop their ref and use the remaining count to
1072 	 * decide to wake the submission path atomically.
1073 	 */
1074 	spin_lock_irqsave(&dio->bio_lock, flags);
1075 	ret2 = --dio->refcount;
1076 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1077 	return ret2;
1078 }
1079 
1080 /*
1081  * This is a library function for use by filesystem drivers.
1082  *
1083  * The locking rules are governed by the flags parameter:
1084  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1085  *    scheme for dumb filesystems.
1086  *    For writes this function is called under i_mutex and returns with
1087  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1088  *    taken and dropped again before returning.
1089  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1090  *    internal locking but rather rely on the filesystem to synchronize
1091  *    direct I/O reads/writes versus each other and truncate.
1092  *
1093  * To help with locking against truncate we incremented the i_dio_count
1094  * counter before starting direct I/O, and decrement it once we are done.
1095  * Truncate can wait for it to reach zero to provide exclusion.  It is
1096  * expected that filesystem provide exclusion between new direct I/O
1097  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1098  * but other filesystems need to take care of this on their own.
1099  *
1100  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1101  * is always inlined. Otherwise gcc is unable to split the structure into
1102  * individual fields and will generate much worse code. This is important
1103  * for the whole file.
1104  */
1105 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1106 		struct block_device *bdev, struct iov_iter *iter,
1107 		get_block_t get_block, dio_iodone_t end_io,
1108 		int flags)
1109 {
1110 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1111 	unsigned blkbits = i_blkbits;
1112 	unsigned blocksize_mask = (1 << blkbits) - 1;
1113 	ssize_t retval = -EINVAL;
1114 	const size_t count = iov_iter_count(iter);
1115 	loff_t offset = iocb->ki_pos;
1116 	const loff_t end = offset + count;
1117 	struct dio *dio;
1118 	struct dio_submit sdio = { NULL, };
1119 	struct buffer_head map_bh = { 0, };
1120 	struct blk_plug plug;
1121 	unsigned long align = offset | iov_iter_alignment(iter);
1122 
1123 	/* watch out for a 0 len io from a tricksy fs */
1124 	if (iov_iter_rw(iter) == READ && !count)
1125 		return 0;
1126 
1127 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1128 	if (!dio)
1129 		return -ENOMEM;
1130 	/*
1131 	 * Believe it or not, zeroing out the page array caused a .5%
1132 	 * performance regression in a database benchmark.  So, we take
1133 	 * care to only zero out what's needed.
1134 	 */
1135 	memset(dio, 0, offsetof(struct dio, pages));
1136 
1137 	dio->flags = flags;
1138 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1139 		/* will be released by direct_io_worker */
1140 		inode_lock(inode);
1141 	}
1142 	dio->is_pinned = iov_iter_extract_will_pin(iter);
1143 
1144 	/* Once we sampled i_size check for reads beyond EOF */
1145 	dio->i_size = i_size_read(inode);
1146 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1147 		retval = 0;
1148 		goto fail_dio;
1149 	}
1150 
1151 	if (align & blocksize_mask) {
1152 		if (bdev)
1153 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1154 		blocksize_mask = (1 << blkbits) - 1;
1155 		if (align & blocksize_mask)
1156 			goto fail_dio;
1157 	}
1158 
1159 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1160 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1161 
1162 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1163 		if (retval)
1164 			goto fail_dio;
1165 	}
1166 
1167 	/*
1168 	 * For file extending writes updating i_size before data writeouts
1169 	 * complete can expose uninitialized blocks in dumb filesystems.
1170 	 * In that case we need to wait for I/O completion even if asked
1171 	 * for an asynchronous write.
1172 	 */
1173 	if (is_sync_kiocb(iocb))
1174 		dio->is_async = false;
1175 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1176 		dio->is_async = false;
1177 	else
1178 		dio->is_async = true;
1179 
1180 	dio->inode = inode;
1181 	if (iov_iter_rw(iter) == WRITE) {
1182 		dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1183 		if (iocb->ki_flags & IOCB_NOWAIT)
1184 			dio->opf |= REQ_NOWAIT;
1185 	} else {
1186 		dio->opf = REQ_OP_READ;
1187 	}
1188 
1189 	/*
1190 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1191 	 * so that we can call ->fsync.
1192 	 */
1193 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1194 		retval = 0;
1195 		if (iocb_is_dsync(iocb))
1196 			retval = dio_set_defer_completion(dio);
1197 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1198 			/*
1199 			 * In case of AIO write racing with buffered read we
1200 			 * need to defer completion. We can't decide this now,
1201 			 * however the workqueue needs to be initialized here.
1202 			 */
1203 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1204 		}
1205 		if (retval)
1206 			goto fail_dio;
1207 	}
1208 
1209 	/*
1210 	 * Will be decremented at I/O completion time.
1211 	 */
1212 	inode_dio_begin(inode);
1213 
1214 	sdio.blkbits = blkbits;
1215 	sdio.blkfactor = i_blkbits - blkbits;
1216 	sdio.block_in_file = offset >> blkbits;
1217 
1218 	sdio.get_block = get_block;
1219 	dio->end_io = end_io;
1220 	sdio.final_block_in_bio = -1;
1221 	sdio.next_block_for_io = -1;
1222 
1223 	dio->iocb = iocb;
1224 
1225 	spin_lock_init(&dio->bio_lock);
1226 	dio->refcount = 1;
1227 
1228 	dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ;
1229 	sdio.iter = iter;
1230 	sdio.final_block_in_request = end >> blkbits;
1231 
1232 	/*
1233 	 * In case of non-aligned buffers, we may need 2 more
1234 	 * pages since we need to zero out first and last block.
1235 	 */
1236 	if (unlikely(sdio.blkfactor))
1237 		sdio.pages_in_io = 2;
1238 
1239 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1240 
1241 	blk_start_plug(&plug);
1242 
1243 	retval = do_direct_IO(dio, &sdio, &map_bh);
1244 	if (retval)
1245 		dio_cleanup(dio, &sdio);
1246 
1247 	if (retval == -ENOTBLK) {
1248 		/*
1249 		 * The remaining part of the request will be
1250 		 * handled by buffered I/O when we return
1251 		 */
1252 		retval = 0;
1253 	}
1254 	/*
1255 	 * There may be some unwritten disk at the end of a part-written
1256 	 * fs-block-sized block.  Go zero that now.
1257 	 */
1258 	dio_zero_block(dio, &sdio, 1, &map_bh);
1259 
1260 	if (sdio.cur_page) {
1261 		ssize_t ret2;
1262 
1263 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1264 		if (retval == 0)
1265 			retval = ret2;
1266 		dio_unpin_page(dio, sdio.cur_page);
1267 		sdio.cur_page = NULL;
1268 	}
1269 	if (sdio.bio)
1270 		dio_bio_submit(dio, &sdio);
1271 
1272 	blk_finish_plug(&plug);
1273 
1274 	/*
1275 	 * It is possible that, we return short IO due to end of file.
1276 	 * In that case, we need to release all the pages we got hold on.
1277 	 */
1278 	dio_cleanup(dio, &sdio);
1279 
1280 	/*
1281 	 * All block lookups have been performed. For READ requests
1282 	 * we can let i_mutex go now that its achieved its purpose
1283 	 * of protecting us from looking up uninitialized blocks.
1284 	 */
1285 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1286 		inode_unlock(dio->inode);
1287 
1288 	/*
1289 	 * The only time we want to leave bios in flight is when a successful
1290 	 * partial aio read or full aio write have been setup.  In that case
1291 	 * bio completion will call aio_complete.  The only time it's safe to
1292 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1293 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1294 	 */
1295 	BUG_ON(retval == -EIOCBQUEUED);
1296 	if (dio->is_async && retval == 0 && dio->result &&
1297 	    (iov_iter_rw(iter) == READ || dio->result == count))
1298 		retval = -EIOCBQUEUED;
1299 	else
1300 		dio_await_completion(dio);
1301 
1302 	if (drop_refcount(dio) == 0) {
1303 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1304 	} else
1305 		BUG_ON(retval != -EIOCBQUEUED);
1306 
1307 	return retval;
1308 
1309 fail_dio:
1310 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1311 		inode_unlock(inode);
1312 
1313 	kmem_cache_free(dio_cache, dio);
1314 	return retval;
1315 }
1316 EXPORT_SYMBOL(__blockdev_direct_IO);
1317 
1318 static __init int dio_init(void)
1319 {
1320 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1321 	return 0;
1322 }
1323 module_init(dio_init)
1324