1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 int op; 121 int op_flags; 122 blk_qc_t bio_cookie; 123 struct gendisk *bio_disk; 124 struct inode *inode; 125 loff_t i_size; /* i_size when submitted */ 126 dio_iodone_t *end_io; /* IO completion function */ 127 128 void *private; /* copy from map_bh.b_private */ 129 130 /* BIO completion state */ 131 spinlock_t bio_lock; /* protects BIO fields below */ 132 int page_errors; /* errno from get_user_pages() */ 133 int is_async; /* is IO async ? */ 134 bool defer_completion; /* defer AIO completion to workqueue? */ 135 bool should_dirty; /* if pages should be dirtied */ 136 int io_error; /* IO error in completion path */ 137 unsigned long refcount; /* direct_io_worker() and bios */ 138 struct bio *bio_list; /* singly linked via bi_private */ 139 struct task_struct *waiter; /* waiting task (NULL if none) */ 140 141 /* AIO related stuff */ 142 struct kiocb *iocb; /* kiocb */ 143 ssize_t result; /* IO result */ 144 145 /* 146 * pages[] (and any fields placed after it) are not zeroed out at 147 * allocation time. Don't add new fields after pages[] unless you 148 * wish that they not be zeroed. 149 */ 150 union { 151 struct page *pages[DIO_PAGES]; /* page buffer */ 152 struct work_struct complete_work;/* deferred AIO completion */ 153 }; 154 } ____cacheline_aligned_in_smp; 155 156 static struct kmem_cache *dio_cache __read_mostly; 157 158 /* 159 * How many pages are in the queue? 160 */ 161 static inline unsigned dio_pages_present(struct dio_submit *sdio) 162 { 163 return sdio->tail - sdio->head; 164 } 165 166 /* 167 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 168 */ 169 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 170 { 171 ssize_t ret; 172 173 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 174 &sdio->from); 175 176 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 177 struct page *page = ZERO_PAGE(0); 178 /* 179 * A memory fault, but the filesystem has some outstanding 180 * mapped blocks. We need to use those blocks up to avoid 181 * leaking stale data in the file. 182 */ 183 if (dio->page_errors == 0) 184 dio->page_errors = ret; 185 get_page(page); 186 dio->pages[0] = page; 187 sdio->head = 0; 188 sdio->tail = 1; 189 sdio->from = 0; 190 sdio->to = PAGE_SIZE; 191 return 0; 192 } 193 194 if (ret >= 0) { 195 iov_iter_advance(sdio->iter, ret); 196 ret += sdio->from; 197 sdio->head = 0; 198 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 199 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 200 return 0; 201 } 202 return ret; 203 } 204 205 /* 206 * Get another userspace page. Returns an ERR_PTR on error. Pages are 207 * buffered inside the dio so that we can call get_user_pages() against a 208 * decent number of pages, less frequently. To provide nicer use of the 209 * L1 cache. 210 */ 211 static inline struct page *dio_get_page(struct dio *dio, 212 struct dio_submit *sdio) 213 { 214 if (dio_pages_present(sdio) == 0) { 215 int ret; 216 217 ret = dio_refill_pages(dio, sdio); 218 if (ret) 219 return ERR_PTR(ret); 220 BUG_ON(dio_pages_present(sdio) == 0); 221 } 222 return dio->pages[sdio->head]; 223 } 224 225 /* 226 * dio_complete() - called when all DIO BIO I/O has been completed 227 * 228 * This drops i_dio_count, lets interested parties know that a DIO operation 229 * has completed, and calculates the resulting return code for the operation. 230 * 231 * It lets the filesystem know if it registered an interest earlier via 232 * get_block. Pass the private field of the map buffer_head so that 233 * filesystems can use it to hold additional state between get_block calls and 234 * dio_complete. 235 */ 236 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 237 { 238 loff_t offset = dio->iocb->ki_pos; 239 ssize_t transferred = 0; 240 int err; 241 242 /* 243 * AIO submission can race with bio completion to get here while 244 * expecting to have the last io completed by bio completion. 245 * In that case -EIOCBQUEUED is in fact not an error we want 246 * to preserve through this call. 247 */ 248 if (ret == -EIOCBQUEUED) 249 ret = 0; 250 251 if (dio->result) { 252 transferred = dio->result; 253 254 /* Check for short read case */ 255 if ((dio->op == REQ_OP_READ) && 256 ((offset + transferred) > dio->i_size)) 257 transferred = dio->i_size - offset; 258 /* ignore EFAULT if some IO has been done */ 259 if (unlikely(ret == -EFAULT) && transferred) 260 ret = 0; 261 } 262 263 if (ret == 0) 264 ret = dio->page_errors; 265 if (ret == 0) 266 ret = dio->io_error; 267 if (ret == 0) 268 ret = transferred; 269 270 if (dio->end_io) { 271 // XXX: ki_pos?? 272 err = dio->end_io(dio->iocb, offset, ret, dio->private); 273 if (err) 274 ret = err; 275 } 276 277 /* 278 * Try again to invalidate clean pages which might have been cached by 279 * non-direct readahead, or faulted in by get_user_pages() if the source 280 * of the write was an mmap'ed region of the file we're writing. Either 281 * one is a pretty crazy thing to do, so we don't support it 100%. If 282 * this invalidation fails, tough, the write still worked... 283 * 284 * And this page cache invalidation has to be after dio->end_io(), as 285 * some filesystems convert unwritten extents to real allocations in 286 * end_io() when necessary, otherwise a racing buffer read would cache 287 * zeros from unwritten extents. 288 */ 289 if (flags & DIO_COMPLETE_INVALIDATE && 290 ret > 0 && dio->op == REQ_OP_WRITE && 291 dio->inode->i_mapping->nrpages) { 292 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 293 offset >> PAGE_SHIFT, 294 (offset + ret - 1) >> PAGE_SHIFT); 295 if (err) 296 dio_warn_stale_pagecache(dio->iocb->ki_filp); 297 } 298 299 inode_dio_end(dio->inode); 300 301 if (flags & DIO_COMPLETE_ASYNC) { 302 /* 303 * generic_write_sync expects ki_pos to have been updated 304 * already, but the submission path only does this for 305 * synchronous I/O. 306 */ 307 dio->iocb->ki_pos += transferred; 308 309 if (ret > 0 && dio->op == REQ_OP_WRITE) 310 ret = generic_write_sync(dio->iocb, ret); 311 dio->iocb->ki_complete(dio->iocb, ret, 0); 312 } 313 314 kmem_cache_free(dio_cache, dio); 315 return ret; 316 } 317 318 static void dio_aio_complete_work(struct work_struct *work) 319 { 320 struct dio *dio = container_of(work, struct dio, complete_work); 321 322 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 323 } 324 325 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 326 327 /* 328 * Asynchronous IO callback. 329 */ 330 static void dio_bio_end_aio(struct bio *bio) 331 { 332 struct dio *dio = bio->bi_private; 333 unsigned long remaining; 334 unsigned long flags; 335 bool defer_completion = false; 336 337 /* cleanup the bio */ 338 dio_bio_complete(dio, bio); 339 340 spin_lock_irqsave(&dio->bio_lock, flags); 341 remaining = --dio->refcount; 342 if (remaining == 1 && dio->waiter) 343 wake_up_process(dio->waiter); 344 spin_unlock_irqrestore(&dio->bio_lock, flags); 345 346 if (remaining == 0) { 347 /* 348 * Defer completion when defer_completion is set or 349 * when the inode has pages mapped and this is AIO write. 350 * We need to invalidate those pages because there is a 351 * chance they contain stale data in the case buffered IO 352 * went in between AIO submission and completion into the 353 * same region. 354 */ 355 if (dio->result) 356 defer_completion = dio->defer_completion || 357 (dio->op == REQ_OP_WRITE && 358 dio->inode->i_mapping->nrpages); 359 if (defer_completion) { 360 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 361 queue_work(dio->inode->i_sb->s_dio_done_wq, 362 &dio->complete_work); 363 } else { 364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 365 } 366 } 367 } 368 369 /* 370 * The BIO completion handler simply queues the BIO up for the process-context 371 * handler. 372 * 373 * During I/O bi_private points at the dio. After I/O, bi_private is used to 374 * implement a singly-linked list of completed BIOs, at dio->bio_list. 375 */ 376 static void dio_bio_end_io(struct bio *bio) 377 { 378 struct dio *dio = bio->bi_private; 379 unsigned long flags; 380 381 spin_lock_irqsave(&dio->bio_lock, flags); 382 bio->bi_private = dio->bio_list; 383 dio->bio_list = bio; 384 if (--dio->refcount == 1 && dio->waiter) 385 wake_up_process(dio->waiter); 386 spin_unlock_irqrestore(&dio->bio_lock, flags); 387 } 388 389 static inline void 390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 391 struct block_device *bdev, 392 sector_t first_sector, int nr_vecs) 393 { 394 struct bio *bio; 395 396 /* 397 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 398 * we request a valid number of vectors. 399 */ 400 bio = bio_alloc(GFP_KERNEL, nr_vecs); 401 402 bio_set_dev(bio, bdev); 403 bio->bi_iter.bi_sector = first_sector; 404 bio_set_op_attrs(bio, dio->op, dio->op_flags); 405 if (dio->is_async) 406 bio->bi_end_io = dio_bio_end_aio; 407 else 408 bio->bi_end_io = dio_bio_end_io; 409 410 bio->bi_write_hint = dio->iocb->ki_hint; 411 412 sdio->bio = bio; 413 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 414 } 415 416 /* 417 * In the AIO read case we speculatively dirty the pages before starting IO. 418 * During IO completion, any of these pages which happen to have been written 419 * back will be redirtied by bio_check_pages_dirty(). 420 * 421 * bios hold a dio reference between submit_bio and ->end_io. 422 */ 423 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 424 { 425 struct bio *bio = sdio->bio; 426 unsigned long flags; 427 428 bio->bi_private = dio; 429 /* don't account direct I/O as memory stall */ 430 bio_clear_flag(bio, BIO_WORKINGSET); 431 432 spin_lock_irqsave(&dio->bio_lock, flags); 433 dio->refcount++; 434 spin_unlock_irqrestore(&dio->bio_lock, flags); 435 436 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 437 bio_set_pages_dirty(bio); 438 439 dio->bio_disk = bio->bi_bdev->bd_disk; 440 441 if (sdio->submit_io) { 442 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 443 dio->bio_cookie = BLK_QC_T_NONE; 444 } else 445 dio->bio_cookie = submit_bio(bio); 446 447 sdio->bio = NULL; 448 sdio->boundary = 0; 449 sdio->logical_offset_in_bio = 0; 450 } 451 452 /* 453 * Release any resources in case of a failure 454 */ 455 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 456 { 457 while (sdio->head < sdio->tail) 458 put_page(dio->pages[sdio->head++]); 459 } 460 461 /* 462 * Wait for the next BIO to complete. Remove it and return it. NULL is 463 * returned once all BIOs have been completed. This must only be called once 464 * all bios have been issued so that dio->refcount can only decrease. This 465 * requires that that the caller hold a reference on the dio. 466 */ 467 static struct bio *dio_await_one(struct dio *dio) 468 { 469 unsigned long flags; 470 struct bio *bio = NULL; 471 472 spin_lock_irqsave(&dio->bio_lock, flags); 473 474 /* 475 * Wait as long as the list is empty and there are bios in flight. bio 476 * completion drops the count, maybe adds to the list, and wakes while 477 * holding the bio_lock so we don't need set_current_state()'s barrier 478 * and can call it after testing our condition. 479 */ 480 while (dio->refcount > 1 && dio->bio_list == NULL) { 481 __set_current_state(TASK_UNINTERRUPTIBLE); 482 dio->waiter = current; 483 spin_unlock_irqrestore(&dio->bio_lock, flags); 484 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 485 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true)) 486 blk_io_schedule(); 487 /* wake up sets us TASK_RUNNING */ 488 spin_lock_irqsave(&dio->bio_lock, flags); 489 dio->waiter = NULL; 490 } 491 if (dio->bio_list) { 492 bio = dio->bio_list; 493 dio->bio_list = bio->bi_private; 494 } 495 spin_unlock_irqrestore(&dio->bio_lock, flags); 496 return bio; 497 } 498 499 /* 500 * Process one completed BIO. No locks are held. 501 */ 502 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 503 { 504 blk_status_t err = bio->bi_status; 505 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 506 507 if (err) { 508 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 509 dio->io_error = -EAGAIN; 510 else 511 dio->io_error = -EIO; 512 } 513 514 if (dio->is_async && should_dirty) { 515 bio_check_pages_dirty(bio); /* transfers ownership */ 516 } else { 517 bio_release_pages(bio, should_dirty); 518 bio_put(bio); 519 } 520 return err; 521 } 522 523 /* 524 * Wait on and process all in-flight BIOs. This must only be called once 525 * all bios have been issued so that the refcount can only decrease. 526 * This just waits for all bios to make it through dio_bio_complete. IO 527 * errors are propagated through dio->io_error and should be propagated via 528 * dio_complete(). 529 */ 530 static void dio_await_completion(struct dio *dio) 531 { 532 struct bio *bio; 533 do { 534 bio = dio_await_one(dio); 535 if (bio) 536 dio_bio_complete(dio, bio); 537 } while (bio); 538 } 539 540 /* 541 * A really large O_DIRECT read or write can generate a lot of BIOs. So 542 * to keep the memory consumption sane we periodically reap any completed BIOs 543 * during the BIO generation phase. 544 * 545 * This also helps to limit the peak amount of pinned userspace memory. 546 */ 547 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 548 { 549 int ret = 0; 550 551 if (sdio->reap_counter++ >= 64) { 552 while (dio->bio_list) { 553 unsigned long flags; 554 struct bio *bio; 555 int ret2; 556 557 spin_lock_irqsave(&dio->bio_lock, flags); 558 bio = dio->bio_list; 559 dio->bio_list = bio->bi_private; 560 spin_unlock_irqrestore(&dio->bio_lock, flags); 561 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 562 if (ret == 0) 563 ret = ret2; 564 } 565 sdio->reap_counter = 0; 566 } 567 return ret; 568 } 569 570 /* 571 * Create workqueue for deferred direct IO completions. We allocate the 572 * workqueue when it's first needed. This avoids creating workqueue for 573 * filesystems that don't need it and also allows us to create the workqueue 574 * late enough so the we can include s_id in the name of the workqueue. 575 */ 576 int sb_init_dio_done_wq(struct super_block *sb) 577 { 578 struct workqueue_struct *old; 579 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 580 WQ_MEM_RECLAIM, 0, 581 sb->s_id); 582 if (!wq) 583 return -ENOMEM; 584 /* 585 * This has to be atomic as more DIOs can race to create the workqueue 586 */ 587 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 588 /* Someone created workqueue before us? Free ours... */ 589 if (old) 590 destroy_workqueue(wq); 591 return 0; 592 } 593 594 static int dio_set_defer_completion(struct dio *dio) 595 { 596 struct super_block *sb = dio->inode->i_sb; 597 598 if (dio->defer_completion) 599 return 0; 600 dio->defer_completion = true; 601 if (!sb->s_dio_done_wq) 602 return sb_init_dio_done_wq(sb); 603 return 0; 604 } 605 606 /* 607 * Call into the fs to map some more disk blocks. We record the current number 608 * of available blocks at sdio->blocks_available. These are in units of the 609 * fs blocksize, i_blocksize(inode). 610 * 611 * The fs is allowed to map lots of blocks at once. If it wants to do that, 612 * it uses the passed inode-relative block number as the file offset, as usual. 613 * 614 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 615 * has remaining to do. The fs should not map more than this number of blocks. 616 * 617 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 618 * indicate how much contiguous disk space has been made available at 619 * bh->b_blocknr. 620 * 621 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 622 * This isn't very efficient... 623 * 624 * In the case of filesystem holes: the fs may return an arbitrarily-large 625 * hole by returning an appropriate value in b_size and by clearing 626 * buffer_mapped(). However the direct-io code will only process holes one 627 * block at a time - it will repeatedly call get_block() as it walks the hole. 628 */ 629 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 630 struct buffer_head *map_bh) 631 { 632 int ret; 633 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 634 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 635 unsigned long fs_count; /* Number of filesystem-sized blocks */ 636 int create; 637 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 638 loff_t i_size; 639 640 /* 641 * If there was a memory error and we've overwritten all the 642 * mapped blocks then we can now return that memory error 643 */ 644 ret = dio->page_errors; 645 if (ret == 0) { 646 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 647 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 648 fs_endblk = (sdio->final_block_in_request - 1) >> 649 sdio->blkfactor; 650 fs_count = fs_endblk - fs_startblk + 1; 651 652 map_bh->b_state = 0; 653 map_bh->b_size = fs_count << i_blkbits; 654 655 /* 656 * For writes that could fill holes inside i_size on a 657 * DIO_SKIP_HOLES filesystem we forbid block creations: only 658 * overwrites are permitted. We will return early to the caller 659 * once we see an unmapped buffer head returned, and the caller 660 * will fall back to buffered I/O. 661 * 662 * Otherwise the decision is left to the get_blocks method, 663 * which may decide to handle it or also return an unmapped 664 * buffer head. 665 */ 666 create = dio->op == REQ_OP_WRITE; 667 if (dio->flags & DIO_SKIP_HOLES) { 668 i_size = i_size_read(dio->inode); 669 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 670 create = 0; 671 } 672 673 ret = (*sdio->get_block)(dio->inode, fs_startblk, 674 map_bh, create); 675 676 /* Store for completion */ 677 dio->private = map_bh->b_private; 678 679 if (ret == 0 && buffer_defer_completion(map_bh)) 680 ret = dio_set_defer_completion(dio); 681 } 682 return ret; 683 } 684 685 /* 686 * There is no bio. Make one now. 687 */ 688 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 689 sector_t start_sector, struct buffer_head *map_bh) 690 { 691 sector_t sector; 692 int ret, nr_pages; 693 694 ret = dio_bio_reap(dio, sdio); 695 if (ret) 696 goto out; 697 sector = start_sector << (sdio->blkbits - 9); 698 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 699 BUG_ON(nr_pages <= 0); 700 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 701 sdio->boundary = 0; 702 out: 703 return ret; 704 } 705 706 /* 707 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 708 * that was successful then update final_block_in_bio and take a ref against 709 * the just-added page. 710 * 711 * Return zero on success. Non-zero means the caller needs to start a new BIO. 712 */ 713 static inline int dio_bio_add_page(struct dio_submit *sdio) 714 { 715 int ret; 716 717 ret = bio_add_page(sdio->bio, sdio->cur_page, 718 sdio->cur_page_len, sdio->cur_page_offset); 719 if (ret == sdio->cur_page_len) { 720 /* 721 * Decrement count only, if we are done with this page 722 */ 723 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 724 sdio->pages_in_io--; 725 get_page(sdio->cur_page); 726 sdio->final_block_in_bio = sdio->cur_page_block + 727 (sdio->cur_page_len >> sdio->blkbits); 728 ret = 0; 729 } else { 730 ret = 1; 731 } 732 return ret; 733 } 734 735 /* 736 * Put cur_page under IO. The section of cur_page which is described by 737 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 738 * starts on-disk at cur_page_block. 739 * 740 * We take a ref against the page here (on behalf of its presence in the bio). 741 * 742 * The caller of this function is responsible for removing cur_page from the 743 * dio, and for dropping the refcount which came from that presence. 744 */ 745 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 746 struct buffer_head *map_bh) 747 { 748 int ret = 0; 749 750 if (sdio->bio) { 751 loff_t cur_offset = sdio->cur_page_fs_offset; 752 loff_t bio_next_offset = sdio->logical_offset_in_bio + 753 sdio->bio->bi_iter.bi_size; 754 755 /* 756 * See whether this new request is contiguous with the old. 757 * 758 * Btrfs cannot handle having logically non-contiguous requests 759 * submitted. For example if you have 760 * 761 * Logical: [0-4095][HOLE][8192-12287] 762 * Physical: [0-4095] [4096-8191] 763 * 764 * We cannot submit those pages together as one BIO. So if our 765 * current logical offset in the file does not equal what would 766 * be the next logical offset in the bio, submit the bio we 767 * have. 768 */ 769 if (sdio->final_block_in_bio != sdio->cur_page_block || 770 cur_offset != bio_next_offset) 771 dio_bio_submit(dio, sdio); 772 } 773 774 if (sdio->bio == NULL) { 775 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 776 if (ret) 777 goto out; 778 } 779 780 if (dio_bio_add_page(sdio) != 0) { 781 dio_bio_submit(dio, sdio); 782 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 783 if (ret == 0) { 784 ret = dio_bio_add_page(sdio); 785 BUG_ON(ret != 0); 786 } 787 } 788 out: 789 return ret; 790 } 791 792 /* 793 * An autonomous function to put a chunk of a page under deferred IO. 794 * 795 * The caller doesn't actually know (or care) whether this piece of page is in 796 * a BIO, or is under IO or whatever. We just take care of all possible 797 * situations here. The separation between the logic of do_direct_IO() and 798 * that of submit_page_section() is important for clarity. Please don't break. 799 * 800 * The chunk of page starts on-disk at blocknr. 801 * 802 * We perform deferred IO, by recording the last-submitted page inside our 803 * private part of the dio structure. If possible, we just expand the IO 804 * across that page here. 805 * 806 * If that doesn't work out then we put the old page into the bio and add this 807 * page to the dio instead. 808 */ 809 static inline int 810 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 811 unsigned offset, unsigned len, sector_t blocknr, 812 struct buffer_head *map_bh) 813 { 814 int ret = 0; 815 816 if (dio->op == REQ_OP_WRITE) { 817 /* 818 * Read accounting is performed in submit_bio() 819 */ 820 task_io_account_write(len); 821 } 822 823 /* 824 * Can we just grow the current page's presence in the dio? 825 */ 826 if (sdio->cur_page == page && 827 sdio->cur_page_offset + sdio->cur_page_len == offset && 828 sdio->cur_page_block + 829 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 830 sdio->cur_page_len += len; 831 goto out; 832 } 833 834 /* 835 * If there's a deferred page already there then send it. 836 */ 837 if (sdio->cur_page) { 838 ret = dio_send_cur_page(dio, sdio, map_bh); 839 put_page(sdio->cur_page); 840 sdio->cur_page = NULL; 841 if (ret) 842 return ret; 843 } 844 845 get_page(page); /* It is in dio */ 846 sdio->cur_page = page; 847 sdio->cur_page_offset = offset; 848 sdio->cur_page_len = len; 849 sdio->cur_page_block = blocknr; 850 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 851 out: 852 /* 853 * If sdio->boundary then we want to schedule the IO now to 854 * avoid metadata seeks. 855 */ 856 if (sdio->boundary) { 857 ret = dio_send_cur_page(dio, sdio, map_bh); 858 if (sdio->bio) 859 dio_bio_submit(dio, sdio); 860 put_page(sdio->cur_page); 861 sdio->cur_page = NULL; 862 } 863 return ret; 864 } 865 866 /* 867 * If we are not writing the entire block and get_block() allocated 868 * the block for us, we need to fill-in the unused portion of the 869 * block with zeros. This happens only if user-buffer, fileoffset or 870 * io length is not filesystem block-size multiple. 871 * 872 * `end' is zero if we're doing the start of the IO, 1 at the end of the 873 * IO. 874 */ 875 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 876 int end, struct buffer_head *map_bh) 877 { 878 unsigned dio_blocks_per_fs_block; 879 unsigned this_chunk_blocks; /* In dio_blocks */ 880 unsigned this_chunk_bytes; 881 struct page *page; 882 883 sdio->start_zero_done = 1; 884 if (!sdio->blkfactor || !buffer_new(map_bh)) 885 return; 886 887 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 888 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 889 890 if (!this_chunk_blocks) 891 return; 892 893 /* 894 * We need to zero out part of an fs block. It is either at the 895 * beginning or the end of the fs block. 896 */ 897 if (end) 898 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 899 900 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 901 902 page = ZERO_PAGE(0); 903 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 904 sdio->next_block_for_io, map_bh)) 905 return; 906 907 sdio->next_block_for_io += this_chunk_blocks; 908 } 909 910 /* 911 * Walk the user pages, and the file, mapping blocks to disk and generating 912 * a sequence of (page,offset,len,block) mappings. These mappings are injected 913 * into submit_page_section(), which takes care of the next stage of submission 914 * 915 * Direct IO against a blockdev is different from a file. Because we can 916 * happily perform page-sized but 512-byte aligned IOs. It is important that 917 * blockdev IO be able to have fine alignment and large sizes. 918 * 919 * So what we do is to permit the ->get_block function to populate bh.b_size 920 * with the size of IO which is permitted at this offset and this i_blkbits. 921 * 922 * For best results, the blockdev should be set up with 512-byte i_blkbits and 923 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 924 * fine alignment but still allows this function to work in PAGE_SIZE units. 925 */ 926 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 927 struct buffer_head *map_bh) 928 { 929 const unsigned blkbits = sdio->blkbits; 930 const unsigned i_blkbits = blkbits + sdio->blkfactor; 931 int ret = 0; 932 933 while (sdio->block_in_file < sdio->final_block_in_request) { 934 struct page *page; 935 size_t from, to; 936 937 page = dio_get_page(dio, sdio); 938 if (IS_ERR(page)) { 939 ret = PTR_ERR(page); 940 goto out; 941 } 942 from = sdio->head ? 0 : sdio->from; 943 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 944 sdio->head++; 945 946 while (from < to) { 947 unsigned this_chunk_bytes; /* # of bytes mapped */ 948 unsigned this_chunk_blocks; /* # of blocks */ 949 unsigned u; 950 951 if (sdio->blocks_available == 0) { 952 /* 953 * Need to go and map some more disk 954 */ 955 unsigned long blkmask; 956 unsigned long dio_remainder; 957 958 ret = get_more_blocks(dio, sdio, map_bh); 959 if (ret) { 960 put_page(page); 961 goto out; 962 } 963 if (!buffer_mapped(map_bh)) 964 goto do_holes; 965 966 sdio->blocks_available = 967 map_bh->b_size >> blkbits; 968 sdio->next_block_for_io = 969 map_bh->b_blocknr << sdio->blkfactor; 970 if (buffer_new(map_bh)) { 971 clean_bdev_aliases( 972 map_bh->b_bdev, 973 map_bh->b_blocknr, 974 map_bh->b_size >> i_blkbits); 975 } 976 977 if (!sdio->blkfactor) 978 goto do_holes; 979 980 blkmask = (1 << sdio->blkfactor) - 1; 981 dio_remainder = (sdio->block_in_file & blkmask); 982 983 /* 984 * If we are at the start of IO and that IO 985 * starts partway into a fs-block, 986 * dio_remainder will be non-zero. If the IO 987 * is a read then we can simply advance the IO 988 * cursor to the first block which is to be 989 * read. But if the IO is a write and the 990 * block was newly allocated we cannot do that; 991 * the start of the fs block must be zeroed out 992 * on-disk 993 */ 994 if (!buffer_new(map_bh)) 995 sdio->next_block_for_io += dio_remainder; 996 sdio->blocks_available -= dio_remainder; 997 } 998 do_holes: 999 /* Handle holes */ 1000 if (!buffer_mapped(map_bh)) { 1001 loff_t i_size_aligned; 1002 1003 /* AKPM: eargh, -ENOTBLK is a hack */ 1004 if (dio->op == REQ_OP_WRITE) { 1005 put_page(page); 1006 return -ENOTBLK; 1007 } 1008 1009 /* 1010 * Be sure to account for a partial block as the 1011 * last block in the file 1012 */ 1013 i_size_aligned = ALIGN(i_size_read(dio->inode), 1014 1 << blkbits); 1015 if (sdio->block_in_file >= 1016 i_size_aligned >> blkbits) { 1017 /* We hit eof */ 1018 put_page(page); 1019 goto out; 1020 } 1021 zero_user(page, from, 1 << blkbits); 1022 sdio->block_in_file++; 1023 from += 1 << blkbits; 1024 dio->result += 1 << blkbits; 1025 goto next_block; 1026 } 1027 1028 /* 1029 * If we're performing IO which has an alignment which 1030 * is finer than the underlying fs, go check to see if 1031 * we must zero out the start of this block. 1032 */ 1033 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1034 dio_zero_block(dio, sdio, 0, map_bh); 1035 1036 /* 1037 * Work out, in this_chunk_blocks, how much disk we 1038 * can add to this page 1039 */ 1040 this_chunk_blocks = sdio->blocks_available; 1041 u = (to - from) >> blkbits; 1042 if (this_chunk_blocks > u) 1043 this_chunk_blocks = u; 1044 u = sdio->final_block_in_request - sdio->block_in_file; 1045 if (this_chunk_blocks > u) 1046 this_chunk_blocks = u; 1047 this_chunk_bytes = this_chunk_blocks << blkbits; 1048 BUG_ON(this_chunk_bytes == 0); 1049 1050 if (this_chunk_blocks == sdio->blocks_available) 1051 sdio->boundary = buffer_boundary(map_bh); 1052 ret = submit_page_section(dio, sdio, page, 1053 from, 1054 this_chunk_bytes, 1055 sdio->next_block_for_io, 1056 map_bh); 1057 if (ret) { 1058 put_page(page); 1059 goto out; 1060 } 1061 sdio->next_block_for_io += this_chunk_blocks; 1062 1063 sdio->block_in_file += this_chunk_blocks; 1064 from += this_chunk_bytes; 1065 dio->result += this_chunk_bytes; 1066 sdio->blocks_available -= this_chunk_blocks; 1067 next_block: 1068 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1069 if (sdio->block_in_file == sdio->final_block_in_request) 1070 break; 1071 } 1072 1073 /* Drop the ref which was taken in get_user_pages() */ 1074 put_page(page); 1075 } 1076 out: 1077 return ret; 1078 } 1079 1080 static inline int drop_refcount(struct dio *dio) 1081 { 1082 int ret2; 1083 unsigned long flags; 1084 1085 /* 1086 * Sync will always be dropping the final ref and completing the 1087 * operation. AIO can if it was a broken operation described above or 1088 * in fact if all the bios race to complete before we get here. In 1089 * that case dio_complete() translates the EIOCBQUEUED into the proper 1090 * return code that the caller will hand to ->complete(). 1091 * 1092 * This is managed by the bio_lock instead of being an atomic_t so that 1093 * completion paths can drop their ref and use the remaining count to 1094 * decide to wake the submission path atomically. 1095 */ 1096 spin_lock_irqsave(&dio->bio_lock, flags); 1097 ret2 = --dio->refcount; 1098 spin_unlock_irqrestore(&dio->bio_lock, flags); 1099 return ret2; 1100 } 1101 1102 /* 1103 * This is a library function for use by filesystem drivers. 1104 * 1105 * The locking rules are governed by the flags parameter: 1106 * - if the flags value contains DIO_LOCKING we use a fancy locking 1107 * scheme for dumb filesystems. 1108 * For writes this function is called under i_mutex and returns with 1109 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1110 * taken and dropped again before returning. 1111 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1112 * internal locking but rather rely on the filesystem to synchronize 1113 * direct I/O reads/writes versus each other and truncate. 1114 * 1115 * To help with locking against truncate we incremented the i_dio_count 1116 * counter before starting direct I/O, and decrement it once we are done. 1117 * Truncate can wait for it to reach zero to provide exclusion. It is 1118 * expected that filesystem provide exclusion between new direct I/O 1119 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1120 * but other filesystems need to take care of this on their own. 1121 * 1122 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1123 * is always inlined. Otherwise gcc is unable to split the structure into 1124 * individual fields and will generate much worse code. This is important 1125 * for the whole file. 1126 */ 1127 static inline ssize_t 1128 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1129 struct block_device *bdev, struct iov_iter *iter, 1130 get_block_t get_block, dio_iodone_t end_io, 1131 dio_submit_t submit_io, int flags) 1132 { 1133 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1134 unsigned blkbits = i_blkbits; 1135 unsigned blocksize_mask = (1 << blkbits) - 1; 1136 ssize_t retval = -EINVAL; 1137 const size_t count = iov_iter_count(iter); 1138 loff_t offset = iocb->ki_pos; 1139 const loff_t end = offset + count; 1140 struct dio *dio; 1141 struct dio_submit sdio = { 0, }; 1142 struct buffer_head map_bh = { 0, }; 1143 struct blk_plug plug; 1144 unsigned long align = offset | iov_iter_alignment(iter); 1145 1146 /* 1147 * Avoid references to bdev if not absolutely needed to give 1148 * the early prefetch in the caller enough time. 1149 */ 1150 1151 /* watch out for a 0 len io from a tricksy fs */ 1152 if (iov_iter_rw(iter) == READ && !count) 1153 return 0; 1154 1155 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1156 if (!dio) 1157 return -ENOMEM; 1158 /* 1159 * Believe it or not, zeroing out the page array caused a .5% 1160 * performance regression in a database benchmark. So, we take 1161 * care to only zero out what's needed. 1162 */ 1163 memset(dio, 0, offsetof(struct dio, pages)); 1164 1165 dio->flags = flags; 1166 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1167 /* will be released by direct_io_worker */ 1168 inode_lock(inode); 1169 } 1170 1171 /* Once we sampled i_size check for reads beyond EOF */ 1172 dio->i_size = i_size_read(inode); 1173 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1174 retval = 0; 1175 goto fail_dio; 1176 } 1177 1178 if (align & blocksize_mask) { 1179 if (bdev) 1180 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1181 blocksize_mask = (1 << blkbits) - 1; 1182 if (align & blocksize_mask) 1183 goto fail_dio; 1184 } 1185 1186 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1187 struct address_space *mapping = iocb->ki_filp->f_mapping; 1188 1189 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1190 if (retval) 1191 goto fail_dio; 1192 } 1193 1194 /* 1195 * For file extending writes updating i_size before data writeouts 1196 * complete can expose uninitialized blocks in dumb filesystems. 1197 * In that case we need to wait for I/O completion even if asked 1198 * for an asynchronous write. 1199 */ 1200 if (is_sync_kiocb(iocb)) 1201 dio->is_async = false; 1202 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1203 dio->is_async = false; 1204 else 1205 dio->is_async = true; 1206 1207 dio->inode = inode; 1208 if (iov_iter_rw(iter) == WRITE) { 1209 dio->op = REQ_OP_WRITE; 1210 dio->op_flags = REQ_SYNC | REQ_IDLE; 1211 if (iocb->ki_flags & IOCB_NOWAIT) 1212 dio->op_flags |= REQ_NOWAIT; 1213 } else { 1214 dio->op = REQ_OP_READ; 1215 } 1216 if (iocb->ki_flags & IOCB_HIPRI) 1217 dio->op_flags |= REQ_HIPRI; 1218 1219 /* 1220 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1221 * so that we can call ->fsync. 1222 */ 1223 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1224 retval = 0; 1225 if (iocb->ki_flags & IOCB_DSYNC) 1226 retval = dio_set_defer_completion(dio); 1227 else if (!dio->inode->i_sb->s_dio_done_wq) { 1228 /* 1229 * In case of AIO write racing with buffered read we 1230 * need to defer completion. We can't decide this now, 1231 * however the workqueue needs to be initialized here. 1232 */ 1233 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1234 } 1235 if (retval) 1236 goto fail_dio; 1237 } 1238 1239 /* 1240 * Will be decremented at I/O completion time. 1241 */ 1242 inode_dio_begin(inode); 1243 1244 retval = 0; 1245 sdio.blkbits = blkbits; 1246 sdio.blkfactor = i_blkbits - blkbits; 1247 sdio.block_in_file = offset >> blkbits; 1248 1249 sdio.get_block = get_block; 1250 dio->end_io = end_io; 1251 sdio.submit_io = submit_io; 1252 sdio.final_block_in_bio = -1; 1253 sdio.next_block_for_io = -1; 1254 1255 dio->iocb = iocb; 1256 1257 spin_lock_init(&dio->bio_lock); 1258 dio->refcount = 1; 1259 1260 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1261 sdio.iter = iter; 1262 sdio.final_block_in_request = end >> blkbits; 1263 1264 /* 1265 * In case of non-aligned buffers, we may need 2 more 1266 * pages since we need to zero out first and last block. 1267 */ 1268 if (unlikely(sdio.blkfactor)) 1269 sdio.pages_in_io = 2; 1270 1271 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1272 1273 blk_start_plug(&plug); 1274 1275 retval = do_direct_IO(dio, &sdio, &map_bh); 1276 if (retval) 1277 dio_cleanup(dio, &sdio); 1278 1279 if (retval == -ENOTBLK) { 1280 /* 1281 * The remaining part of the request will be 1282 * be handled by buffered I/O when we return 1283 */ 1284 retval = 0; 1285 } 1286 /* 1287 * There may be some unwritten disk at the end of a part-written 1288 * fs-block-sized block. Go zero that now. 1289 */ 1290 dio_zero_block(dio, &sdio, 1, &map_bh); 1291 1292 if (sdio.cur_page) { 1293 ssize_t ret2; 1294 1295 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1296 if (retval == 0) 1297 retval = ret2; 1298 put_page(sdio.cur_page); 1299 sdio.cur_page = NULL; 1300 } 1301 if (sdio.bio) 1302 dio_bio_submit(dio, &sdio); 1303 1304 blk_finish_plug(&plug); 1305 1306 /* 1307 * It is possible that, we return short IO due to end of file. 1308 * In that case, we need to release all the pages we got hold on. 1309 */ 1310 dio_cleanup(dio, &sdio); 1311 1312 /* 1313 * All block lookups have been performed. For READ requests 1314 * we can let i_mutex go now that its achieved its purpose 1315 * of protecting us from looking up uninitialized blocks. 1316 */ 1317 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1318 inode_unlock(dio->inode); 1319 1320 /* 1321 * The only time we want to leave bios in flight is when a successful 1322 * partial aio read or full aio write have been setup. In that case 1323 * bio completion will call aio_complete. The only time it's safe to 1324 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1325 * This had *better* be the only place that raises -EIOCBQUEUED. 1326 */ 1327 BUG_ON(retval == -EIOCBQUEUED); 1328 if (dio->is_async && retval == 0 && dio->result && 1329 (iov_iter_rw(iter) == READ || dio->result == count)) 1330 retval = -EIOCBQUEUED; 1331 else 1332 dio_await_completion(dio); 1333 1334 if (drop_refcount(dio) == 0) { 1335 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1336 } else 1337 BUG_ON(retval != -EIOCBQUEUED); 1338 1339 return retval; 1340 1341 fail_dio: 1342 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1343 inode_unlock(inode); 1344 1345 kmem_cache_free(dio_cache, dio); 1346 return retval; 1347 } 1348 1349 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1350 struct block_device *bdev, struct iov_iter *iter, 1351 get_block_t get_block, 1352 dio_iodone_t end_io, dio_submit_t submit_io, 1353 int flags) 1354 { 1355 /* 1356 * The block device state is needed in the end to finally 1357 * submit everything. Since it's likely to be cache cold 1358 * prefetch it here as first thing to hide some of the 1359 * latency. 1360 * 1361 * Attempt to prefetch the pieces we likely need later. 1362 */ 1363 prefetch(&bdev->bd_disk->part_tbl); 1364 prefetch(bdev->bd_disk->queue); 1365 prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES); 1366 1367 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1368 end_io, submit_io, flags); 1369 } 1370 1371 EXPORT_SYMBOL(__blockdev_direct_IO); 1372 1373 static __init int dio_init(void) 1374 { 1375 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1376 return 0; 1377 } 1378 module_init(dio_init) 1379