1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 #include <linux/aio.h> 41 42 /* 43 * How many user pages to map in one call to get_user_pages(). This determines 44 * the size of a structure in the slab cache 45 */ 46 #define DIO_PAGES 64 47 48 /* 49 * This code generally works in units of "dio_blocks". A dio_block is 50 * somewhere between the hard sector size and the filesystem block size. it 51 * is determined on a per-invocation basis. When talking to the filesystem 52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 53 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 54 * to bio_block quantities by shifting left by blkfactor. 55 * 56 * If blkfactor is zero then the user's request was aligned to the filesystem's 57 * blocksize. 58 */ 59 60 /* dio_state only used in the submission path */ 61 62 struct dio_submit { 63 struct bio *bio; /* bio under assembly */ 64 unsigned blkbits; /* doesn't change */ 65 unsigned blkfactor; /* When we're using an alignment which 66 is finer than the filesystem's soft 67 blocksize, this specifies how much 68 finer. blkfactor=2 means 1/4-block 69 alignment. Does not change */ 70 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 71 been performed at the start of a 72 write */ 73 int pages_in_io; /* approximate total IO pages */ 74 size_t size; /* total request size (doesn't change)*/ 75 sector_t block_in_file; /* Current offset into the underlying 76 file in dio_block units. */ 77 unsigned blocks_available; /* At block_in_file. changes */ 78 int reap_counter; /* rate limit reaping */ 79 sector_t final_block_in_request;/* doesn't change */ 80 unsigned first_block_in_page; /* doesn't change, Used only once */ 81 int boundary; /* prev block is at a boundary */ 82 get_block_t *get_block; /* block mapping function */ 83 dio_submit_t *submit_io; /* IO submition function */ 84 85 loff_t logical_offset_in_bio; /* current first logical block in bio */ 86 sector_t final_block_in_bio; /* current final block in bio + 1 */ 87 sector_t next_block_for_io; /* next block to be put under IO, 88 in dio_blocks units */ 89 90 /* 91 * Deferred addition of a page to the dio. These variables are 92 * private to dio_send_cur_page(), submit_page_section() and 93 * dio_bio_add_page(). 94 */ 95 struct page *cur_page; /* The page */ 96 unsigned cur_page_offset; /* Offset into it, in bytes */ 97 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 98 sector_t cur_page_block; /* Where it starts */ 99 loff_t cur_page_fs_offset; /* Offset in file */ 100 101 /* 102 * Page fetching state. These variables belong to dio_refill_pages(). 103 */ 104 int curr_page; /* changes */ 105 int total_pages; /* doesn't change */ 106 unsigned long curr_user_address;/* changes */ 107 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 }; 115 116 /* dio_state communicated between submission path and end_io */ 117 struct dio { 118 int flags; /* doesn't change */ 119 int rw; 120 struct inode *inode; 121 loff_t i_size; /* i_size when submitted */ 122 dio_iodone_t *end_io; /* IO completion function */ 123 124 void *private; /* copy from map_bh.b_private */ 125 126 /* BIO completion state */ 127 spinlock_t bio_lock; /* protects BIO fields below */ 128 int page_errors; /* errno from get_user_pages() */ 129 int is_async; /* is IO async ? */ 130 bool defer_completion; /* defer AIO completion to workqueue? */ 131 int io_error; /* IO error in completion path */ 132 unsigned long refcount; /* direct_io_worker() and bios */ 133 struct bio *bio_list; /* singly linked via bi_private */ 134 struct task_struct *waiter; /* waiting task (NULL if none) */ 135 136 /* AIO related stuff */ 137 struct kiocb *iocb; /* kiocb */ 138 ssize_t result; /* IO result */ 139 140 /* 141 * pages[] (and any fields placed after it) are not zeroed out at 142 * allocation time. Don't add new fields after pages[] unless you 143 * wish that they not be zeroed. 144 */ 145 union { 146 struct page *pages[DIO_PAGES]; /* page buffer */ 147 struct work_struct complete_work;/* deferred AIO completion */ 148 }; 149 } ____cacheline_aligned_in_smp; 150 151 static struct kmem_cache *dio_cache __read_mostly; 152 153 /* 154 * How many pages are in the queue? 155 */ 156 static inline unsigned dio_pages_present(struct dio_submit *sdio) 157 { 158 return sdio->tail - sdio->head; 159 } 160 161 /* 162 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 163 */ 164 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 165 { 166 int ret; 167 int nr_pages; 168 169 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES); 170 ret = get_user_pages_fast( 171 sdio->curr_user_address, /* Where from? */ 172 nr_pages, /* How many pages? */ 173 dio->rw == READ, /* Write to memory? */ 174 &dio->pages[0]); /* Put results here */ 175 176 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) { 177 struct page *page = ZERO_PAGE(0); 178 /* 179 * A memory fault, but the filesystem has some outstanding 180 * mapped blocks. We need to use those blocks up to avoid 181 * leaking stale data in the file. 182 */ 183 if (dio->page_errors == 0) 184 dio->page_errors = ret; 185 page_cache_get(page); 186 dio->pages[0] = page; 187 sdio->head = 0; 188 sdio->tail = 1; 189 ret = 0; 190 goto out; 191 } 192 193 if (ret >= 0) { 194 sdio->curr_user_address += ret * PAGE_SIZE; 195 sdio->curr_page += ret; 196 sdio->head = 0; 197 sdio->tail = ret; 198 ret = 0; 199 } 200 out: 201 return ret; 202 } 203 204 /* 205 * Get another userspace page. Returns an ERR_PTR on error. Pages are 206 * buffered inside the dio so that we can call get_user_pages() against a 207 * decent number of pages, less frequently. To provide nicer use of the 208 * L1 cache. 209 */ 210 static inline struct page *dio_get_page(struct dio *dio, 211 struct dio_submit *sdio) 212 { 213 if (dio_pages_present(sdio) == 0) { 214 int ret; 215 216 ret = dio_refill_pages(dio, sdio); 217 if (ret) 218 return ERR_PTR(ret); 219 BUG_ON(dio_pages_present(sdio) == 0); 220 } 221 return dio->pages[sdio->head++]; 222 } 223 224 /** 225 * dio_complete() - called when all DIO BIO I/O has been completed 226 * @offset: the byte offset in the file of the completed operation 227 * 228 * This drops i_dio_count, lets interested parties know that a DIO operation 229 * has completed, and calculates the resulting return code for the operation. 230 * 231 * It lets the filesystem know if it registered an interest earlier via 232 * get_block. Pass the private field of the map buffer_head so that 233 * filesystems can use it to hold additional state between get_block calls and 234 * dio_complete. 235 */ 236 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, 237 bool is_async) 238 { 239 ssize_t transferred = 0; 240 241 /* 242 * AIO submission can race with bio completion to get here while 243 * expecting to have the last io completed by bio completion. 244 * In that case -EIOCBQUEUED is in fact not an error we want 245 * to preserve through this call. 246 */ 247 if (ret == -EIOCBQUEUED) 248 ret = 0; 249 250 if (dio->result) { 251 transferred = dio->result; 252 253 /* Check for short read case */ 254 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 255 transferred = dio->i_size - offset; 256 } 257 258 if (ret == 0) 259 ret = dio->page_errors; 260 if (ret == 0) 261 ret = dio->io_error; 262 if (ret == 0) 263 ret = transferred; 264 265 if (dio->end_io && dio->result) 266 dio->end_io(dio->iocb, offset, transferred, dio->private); 267 268 inode_dio_done(dio->inode); 269 if (is_async) { 270 if (dio->rw & WRITE) { 271 int err; 272 273 err = generic_write_sync(dio->iocb->ki_filp, offset, 274 transferred); 275 if (err < 0 && ret > 0) 276 ret = err; 277 } 278 279 aio_complete(dio->iocb, ret, 0); 280 } 281 282 kmem_cache_free(dio_cache, dio); 283 return ret; 284 } 285 286 static void dio_aio_complete_work(struct work_struct *work) 287 { 288 struct dio *dio = container_of(work, struct dio, complete_work); 289 290 dio_complete(dio, dio->iocb->ki_pos, 0, true); 291 } 292 293 static int dio_bio_complete(struct dio *dio, struct bio *bio); 294 295 /* 296 * Asynchronous IO callback. 297 */ 298 static void dio_bio_end_aio(struct bio *bio, int error) 299 { 300 struct dio *dio = bio->bi_private; 301 unsigned long remaining; 302 unsigned long flags; 303 304 /* cleanup the bio */ 305 dio_bio_complete(dio, bio); 306 307 spin_lock_irqsave(&dio->bio_lock, flags); 308 remaining = --dio->refcount; 309 if (remaining == 1 && dio->waiter) 310 wake_up_process(dio->waiter); 311 spin_unlock_irqrestore(&dio->bio_lock, flags); 312 313 if (remaining == 0) { 314 if (dio->result && dio->defer_completion) { 315 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 316 queue_work(dio->inode->i_sb->s_dio_done_wq, 317 &dio->complete_work); 318 } else { 319 dio_complete(dio, dio->iocb->ki_pos, 0, true); 320 } 321 } 322 } 323 324 /* 325 * The BIO completion handler simply queues the BIO up for the process-context 326 * handler. 327 * 328 * During I/O bi_private points at the dio. After I/O, bi_private is used to 329 * implement a singly-linked list of completed BIOs, at dio->bio_list. 330 */ 331 static void dio_bio_end_io(struct bio *bio, int error) 332 { 333 struct dio *dio = bio->bi_private; 334 unsigned long flags; 335 336 spin_lock_irqsave(&dio->bio_lock, flags); 337 bio->bi_private = dio->bio_list; 338 dio->bio_list = bio; 339 if (--dio->refcount == 1 && dio->waiter) 340 wake_up_process(dio->waiter); 341 spin_unlock_irqrestore(&dio->bio_lock, flags); 342 } 343 344 /** 345 * dio_end_io - handle the end io action for the given bio 346 * @bio: The direct io bio thats being completed 347 * @error: Error if there was one 348 * 349 * This is meant to be called by any filesystem that uses their own dio_submit_t 350 * so that the DIO specific endio actions are dealt with after the filesystem 351 * has done it's completion work. 352 */ 353 void dio_end_io(struct bio *bio, int error) 354 { 355 struct dio *dio = bio->bi_private; 356 357 if (dio->is_async) 358 dio_bio_end_aio(bio, error); 359 else 360 dio_bio_end_io(bio, error); 361 } 362 EXPORT_SYMBOL_GPL(dio_end_io); 363 364 static inline void 365 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 366 struct block_device *bdev, 367 sector_t first_sector, int nr_vecs) 368 { 369 struct bio *bio; 370 371 /* 372 * bio_alloc() is guaranteed to return a bio when called with 373 * __GFP_WAIT and we request a valid number of vectors. 374 */ 375 bio = bio_alloc(GFP_KERNEL, nr_vecs); 376 377 bio->bi_bdev = bdev; 378 bio->bi_iter.bi_sector = first_sector; 379 if (dio->is_async) 380 bio->bi_end_io = dio_bio_end_aio; 381 else 382 bio->bi_end_io = dio_bio_end_io; 383 384 sdio->bio = bio; 385 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 386 } 387 388 /* 389 * In the AIO read case we speculatively dirty the pages before starting IO. 390 * During IO completion, any of these pages which happen to have been written 391 * back will be redirtied by bio_check_pages_dirty(). 392 * 393 * bios hold a dio reference between submit_bio and ->end_io. 394 */ 395 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 396 { 397 struct bio *bio = sdio->bio; 398 unsigned long flags; 399 400 bio->bi_private = dio; 401 402 spin_lock_irqsave(&dio->bio_lock, flags); 403 dio->refcount++; 404 spin_unlock_irqrestore(&dio->bio_lock, flags); 405 406 if (dio->is_async && dio->rw == READ) 407 bio_set_pages_dirty(bio); 408 409 if (sdio->submit_io) 410 sdio->submit_io(dio->rw, bio, dio->inode, 411 sdio->logical_offset_in_bio); 412 else 413 submit_bio(dio->rw, bio); 414 415 sdio->bio = NULL; 416 sdio->boundary = 0; 417 sdio->logical_offset_in_bio = 0; 418 } 419 420 /* 421 * Release any resources in case of a failure 422 */ 423 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 424 { 425 while (dio_pages_present(sdio)) 426 page_cache_release(dio_get_page(dio, sdio)); 427 } 428 429 /* 430 * Wait for the next BIO to complete. Remove it and return it. NULL is 431 * returned once all BIOs have been completed. This must only be called once 432 * all bios have been issued so that dio->refcount can only decrease. This 433 * requires that that the caller hold a reference on the dio. 434 */ 435 static struct bio *dio_await_one(struct dio *dio) 436 { 437 unsigned long flags; 438 struct bio *bio = NULL; 439 440 spin_lock_irqsave(&dio->bio_lock, flags); 441 442 /* 443 * Wait as long as the list is empty and there are bios in flight. bio 444 * completion drops the count, maybe adds to the list, and wakes while 445 * holding the bio_lock so we don't need set_current_state()'s barrier 446 * and can call it after testing our condition. 447 */ 448 while (dio->refcount > 1 && dio->bio_list == NULL) { 449 __set_current_state(TASK_UNINTERRUPTIBLE); 450 dio->waiter = current; 451 spin_unlock_irqrestore(&dio->bio_lock, flags); 452 io_schedule(); 453 /* wake up sets us TASK_RUNNING */ 454 spin_lock_irqsave(&dio->bio_lock, flags); 455 dio->waiter = NULL; 456 } 457 if (dio->bio_list) { 458 bio = dio->bio_list; 459 dio->bio_list = bio->bi_private; 460 } 461 spin_unlock_irqrestore(&dio->bio_lock, flags); 462 return bio; 463 } 464 465 /* 466 * Process one completed BIO. No locks are held. 467 */ 468 static int dio_bio_complete(struct dio *dio, struct bio *bio) 469 { 470 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 471 struct bio_vec *bvec; 472 unsigned i; 473 474 if (!uptodate) 475 dio->io_error = -EIO; 476 477 if (dio->is_async && dio->rw == READ) { 478 bio_check_pages_dirty(bio); /* transfers ownership */ 479 } else { 480 bio_for_each_segment_all(bvec, bio, i) { 481 struct page *page = bvec->bv_page; 482 483 if (dio->rw == READ && !PageCompound(page)) 484 set_page_dirty_lock(page); 485 page_cache_release(page); 486 } 487 bio_put(bio); 488 } 489 return uptodate ? 0 : -EIO; 490 } 491 492 /* 493 * Wait on and process all in-flight BIOs. This must only be called once 494 * all bios have been issued so that the refcount can only decrease. 495 * This just waits for all bios to make it through dio_bio_complete. IO 496 * errors are propagated through dio->io_error and should be propagated via 497 * dio_complete(). 498 */ 499 static void dio_await_completion(struct dio *dio) 500 { 501 struct bio *bio; 502 do { 503 bio = dio_await_one(dio); 504 if (bio) 505 dio_bio_complete(dio, bio); 506 } while (bio); 507 } 508 509 /* 510 * A really large O_DIRECT read or write can generate a lot of BIOs. So 511 * to keep the memory consumption sane we periodically reap any completed BIOs 512 * during the BIO generation phase. 513 * 514 * This also helps to limit the peak amount of pinned userspace memory. 515 */ 516 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 517 { 518 int ret = 0; 519 520 if (sdio->reap_counter++ >= 64) { 521 while (dio->bio_list) { 522 unsigned long flags; 523 struct bio *bio; 524 int ret2; 525 526 spin_lock_irqsave(&dio->bio_lock, flags); 527 bio = dio->bio_list; 528 dio->bio_list = bio->bi_private; 529 spin_unlock_irqrestore(&dio->bio_lock, flags); 530 ret2 = dio_bio_complete(dio, bio); 531 if (ret == 0) 532 ret = ret2; 533 } 534 sdio->reap_counter = 0; 535 } 536 return ret; 537 } 538 539 /* 540 * Create workqueue for deferred direct IO completions. We allocate the 541 * workqueue when it's first needed. This avoids creating workqueue for 542 * filesystems that don't need it and also allows us to create the workqueue 543 * late enough so the we can include s_id in the name of the workqueue. 544 */ 545 static int sb_init_dio_done_wq(struct super_block *sb) 546 { 547 struct workqueue_struct *old; 548 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 549 WQ_MEM_RECLAIM, 0, 550 sb->s_id); 551 if (!wq) 552 return -ENOMEM; 553 /* 554 * This has to be atomic as more DIOs can race to create the workqueue 555 */ 556 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 557 /* Someone created workqueue before us? Free ours... */ 558 if (old) 559 destroy_workqueue(wq); 560 return 0; 561 } 562 563 static int dio_set_defer_completion(struct dio *dio) 564 { 565 struct super_block *sb = dio->inode->i_sb; 566 567 if (dio->defer_completion) 568 return 0; 569 dio->defer_completion = true; 570 if (!sb->s_dio_done_wq) 571 return sb_init_dio_done_wq(sb); 572 return 0; 573 } 574 575 /* 576 * Call into the fs to map some more disk blocks. We record the current number 577 * of available blocks at sdio->blocks_available. These are in units of the 578 * fs blocksize, (1 << inode->i_blkbits). 579 * 580 * The fs is allowed to map lots of blocks at once. If it wants to do that, 581 * it uses the passed inode-relative block number as the file offset, as usual. 582 * 583 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 584 * has remaining to do. The fs should not map more than this number of blocks. 585 * 586 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 587 * indicate how much contiguous disk space has been made available at 588 * bh->b_blocknr. 589 * 590 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 591 * This isn't very efficient... 592 * 593 * In the case of filesystem holes: the fs may return an arbitrarily-large 594 * hole by returning an appropriate value in b_size and by clearing 595 * buffer_mapped(). However the direct-io code will only process holes one 596 * block at a time - it will repeatedly call get_block() as it walks the hole. 597 */ 598 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 599 struct buffer_head *map_bh) 600 { 601 int ret; 602 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 603 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 604 unsigned long fs_count; /* Number of filesystem-sized blocks */ 605 int create; 606 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 607 608 /* 609 * If there was a memory error and we've overwritten all the 610 * mapped blocks then we can now return that memory error 611 */ 612 ret = dio->page_errors; 613 if (ret == 0) { 614 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 615 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 616 fs_endblk = (sdio->final_block_in_request - 1) >> 617 sdio->blkfactor; 618 fs_count = fs_endblk - fs_startblk + 1; 619 620 map_bh->b_state = 0; 621 map_bh->b_size = fs_count << i_blkbits; 622 623 /* 624 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 625 * forbid block creations: only overwrites are permitted. 626 * We will return early to the caller once we see an 627 * unmapped buffer head returned, and the caller will fall 628 * back to buffered I/O. 629 * 630 * Otherwise the decision is left to the get_blocks method, 631 * which may decide to handle it or also return an unmapped 632 * buffer head. 633 */ 634 create = dio->rw & WRITE; 635 if (dio->flags & DIO_SKIP_HOLES) { 636 if (sdio->block_in_file < (i_size_read(dio->inode) >> 637 sdio->blkbits)) 638 create = 0; 639 } 640 641 ret = (*sdio->get_block)(dio->inode, fs_startblk, 642 map_bh, create); 643 644 /* Store for completion */ 645 dio->private = map_bh->b_private; 646 647 if (ret == 0 && buffer_defer_completion(map_bh)) 648 ret = dio_set_defer_completion(dio); 649 } 650 return ret; 651 } 652 653 /* 654 * There is no bio. Make one now. 655 */ 656 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 657 sector_t start_sector, struct buffer_head *map_bh) 658 { 659 sector_t sector; 660 int ret, nr_pages; 661 662 ret = dio_bio_reap(dio, sdio); 663 if (ret) 664 goto out; 665 sector = start_sector << (sdio->blkbits - 9); 666 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev)); 667 nr_pages = min(nr_pages, BIO_MAX_PAGES); 668 BUG_ON(nr_pages <= 0); 669 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 670 sdio->boundary = 0; 671 out: 672 return ret; 673 } 674 675 /* 676 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 677 * that was successful then update final_block_in_bio and take a ref against 678 * the just-added page. 679 * 680 * Return zero on success. Non-zero means the caller needs to start a new BIO. 681 */ 682 static inline int dio_bio_add_page(struct dio_submit *sdio) 683 { 684 int ret; 685 686 ret = bio_add_page(sdio->bio, sdio->cur_page, 687 sdio->cur_page_len, sdio->cur_page_offset); 688 if (ret == sdio->cur_page_len) { 689 /* 690 * Decrement count only, if we are done with this page 691 */ 692 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 693 sdio->pages_in_io--; 694 page_cache_get(sdio->cur_page); 695 sdio->final_block_in_bio = sdio->cur_page_block + 696 (sdio->cur_page_len >> sdio->blkbits); 697 ret = 0; 698 } else { 699 ret = 1; 700 } 701 return ret; 702 } 703 704 /* 705 * Put cur_page under IO. The section of cur_page which is described by 706 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 707 * starts on-disk at cur_page_block. 708 * 709 * We take a ref against the page here (on behalf of its presence in the bio). 710 * 711 * The caller of this function is responsible for removing cur_page from the 712 * dio, and for dropping the refcount which came from that presence. 713 */ 714 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 715 struct buffer_head *map_bh) 716 { 717 int ret = 0; 718 719 if (sdio->bio) { 720 loff_t cur_offset = sdio->cur_page_fs_offset; 721 loff_t bio_next_offset = sdio->logical_offset_in_bio + 722 sdio->bio->bi_iter.bi_size; 723 724 /* 725 * See whether this new request is contiguous with the old. 726 * 727 * Btrfs cannot handle having logically non-contiguous requests 728 * submitted. For example if you have 729 * 730 * Logical: [0-4095][HOLE][8192-12287] 731 * Physical: [0-4095] [4096-8191] 732 * 733 * We cannot submit those pages together as one BIO. So if our 734 * current logical offset in the file does not equal what would 735 * be the next logical offset in the bio, submit the bio we 736 * have. 737 */ 738 if (sdio->final_block_in_bio != sdio->cur_page_block || 739 cur_offset != bio_next_offset) 740 dio_bio_submit(dio, sdio); 741 } 742 743 if (sdio->bio == NULL) { 744 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 745 if (ret) 746 goto out; 747 } 748 749 if (dio_bio_add_page(sdio) != 0) { 750 dio_bio_submit(dio, sdio); 751 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 752 if (ret == 0) { 753 ret = dio_bio_add_page(sdio); 754 BUG_ON(ret != 0); 755 } 756 } 757 out: 758 return ret; 759 } 760 761 /* 762 * An autonomous function to put a chunk of a page under deferred IO. 763 * 764 * The caller doesn't actually know (or care) whether this piece of page is in 765 * a BIO, or is under IO or whatever. We just take care of all possible 766 * situations here. The separation between the logic of do_direct_IO() and 767 * that of submit_page_section() is important for clarity. Please don't break. 768 * 769 * The chunk of page starts on-disk at blocknr. 770 * 771 * We perform deferred IO, by recording the last-submitted page inside our 772 * private part of the dio structure. If possible, we just expand the IO 773 * across that page here. 774 * 775 * If that doesn't work out then we put the old page into the bio and add this 776 * page to the dio instead. 777 */ 778 static inline int 779 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 780 unsigned offset, unsigned len, sector_t blocknr, 781 struct buffer_head *map_bh) 782 { 783 int ret = 0; 784 785 if (dio->rw & WRITE) { 786 /* 787 * Read accounting is performed in submit_bio() 788 */ 789 task_io_account_write(len); 790 } 791 792 /* 793 * Can we just grow the current page's presence in the dio? 794 */ 795 if (sdio->cur_page == page && 796 sdio->cur_page_offset + sdio->cur_page_len == offset && 797 sdio->cur_page_block + 798 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 799 sdio->cur_page_len += len; 800 goto out; 801 } 802 803 /* 804 * If there's a deferred page already there then send it. 805 */ 806 if (sdio->cur_page) { 807 ret = dio_send_cur_page(dio, sdio, map_bh); 808 page_cache_release(sdio->cur_page); 809 sdio->cur_page = NULL; 810 if (ret) 811 return ret; 812 } 813 814 page_cache_get(page); /* It is in dio */ 815 sdio->cur_page = page; 816 sdio->cur_page_offset = offset; 817 sdio->cur_page_len = len; 818 sdio->cur_page_block = blocknr; 819 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 820 out: 821 /* 822 * If sdio->boundary then we want to schedule the IO now to 823 * avoid metadata seeks. 824 */ 825 if (sdio->boundary) { 826 ret = dio_send_cur_page(dio, sdio, map_bh); 827 dio_bio_submit(dio, sdio); 828 page_cache_release(sdio->cur_page); 829 sdio->cur_page = NULL; 830 } 831 return ret; 832 } 833 834 /* 835 * Clean any dirty buffers in the blockdev mapping which alias newly-created 836 * file blocks. Only called for S_ISREG files - blockdevs do not set 837 * buffer_new 838 */ 839 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 840 { 841 unsigned i; 842 unsigned nblocks; 843 844 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 845 846 for (i = 0; i < nblocks; i++) { 847 unmap_underlying_metadata(map_bh->b_bdev, 848 map_bh->b_blocknr + i); 849 } 850 } 851 852 /* 853 * If we are not writing the entire block and get_block() allocated 854 * the block for us, we need to fill-in the unused portion of the 855 * block with zeros. This happens only if user-buffer, fileoffset or 856 * io length is not filesystem block-size multiple. 857 * 858 * `end' is zero if we're doing the start of the IO, 1 at the end of the 859 * IO. 860 */ 861 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 862 int end, struct buffer_head *map_bh) 863 { 864 unsigned dio_blocks_per_fs_block; 865 unsigned this_chunk_blocks; /* In dio_blocks */ 866 unsigned this_chunk_bytes; 867 struct page *page; 868 869 sdio->start_zero_done = 1; 870 if (!sdio->blkfactor || !buffer_new(map_bh)) 871 return; 872 873 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 874 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 875 876 if (!this_chunk_blocks) 877 return; 878 879 /* 880 * We need to zero out part of an fs block. It is either at the 881 * beginning or the end of the fs block. 882 */ 883 if (end) 884 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 885 886 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 887 888 page = ZERO_PAGE(0); 889 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 890 sdio->next_block_for_io, map_bh)) 891 return; 892 893 sdio->next_block_for_io += this_chunk_blocks; 894 } 895 896 /* 897 * Walk the user pages, and the file, mapping blocks to disk and generating 898 * a sequence of (page,offset,len,block) mappings. These mappings are injected 899 * into submit_page_section(), which takes care of the next stage of submission 900 * 901 * Direct IO against a blockdev is different from a file. Because we can 902 * happily perform page-sized but 512-byte aligned IOs. It is important that 903 * blockdev IO be able to have fine alignment and large sizes. 904 * 905 * So what we do is to permit the ->get_block function to populate bh.b_size 906 * with the size of IO which is permitted at this offset and this i_blkbits. 907 * 908 * For best results, the blockdev should be set up with 512-byte i_blkbits and 909 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 910 * fine alignment but still allows this function to work in PAGE_SIZE units. 911 */ 912 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 913 struct buffer_head *map_bh) 914 { 915 const unsigned blkbits = sdio->blkbits; 916 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 917 struct page *page; 918 unsigned block_in_page; 919 int ret = 0; 920 921 /* The I/O can start at any block offset within the first page */ 922 block_in_page = sdio->first_block_in_page; 923 924 while (sdio->block_in_file < sdio->final_block_in_request) { 925 page = dio_get_page(dio, sdio); 926 if (IS_ERR(page)) { 927 ret = PTR_ERR(page); 928 goto out; 929 } 930 931 while (block_in_page < blocks_per_page) { 932 unsigned offset_in_page = block_in_page << blkbits; 933 unsigned this_chunk_bytes; /* # of bytes mapped */ 934 unsigned this_chunk_blocks; /* # of blocks */ 935 unsigned u; 936 937 if (sdio->blocks_available == 0) { 938 /* 939 * Need to go and map some more disk 940 */ 941 unsigned long blkmask; 942 unsigned long dio_remainder; 943 944 ret = get_more_blocks(dio, sdio, map_bh); 945 if (ret) { 946 page_cache_release(page); 947 goto out; 948 } 949 if (!buffer_mapped(map_bh)) 950 goto do_holes; 951 952 sdio->blocks_available = 953 map_bh->b_size >> sdio->blkbits; 954 sdio->next_block_for_io = 955 map_bh->b_blocknr << sdio->blkfactor; 956 if (buffer_new(map_bh)) 957 clean_blockdev_aliases(dio, map_bh); 958 959 if (!sdio->blkfactor) 960 goto do_holes; 961 962 blkmask = (1 << sdio->blkfactor) - 1; 963 dio_remainder = (sdio->block_in_file & blkmask); 964 965 /* 966 * If we are at the start of IO and that IO 967 * starts partway into a fs-block, 968 * dio_remainder will be non-zero. If the IO 969 * is a read then we can simply advance the IO 970 * cursor to the first block which is to be 971 * read. But if the IO is a write and the 972 * block was newly allocated we cannot do that; 973 * the start of the fs block must be zeroed out 974 * on-disk 975 */ 976 if (!buffer_new(map_bh)) 977 sdio->next_block_for_io += dio_remainder; 978 sdio->blocks_available -= dio_remainder; 979 } 980 do_holes: 981 /* Handle holes */ 982 if (!buffer_mapped(map_bh)) { 983 loff_t i_size_aligned; 984 985 /* AKPM: eargh, -ENOTBLK is a hack */ 986 if (dio->rw & WRITE) { 987 page_cache_release(page); 988 return -ENOTBLK; 989 } 990 991 /* 992 * Be sure to account for a partial block as the 993 * last block in the file 994 */ 995 i_size_aligned = ALIGN(i_size_read(dio->inode), 996 1 << blkbits); 997 if (sdio->block_in_file >= 998 i_size_aligned >> blkbits) { 999 /* We hit eof */ 1000 page_cache_release(page); 1001 goto out; 1002 } 1003 zero_user(page, block_in_page << blkbits, 1004 1 << blkbits); 1005 sdio->block_in_file++; 1006 block_in_page++; 1007 goto next_block; 1008 } 1009 1010 /* 1011 * If we're performing IO which has an alignment which 1012 * is finer than the underlying fs, go check to see if 1013 * we must zero out the start of this block. 1014 */ 1015 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1016 dio_zero_block(dio, sdio, 0, map_bh); 1017 1018 /* 1019 * Work out, in this_chunk_blocks, how much disk we 1020 * can add to this page 1021 */ 1022 this_chunk_blocks = sdio->blocks_available; 1023 u = (PAGE_SIZE - offset_in_page) >> blkbits; 1024 if (this_chunk_blocks > u) 1025 this_chunk_blocks = u; 1026 u = sdio->final_block_in_request - sdio->block_in_file; 1027 if (this_chunk_blocks > u) 1028 this_chunk_blocks = u; 1029 this_chunk_bytes = this_chunk_blocks << blkbits; 1030 BUG_ON(this_chunk_bytes == 0); 1031 1032 if (this_chunk_blocks == sdio->blocks_available) 1033 sdio->boundary = buffer_boundary(map_bh); 1034 ret = submit_page_section(dio, sdio, page, 1035 offset_in_page, 1036 this_chunk_bytes, 1037 sdio->next_block_for_io, 1038 map_bh); 1039 if (ret) { 1040 page_cache_release(page); 1041 goto out; 1042 } 1043 sdio->next_block_for_io += this_chunk_blocks; 1044 1045 sdio->block_in_file += this_chunk_blocks; 1046 block_in_page += this_chunk_blocks; 1047 sdio->blocks_available -= this_chunk_blocks; 1048 next_block: 1049 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1050 if (sdio->block_in_file == sdio->final_block_in_request) 1051 break; 1052 } 1053 1054 /* Drop the ref which was taken in get_user_pages() */ 1055 page_cache_release(page); 1056 block_in_page = 0; 1057 } 1058 out: 1059 return ret; 1060 } 1061 1062 static inline int drop_refcount(struct dio *dio) 1063 { 1064 int ret2; 1065 unsigned long flags; 1066 1067 /* 1068 * Sync will always be dropping the final ref and completing the 1069 * operation. AIO can if it was a broken operation described above or 1070 * in fact if all the bios race to complete before we get here. In 1071 * that case dio_complete() translates the EIOCBQUEUED into the proper 1072 * return code that the caller will hand to aio_complete(). 1073 * 1074 * This is managed by the bio_lock instead of being an atomic_t so that 1075 * completion paths can drop their ref and use the remaining count to 1076 * decide to wake the submission path atomically. 1077 */ 1078 spin_lock_irqsave(&dio->bio_lock, flags); 1079 ret2 = --dio->refcount; 1080 spin_unlock_irqrestore(&dio->bio_lock, flags); 1081 return ret2; 1082 } 1083 1084 /* 1085 * This is a library function for use by filesystem drivers. 1086 * 1087 * The locking rules are governed by the flags parameter: 1088 * - if the flags value contains DIO_LOCKING we use a fancy locking 1089 * scheme for dumb filesystems. 1090 * For writes this function is called under i_mutex and returns with 1091 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1092 * taken and dropped again before returning. 1093 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1094 * internal locking but rather rely on the filesystem to synchronize 1095 * direct I/O reads/writes versus each other and truncate. 1096 * 1097 * To help with locking against truncate we incremented the i_dio_count 1098 * counter before starting direct I/O, and decrement it once we are done. 1099 * Truncate can wait for it to reach zero to provide exclusion. It is 1100 * expected that filesystem provide exclusion between new direct I/O 1101 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1102 * but other filesystems need to take care of this on their own. 1103 * 1104 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1105 * is always inlined. Otherwise gcc is unable to split the structure into 1106 * individual fields and will generate much worse code. This is important 1107 * for the whole file. 1108 */ 1109 static inline ssize_t 1110 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1111 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1112 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1113 dio_submit_t submit_io, int flags) 1114 { 1115 int seg; 1116 size_t size; 1117 unsigned long addr; 1118 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1119 unsigned blkbits = i_blkbits; 1120 unsigned blocksize_mask = (1 << blkbits) - 1; 1121 ssize_t retval = -EINVAL; 1122 loff_t end = offset; 1123 struct dio *dio; 1124 struct dio_submit sdio = { 0, }; 1125 unsigned long user_addr; 1126 size_t bytes; 1127 struct buffer_head map_bh = { 0, }; 1128 struct blk_plug plug; 1129 1130 if (rw & WRITE) 1131 rw = WRITE_ODIRECT; 1132 1133 /* 1134 * Avoid references to bdev if not absolutely needed to give 1135 * the early prefetch in the caller enough time. 1136 */ 1137 1138 if (offset & blocksize_mask) { 1139 if (bdev) 1140 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1141 blocksize_mask = (1 << blkbits) - 1; 1142 if (offset & blocksize_mask) 1143 goto out; 1144 } 1145 1146 /* Check the memory alignment. Blocks cannot straddle pages */ 1147 for (seg = 0; seg < nr_segs; seg++) { 1148 addr = (unsigned long)iov[seg].iov_base; 1149 size = iov[seg].iov_len; 1150 end += size; 1151 if (unlikely((addr & blocksize_mask) || 1152 (size & blocksize_mask))) { 1153 if (bdev) 1154 blkbits = blksize_bits( 1155 bdev_logical_block_size(bdev)); 1156 blocksize_mask = (1 << blkbits) - 1; 1157 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1158 goto out; 1159 } 1160 } 1161 1162 /* watch out for a 0 len io from a tricksy fs */ 1163 if (rw == READ && end == offset) 1164 return 0; 1165 1166 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1167 retval = -ENOMEM; 1168 if (!dio) 1169 goto out; 1170 /* 1171 * Believe it or not, zeroing out the page array caused a .5% 1172 * performance regression in a database benchmark. So, we take 1173 * care to only zero out what's needed. 1174 */ 1175 memset(dio, 0, offsetof(struct dio, pages)); 1176 1177 dio->flags = flags; 1178 if (dio->flags & DIO_LOCKING) { 1179 if (rw == READ) { 1180 struct address_space *mapping = 1181 iocb->ki_filp->f_mapping; 1182 1183 /* will be released by direct_io_worker */ 1184 mutex_lock(&inode->i_mutex); 1185 1186 retval = filemap_write_and_wait_range(mapping, offset, 1187 end - 1); 1188 if (retval) { 1189 mutex_unlock(&inode->i_mutex); 1190 kmem_cache_free(dio_cache, dio); 1191 goto out; 1192 } 1193 } 1194 } 1195 1196 /* 1197 * For file extending writes updating i_size before data 1198 * writeouts complete can expose uninitialized blocks. So 1199 * even for AIO, we need to wait for i/o to complete before 1200 * returning in this case. 1201 */ 1202 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1203 (end > i_size_read(inode))); 1204 dio->inode = inode; 1205 dio->rw = rw; 1206 1207 /* 1208 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1209 * so that we can call ->fsync. 1210 */ 1211 if (dio->is_async && (rw & WRITE) && 1212 ((iocb->ki_filp->f_flags & O_DSYNC) || 1213 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1214 retval = dio_set_defer_completion(dio); 1215 if (retval) { 1216 /* 1217 * We grab i_mutex only for reads so we don't have 1218 * to release it here 1219 */ 1220 kmem_cache_free(dio_cache, dio); 1221 goto out; 1222 } 1223 } 1224 1225 /* 1226 * Will be decremented at I/O completion time. 1227 */ 1228 atomic_inc(&inode->i_dio_count); 1229 1230 retval = 0; 1231 sdio.blkbits = blkbits; 1232 sdio.blkfactor = i_blkbits - blkbits; 1233 sdio.block_in_file = offset >> blkbits; 1234 1235 sdio.get_block = get_block; 1236 dio->end_io = end_io; 1237 sdio.submit_io = submit_io; 1238 sdio.final_block_in_bio = -1; 1239 sdio.next_block_for_io = -1; 1240 1241 dio->iocb = iocb; 1242 dio->i_size = i_size_read(inode); 1243 1244 spin_lock_init(&dio->bio_lock); 1245 dio->refcount = 1; 1246 1247 /* 1248 * In case of non-aligned buffers, we may need 2 more 1249 * pages since we need to zero out first and last block. 1250 */ 1251 if (unlikely(sdio.blkfactor)) 1252 sdio.pages_in_io = 2; 1253 1254 for (seg = 0; seg < nr_segs; seg++) { 1255 user_addr = (unsigned long)iov[seg].iov_base; 1256 sdio.pages_in_io += 1257 ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) / 1258 PAGE_SIZE - user_addr / PAGE_SIZE); 1259 } 1260 1261 blk_start_plug(&plug); 1262 1263 for (seg = 0; seg < nr_segs; seg++) { 1264 user_addr = (unsigned long)iov[seg].iov_base; 1265 sdio.size += bytes = iov[seg].iov_len; 1266 1267 /* Index into the first page of the first block */ 1268 sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1269 sdio.final_block_in_request = sdio.block_in_file + 1270 (bytes >> blkbits); 1271 /* Page fetching state */ 1272 sdio.head = 0; 1273 sdio.tail = 0; 1274 sdio.curr_page = 0; 1275 1276 sdio.total_pages = 0; 1277 if (user_addr & (PAGE_SIZE-1)) { 1278 sdio.total_pages++; 1279 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1280 } 1281 sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1282 sdio.curr_user_address = user_addr; 1283 1284 retval = do_direct_IO(dio, &sdio, &map_bh); 1285 1286 dio->result += iov[seg].iov_len - 1287 ((sdio.final_block_in_request - sdio.block_in_file) << 1288 blkbits); 1289 1290 if (retval) { 1291 dio_cleanup(dio, &sdio); 1292 break; 1293 } 1294 } /* end iovec loop */ 1295 1296 if (retval == -ENOTBLK) { 1297 /* 1298 * The remaining part of the request will be 1299 * be handled by buffered I/O when we return 1300 */ 1301 retval = 0; 1302 } 1303 /* 1304 * There may be some unwritten disk at the end of a part-written 1305 * fs-block-sized block. Go zero that now. 1306 */ 1307 dio_zero_block(dio, &sdio, 1, &map_bh); 1308 1309 if (sdio.cur_page) { 1310 ssize_t ret2; 1311 1312 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1313 if (retval == 0) 1314 retval = ret2; 1315 page_cache_release(sdio.cur_page); 1316 sdio.cur_page = NULL; 1317 } 1318 if (sdio.bio) 1319 dio_bio_submit(dio, &sdio); 1320 1321 blk_finish_plug(&plug); 1322 1323 /* 1324 * It is possible that, we return short IO due to end of file. 1325 * In that case, we need to release all the pages we got hold on. 1326 */ 1327 dio_cleanup(dio, &sdio); 1328 1329 /* 1330 * All block lookups have been performed. For READ requests 1331 * we can let i_mutex go now that its achieved its purpose 1332 * of protecting us from looking up uninitialized blocks. 1333 */ 1334 if (rw == READ && (dio->flags & DIO_LOCKING)) 1335 mutex_unlock(&dio->inode->i_mutex); 1336 1337 /* 1338 * The only time we want to leave bios in flight is when a successful 1339 * partial aio read or full aio write have been setup. In that case 1340 * bio completion will call aio_complete. The only time it's safe to 1341 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1342 * This had *better* be the only place that raises -EIOCBQUEUED. 1343 */ 1344 BUG_ON(retval == -EIOCBQUEUED); 1345 if (dio->is_async && retval == 0 && dio->result && 1346 ((rw == READ) || (dio->result == sdio.size))) 1347 retval = -EIOCBQUEUED; 1348 1349 if (retval != -EIOCBQUEUED) 1350 dio_await_completion(dio); 1351 1352 if (drop_refcount(dio) == 0) { 1353 retval = dio_complete(dio, offset, retval, false); 1354 } else 1355 BUG_ON(retval != -EIOCBQUEUED); 1356 1357 out: 1358 return retval; 1359 } 1360 1361 ssize_t 1362 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1363 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1364 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1365 dio_submit_t submit_io, int flags) 1366 { 1367 /* 1368 * The block device state is needed in the end to finally 1369 * submit everything. Since it's likely to be cache cold 1370 * prefetch it here as first thing to hide some of the 1371 * latency. 1372 * 1373 * Attempt to prefetch the pieces we likely need later. 1374 */ 1375 prefetch(&bdev->bd_disk->part_tbl); 1376 prefetch(bdev->bd_queue); 1377 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1378 1379 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset, 1380 nr_segs, get_block, end_io, 1381 submit_io, flags); 1382 } 1383 1384 EXPORT_SYMBOL(__blockdev_direct_IO); 1385 1386 static __init int dio_init(void) 1387 { 1388 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1389 return 0; 1390 } 1391 module_init(dio_init) 1392