1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * This code generally works in units of "dio_blocks". A dio_block is 49 * somewhere between the hard sector size and the filesystem block size. it 50 * is determined on a per-invocation basis. When talking to the filesystem 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 53 * to bio_block quantities by shifting left by blkfactor. 54 * 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 56 * blocksize. 57 */ 58 59 /* dio_state only used in the submission path */ 60 61 struct dio_submit { 62 struct bio *bio; /* bio under assembly */ 63 unsigned blkbits; /* doesn't change */ 64 unsigned blkfactor; /* When we're using an alignment which 65 is finer than the filesystem's soft 66 blocksize, this specifies how much 67 finer. blkfactor=2 means 1/4-block 68 alignment. Does not change */ 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 70 been performed at the start of a 71 write */ 72 int pages_in_io; /* approximate total IO pages */ 73 size_t size; /* total request size (doesn't change)*/ 74 sector_t block_in_file; /* Current offset into the underlying 75 file in dio_block units. */ 76 unsigned blocks_available; /* At block_in_file. changes */ 77 int reap_counter; /* rate limit reaping */ 78 sector_t final_block_in_request;/* doesn't change */ 79 unsigned first_block_in_page; /* doesn't change, Used only once */ 80 int boundary; /* prev block is at a boundary */ 81 get_block_t *get_block; /* block mapping function */ 82 dio_submit_t *submit_io; /* IO submition function */ 83 84 loff_t logical_offset_in_bio; /* current first logical block in bio */ 85 sector_t final_block_in_bio; /* current final block in bio + 1 */ 86 sector_t next_block_for_io; /* next block to be put under IO, 87 in dio_blocks units */ 88 89 /* 90 * Deferred addition of a page to the dio. These variables are 91 * private to dio_send_cur_page(), submit_page_section() and 92 * dio_bio_add_page(). 93 */ 94 struct page *cur_page; /* The page */ 95 unsigned cur_page_offset; /* Offset into it, in bytes */ 96 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 97 sector_t cur_page_block; /* Where it starts */ 98 loff_t cur_page_fs_offset; /* Offset in file */ 99 100 /* 101 * Page fetching state. These variables belong to dio_refill_pages(). 102 */ 103 int curr_page; /* changes */ 104 int total_pages; /* doesn't change */ 105 unsigned long curr_user_address;/* changes */ 106 107 /* 108 * Page queue. These variables belong to dio_refill_pages() and 109 * dio_get_page(). 110 */ 111 unsigned head; /* next page to process */ 112 unsigned tail; /* last valid page + 1 */ 113 }; 114 115 /* dio_state communicated between submission path and end_io */ 116 struct dio { 117 int flags; /* doesn't change */ 118 int rw; 119 struct inode *inode; 120 loff_t i_size; /* i_size when submitted */ 121 dio_iodone_t *end_io; /* IO completion function */ 122 123 void *private; /* copy from map_bh.b_private */ 124 125 /* BIO completion state */ 126 spinlock_t bio_lock; /* protects BIO fields below */ 127 int page_errors; /* errno from get_user_pages() */ 128 int is_async; /* is IO async ? */ 129 int io_error; /* IO error in completion path */ 130 unsigned long refcount; /* direct_io_worker() and bios */ 131 struct bio *bio_list; /* singly linked via bi_private */ 132 struct task_struct *waiter; /* waiting task (NULL if none) */ 133 134 /* AIO related stuff */ 135 struct kiocb *iocb; /* kiocb */ 136 ssize_t result; /* IO result */ 137 138 /* 139 * pages[] (and any fields placed after it) are not zeroed out at 140 * allocation time. Don't add new fields after pages[] unless you 141 * wish that they not be zeroed. 142 */ 143 struct page *pages[DIO_PAGES]; /* page buffer */ 144 } ____cacheline_aligned_in_smp; 145 146 static struct kmem_cache *dio_cache __read_mostly; 147 148 static void __inode_dio_wait(struct inode *inode) 149 { 150 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 151 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 152 153 do { 154 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 155 if (atomic_read(&inode->i_dio_count)) 156 schedule(); 157 } while (atomic_read(&inode->i_dio_count)); 158 finish_wait(wq, &q.wait); 159 } 160 161 /** 162 * inode_dio_wait - wait for outstanding DIO requests to finish 163 * @inode: inode to wait for 164 * 165 * Waits for all pending direct I/O requests to finish so that we can 166 * proceed with a truncate or equivalent operation. 167 * 168 * Must be called under a lock that serializes taking new references 169 * to i_dio_count, usually by inode->i_mutex. 170 */ 171 void inode_dio_wait(struct inode *inode) 172 { 173 if (atomic_read(&inode->i_dio_count)) 174 __inode_dio_wait(inode); 175 } 176 EXPORT_SYMBOL_GPL(inode_dio_wait); 177 178 /* 179 * inode_dio_done - signal finish of a direct I/O requests 180 * @inode: inode the direct I/O happens on 181 * 182 * This is called once we've finished processing a direct I/O request, 183 * and is used to wake up callers waiting for direct I/O to be quiesced. 184 */ 185 void inode_dio_done(struct inode *inode) 186 { 187 if (atomic_dec_and_test(&inode->i_dio_count)) 188 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 189 } 190 EXPORT_SYMBOL_GPL(inode_dio_done); 191 192 /* 193 * How many pages are in the queue? 194 */ 195 static inline unsigned dio_pages_present(struct dio_submit *sdio) 196 { 197 return sdio->tail - sdio->head; 198 } 199 200 /* 201 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 202 */ 203 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 204 { 205 int ret; 206 int nr_pages; 207 208 nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES); 209 ret = get_user_pages_fast( 210 sdio->curr_user_address, /* Where from? */ 211 nr_pages, /* How many pages? */ 212 dio->rw == READ, /* Write to memory? */ 213 &dio->pages[0]); /* Put results here */ 214 215 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) { 216 struct page *page = ZERO_PAGE(0); 217 /* 218 * A memory fault, but the filesystem has some outstanding 219 * mapped blocks. We need to use those blocks up to avoid 220 * leaking stale data in the file. 221 */ 222 if (dio->page_errors == 0) 223 dio->page_errors = ret; 224 page_cache_get(page); 225 dio->pages[0] = page; 226 sdio->head = 0; 227 sdio->tail = 1; 228 ret = 0; 229 goto out; 230 } 231 232 if (ret >= 0) { 233 sdio->curr_user_address += ret * PAGE_SIZE; 234 sdio->curr_page += ret; 235 sdio->head = 0; 236 sdio->tail = ret; 237 ret = 0; 238 } 239 out: 240 return ret; 241 } 242 243 /* 244 * Get another userspace page. Returns an ERR_PTR on error. Pages are 245 * buffered inside the dio so that we can call get_user_pages() against a 246 * decent number of pages, less frequently. To provide nicer use of the 247 * L1 cache. 248 */ 249 static inline struct page *dio_get_page(struct dio *dio, 250 struct dio_submit *sdio) 251 { 252 if (dio_pages_present(sdio) == 0) { 253 int ret; 254 255 ret = dio_refill_pages(dio, sdio); 256 if (ret) 257 return ERR_PTR(ret); 258 BUG_ON(dio_pages_present(sdio) == 0); 259 } 260 return dio->pages[sdio->head++]; 261 } 262 263 /** 264 * dio_complete() - called when all DIO BIO I/O has been completed 265 * @offset: the byte offset in the file of the completed operation 266 * 267 * This releases locks as dictated by the locking type, lets interested parties 268 * know that a DIO operation has completed, and calculates the resulting return 269 * code for the operation. 270 * 271 * It lets the filesystem know if it registered an interest earlier via 272 * get_block. Pass the private field of the map buffer_head so that 273 * filesystems can use it to hold additional state between get_block calls and 274 * dio_complete. 275 */ 276 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async) 277 { 278 ssize_t transferred = 0; 279 280 /* 281 * AIO submission can race with bio completion to get here while 282 * expecting to have the last io completed by bio completion. 283 * In that case -EIOCBQUEUED is in fact not an error we want 284 * to preserve through this call. 285 */ 286 if (ret == -EIOCBQUEUED) 287 ret = 0; 288 289 if (dio->result) { 290 transferred = dio->result; 291 292 /* Check for short read case */ 293 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 294 transferred = dio->i_size - offset; 295 } 296 297 if (ret == 0) 298 ret = dio->page_errors; 299 if (ret == 0) 300 ret = dio->io_error; 301 if (ret == 0) 302 ret = transferred; 303 304 if (dio->end_io && dio->result) { 305 dio->end_io(dio->iocb, offset, transferred, 306 dio->private, ret, is_async); 307 } else { 308 if (is_async) 309 aio_complete(dio->iocb, ret, 0); 310 inode_dio_done(dio->inode); 311 } 312 313 return ret; 314 } 315 316 static int dio_bio_complete(struct dio *dio, struct bio *bio); 317 /* 318 * Asynchronous IO callback. 319 */ 320 static void dio_bio_end_aio(struct bio *bio, int error) 321 { 322 struct dio *dio = bio->bi_private; 323 unsigned long remaining; 324 unsigned long flags; 325 326 /* cleanup the bio */ 327 dio_bio_complete(dio, bio); 328 329 spin_lock_irqsave(&dio->bio_lock, flags); 330 remaining = --dio->refcount; 331 if (remaining == 1 && dio->waiter) 332 wake_up_process(dio->waiter); 333 spin_unlock_irqrestore(&dio->bio_lock, flags); 334 335 if (remaining == 0) { 336 dio_complete(dio, dio->iocb->ki_pos, 0, true); 337 kmem_cache_free(dio_cache, dio); 338 } 339 } 340 341 /* 342 * The BIO completion handler simply queues the BIO up for the process-context 343 * handler. 344 * 345 * During I/O bi_private points at the dio. After I/O, bi_private is used to 346 * implement a singly-linked list of completed BIOs, at dio->bio_list. 347 */ 348 static void dio_bio_end_io(struct bio *bio, int error) 349 { 350 struct dio *dio = bio->bi_private; 351 unsigned long flags; 352 353 spin_lock_irqsave(&dio->bio_lock, flags); 354 bio->bi_private = dio->bio_list; 355 dio->bio_list = bio; 356 if (--dio->refcount == 1 && dio->waiter) 357 wake_up_process(dio->waiter); 358 spin_unlock_irqrestore(&dio->bio_lock, flags); 359 } 360 361 /** 362 * dio_end_io - handle the end io action for the given bio 363 * @bio: The direct io bio thats being completed 364 * @error: Error if there was one 365 * 366 * This is meant to be called by any filesystem that uses their own dio_submit_t 367 * so that the DIO specific endio actions are dealt with after the filesystem 368 * has done it's completion work. 369 */ 370 void dio_end_io(struct bio *bio, int error) 371 { 372 struct dio *dio = bio->bi_private; 373 374 if (dio->is_async) 375 dio_bio_end_aio(bio, error); 376 else 377 dio_bio_end_io(bio, error); 378 } 379 EXPORT_SYMBOL_GPL(dio_end_io); 380 381 static inline void 382 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 383 struct block_device *bdev, 384 sector_t first_sector, int nr_vecs) 385 { 386 struct bio *bio; 387 388 /* 389 * bio_alloc() is guaranteed to return a bio when called with 390 * __GFP_WAIT and we request a valid number of vectors. 391 */ 392 bio = bio_alloc(GFP_KERNEL, nr_vecs); 393 394 bio->bi_bdev = bdev; 395 bio->bi_sector = first_sector; 396 if (dio->is_async) 397 bio->bi_end_io = dio_bio_end_aio; 398 else 399 bio->bi_end_io = dio_bio_end_io; 400 401 sdio->bio = bio; 402 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 403 } 404 405 /* 406 * In the AIO read case we speculatively dirty the pages before starting IO. 407 * During IO completion, any of these pages which happen to have been written 408 * back will be redirtied by bio_check_pages_dirty(). 409 * 410 * bios hold a dio reference between submit_bio and ->end_io. 411 */ 412 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 413 { 414 struct bio *bio = sdio->bio; 415 unsigned long flags; 416 417 bio->bi_private = dio; 418 419 spin_lock_irqsave(&dio->bio_lock, flags); 420 dio->refcount++; 421 spin_unlock_irqrestore(&dio->bio_lock, flags); 422 423 if (dio->is_async && dio->rw == READ) 424 bio_set_pages_dirty(bio); 425 426 if (sdio->submit_io) 427 sdio->submit_io(dio->rw, bio, dio->inode, 428 sdio->logical_offset_in_bio); 429 else 430 submit_bio(dio->rw, bio); 431 432 sdio->bio = NULL; 433 sdio->boundary = 0; 434 sdio->logical_offset_in_bio = 0; 435 } 436 437 /* 438 * Release any resources in case of a failure 439 */ 440 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 441 { 442 while (dio_pages_present(sdio)) 443 page_cache_release(dio_get_page(dio, sdio)); 444 } 445 446 /* 447 * Wait for the next BIO to complete. Remove it and return it. NULL is 448 * returned once all BIOs have been completed. This must only be called once 449 * all bios have been issued so that dio->refcount can only decrease. This 450 * requires that that the caller hold a reference on the dio. 451 */ 452 static struct bio *dio_await_one(struct dio *dio) 453 { 454 unsigned long flags; 455 struct bio *bio = NULL; 456 457 spin_lock_irqsave(&dio->bio_lock, flags); 458 459 /* 460 * Wait as long as the list is empty and there are bios in flight. bio 461 * completion drops the count, maybe adds to the list, and wakes while 462 * holding the bio_lock so we don't need set_current_state()'s barrier 463 * and can call it after testing our condition. 464 */ 465 while (dio->refcount > 1 && dio->bio_list == NULL) { 466 __set_current_state(TASK_UNINTERRUPTIBLE); 467 dio->waiter = current; 468 spin_unlock_irqrestore(&dio->bio_lock, flags); 469 io_schedule(); 470 /* wake up sets us TASK_RUNNING */ 471 spin_lock_irqsave(&dio->bio_lock, flags); 472 dio->waiter = NULL; 473 } 474 if (dio->bio_list) { 475 bio = dio->bio_list; 476 dio->bio_list = bio->bi_private; 477 } 478 spin_unlock_irqrestore(&dio->bio_lock, flags); 479 return bio; 480 } 481 482 /* 483 * Process one completed BIO. No locks are held. 484 */ 485 static int dio_bio_complete(struct dio *dio, struct bio *bio) 486 { 487 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 488 struct bio_vec *bvec = bio->bi_io_vec; 489 int page_no; 490 491 if (!uptodate) 492 dio->io_error = -EIO; 493 494 if (dio->is_async && dio->rw == READ) { 495 bio_check_pages_dirty(bio); /* transfers ownership */ 496 } else { 497 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 498 struct page *page = bvec[page_no].bv_page; 499 500 if (dio->rw == READ && !PageCompound(page)) 501 set_page_dirty_lock(page); 502 page_cache_release(page); 503 } 504 bio_put(bio); 505 } 506 return uptodate ? 0 : -EIO; 507 } 508 509 /* 510 * Wait on and process all in-flight BIOs. This must only be called once 511 * all bios have been issued so that the refcount can only decrease. 512 * This just waits for all bios to make it through dio_bio_complete. IO 513 * errors are propagated through dio->io_error and should be propagated via 514 * dio_complete(). 515 */ 516 static void dio_await_completion(struct dio *dio) 517 { 518 struct bio *bio; 519 do { 520 bio = dio_await_one(dio); 521 if (bio) 522 dio_bio_complete(dio, bio); 523 } while (bio); 524 } 525 526 /* 527 * A really large O_DIRECT read or write can generate a lot of BIOs. So 528 * to keep the memory consumption sane we periodically reap any completed BIOs 529 * during the BIO generation phase. 530 * 531 * This also helps to limit the peak amount of pinned userspace memory. 532 */ 533 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 534 { 535 int ret = 0; 536 537 if (sdio->reap_counter++ >= 64) { 538 while (dio->bio_list) { 539 unsigned long flags; 540 struct bio *bio; 541 int ret2; 542 543 spin_lock_irqsave(&dio->bio_lock, flags); 544 bio = dio->bio_list; 545 dio->bio_list = bio->bi_private; 546 spin_unlock_irqrestore(&dio->bio_lock, flags); 547 ret2 = dio_bio_complete(dio, bio); 548 if (ret == 0) 549 ret = ret2; 550 } 551 sdio->reap_counter = 0; 552 } 553 return ret; 554 } 555 556 /* 557 * Call into the fs to map some more disk blocks. We record the current number 558 * of available blocks at sdio->blocks_available. These are in units of the 559 * fs blocksize, (1 << inode->i_blkbits). 560 * 561 * The fs is allowed to map lots of blocks at once. If it wants to do that, 562 * it uses the passed inode-relative block number as the file offset, as usual. 563 * 564 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 565 * has remaining to do. The fs should not map more than this number of blocks. 566 * 567 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 568 * indicate how much contiguous disk space has been made available at 569 * bh->b_blocknr. 570 * 571 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 572 * This isn't very efficient... 573 * 574 * In the case of filesystem holes: the fs may return an arbitrarily-large 575 * hole by returning an appropriate value in b_size and by clearing 576 * buffer_mapped(). However the direct-io code will only process holes one 577 * block at a time - it will repeatedly call get_block() as it walks the hole. 578 */ 579 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 580 struct buffer_head *map_bh) 581 { 582 int ret; 583 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 584 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 585 unsigned long fs_count; /* Number of filesystem-sized blocks */ 586 int create; 587 588 /* 589 * If there was a memory error and we've overwritten all the 590 * mapped blocks then we can now return that memory error 591 */ 592 ret = dio->page_errors; 593 if (ret == 0) { 594 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 595 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 596 fs_endblk = (sdio->final_block_in_request - 1) >> 597 sdio->blkfactor; 598 fs_count = fs_endblk - fs_startblk + 1; 599 600 map_bh->b_state = 0; 601 map_bh->b_size = fs_count << dio->inode->i_blkbits; 602 603 /* 604 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 605 * forbid block creations: only overwrites are permitted. 606 * We will return early to the caller once we see an 607 * unmapped buffer head returned, and the caller will fall 608 * back to buffered I/O. 609 * 610 * Otherwise the decision is left to the get_blocks method, 611 * which may decide to handle it or also return an unmapped 612 * buffer head. 613 */ 614 create = dio->rw & WRITE; 615 if (dio->flags & DIO_SKIP_HOLES) { 616 if (sdio->block_in_file < (i_size_read(dio->inode) >> 617 sdio->blkbits)) 618 create = 0; 619 } 620 621 ret = (*sdio->get_block)(dio->inode, fs_startblk, 622 map_bh, create); 623 624 /* Store for completion */ 625 dio->private = map_bh->b_private; 626 } 627 return ret; 628 } 629 630 /* 631 * There is no bio. Make one now. 632 */ 633 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 634 sector_t start_sector, struct buffer_head *map_bh) 635 { 636 sector_t sector; 637 int ret, nr_pages; 638 639 ret = dio_bio_reap(dio, sdio); 640 if (ret) 641 goto out; 642 sector = start_sector << (sdio->blkbits - 9); 643 nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev)); 644 nr_pages = min(nr_pages, BIO_MAX_PAGES); 645 BUG_ON(nr_pages <= 0); 646 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 647 sdio->boundary = 0; 648 out: 649 return ret; 650 } 651 652 /* 653 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 654 * that was successful then update final_block_in_bio and take a ref against 655 * the just-added page. 656 * 657 * Return zero on success. Non-zero means the caller needs to start a new BIO. 658 */ 659 static inline int dio_bio_add_page(struct dio_submit *sdio) 660 { 661 int ret; 662 663 ret = bio_add_page(sdio->bio, sdio->cur_page, 664 sdio->cur_page_len, sdio->cur_page_offset); 665 if (ret == sdio->cur_page_len) { 666 /* 667 * Decrement count only, if we are done with this page 668 */ 669 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 670 sdio->pages_in_io--; 671 page_cache_get(sdio->cur_page); 672 sdio->final_block_in_bio = sdio->cur_page_block + 673 (sdio->cur_page_len >> sdio->blkbits); 674 ret = 0; 675 } else { 676 ret = 1; 677 } 678 return ret; 679 } 680 681 /* 682 * Put cur_page under IO. The section of cur_page which is described by 683 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 684 * starts on-disk at cur_page_block. 685 * 686 * We take a ref against the page here (on behalf of its presence in the bio). 687 * 688 * The caller of this function is responsible for removing cur_page from the 689 * dio, and for dropping the refcount which came from that presence. 690 */ 691 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 692 struct buffer_head *map_bh) 693 { 694 int ret = 0; 695 696 if (sdio->bio) { 697 loff_t cur_offset = sdio->cur_page_fs_offset; 698 loff_t bio_next_offset = sdio->logical_offset_in_bio + 699 sdio->bio->bi_size; 700 701 /* 702 * See whether this new request is contiguous with the old. 703 * 704 * Btrfs cannot handle having logically non-contiguous requests 705 * submitted. For example if you have 706 * 707 * Logical: [0-4095][HOLE][8192-12287] 708 * Physical: [0-4095] [4096-8191] 709 * 710 * We cannot submit those pages together as one BIO. So if our 711 * current logical offset in the file does not equal what would 712 * be the next logical offset in the bio, submit the bio we 713 * have. 714 */ 715 if (sdio->final_block_in_bio != sdio->cur_page_block || 716 cur_offset != bio_next_offset) 717 dio_bio_submit(dio, sdio); 718 /* 719 * Submit now if the underlying fs is about to perform a 720 * metadata read 721 */ 722 else if (sdio->boundary) 723 dio_bio_submit(dio, sdio); 724 } 725 726 if (sdio->bio == NULL) { 727 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 728 if (ret) 729 goto out; 730 } 731 732 if (dio_bio_add_page(sdio) != 0) { 733 dio_bio_submit(dio, sdio); 734 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 735 if (ret == 0) { 736 ret = dio_bio_add_page(sdio); 737 BUG_ON(ret != 0); 738 } 739 } 740 out: 741 return ret; 742 } 743 744 /* 745 * An autonomous function to put a chunk of a page under deferred IO. 746 * 747 * The caller doesn't actually know (or care) whether this piece of page is in 748 * a BIO, or is under IO or whatever. We just take care of all possible 749 * situations here. The separation between the logic of do_direct_IO() and 750 * that of submit_page_section() is important for clarity. Please don't break. 751 * 752 * The chunk of page starts on-disk at blocknr. 753 * 754 * We perform deferred IO, by recording the last-submitted page inside our 755 * private part of the dio structure. If possible, we just expand the IO 756 * across that page here. 757 * 758 * If that doesn't work out then we put the old page into the bio and add this 759 * page to the dio instead. 760 */ 761 static inline int 762 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 763 unsigned offset, unsigned len, sector_t blocknr, 764 struct buffer_head *map_bh) 765 { 766 int ret = 0; 767 768 if (dio->rw & WRITE) { 769 /* 770 * Read accounting is performed in submit_bio() 771 */ 772 task_io_account_write(len); 773 } 774 775 /* 776 * Can we just grow the current page's presence in the dio? 777 */ 778 if (sdio->cur_page == page && 779 sdio->cur_page_offset + sdio->cur_page_len == offset && 780 sdio->cur_page_block + 781 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 782 sdio->cur_page_len += len; 783 784 /* 785 * If sdio->boundary then we want to schedule the IO now to 786 * avoid metadata seeks. 787 */ 788 if (sdio->boundary) { 789 ret = dio_send_cur_page(dio, sdio, map_bh); 790 page_cache_release(sdio->cur_page); 791 sdio->cur_page = NULL; 792 } 793 goto out; 794 } 795 796 /* 797 * If there's a deferred page already there then send it. 798 */ 799 if (sdio->cur_page) { 800 ret = dio_send_cur_page(dio, sdio, map_bh); 801 page_cache_release(sdio->cur_page); 802 sdio->cur_page = NULL; 803 if (ret) 804 goto out; 805 } 806 807 page_cache_get(page); /* It is in dio */ 808 sdio->cur_page = page; 809 sdio->cur_page_offset = offset; 810 sdio->cur_page_len = len; 811 sdio->cur_page_block = blocknr; 812 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 813 out: 814 return ret; 815 } 816 817 /* 818 * Clean any dirty buffers in the blockdev mapping which alias newly-created 819 * file blocks. Only called for S_ISREG files - blockdevs do not set 820 * buffer_new 821 */ 822 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 823 { 824 unsigned i; 825 unsigned nblocks; 826 827 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 828 829 for (i = 0; i < nblocks; i++) { 830 unmap_underlying_metadata(map_bh->b_bdev, 831 map_bh->b_blocknr + i); 832 } 833 } 834 835 /* 836 * If we are not writing the entire block and get_block() allocated 837 * the block for us, we need to fill-in the unused portion of the 838 * block with zeros. This happens only if user-buffer, fileoffset or 839 * io length is not filesystem block-size multiple. 840 * 841 * `end' is zero if we're doing the start of the IO, 1 at the end of the 842 * IO. 843 */ 844 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 845 int end, struct buffer_head *map_bh) 846 { 847 unsigned dio_blocks_per_fs_block; 848 unsigned this_chunk_blocks; /* In dio_blocks */ 849 unsigned this_chunk_bytes; 850 struct page *page; 851 852 sdio->start_zero_done = 1; 853 if (!sdio->blkfactor || !buffer_new(map_bh)) 854 return; 855 856 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 857 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 858 859 if (!this_chunk_blocks) 860 return; 861 862 /* 863 * We need to zero out part of an fs block. It is either at the 864 * beginning or the end of the fs block. 865 */ 866 if (end) 867 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 868 869 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 870 871 page = ZERO_PAGE(0); 872 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 873 sdio->next_block_for_io, map_bh)) 874 return; 875 876 sdio->next_block_for_io += this_chunk_blocks; 877 } 878 879 /* 880 * Walk the user pages, and the file, mapping blocks to disk and generating 881 * a sequence of (page,offset,len,block) mappings. These mappings are injected 882 * into submit_page_section(), which takes care of the next stage of submission 883 * 884 * Direct IO against a blockdev is different from a file. Because we can 885 * happily perform page-sized but 512-byte aligned IOs. It is important that 886 * blockdev IO be able to have fine alignment and large sizes. 887 * 888 * So what we do is to permit the ->get_block function to populate bh.b_size 889 * with the size of IO which is permitted at this offset and this i_blkbits. 890 * 891 * For best results, the blockdev should be set up with 512-byte i_blkbits and 892 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 893 * fine alignment but still allows this function to work in PAGE_SIZE units. 894 */ 895 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 896 struct buffer_head *map_bh) 897 { 898 const unsigned blkbits = sdio->blkbits; 899 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 900 struct page *page; 901 unsigned block_in_page; 902 int ret = 0; 903 904 /* The I/O can start at any block offset within the first page */ 905 block_in_page = sdio->first_block_in_page; 906 907 while (sdio->block_in_file < sdio->final_block_in_request) { 908 page = dio_get_page(dio, sdio); 909 if (IS_ERR(page)) { 910 ret = PTR_ERR(page); 911 goto out; 912 } 913 914 while (block_in_page < blocks_per_page) { 915 unsigned offset_in_page = block_in_page << blkbits; 916 unsigned this_chunk_bytes; /* # of bytes mapped */ 917 unsigned this_chunk_blocks; /* # of blocks */ 918 unsigned u; 919 920 if (sdio->blocks_available == 0) { 921 /* 922 * Need to go and map some more disk 923 */ 924 unsigned long blkmask; 925 unsigned long dio_remainder; 926 927 ret = get_more_blocks(dio, sdio, map_bh); 928 if (ret) { 929 page_cache_release(page); 930 goto out; 931 } 932 if (!buffer_mapped(map_bh)) 933 goto do_holes; 934 935 sdio->blocks_available = 936 map_bh->b_size >> sdio->blkbits; 937 sdio->next_block_for_io = 938 map_bh->b_blocknr << sdio->blkfactor; 939 if (buffer_new(map_bh)) 940 clean_blockdev_aliases(dio, map_bh); 941 942 if (!sdio->blkfactor) 943 goto do_holes; 944 945 blkmask = (1 << sdio->blkfactor) - 1; 946 dio_remainder = (sdio->block_in_file & blkmask); 947 948 /* 949 * If we are at the start of IO and that IO 950 * starts partway into a fs-block, 951 * dio_remainder will be non-zero. If the IO 952 * is a read then we can simply advance the IO 953 * cursor to the first block which is to be 954 * read. But if the IO is a write and the 955 * block was newly allocated we cannot do that; 956 * the start of the fs block must be zeroed out 957 * on-disk 958 */ 959 if (!buffer_new(map_bh)) 960 sdio->next_block_for_io += dio_remainder; 961 sdio->blocks_available -= dio_remainder; 962 } 963 do_holes: 964 /* Handle holes */ 965 if (!buffer_mapped(map_bh)) { 966 loff_t i_size_aligned; 967 968 /* AKPM: eargh, -ENOTBLK is a hack */ 969 if (dio->rw & WRITE) { 970 page_cache_release(page); 971 return -ENOTBLK; 972 } 973 974 /* 975 * Be sure to account for a partial block as the 976 * last block in the file 977 */ 978 i_size_aligned = ALIGN(i_size_read(dio->inode), 979 1 << blkbits); 980 if (sdio->block_in_file >= 981 i_size_aligned >> blkbits) { 982 /* We hit eof */ 983 page_cache_release(page); 984 goto out; 985 } 986 zero_user(page, block_in_page << blkbits, 987 1 << blkbits); 988 sdio->block_in_file++; 989 block_in_page++; 990 goto next_block; 991 } 992 993 /* 994 * If we're performing IO which has an alignment which 995 * is finer than the underlying fs, go check to see if 996 * we must zero out the start of this block. 997 */ 998 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 999 dio_zero_block(dio, sdio, 0, map_bh); 1000 1001 /* 1002 * Work out, in this_chunk_blocks, how much disk we 1003 * can add to this page 1004 */ 1005 this_chunk_blocks = sdio->blocks_available; 1006 u = (PAGE_SIZE - offset_in_page) >> blkbits; 1007 if (this_chunk_blocks > u) 1008 this_chunk_blocks = u; 1009 u = sdio->final_block_in_request - sdio->block_in_file; 1010 if (this_chunk_blocks > u) 1011 this_chunk_blocks = u; 1012 this_chunk_bytes = this_chunk_blocks << blkbits; 1013 BUG_ON(this_chunk_bytes == 0); 1014 1015 sdio->boundary = buffer_boundary(map_bh); 1016 ret = submit_page_section(dio, sdio, page, 1017 offset_in_page, 1018 this_chunk_bytes, 1019 sdio->next_block_for_io, 1020 map_bh); 1021 if (ret) { 1022 page_cache_release(page); 1023 goto out; 1024 } 1025 sdio->next_block_for_io += this_chunk_blocks; 1026 1027 sdio->block_in_file += this_chunk_blocks; 1028 block_in_page += this_chunk_blocks; 1029 sdio->blocks_available -= this_chunk_blocks; 1030 next_block: 1031 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1032 if (sdio->block_in_file == sdio->final_block_in_request) 1033 break; 1034 } 1035 1036 /* Drop the ref which was taken in get_user_pages() */ 1037 page_cache_release(page); 1038 block_in_page = 0; 1039 } 1040 out: 1041 return ret; 1042 } 1043 1044 static inline int drop_refcount(struct dio *dio) 1045 { 1046 int ret2; 1047 unsigned long flags; 1048 1049 /* 1050 * Sync will always be dropping the final ref and completing the 1051 * operation. AIO can if it was a broken operation described above or 1052 * in fact if all the bios race to complete before we get here. In 1053 * that case dio_complete() translates the EIOCBQUEUED into the proper 1054 * return code that the caller will hand to aio_complete(). 1055 * 1056 * This is managed by the bio_lock instead of being an atomic_t so that 1057 * completion paths can drop their ref and use the remaining count to 1058 * decide to wake the submission path atomically. 1059 */ 1060 spin_lock_irqsave(&dio->bio_lock, flags); 1061 ret2 = --dio->refcount; 1062 spin_unlock_irqrestore(&dio->bio_lock, flags); 1063 return ret2; 1064 } 1065 1066 /* 1067 * This is a library function for use by filesystem drivers. 1068 * 1069 * The locking rules are governed by the flags parameter: 1070 * - if the flags value contains DIO_LOCKING we use a fancy locking 1071 * scheme for dumb filesystems. 1072 * For writes this function is called under i_mutex and returns with 1073 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1074 * taken and dropped again before returning. 1075 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1076 * internal locking but rather rely on the filesystem to synchronize 1077 * direct I/O reads/writes versus each other and truncate. 1078 * 1079 * To help with locking against truncate we incremented the i_dio_count 1080 * counter before starting direct I/O, and decrement it once we are done. 1081 * Truncate can wait for it to reach zero to provide exclusion. It is 1082 * expected that filesystem provide exclusion between new direct I/O 1083 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1084 * but other filesystems need to take care of this on their own. 1085 * 1086 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1087 * is always inlined. Otherwise gcc is unable to split the structure into 1088 * individual fields and will generate much worse code. This is important 1089 * for the whole file. 1090 */ 1091 static inline ssize_t 1092 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1093 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1094 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1095 dio_submit_t submit_io, int flags) 1096 { 1097 int seg; 1098 size_t size; 1099 unsigned long addr; 1100 unsigned blkbits = inode->i_blkbits; 1101 unsigned blocksize_mask = (1 << blkbits) - 1; 1102 ssize_t retval = -EINVAL; 1103 loff_t end = offset; 1104 struct dio *dio; 1105 struct dio_submit sdio = { 0, }; 1106 unsigned long user_addr; 1107 size_t bytes; 1108 struct buffer_head map_bh = { 0, }; 1109 1110 if (rw & WRITE) 1111 rw = WRITE_ODIRECT; 1112 1113 /* 1114 * Avoid references to bdev if not absolutely needed to give 1115 * the early prefetch in the caller enough time. 1116 */ 1117 1118 if (offset & blocksize_mask) { 1119 if (bdev) 1120 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1121 blocksize_mask = (1 << blkbits) - 1; 1122 if (offset & blocksize_mask) 1123 goto out; 1124 } 1125 1126 /* Check the memory alignment. Blocks cannot straddle pages */ 1127 for (seg = 0; seg < nr_segs; seg++) { 1128 addr = (unsigned long)iov[seg].iov_base; 1129 size = iov[seg].iov_len; 1130 end += size; 1131 if (unlikely((addr & blocksize_mask) || 1132 (size & blocksize_mask))) { 1133 if (bdev) 1134 blkbits = blksize_bits( 1135 bdev_logical_block_size(bdev)); 1136 blocksize_mask = (1 << blkbits) - 1; 1137 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1138 goto out; 1139 } 1140 } 1141 1142 /* watch out for a 0 len io from a tricksy fs */ 1143 if (rw == READ && end == offset) 1144 return 0; 1145 1146 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1147 retval = -ENOMEM; 1148 if (!dio) 1149 goto out; 1150 /* 1151 * Believe it or not, zeroing out the page array caused a .5% 1152 * performance regression in a database benchmark. So, we take 1153 * care to only zero out what's needed. 1154 */ 1155 memset(dio, 0, offsetof(struct dio, pages)); 1156 1157 dio->flags = flags; 1158 if (dio->flags & DIO_LOCKING) { 1159 if (rw == READ) { 1160 struct address_space *mapping = 1161 iocb->ki_filp->f_mapping; 1162 1163 /* will be released by direct_io_worker */ 1164 mutex_lock(&inode->i_mutex); 1165 1166 retval = filemap_write_and_wait_range(mapping, offset, 1167 end - 1); 1168 if (retval) { 1169 mutex_unlock(&inode->i_mutex); 1170 kmem_cache_free(dio_cache, dio); 1171 goto out; 1172 } 1173 } 1174 } 1175 1176 /* 1177 * Will be decremented at I/O completion time. 1178 */ 1179 atomic_inc(&inode->i_dio_count); 1180 1181 /* 1182 * For file extending writes updating i_size before data 1183 * writeouts complete can expose uninitialized blocks. So 1184 * even for AIO, we need to wait for i/o to complete before 1185 * returning in this case. 1186 */ 1187 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1188 (end > i_size_read(inode))); 1189 1190 retval = 0; 1191 1192 dio->inode = inode; 1193 dio->rw = rw; 1194 sdio.blkbits = blkbits; 1195 sdio.blkfactor = inode->i_blkbits - blkbits; 1196 sdio.block_in_file = offset >> blkbits; 1197 1198 sdio.get_block = get_block; 1199 dio->end_io = end_io; 1200 sdio.submit_io = submit_io; 1201 sdio.final_block_in_bio = -1; 1202 sdio.next_block_for_io = -1; 1203 1204 dio->iocb = iocb; 1205 dio->i_size = i_size_read(inode); 1206 1207 spin_lock_init(&dio->bio_lock); 1208 dio->refcount = 1; 1209 1210 /* 1211 * In case of non-aligned buffers, we may need 2 more 1212 * pages since we need to zero out first and last block. 1213 */ 1214 if (unlikely(sdio.blkfactor)) 1215 sdio.pages_in_io = 2; 1216 1217 for (seg = 0; seg < nr_segs; seg++) { 1218 user_addr = (unsigned long)iov[seg].iov_base; 1219 sdio.pages_in_io += 1220 ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) / 1221 PAGE_SIZE - user_addr / PAGE_SIZE); 1222 } 1223 1224 for (seg = 0; seg < nr_segs; seg++) { 1225 user_addr = (unsigned long)iov[seg].iov_base; 1226 sdio.size += bytes = iov[seg].iov_len; 1227 1228 /* Index into the first page of the first block */ 1229 sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1230 sdio.final_block_in_request = sdio.block_in_file + 1231 (bytes >> blkbits); 1232 /* Page fetching state */ 1233 sdio.head = 0; 1234 sdio.tail = 0; 1235 sdio.curr_page = 0; 1236 1237 sdio.total_pages = 0; 1238 if (user_addr & (PAGE_SIZE-1)) { 1239 sdio.total_pages++; 1240 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1241 } 1242 sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1243 sdio.curr_user_address = user_addr; 1244 1245 retval = do_direct_IO(dio, &sdio, &map_bh); 1246 1247 dio->result += iov[seg].iov_len - 1248 ((sdio.final_block_in_request - sdio.block_in_file) << 1249 blkbits); 1250 1251 if (retval) { 1252 dio_cleanup(dio, &sdio); 1253 break; 1254 } 1255 } /* end iovec loop */ 1256 1257 if (retval == -ENOTBLK) { 1258 /* 1259 * The remaining part of the request will be 1260 * be handled by buffered I/O when we return 1261 */ 1262 retval = 0; 1263 } 1264 /* 1265 * There may be some unwritten disk at the end of a part-written 1266 * fs-block-sized block. Go zero that now. 1267 */ 1268 dio_zero_block(dio, &sdio, 1, &map_bh); 1269 1270 if (sdio.cur_page) { 1271 ssize_t ret2; 1272 1273 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1274 if (retval == 0) 1275 retval = ret2; 1276 page_cache_release(sdio.cur_page); 1277 sdio.cur_page = NULL; 1278 } 1279 if (sdio.bio) 1280 dio_bio_submit(dio, &sdio); 1281 1282 /* 1283 * It is possible that, we return short IO due to end of file. 1284 * In that case, we need to release all the pages we got hold on. 1285 */ 1286 dio_cleanup(dio, &sdio); 1287 1288 /* 1289 * All block lookups have been performed. For READ requests 1290 * we can let i_mutex go now that its achieved its purpose 1291 * of protecting us from looking up uninitialized blocks. 1292 */ 1293 if (rw == READ && (dio->flags & DIO_LOCKING)) 1294 mutex_unlock(&dio->inode->i_mutex); 1295 1296 /* 1297 * The only time we want to leave bios in flight is when a successful 1298 * partial aio read or full aio write have been setup. In that case 1299 * bio completion will call aio_complete. The only time it's safe to 1300 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1301 * This had *better* be the only place that raises -EIOCBQUEUED. 1302 */ 1303 BUG_ON(retval == -EIOCBQUEUED); 1304 if (dio->is_async && retval == 0 && dio->result && 1305 ((rw & READ) || (dio->result == sdio.size))) 1306 retval = -EIOCBQUEUED; 1307 1308 if (retval != -EIOCBQUEUED) 1309 dio_await_completion(dio); 1310 1311 if (drop_refcount(dio) == 0) { 1312 retval = dio_complete(dio, offset, retval, false); 1313 kmem_cache_free(dio_cache, dio); 1314 } else 1315 BUG_ON(retval != -EIOCBQUEUED); 1316 1317 out: 1318 return retval; 1319 } 1320 1321 ssize_t 1322 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1323 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1324 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1325 dio_submit_t submit_io, int flags) 1326 { 1327 /* 1328 * The block device state is needed in the end to finally 1329 * submit everything. Since it's likely to be cache cold 1330 * prefetch it here as first thing to hide some of the 1331 * latency. 1332 * 1333 * Attempt to prefetch the pieces we likely need later. 1334 */ 1335 prefetch(&bdev->bd_disk->part_tbl); 1336 prefetch(bdev->bd_queue); 1337 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1338 1339 return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset, 1340 nr_segs, get_block, end_io, 1341 submit_io, flags); 1342 } 1343 1344 EXPORT_SYMBOL(__blockdev_direct_IO); 1345 1346 static __init int dio_init(void) 1347 { 1348 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1349 return 0; 1350 } 1351 module_init(dio_init) 1352