xref: /linux/fs/direct-io.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	sector_t block_in_file;		/* Current offset into the underlying
74 					   file in dio_block units. */
75 	unsigned blocks_available;	/* At block_in_file.  changes */
76 	int reap_counter;		/* rate limit reaping */
77 	sector_t final_block_in_request;/* doesn't change */
78 	int boundary;			/* prev block is at a boundary */
79 	get_block_t *get_block;		/* block mapping function */
80 	dio_submit_t *submit_io;	/* IO submition function */
81 
82 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
83 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
84 	sector_t next_block_for_io;	/* next block to be put under IO,
85 					   in dio_blocks units */
86 
87 	/*
88 	 * Deferred addition of a page to the dio.  These variables are
89 	 * private to dio_send_cur_page(), submit_page_section() and
90 	 * dio_bio_add_page().
91 	 */
92 	struct page *cur_page;		/* The page */
93 	unsigned cur_page_offset;	/* Offset into it, in bytes */
94 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
95 	sector_t cur_page_block;	/* Where it starts */
96 	loff_t cur_page_fs_offset;	/* Offset in file */
97 
98 	struct iov_iter *iter;
99 	/*
100 	 * Page queue.  These variables belong to dio_refill_pages() and
101 	 * dio_get_page().
102 	 */
103 	unsigned head;			/* next page to process */
104 	unsigned tail;			/* last valid page + 1 */
105 	size_t from, to;
106 };
107 
108 /* dio_state communicated between submission path and end_io */
109 struct dio {
110 	int flags;			/* doesn't change */
111 	int rw;
112 	blk_qc_t bio_cookie;
113 	struct block_device *bio_bdev;
114 	struct inode *inode;
115 	loff_t i_size;			/* i_size when submitted */
116 	dio_iodone_t *end_io;		/* IO completion function */
117 
118 	void *private;			/* copy from map_bh.b_private */
119 
120 	/* BIO completion state */
121 	spinlock_t bio_lock;		/* protects BIO fields below */
122 	int page_errors;		/* errno from get_user_pages() */
123 	int is_async;			/* is IO async ? */
124 	bool defer_completion;		/* defer AIO completion to workqueue? */
125 	bool should_dirty;		/* if pages should be dirtied */
126 	int io_error;			/* IO error in completion path */
127 	unsigned long refcount;		/* direct_io_worker() and bios */
128 	struct bio *bio_list;		/* singly linked via bi_private */
129 	struct task_struct *waiter;	/* waiting task (NULL if none) */
130 
131 	/* AIO related stuff */
132 	struct kiocb *iocb;		/* kiocb */
133 	ssize_t result;                 /* IO result */
134 
135 	/*
136 	 * pages[] (and any fields placed after it) are not zeroed out at
137 	 * allocation time.  Don't add new fields after pages[] unless you
138 	 * wish that they not be zeroed.
139 	 */
140 	union {
141 		struct page *pages[DIO_PAGES];	/* page buffer */
142 		struct work_struct complete_work;/* deferred AIO completion */
143 	};
144 } ____cacheline_aligned_in_smp;
145 
146 static struct kmem_cache *dio_cache __read_mostly;
147 
148 /*
149  * How many pages are in the queue?
150  */
151 static inline unsigned dio_pages_present(struct dio_submit *sdio)
152 {
153 	return sdio->tail - sdio->head;
154 }
155 
156 /*
157  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
158  */
159 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
160 {
161 	ssize_t ret;
162 
163 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
164 				&sdio->from);
165 
166 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
167 		struct page *page = ZERO_PAGE(0);
168 		/*
169 		 * A memory fault, but the filesystem has some outstanding
170 		 * mapped blocks.  We need to use those blocks up to avoid
171 		 * leaking stale data in the file.
172 		 */
173 		if (dio->page_errors == 0)
174 			dio->page_errors = ret;
175 		page_cache_get(page);
176 		dio->pages[0] = page;
177 		sdio->head = 0;
178 		sdio->tail = 1;
179 		sdio->from = 0;
180 		sdio->to = PAGE_SIZE;
181 		return 0;
182 	}
183 
184 	if (ret >= 0) {
185 		iov_iter_advance(sdio->iter, ret);
186 		ret += sdio->from;
187 		sdio->head = 0;
188 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
189 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
190 		return 0;
191 	}
192 	return ret;
193 }
194 
195 /*
196  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
197  * buffered inside the dio so that we can call get_user_pages() against a
198  * decent number of pages, less frequently.  To provide nicer use of the
199  * L1 cache.
200  */
201 static inline struct page *dio_get_page(struct dio *dio,
202 					struct dio_submit *sdio)
203 {
204 	if (dio_pages_present(sdio) == 0) {
205 		int ret;
206 
207 		ret = dio_refill_pages(dio, sdio);
208 		if (ret)
209 			return ERR_PTR(ret);
210 		BUG_ON(dio_pages_present(sdio) == 0);
211 	}
212 	return dio->pages[sdio->head];
213 }
214 
215 /**
216  * dio_complete() - called when all DIO BIO I/O has been completed
217  * @offset: the byte offset in the file of the completed operation
218  *
219  * This drops i_dio_count, lets interested parties know that a DIO operation
220  * has completed, and calculates the resulting return code for the operation.
221  *
222  * It lets the filesystem know if it registered an interest earlier via
223  * get_block.  Pass the private field of the map buffer_head so that
224  * filesystems can use it to hold additional state between get_block calls and
225  * dio_complete.
226  */
227 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
228 		bool is_async)
229 {
230 	ssize_t transferred = 0;
231 
232 	/*
233 	 * AIO submission can race with bio completion to get here while
234 	 * expecting to have the last io completed by bio completion.
235 	 * In that case -EIOCBQUEUED is in fact not an error we want
236 	 * to preserve through this call.
237 	 */
238 	if (ret == -EIOCBQUEUED)
239 		ret = 0;
240 
241 	if (dio->result) {
242 		transferred = dio->result;
243 
244 		/* Check for short read case */
245 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
246 			transferred = dio->i_size - offset;
247 	}
248 
249 	if (ret == 0)
250 		ret = dio->page_errors;
251 	if (ret == 0)
252 		ret = dio->io_error;
253 	if (ret == 0)
254 		ret = transferred;
255 
256 	if (dio->end_io && dio->result)
257 		dio->end_io(dio->iocb, offset, transferred, dio->private);
258 
259 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
260 		inode_dio_end(dio->inode);
261 
262 	if (is_async) {
263 		if (dio->rw & WRITE) {
264 			int err;
265 
266 			err = generic_write_sync(dio->iocb->ki_filp, offset,
267 						 transferred);
268 			if (err < 0 && ret > 0)
269 				ret = err;
270 		}
271 
272 		dio->iocb->ki_complete(dio->iocb, ret, 0);
273 	}
274 
275 	kmem_cache_free(dio_cache, dio);
276 	return ret;
277 }
278 
279 static void dio_aio_complete_work(struct work_struct *work)
280 {
281 	struct dio *dio = container_of(work, struct dio, complete_work);
282 
283 	dio_complete(dio, dio->iocb->ki_pos, 0, true);
284 }
285 
286 static int dio_bio_complete(struct dio *dio, struct bio *bio);
287 
288 /*
289  * Asynchronous IO callback.
290  */
291 static void dio_bio_end_aio(struct bio *bio)
292 {
293 	struct dio *dio = bio->bi_private;
294 	unsigned long remaining;
295 	unsigned long flags;
296 
297 	/* cleanup the bio */
298 	dio_bio_complete(dio, bio);
299 
300 	spin_lock_irqsave(&dio->bio_lock, flags);
301 	remaining = --dio->refcount;
302 	if (remaining == 1 && dio->waiter)
303 		wake_up_process(dio->waiter);
304 	spin_unlock_irqrestore(&dio->bio_lock, flags);
305 
306 	if (remaining == 0) {
307 		if (dio->result && dio->defer_completion) {
308 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
309 			queue_work(dio->inode->i_sb->s_dio_done_wq,
310 				   &dio->complete_work);
311 		} else {
312 			dio_complete(dio, dio->iocb->ki_pos, 0, true);
313 		}
314 	}
315 }
316 
317 /*
318  * The BIO completion handler simply queues the BIO up for the process-context
319  * handler.
320  *
321  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
322  * implement a singly-linked list of completed BIOs, at dio->bio_list.
323  */
324 static void dio_bio_end_io(struct bio *bio)
325 {
326 	struct dio *dio = bio->bi_private;
327 	unsigned long flags;
328 
329 	spin_lock_irqsave(&dio->bio_lock, flags);
330 	bio->bi_private = dio->bio_list;
331 	dio->bio_list = bio;
332 	if (--dio->refcount == 1 && dio->waiter)
333 		wake_up_process(dio->waiter);
334 	spin_unlock_irqrestore(&dio->bio_lock, flags);
335 }
336 
337 /**
338  * dio_end_io - handle the end io action for the given bio
339  * @bio: The direct io bio thats being completed
340  * @error: Error if there was one
341  *
342  * This is meant to be called by any filesystem that uses their own dio_submit_t
343  * so that the DIO specific endio actions are dealt with after the filesystem
344  * has done it's completion work.
345  */
346 void dio_end_io(struct bio *bio, int error)
347 {
348 	struct dio *dio = bio->bi_private;
349 
350 	if (dio->is_async)
351 		dio_bio_end_aio(bio);
352 	else
353 		dio_bio_end_io(bio);
354 }
355 EXPORT_SYMBOL_GPL(dio_end_io);
356 
357 static inline void
358 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
359 	      struct block_device *bdev,
360 	      sector_t first_sector, int nr_vecs)
361 {
362 	struct bio *bio;
363 
364 	/*
365 	 * bio_alloc() is guaranteed to return a bio when called with
366 	 * __GFP_RECLAIM and we request a valid number of vectors.
367 	 */
368 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
369 
370 	bio->bi_bdev = bdev;
371 	bio->bi_iter.bi_sector = first_sector;
372 	if (dio->is_async)
373 		bio->bi_end_io = dio_bio_end_aio;
374 	else
375 		bio->bi_end_io = dio_bio_end_io;
376 
377 	sdio->bio = bio;
378 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
379 }
380 
381 /*
382  * In the AIO read case we speculatively dirty the pages before starting IO.
383  * During IO completion, any of these pages which happen to have been written
384  * back will be redirtied by bio_check_pages_dirty().
385  *
386  * bios hold a dio reference between submit_bio and ->end_io.
387  */
388 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
389 {
390 	struct bio *bio = sdio->bio;
391 	unsigned long flags;
392 
393 	bio->bi_private = dio;
394 
395 	spin_lock_irqsave(&dio->bio_lock, flags);
396 	dio->refcount++;
397 	spin_unlock_irqrestore(&dio->bio_lock, flags);
398 
399 	if (dio->is_async && dio->rw == READ && dio->should_dirty)
400 		bio_set_pages_dirty(bio);
401 
402 	dio->bio_bdev = bio->bi_bdev;
403 
404 	if (sdio->submit_io) {
405 		sdio->submit_io(dio->rw, bio, dio->inode,
406 			       sdio->logical_offset_in_bio);
407 		dio->bio_cookie = BLK_QC_T_NONE;
408 	} else
409 		dio->bio_cookie = submit_bio(dio->rw, bio);
410 
411 	sdio->bio = NULL;
412 	sdio->boundary = 0;
413 	sdio->logical_offset_in_bio = 0;
414 }
415 
416 /*
417  * Release any resources in case of a failure
418  */
419 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
420 {
421 	while (sdio->head < sdio->tail)
422 		page_cache_release(dio->pages[sdio->head++]);
423 }
424 
425 /*
426  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
427  * returned once all BIOs have been completed.  This must only be called once
428  * all bios have been issued so that dio->refcount can only decrease.  This
429  * requires that that the caller hold a reference on the dio.
430  */
431 static struct bio *dio_await_one(struct dio *dio)
432 {
433 	unsigned long flags;
434 	struct bio *bio = NULL;
435 
436 	spin_lock_irqsave(&dio->bio_lock, flags);
437 
438 	/*
439 	 * Wait as long as the list is empty and there are bios in flight.  bio
440 	 * completion drops the count, maybe adds to the list, and wakes while
441 	 * holding the bio_lock so we don't need set_current_state()'s barrier
442 	 * and can call it after testing our condition.
443 	 */
444 	while (dio->refcount > 1 && dio->bio_list == NULL) {
445 		__set_current_state(TASK_UNINTERRUPTIBLE);
446 		dio->waiter = current;
447 		spin_unlock_irqrestore(&dio->bio_lock, flags);
448 		if (!blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie))
449 			io_schedule();
450 		/* wake up sets us TASK_RUNNING */
451 		spin_lock_irqsave(&dio->bio_lock, flags);
452 		dio->waiter = NULL;
453 	}
454 	if (dio->bio_list) {
455 		bio = dio->bio_list;
456 		dio->bio_list = bio->bi_private;
457 	}
458 	spin_unlock_irqrestore(&dio->bio_lock, flags);
459 	return bio;
460 }
461 
462 /*
463  * Process one completed BIO.  No locks are held.
464  */
465 static int dio_bio_complete(struct dio *dio, struct bio *bio)
466 {
467 	struct bio_vec *bvec;
468 	unsigned i;
469 	int err;
470 
471 	if (bio->bi_error)
472 		dio->io_error = -EIO;
473 
474 	if (dio->is_async && dio->rw == READ && dio->should_dirty) {
475 		bio_check_pages_dirty(bio);	/* transfers ownership */
476 		err = bio->bi_error;
477 	} else {
478 		bio_for_each_segment_all(bvec, bio, i) {
479 			struct page *page = bvec->bv_page;
480 
481 			if (dio->rw == READ && !PageCompound(page) &&
482 					dio->should_dirty)
483 				set_page_dirty_lock(page);
484 			page_cache_release(page);
485 		}
486 		err = bio->bi_error;
487 		bio_put(bio);
488 	}
489 	return err;
490 }
491 
492 /*
493  * Wait on and process all in-flight BIOs.  This must only be called once
494  * all bios have been issued so that the refcount can only decrease.
495  * This just waits for all bios to make it through dio_bio_complete.  IO
496  * errors are propagated through dio->io_error and should be propagated via
497  * dio_complete().
498  */
499 static void dio_await_completion(struct dio *dio)
500 {
501 	struct bio *bio;
502 	do {
503 		bio = dio_await_one(dio);
504 		if (bio)
505 			dio_bio_complete(dio, bio);
506 	} while (bio);
507 }
508 
509 /*
510  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
511  * to keep the memory consumption sane we periodically reap any completed BIOs
512  * during the BIO generation phase.
513  *
514  * This also helps to limit the peak amount of pinned userspace memory.
515  */
516 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
517 {
518 	int ret = 0;
519 
520 	if (sdio->reap_counter++ >= 64) {
521 		while (dio->bio_list) {
522 			unsigned long flags;
523 			struct bio *bio;
524 			int ret2;
525 
526 			spin_lock_irqsave(&dio->bio_lock, flags);
527 			bio = dio->bio_list;
528 			dio->bio_list = bio->bi_private;
529 			spin_unlock_irqrestore(&dio->bio_lock, flags);
530 			ret2 = dio_bio_complete(dio, bio);
531 			if (ret == 0)
532 				ret = ret2;
533 		}
534 		sdio->reap_counter = 0;
535 	}
536 	return ret;
537 }
538 
539 /*
540  * Create workqueue for deferred direct IO completions. We allocate the
541  * workqueue when it's first needed. This avoids creating workqueue for
542  * filesystems that don't need it and also allows us to create the workqueue
543  * late enough so the we can include s_id in the name of the workqueue.
544  */
545 static int sb_init_dio_done_wq(struct super_block *sb)
546 {
547 	struct workqueue_struct *old;
548 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
549 						      WQ_MEM_RECLAIM, 0,
550 						      sb->s_id);
551 	if (!wq)
552 		return -ENOMEM;
553 	/*
554 	 * This has to be atomic as more DIOs can race to create the workqueue
555 	 */
556 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
557 	/* Someone created workqueue before us? Free ours... */
558 	if (old)
559 		destroy_workqueue(wq);
560 	return 0;
561 }
562 
563 static int dio_set_defer_completion(struct dio *dio)
564 {
565 	struct super_block *sb = dio->inode->i_sb;
566 
567 	if (dio->defer_completion)
568 		return 0;
569 	dio->defer_completion = true;
570 	if (!sb->s_dio_done_wq)
571 		return sb_init_dio_done_wq(sb);
572 	return 0;
573 }
574 
575 /*
576  * Call into the fs to map some more disk blocks.  We record the current number
577  * of available blocks at sdio->blocks_available.  These are in units of the
578  * fs blocksize, (1 << inode->i_blkbits).
579  *
580  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
581  * it uses the passed inode-relative block number as the file offset, as usual.
582  *
583  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
584  * has remaining to do.  The fs should not map more than this number of blocks.
585  *
586  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
587  * indicate how much contiguous disk space has been made available at
588  * bh->b_blocknr.
589  *
590  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
591  * This isn't very efficient...
592  *
593  * In the case of filesystem holes: the fs may return an arbitrarily-large
594  * hole by returning an appropriate value in b_size and by clearing
595  * buffer_mapped().  However the direct-io code will only process holes one
596  * block at a time - it will repeatedly call get_block() as it walks the hole.
597  */
598 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
599 			   struct buffer_head *map_bh)
600 {
601 	int ret;
602 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
603 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
604 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
605 	int create;
606 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
607 
608 	/*
609 	 * If there was a memory error and we've overwritten all the
610 	 * mapped blocks then we can now return that memory error
611 	 */
612 	ret = dio->page_errors;
613 	if (ret == 0) {
614 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
615 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
616 		fs_endblk = (sdio->final_block_in_request - 1) >>
617 					sdio->blkfactor;
618 		fs_count = fs_endblk - fs_startblk + 1;
619 
620 		map_bh->b_state = 0;
621 		map_bh->b_size = fs_count << i_blkbits;
622 
623 		/*
624 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
625 		 * forbid block creations: only overwrites are permitted.
626 		 * We will return early to the caller once we see an
627 		 * unmapped buffer head returned, and the caller will fall
628 		 * back to buffered I/O.
629 		 *
630 		 * Otherwise the decision is left to the get_blocks method,
631 		 * which may decide to handle it or also return an unmapped
632 		 * buffer head.
633 		 */
634 		create = dio->rw & WRITE;
635 		if (dio->flags & DIO_SKIP_HOLES) {
636 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
637 							sdio->blkbits))
638 				create = 0;
639 		}
640 
641 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
642 						map_bh, create);
643 
644 		/* Store for completion */
645 		dio->private = map_bh->b_private;
646 
647 		if (ret == 0 && buffer_defer_completion(map_bh))
648 			ret = dio_set_defer_completion(dio);
649 	}
650 	return ret;
651 }
652 
653 /*
654  * There is no bio.  Make one now.
655  */
656 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
657 		sector_t start_sector, struct buffer_head *map_bh)
658 {
659 	sector_t sector;
660 	int ret, nr_pages;
661 
662 	ret = dio_bio_reap(dio, sdio);
663 	if (ret)
664 		goto out;
665 	sector = start_sector << (sdio->blkbits - 9);
666 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
667 	BUG_ON(nr_pages <= 0);
668 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
669 	sdio->boundary = 0;
670 out:
671 	return ret;
672 }
673 
674 /*
675  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
676  * that was successful then update final_block_in_bio and take a ref against
677  * the just-added page.
678  *
679  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
680  */
681 static inline int dio_bio_add_page(struct dio_submit *sdio)
682 {
683 	int ret;
684 
685 	ret = bio_add_page(sdio->bio, sdio->cur_page,
686 			sdio->cur_page_len, sdio->cur_page_offset);
687 	if (ret == sdio->cur_page_len) {
688 		/*
689 		 * Decrement count only, if we are done with this page
690 		 */
691 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
692 			sdio->pages_in_io--;
693 		page_cache_get(sdio->cur_page);
694 		sdio->final_block_in_bio = sdio->cur_page_block +
695 			(sdio->cur_page_len >> sdio->blkbits);
696 		ret = 0;
697 	} else {
698 		ret = 1;
699 	}
700 	return ret;
701 }
702 
703 /*
704  * Put cur_page under IO.  The section of cur_page which is described by
705  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
706  * starts on-disk at cur_page_block.
707  *
708  * We take a ref against the page here (on behalf of its presence in the bio).
709  *
710  * The caller of this function is responsible for removing cur_page from the
711  * dio, and for dropping the refcount which came from that presence.
712  */
713 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
714 		struct buffer_head *map_bh)
715 {
716 	int ret = 0;
717 
718 	if (sdio->bio) {
719 		loff_t cur_offset = sdio->cur_page_fs_offset;
720 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
721 			sdio->bio->bi_iter.bi_size;
722 
723 		/*
724 		 * See whether this new request is contiguous with the old.
725 		 *
726 		 * Btrfs cannot handle having logically non-contiguous requests
727 		 * submitted.  For example if you have
728 		 *
729 		 * Logical:  [0-4095][HOLE][8192-12287]
730 		 * Physical: [0-4095]      [4096-8191]
731 		 *
732 		 * We cannot submit those pages together as one BIO.  So if our
733 		 * current logical offset in the file does not equal what would
734 		 * be the next logical offset in the bio, submit the bio we
735 		 * have.
736 		 */
737 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
738 		    cur_offset != bio_next_offset)
739 			dio_bio_submit(dio, sdio);
740 	}
741 
742 	if (sdio->bio == NULL) {
743 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
744 		if (ret)
745 			goto out;
746 	}
747 
748 	if (dio_bio_add_page(sdio) != 0) {
749 		dio_bio_submit(dio, sdio);
750 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
751 		if (ret == 0) {
752 			ret = dio_bio_add_page(sdio);
753 			BUG_ON(ret != 0);
754 		}
755 	}
756 out:
757 	return ret;
758 }
759 
760 /*
761  * An autonomous function to put a chunk of a page under deferred IO.
762  *
763  * The caller doesn't actually know (or care) whether this piece of page is in
764  * a BIO, or is under IO or whatever.  We just take care of all possible
765  * situations here.  The separation between the logic of do_direct_IO() and
766  * that of submit_page_section() is important for clarity.  Please don't break.
767  *
768  * The chunk of page starts on-disk at blocknr.
769  *
770  * We perform deferred IO, by recording the last-submitted page inside our
771  * private part of the dio structure.  If possible, we just expand the IO
772  * across that page here.
773  *
774  * If that doesn't work out then we put the old page into the bio and add this
775  * page to the dio instead.
776  */
777 static inline int
778 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
779 		    unsigned offset, unsigned len, sector_t blocknr,
780 		    struct buffer_head *map_bh)
781 {
782 	int ret = 0;
783 
784 	if (dio->rw & WRITE) {
785 		/*
786 		 * Read accounting is performed in submit_bio()
787 		 */
788 		task_io_account_write(len);
789 	}
790 
791 	/*
792 	 * Can we just grow the current page's presence in the dio?
793 	 */
794 	if (sdio->cur_page == page &&
795 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
796 	    sdio->cur_page_block +
797 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
798 		sdio->cur_page_len += len;
799 		goto out;
800 	}
801 
802 	/*
803 	 * If there's a deferred page already there then send it.
804 	 */
805 	if (sdio->cur_page) {
806 		ret = dio_send_cur_page(dio, sdio, map_bh);
807 		page_cache_release(sdio->cur_page);
808 		sdio->cur_page = NULL;
809 		if (ret)
810 			return ret;
811 	}
812 
813 	page_cache_get(page);		/* It is in dio */
814 	sdio->cur_page = page;
815 	sdio->cur_page_offset = offset;
816 	sdio->cur_page_len = len;
817 	sdio->cur_page_block = blocknr;
818 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
819 out:
820 	/*
821 	 * If sdio->boundary then we want to schedule the IO now to
822 	 * avoid metadata seeks.
823 	 */
824 	if (sdio->boundary) {
825 		ret = dio_send_cur_page(dio, sdio, map_bh);
826 		dio_bio_submit(dio, sdio);
827 		page_cache_release(sdio->cur_page);
828 		sdio->cur_page = NULL;
829 	}
830 	return ret;
831 }
832 
833 /*
834  * Clean any dirty buffers in the blockdev mapping which alias newly-created
835  * file blocks.  Only called for S_ISREG files - blockdevs do not set
836  * buffer_new
837  */
838 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
839 {
840 	unsigned i;
841 	unsigned nblocks;
842 
843 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
844 
845 	for (i = 0; i < nblocks; i++) {
846 		unmap_underlying_metadata(map_bh->b_bdev,
847 					  map_bh->b_blocknr + i);
848 	}
849 }
850 
851 /*
852  * If we are not writing the entire block and get_block() allocated
853  * the block for us, we need to fill-in the unused portion of the
854  * block with zeros. This happens only if user-buffer, fileoffset or
855  * io length is not filesystem block-size multiple.
856  *
857  * `end' is zero if we're doing the start of the IO, 1 at the end of the
858  * IO.
859  */
860 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
861 		int end, struct buffer_head *map_bh)
862 {
863 	unsigned dio_blocks_per_fs_block;
864 	unsigned this_chunk_blocks;	/* In dio_blocks */
865 	unsigned this_chunk_bytes;
866 	struct page *page;
867 
868 	sdio->start_zero_done = 1;
869 	if (!sdio->blkfactor || !buffer_new(map_bh))
870 		return;
871 
872 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
873 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
874 
875 	if (!this_chunk_blocks)
876 		return;
877 
878 	/*
879 	 * We need to zero out part of an fs block.  It is either at the
880 	 * beginning or the end of the fs block.
881 	 */
882 	if (end)
883 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
884 
885 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
886 
887 	page = ZERO_PAGE(0);
888 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
889 				sdio->next_block_for_io, map_bh))
890 		return;
891 
892 	sdio->next_block_for_io += this_chunk_blocks;
893 }
894 
895 /*
896  * Walk the user pages, and the file, mapping blocks to disk and generating
897  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
898  * into submit_page_section(), which takes care of the next stage of submission
899  *
900  * Direct IO against a blockdev is different from a file.  Because we can
901  * happily perform page-sized but 512-byte aligned IOs.  It is important that
902  * blockdev IO be able to have fine alignment and large sizes.
903  *
904  * So what we do is to permit the ->get_block function to populate bh.b_size
905  * with the size of IO which is permitted at this offset and this i_blkbits.
906  *
907  * For best results, the blockdev should be set up with 512-byte i_blkbits and
908  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
909  * fine alignment but still allows this function to work in PAGE_SIZE units.
910  */
911 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
912 			struct buffer_head *map_bh)
913 {
914 	const unsigned blkbits = sdio->blkbits;
915 	int ret = 0;
916 
917 	while (sdio->block_in_file < sdio->final_block_in_request) {
918 		struct page *page;
919 		size_t from, to;
920 
921 		page = dio_get_page(dio, sdio);
922 		if (IS_ERR(page)) {
923 			ret = PTR_ERR(page);
924 			goto out;
925 		}
926 		from = sdio->head ? 0 : sdio->from;
927 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
928 		sdio->head++;
929 
930 		while (from < to) {
931 			unsigned this_chunk_bytes;	/* # of bytes mapped */
932 			unsigned this_chunk_blocks;	/* # of blocks */
933 			unsigned u;
934 
935 			if (sdio->blocks_available == 0) {
936 				/*
937 				 * Need to go and map some more disk
938 				 */
939 				unsigned long blkmask;
940 				unsigned long dio_remainder;
941 
942 				ret = get_more_blocks(dio, sdio, map_bh);
943 				if (ret) {
944 					page_cache_release(page);
945 					goto out;
946 				}
947 				if (!buffer_mapped(map_bh))
948 					goto do_holes;
949 
950 				sdio->blocks_available =
951 						map_bh->b_size >> sdio->blkbits;
952 				sdio->next_block_for_io =
953 					map_bh->b_blocknr << sdio->blkfactor;
954 				if (buffer_new(map_bh))
955 					clean_blockdev_aliases(dio, map_bh);
956 
957 				if (!sdio->blkfactor)
958 					goto do_holes;
959 
960 				blkmask = (1 << sdio->blkfactor) - 1;
961 				dio_remainder = (sdio->block_in_file & blkmask);
962 
963 				/*
964 				 * If we are at the start of IO and that IO
965 				 * starts partway into a fs-block,
966 				 * dio_remainder will be non-zero.  If the IO
967 				 * is a read then we can simply advance the IO
968 				 * cursor to the first block which is to be
969 				 * read.  But if the IO is a write and the
970 				 * block was newly allocated we cannot do that;
971 				 * the start of the fs block must be zeroed out
972 				 * on-disk
973 				 */
974 				if (!buffer_new(map_bh))
975 					sdio->next_block_for_io += dio_remainder;
976 				sdio->blocks_available -= dio_remainder;
977 			}
978 do_holes:
979 			/* Handle holes */
980 			if (!buffer_mapped(map_bh)) {
981 				loff_t i_size_aligned;
982 
983 				/* AKPM: eargh, -ENOTBLK is a hack */
984 				if (dio->rw & WRITE) {
985 					page_cache_release(page);
986 					return -ENOTBLK;
987 				}
988 
989 				/*
990 				 * Be sure to account for a partial block as the
991 				 * last block in the file
992 				 */
993 				i_size_aligned = ALIGN(i_size_read(dio->inode),
994 							1 << blkbits);
995 				if (sdio->block_in_file >=
996 						i_size_aligned >> blkbits) {
997 					/* We hit eof */
998 					page_cache_release(page);
999 					goto out;
1000 				}
1001 				zero_user(page, from, 1 << blkbits);
1002 				sdio->block_in_file++;
1003 				from += 1 << blkbits;
1004 				dio->result += 1 << blkbits;
1005 				goto next_block;
1006 			}
1007 
1008 			/*
1009 			 * If we're performing IO which has an alignment which
1010 			 * is finer than the underlying fs, go check to see if
1011 			 * we must zero out the start of this block.
1012 			 */
1013 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1014 				dio_zero_block(dio, sdio, 0, map_bh);
1015 
1016 			/*
1017 			 * Work out, in this_chunk_blocks, how much disk we
1018 			 * can add to this page
1019 			 */
1020 			this_chunk_blocks = sdio->blocks_available;
1021 			u = (to - from) >> blkbits;
1022 			if (this_chunk_blocks > u)
1023 				this_chunk_blocks = u;
1024 			u = sdio->final_block_in_request - sdio->block_in_file;
1025 			if (this_chunk_blocks > u)
1026 				this_chunk_blocks = u;
1027 			this_chunk_bytes = this_chunk_blocks << blkbits;
1028 			BUG_ON(this_chunk_bytes == 0);
1029 
1030 			if (this_chunk_blocks == sdio->blocks_available)
1031 				sdio->boundary = buffer_boundary(map_bh);
1032 			ret = submit_page_section(dio, sdio, page,
1033 						  from,
1034 						  this_chunk_bytes,
1035 						  sdio->next_block_for_io,
1036 						  map_bh);
1037 			if (ret) {
1038 				page_cache_release(page);
1039 				goto out;
1040 			}
1041 			sdio->next_block_for_io += this_chunk_blocks;
1042 
1043 			sdio->block_in_file += this_chunk_blocks;
1044 			from += this_chunk_bytes;
1045 			dio->result += this_chunk_bytes;
1046 			sdio->blocks_available -= this_chunk_blocks;
1047 next_block:
1048 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1049 			if (sdio->block_in_file == sdio->final_block_in_request)
1050 				break;
1051 		}
1052 
1053 		/* Drop the ref which was taken in get_user_pages() */
1054 		page_cache_release(page);
1055 	}
1056 out:
1057 	return ret;
1058 }
1059 
1060 static inline int drop_refcount(struct dio *dio)
1061 {
1062 	int ret2;
1063 	unsigned long flags;
1064 
1065 	/*
1066 	 * Sync will always be dropping the final ref and completing the
1067 	 * operation.  AIO can if it was a broken operation described above or
1068 	 * in fact if all the bios race to complete before we get here.  In
1069 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1070 	 * return code that the caller will hand to ->complete().
1071 	 *
1072 	 * This is managed by the bio_lock instead of being an atomic_t so that
1073 	 * completion paths can drop their ref and use the remaining count to
1074 	 * decide to wake the submission path atomically.
1075 	 */
1076 	spin_lock_irqsave(&dio->bio_lock, flags);
1077 	ret2 = --dio->refcount;
1078 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1079 	return ret2;
1080 }
1081 
1082 /*
1083  * This is a library function for use by filesystem drivers.
1084  *
1085  * The locking rules are governed by the flags parameter:
1086  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1087  *    scheme for dumb filesystems.
1088  *    For writes this function is called under i_mutex and returns with
1089  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1090  *    taken and dropped again before returning.
1091  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1092  *    internal locking but rather rely on the filesystem to synchronize
1093  *    direct I/O reads/writes versus each other and truncate.
1094  *
1095  * To help with locking against truncate we incremented the i_dio_count
1096  * counter before starting direct I/O, and decrement it once we are done.
1097  * Truncate can wait for it to reach zero to provide exclusion.  It is
1098  * expected that filesystem provide exclusion between new direct I/O
1099  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1100  * but other filesystems need to take care of this on their own.
1101  *
1102  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1103  * is always inlined. Otherwise gcc is unable to split the structure into
1104  * individual fields and will generate much worse code. This is important
1105  * for the whole file.
1106  */
1107 static inline ssize_t
1108 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1109 		      struct block_device *bdev, struct iov_iter *iter,
1110 		      loff_t offset, get_block_t get_block, dio_iodone_t end_io,
1111 		      dio_submit_t submit_io, int flags)
1112 {
1113 	unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1114 	unsigned blkbits = i_blkbits;
1115 	unsigned blocksize_mask = (1 << blkbits) - 1;
1116 	ssize_t retval = -EINVAL;
1117 	size_t count = iov_iter_count(iter);
1118 	loff_t end = offset + count;
1119 	struct dio *dio;
1120 	struct dio_submit sdio = { 0, };
1121 	struct buffer_head map_bh = { 0, };
1122 	struct blk_plug plug;
1123 	unsigned long align = offset | iov_iter_alignment(iter);
1124 
1125 	/*
1126 	 * Avoid references to bdev if not absolutely needed to give
1127 	 * the early prefetch in the caller enough time.
1128 	 */
1129 
1130 	if (align & blocksize_mask) {
1131 		if (bdev)
1132 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1133 		blocksize_mask = (1 << blkbits) - 1;
1134 		if (align & blocksize_mask)
1135 			goto out;
1136 	}
1137 
1138 	/* watch out for a 0 len io from a tricksy fs */
1139 	if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
1140 		return 0;
1141 
1142 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1143 	retval = -ENOMEM;
1144 	if (!dio)
1145 		goto out;
1146 	/*
1147 	 * Believe it or not, zeroing out the page array caused a .5%
1148 	 * performance regression in a database benchmark.  So, we take
1149 	 * care to only zero out what's needed.
1150 	 */
1151 	memset(dio, 0, offsetof(struct dio, pages));
1152 
1153 	dio->flags = flags;
1154 	if (dio->flags & DIO_LOCKING) {
1155 		if (iov_iter_rw(iter) == READ) {
1156 			struct address_space *mapping =
1157 					iocb->ki_filp->f_mapping;
1158 
1159 			/* will be released by direct_io_worker */
1160 			inode_lock(inode);
1161 
1162 			retval = filemap_write_and_wait_range(mapping, offset,
1163 							      end - 1);
1164 			if (retval) {
1165 				inode_unlock(inode);
1166 				kmem_cache_free(dio_cache, dio);
1167 				goto out;
1168 			}
1169 		}
1170 	}
1171 
1172 	/* Once we sampled i_size check for reads beyond EOF */
1173 	dio->i_size = i_size_read(inode);
1174 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1175 		if (dio->flags & DIO_LOCKING)
1176 			inode_unlock(inode);
1177 		kmem_cache_free(dio_cache, dio);
1178 		retval = 0;
1179 		goto out;
1180 	}
1181 
1182 	/*
1183 	 * For file extending writes updating i_size before data writeouts
1184 	 * complete can expose uninitialized blocks in dumb filesystems.
1185 	 * In that case we need to wait for I/O completion even if asked
1186 	 * for an asynchronous write.
1187 	 */
1188 	if (is_sync_kiocb(iocb))
1189 		dio->is_async = false;
1190 	else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1191 		 iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1192 		dio->is_async = false;
1193 	else
1194 		dio->is_async = true;
1195 
1196 	dio->inode = inode;
1197 	dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
1198 
1199 	/*
1200 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1201 	 * so that we can call ->fsync.
1202 	 */
1203 	if (dio->is_async && iov_iter_rw(iter) == WRITE &&
1204 	    ((iocb->ki_filp->f_flags & O_DSYNC) ||
1205 	     IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1206 		retval = dio_set_defer_completion(dio);
1207 		if (retval) {
1208 			/*
1209 			 * We grab i_mutex only for reads so we don't have
1210 			 * to release it here
1211 			 */
1212 			kmem_cache_free(dio_cache, dio);
1213 			goto out;
1214 		}
1215 	}
1216 
1217 	/*
1218 	 * Will be decremented at I/O completion time.
1219 	 */
1220 	if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1221 		inode_dio_begin(inode);
1222 
1223 	retval = 0;
1224 	sdio.blkbits = blkbits;
1225 	sdio.blkfactor = i_blkbits - blkbits;
1226 	sdio.block_in_file = offset >> blkbits;
1227 
1228 	sdio.get_block = get_block;
1229 	dio->end_io = end_io;
1230 	sdio.submit_io = submit_io;
1231 	sdio.final_block_in_bio = -1;
1232 	sdio.next_block_for_io = -1;
1233 
1234 	dio->iocb = iocb;
1235 
1236 	spin_lock_init(&dio->bio_lock);
1237 	dio->refcount = 1;
1238 
1239 	dio->should_dirty = (iter->type == ITER_IOVEC);
1240 	sdio.iter = iter;
1241 	sdio.final_block_in_request =
1242 		(offset + iov_iter_count(iter)) >> blkbits;
1243 
1244 	/*
1245 	 * In case of non-aligned buffers, we may need 2 more
1246 	 * pages since we need to zero out first and last block.
1247 	 */
1248 	if (unlikely(sdio.blkfactor))
1249 		sdio.pages_in_io = 2;
1250 
1251 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1252 
1253 	blk_start_plug(&plug);
1254 
1255 	retval = do_direct_IO(dio, &sdio, &map_bh);
1256 	if (retval)
1257 		dio_cleanup(dio, &sdio);
1258 
1259 	if (retval == -ENOTBLK) {
1260 		/*
1261 		 * The remaining part of the request will be
1262 		 * be handled by buffered I/O when we return
1263 		 */
1264 		retval = 0;
1265 	}
1266 	/*
1267 	 * There may be some unwritten disk at the end of a part-written
1268 	 * fs-block-sized block.  Go zero that now.
1269 	 */
1270 	dio_zero_block(dio, &sdio, 1, &map_bh);
1271 
1272 	if (sdio.cur_page) {
1273 		ssize_t ret2;
1274 
1275 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1276 		if (retval == 0)
1277 			retval = ret2;
1278 		page_cache_release(sdio.cur_page);
1279 		sdio.cur_page = NULL;
1280 	}
1281 	if (sdio.bio)
1282 		dio_bio_submit(dio, &sdio);
1283 
1284 	blk_finish_plug(&plug);
1285 
1286 	/*
1287 	 * It is possible that, we return short IO due to end of file.
1288 	 * In that case, we need to release all the pages we got hold on.
1289 	 */
1290 	dio_cleanup(dio, &sdio);
1291 
1292 	/*
1293 	 * All block lookups have been performed. For READ requests
1294 	 * we can let i_mutex go now that its achieved its purpose
1295 	 * of protecting us from looking up uninitialized blocks.
1296 	 */
1297 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1298 		inode_unlock(dio->inode);
1299 
1300 	/*
1301 	 * The only time we want to leave bios in flight is when a successful
1302 	 * partial aio read or full aio write have been setup.  In that case
1303 	 * bio completion will call aio_complete.  The only time it's safe to
1304 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1305 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1306 	 */
1307 	BUG_ON(retval == -EIOCBQUEUED);
1308 	if (dio->is_async && retval == 0 && dio->result &&
1309 	    (iov_iter_rw(iter) == READ || dio->result == count))
1310 		retval = -EIOCBQUEUED;
1311 	else
1312 		dio_await_completion(dio);
1313 
1314 	if (drop_refcount(dio) == 0) {
1315 		retval = dio_complete(dio, offset, retval, false);
1316 	} else
1317 		BUG_ON(retval != -EIOCBQUEUED);
1318 
1319 out:
1320 	return retval;
1321 }
1322 
1323 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1324 			     struct block_device *bdev, struct iov_iter *iter,
1325 			     loff_t offset, get_block_t get_block,
1326 			     dio_iodone_t end_io, dio_submit_t submit_io,
1327 			     int flags)
1328 {
1329 	/*
1330 	 * The block device state is needed in the end to finally
1331 	 * submit everything.  Since it's likely to be cache cold
1332 	 * prefetch it here as first thing to hide some of the
1333 	 * latency.
1334 	 *
1335 	 * Attempt to prefetch the pieces we likely need later.
1336 	 */
1337 	prefetch(&bdev->bd_disk->part_tbl);
1338 	prefetch(bdev->bd_queue);
1339 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1340 
1341 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
1342 				     end_io, submit_io, flags);
1343 }
1344 
1345 EXPORT_SYMBOL(__blockdev_direct_IO);
1346 
1347 static __init int dio_init(void)
1348 {
1349 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1350 	return 0;
1351 }
1352 module_init(dio_init)
1353