1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <asm/atomic.h> 39 40 /* 41 * How many user pages to map in one call to get_user_pages(). This determines 42 * the size of a structure on the stack. 43 */ 44 #define DIO_PAGES 64 45 46 /* 47 * This code generally works in units of "dio_blocks". A dio_block is 48 * somewhere between the hard sector size and the filesystem block size. it 49 * is determined on a per-invocation basis. When talking to the filesystem 50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 52 * to bio_block quantities by shifting left by blkfactor. 53 * 54 * If blkfactor is zero then the user's request was aligned to the filesystem's 55 * blocksize. 56 * 57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. 58 * This determines whether we need to do the fancy locking which prevents 59 * direct-IO from being able to read uninitialised disk blocks. If its zero 60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is 61 * not held for the entire direct write (taken briefly, initially, during a 62 * direct read though, but its never held for the duration of a direct-IO). 63 */ 64 65 struct dio { 66 /* BIO submission state */ 67 struct bio *bio; /* bio under assembly */ 68 struct inode *inode; 69 int rw; 70 loff_t i_size; /* i_size when submitted */ 71 int lock_type; /* doesn't change */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 size_t size; /* total request size (doesn't change)*/ 83 sector_t block_in_file; /* Current offset into the underlying 84 file in dio_block units. */ 85 unsigned blocks_available; /* At block_in_file. changes */ 86 sector_t final_block_in_request;/* doesn't change */ 87 unsigned first_block_in_page; /* doesn't change, Used only once */ 88 int boundary; /* prev block is at a boundary */ 89 int reap_counter; /* rate limit reaping */ 90 get_block_t *get_block; /* block mapping function */ 91 dio_iodone_t *end_io; /* IO completion function */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 struct buffer_head map_bh; /* last get_block() result */ 96 97 /* 98 * Deferred addition of a page to the dio. These variables are 99 * private to dio_send_cur_page(), submit_page_section() and 100 * dio_bio_add_page(). 101 */ 102 struct page *cur_page; /* The page */ 103 unsigned cur_page_offset; /* Offset into it, in bytes */ 104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 105 sector_t cur_page_block; /* Where it starts */ 106 107 /* 108 * Page fetching state. These variables belong to dio_refill_pages(). 109 */ 110 int curr_page; /* changes */ 111 int total_pages; /* doesn't change */ 112 unsigned long curr_user_address;/* changes */ 113 114 /* 115 * Page queue. These variables belong to dio_refill_pages() and 116 * dio_get_page(). 117 */ 118 struct page *pages[DIO_PAGES]; /* page buffer */ 119 unsigned head; /* next page to process */ 120 unsigned tail; /* last valid page + 1 */ 121 int page_errors; /* errno from get_user_pages() */ 122 123 /* BIO completion state */ 124 spinlock_t bio_lock; /* protects BIO fields below */ 125 unsigned long refcount; /* direct_io_worker() and bios */ 126 struct bio *bio_list; /* singly linked via bi_private */ 127 struct task_struct *waiter; /* waiting task (NULL if none) */ 128 129 /* AIO related stuff */ 130 struct kiocb *iocb; /* kiocb */ 131 int is_async; /* is IO async ? */ 132 int io_error; /* IO error in completion path */ 133 ssize_t result; /* IO result */ 134 }; 135 136 /* 137 * How many pages are in the queue? 138 */ 139 static inline unsigned dio_pages_present(struct dio *dio) 140 { 141 return dio->tail - dio->head; 142 } 143 144 /* 145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 146 */ 147 static int dio_refill_pages(struct dio *dio) 148 { 149 int ret; 150 int nr_pages; 151 152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 153 ret = get_user_pages_fast( 154 dio->curr_user_address, /* Where from? */ 155 nr_pages, /* How many pages? */ 156 dio->rw == READ, /* Write to memory? */ 157 &dio->pages[0]); /* Put results here */ 158 159 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { 160 struct page *page = ZERO_PAGE(0); 161 /* 162 * A memory fault, but the filesystem has some outstanding 163 * mapped blocks. We need to use those blocks up to avoid 164 * leaking stale data in the file. 165 */ 166 if (dio->page_errors == 0) 167 dio->page_errors = ret; 168 page_cache_get(page); 169 dio->pages[0] = page; 170 dio->head = 0; 171 dio->tail = 1; 172 ret = 0; 173 goto out; 174 } 175 176 if (ret >= 0) { 177 dio->curr_user_address += ret * PAGE_SIZE; 178 dio->curr_page += ret; 179 dio->head = 0; 180 dio->tail = ret; 181 ret = 0; 182 } 183 out: 184 return ret; 185 } 186 187 /* 188 * Get another userspace page. Returns an ERR_PTR on error. Pages are 189 * buffered inside the dio so that we can call get_user_pages() against a 190 * decent number of pages, less frequently. To provide nicer use of the 191 * L1 cache. 192 */ 193 static struct page *dio_get_page(struct dio *dio) 194 { 195 if (dio_pages_present(dio) == 0) { 196 int ret; 197 198 ret = dio_refill_pages(dio); 199 if (ret) 200 return ERR_PTR(ret); 201 BUG_ON(dio_pages_present(dio) == 0); 202 } 203 return dio->pages[dio->head++]; 204 } 205 206 /** 207 * dio_complete() - called when all DIO BIO I/O has been completed 208 * @offset: the byte offset in the file of the completed operation 209 * 210 * This releases locks as dictated by the locking type, lets interested parties 211 * know that a DIO operation has completed, and calculates the resulting return 212 * code for the operation. 213 * 214 * It lets the filesystem know if it registered an interest earlier via 215 * get_block. Pass the private field of the map buffer_head so that 216 * filesystems can use it to hold additional state between get_block calls and 217 * dio_complete. 218 */ 219 static int dio_complete(struct dio *dio, loff_t offset, int ret) 220 { 221 ssize_t transferred = 0; 222 223 /* 224 * AIO submission can race with bio completion to get here while 225 * expecting to have the last io completed by bio completion. 226 * In that case -EIOCBQUEUED is in fact not an error we want 227 * to preserve through this call. 228 */ 229 if (ret == -EIOCBQUEUED) 230 ret = 0; 231 232 if (dio->result) { 233 transferred = dio->result; 234 235 /* Check for short read case */ 236 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 237 transferred = dio->i_size - offset; 238 } 239 240 if (dio->end_io && dio->result) 241 dio->end_io(dio->iocb, offset, transferred, 242 dio->map_bh.b_private); 243 if (dio->lock_type == DIO_LOCKING) 244 /* lockdep: non-owner release */ 245 up_read_non_owner(&dio->inode->i_alloc_sem); 246 247 if (ret == 0) 248 ret = dio->page_errors; 249 if (ret == 0) 250 ret = dio->io_error; 251 if (ret == 0) 252 ret = transferred; 253 254 return ret; 255 } 256 257 static int dio_bio_complete(struct dio *dio, struct bio *bio); 258 /* 259 * Asynchronous IO callback. 260 */ 261 static void dio_bio_end_aio(struct bio *bio, int error) 262 { 263 struct dio *dio = bio->bi_private; 264 unsigned long remaining; 265 unsigned long flags; 266 267 /* cleanup the bio */ 268 dio_bio_complete(dio, bio); 269 270 spin_lock_irqsave(&dio->bio_lock, flags); 271 remaining = --dio->refcount; 272 if (remaining == 1 && dio->waiter) 273 wake_up_process(dio->waiter); 274 spin_unlock_irqrestore(&dio->bio_lock, flags); 275 276 if (remaining == 0) { 277 int ret = dio_complete(dio, dio->iocb->ki_pos, 0); 278 aio_complete(dio->iocb, ret, 0); 279 kfree(dio); 280 } 281 } 282 283 /* 284 * The BIO completion handler simply queues the BIO up for the process-context 285 * handler. 286 * 287 * During I/O bi_private points at the dio. After I/O, bi_private is used to 288 * implement a singly-linked list of completed BIOs, at dio->bio_list. 289 */ 290 static void dio_bio_end_io(struct bio *bio, int error) 291 { 292 struct dio *dio = bio->bi_private; 293 unsigned long flags; 294 295 spin_lock_irqsave(&dio->bio_lock, flags); 296 bio->bi_private = dio->bio_list; 297 dio->bio_list = bio; 298 if (--dio->refcount == 1 && dio->waiter) 299 wake_up_process(dio->waiter); 300 spin_unlock_irqrestore(&dio->bio_lock, flags); 301 } 302 303 static int 304 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 305 sector_t first_sector, int nr_vecs) 306 { 307 struct bio *bio; 308 309 bio = bio_alloc(GFP_KERNEL, nr_vecs); 310 if (bio == NULL) 311 return -ENOMEM; 312 313 bio->bi_bdev = bdev; 314 bio->bi_sector = first_sector; 315 if (dio->is_async) 316 bio->bi_end_io = dio_bio_end_aio; 317 else 318 bio->bi_end_io = dio_bio_end_io; 319 320 dio->bio = bio; 321 return 0; 322 } 323 324 /* 325 * In the AIO read case we speculatively dirty the pages before starting IO. 326 * During IO completion, any of these pages which happen to have been written 327 * back will be redirtied by bio_check_pages_dirty(). 328 * 329 * bios hold a dio reference between submit_bio and ->end_io. 330 */ 331 static void dio_bio_submit(struct dio *dio) 332 { 333 struct bio *bio = dio->bio; 334 unsigned long flags; 335 336 bio->bi_private = dio; 337 338 spin_lock_irqsave(&dio->bio_lock, flags); 339 dio->refcount++; 340 spin_unlock_irqrestore(&dio->bio_lock, flags); 341 342 if (dio->is_async && dio->rw == READ) 343 bio_set_pages_dirty(bio); 344 345 submit_bio(dio->rw, bio); 346 347 dio->bio = NULL; 348 dio->boundary = 0; 349 } 350 351 /* 352 * Release any resources in case of a failure 353 */ 354 static void dio_cleanup(struct dio *dio) 355 { 356 while (dio_pages_present(dio)) 357 page_cache_release(dio_get_page(dio)); 358 } 359 360 /* 361 * Wait for the next BIO to complete. Remove it and return it. NULL is 362 * returned once all BIOs have been completed. This must only be called once 363 * all bios have been issued so that dio->refcount can only decrease. This 364 * requires that that the caller hold a reference on the dio. 365 */ 366 static struct bio *dio_await_one(struct dio *dio) 367 { 368 unsigned long flags; 369 struct bio *bio = NULL; 370 371 spin_lock_irqsave(&dio->bio_lock, flags); 372 373 /* 374 * Wait as long as the list is empty and there are bios in flight. bio 375 * completion drops the count, maybe adds to the list, and wakes while 376 * holding the bio_lock so we don't need set_current_state()'s barrier 377 * and can call it after testing our condition. 378 */ 379 while (dio->refcount > 1 && dio->bio_list == NULL) { 380 __set_current_state(TASK_UNINTERRUPTIBLE); 381 dio->waiter = current; 382 spin_unlock_irqrestore(&dio->bio_lock, flags); 383 io_schedule(); 384 /* wake up sets us TASK_RUNNING */ 385 spin_lock_irqsave(&dio->bio_lock, flags); 386 dio->waiter = NULL; 387 } 388 if (dio->bio_list) { 389 bio = dio->bio_list; 390 dio->bio_list = bio->bi_private; 391 } 392 spin_unlock_irqrestore(&dio->bio_lock, flags); 393 return bio; 394 } 395 396 /* 397 * Process one completed BIO. No locks are held. 398 */ 399 static int dio_bio_complete(struct dio *dio, struct bio *bio) 400 { 401 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 402 struct bio_vec *bvec = bio->bi_io_vec; 403 int page_no; 404 405 if (!uptodate) 406 dio->io_error = -EIO; 407 408 if (dio->is_async && dio->rw == READ) { 409 bio_check_pages_dirty(bio); /* transfers ownership */ 410 } else { 411 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 412 struct page *page = bvec[page_no].bv_page; 413 414 if (dio->rw == READ && !PageCompound(page)) 415 set_page_dirty_lock(page); 416 page_cache_release(page); 417 } 418 bio_put(bio); 419 } 420 return uptodate ? 0 : -EIO; 421 } 422 423 /* 424 * Wait on and process all in-flight BIOs. This must only be called once 425 * all bios have been issued so that the refcount can only decrease. 426 * This just waits for all bios to make it through dio_bio_complete. IO 427 * errors are propagated through dio->io_error and should be propagated via 428 * dio_complete(). 429 */ 430 static void dio_await_completion(struct dio *dio) 431 { 432 struct bio *bio; 433 do { 434 bio = dio_await_one(dio); 435 if (bio) 436 dio_bio_complete(dio, bio); 437 } while (bio); 438 } 439 440 /* 441 * A really large O_DIRECT read or write can generate a lot of BIOs. So 442 * to keep the memory consumption sane we periodically reap any completed BIOs 443 * during the BIO generation phase. 444 * 445 * This also helps to limit the peak amount of pinned userspace memory. 446 */ 447 static int dio_bio_reap(struct dio *dio) 448 { 449 int ret = 0; 450 451 if (dio->reap_counter++ >= 64) { 452 while (dio->bio_list) { 453 unsigned long flags; 454 struct bio *bio; 455 int ret2; 456 457 spin_lock_irqsave(&dio->bio_lock, flags); 458 bio = dio->bio_list; 459 dio->bio_list = bio->bi_private; 460 spin_unlock_irqrestore(&dio->bio_lock, flags); 461 ret2 = dio_bio_complete(dio, bio); 462 if (ret == 0) 463 ret = ret2; 464 } 465 dio->reap_counter = 0; 466 } 467 return ret; 468 } 469 470 /* 471 * Call into the fs to map some more disk blocks. We record the current number 472 * of available blocks at dio->blocks_available. These are in units of the 473 * fs blocksize, (1 << inode->i_blkbits). 474 * 475 * The fs is allowed to map lots of blocks at once. If it wants to do that, 476 * it uses the passed inode-relative block number as the file offset, as usual. 477 * 478 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 479 * has remaining to do. The fs should not map more than this number of blocks. 480 * 481 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 482 * indicate how much contiguous disk space has been made available at 483 * bh->b_blocknr. 484 * 485 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 486 * This isn't very efficient... 487 * 488 * In the case of filesystem holes: the fs may return an arbitrarily-large 489 * hole by returning an appropriate value in b_size and by clearing 490 * buffer_mapped(). However the direct-io code will only process holes one 491 * block at a time - it will repeatedly call get_block() as it walks the hole. 492 */ 493 static int get_more_blocks(struct dio *dio) 494 { 495 int ret; 496 struct buffer_head *map_bh = &dio->map_bh; 497 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 498 unsigned long fs_count; /* Number of filesystem-sized blocks */ 499 unsigned long dio_count;/* Number of dio_block-sized blocks */ 500 unsigned long blkmask; 501 int create; 502 503 /* 504 * If there was a memory error and we've overwritten all the 505 * mapped blocks then we can now return that memory error 506 */ 507 ret = dio->page_errors; 508 if (ret == 0) { 509 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 510 fs_startblk = dio->block_in_file >> dio->blkfactor; 511 dio_count = dio->final_block_in_request - dio->block_in_file; 512 fs_count = dio_count >> dio->blkfactor; 513 blkmask = (1 << dio->blkfactor) - 1; 514 if (dio_count & blkmask) 515 fs_count++; 516 517 map_bh->b_state = 0; 518 map_bh->b_size = fs_count << dio->inode->i_blkbits; 519 520 create = dio->rw & WRITE; 521 if (dio->lock_type == DIO_LOCKING) { 522 if (dio->block_in_file < (i_size_read(dio->inode) >> 523 dio->blkbits)) 524 create = 0; 525 } else if (dio->lock_type == DIO_NO_LOCKING) { 526 create = 0; 527 } 528 529 /* 530 * For writes inside i_size we forbid block creations: only 531 * overwrites are permitted. We fall back to buffered writes 532 * at a higher level for inside-i_size block-instantiating 533 * writes. 534 */ 535 ret = (*dio->get_block)(dio->inode, fs_startblk, 536 map_bh, create); 537 } 538 return ret; 539 } 540 541 /* 542 * There is no bio. Make one now. 543 */ 544 static int dio_new_bio(struct dio *dio, sector_t start_sector) 545 { 546 sector_t sector; 547 int ret, nr_pages; 548 549 ret = dio_bio_reap(dio); 550 if (ret) 551 goto out; 552 sector = start_sector << (dio->blkbits - 9); 553 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 554 BUG_ON(nr_pages <= 0); 555 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 556 dio->boundary = 0; 557 out: 558 return ret; 559 } 560 561 /* 562 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 563 * that was successful then update final_block_in_bio and take a ref against 564 * the just-added page. 565 * 566 * Return zero on success. Non-zero means the caller needs to start a new BIO. 567 */ 568 static int dio_bio_add_page(struct dio *dio) 569 { 570 int ret; 571 572 ret = bio_add_page(dio->bio, dio->cur_page, 573 dio->cur_page_len, dio->cur_page_offset); 574 if (ret == dio->cur_page_len) { 575 /* 576 * Decrement count only, if we are done with this page 577 */ 578 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 579 dio->pages_in_io--; 580 page_cache_get(dio->cur_page); 581 dio->final_block_in_bio = dio->cur_page_block + 582 (dio->cur_page_len >> dio->blkbits); 583 ret = 0; 584 } else { 585 ret = 1; 586 } 587 return ret; 588 } 589 590 /* 591 * Put cur_page under IO. The section of cur_page which is described by 592 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 593 * starts on-disk at cur_page_block. 594 * 595 * We take a ref against the page here (on behalf of its presence in the bio). 596 * 597 * The caller of this function is responsible for removing cur_page from the 598 * dio, and for dropping the refcount which came from that presence. 599 */ 600 static int dio_send_cur_page(struct dio *dio) 601 { 602 int ret = 0; 603 604 if (dio->bio) { 605 /* 606 * See whether this new request is contiguous with the old 607 */ 608 if (dio->final_block_in_bio != dio->cur_page_block) 609 dio_bio_submit(dio); 610 /* 611 * Submit now if the underlying fs is about to perform a 612 * metadata read 613 */ 614 if (dio->boundary) 615 dio_bio_submit(dio); 616 } 617 618 if (dio->bio == NULL) { 619 ret = dio_new_bio(dio, dio->cur_page_block); 620 if (ret) 621 goto out; 622 } 623 624 if (dio_bio_add_page(dio) != 0) { 625 dio_bio_submit(dio); 626 ret = dio_new_bio(dio, dio->cur_page_block); 627 if (ret == 0) { 628 ret = dio_bio_add_page(dio); 629 BUG_ON(ret != 0); 630 } 631 } 632 out: 633 return ret; 634 } 635 636 /* 637 * An autonomous function to put a chunk of a page under deferred IO. 638 * 639 * The caller doesn't actually know (or care) whether this piece of page is in 640 * a BIO, or is under IO or whatever. We just take care of all possible 641 * situations here. The separation between the logic of do_direct_IO() and 642 * that of submit_page_section() is important for clarity. Please don't break. 643 * 644 * The chunk of page starts on-disk at blocknr. 645 * 646 * We perform deferred IO, by recording the last-submitted page inside our 647 * private part of the dio structure. If possible, we just expand the IO 648 * across that page here. 649 * 650 * If that doesn't work out then we put the old page into the bio and add this 651 * page to the dio instead. 652 */ 653 static int 654 submit_page_section(struct dio *dio, struct page *page, 655 unsigned offset, unsigned len, sector_t blocknr) 656 { 657 int ret = 0; 658 659 if (dio->rw & WRITE) { 660 /* 661 * Read accounting is performed in submit_bio() 662 */ 663 task_io_account_write(len); 664 } 665 666 /* 667 * Can we just grow the current page's presence in the dio? 668 */ 669 if ( (dio->cur_page == page) && 670 (dio->cur_page_offset + dio->cur_page_len == offset) && 671 (dio->cur_page_block + 672 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 673 dio->cur_page_len += len; 674 675 /* 676 * If dio->boundary then we want to schedule the IO now to 677 * avoid metadata seeks. 678 */ 679 if (dio->boundary) { 680 ret = dio_send_cur_page(dio); 681 page_cache_release(dio->cur_page); 682 dio->cur_page = NULL; 683 } 684 goto out; 685 } 686 687 /* 688 * If there's a deferred page already there then send it. 689 */ 690 if (dio->cur_page) { 691 ret = dio_send_cur_page(dio); 692 page_cache_release(dio->cur_page); 693 dio->cur_page = NULL; 694 if (ret) 695 goto out; 696 } 697 698 page_cache_get(page); /* It is in dio */ 699 dio->cur_page = page; 700 dio->cur_page_offset = offset; 701 dio->cur_page_len = len; 702 dio->cur_page_block = blocknr; 703 out: 704 return ret; 705 } 706 707 /* 708 * Clean any dirty buffers in the blockdev mapping which alias newly-created 709 * file blocks. Only called for S_ISREG files - blockdevs do not set 710 * buffer_new 711 */ 712 static void clean_blockdev_aliases(struct dio *dio) 713 { 714 unsigned i; 715 unsigned nblocks; 716 717 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 718 719 for (i = 0; i < nblocks; i++) { 720 unmap_underlying_metadata(dio->map_bh.b_bdev, 721 dio->map_bh.b_blocknr + i); 722 } 723 } 724 725 /* 726 * If we are not writing the entire block and get_block() allocated 727 * the block for us, we need to fill-in the unused portion of the 728 * block with zeros. This happens only if user-buffer, fileoffset or 729 * io length is not filesystem block-size multiple. 730 * 731 * `end' is zero if we're doing the start of the IO, 1 at the end of the 732 * IO. 733 */ 734 static void dio_zero_block(struct dio *dio, int end) 735 { 736 unsigned dio_blocks_per_fs_block; 737 unsigned this_chunk_blocks; /* In dio_blocks */ 738 unsigned this_chunk_bytes; 739 struct page *page; 740 741 dio->start_zero_done = 1; 742 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 743 return; 744 745 dio_blocks_per_fs_block = 1 << dio->blkfactor; 746 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 747 748 if (!this_chunk_blocks) 749 return; 750 751 /* 752 * We need to zero out part of an fs block. It is either at the 753 * beginning or the end of the fs block. 754 */ 755 if (end) 756 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 757 758 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 759 760 page = ZERO_PAGE(0); 761 if (submit_page_section(dio, page, 0, this_chunk_bytes, 762 dio->next_block_for_io)) 763 return; 764 765 dio->next_block_for_io += this_chunk_blocks; 766 } 767 768 /* 769 * Walk the user pages, and the file, mapping blocks to disk and generating 770 * a sequence of (page,offset,len,block) mappings. These mappings are injected 771 * into submit_page_section(), which takes care of the next stage of submission 772 * 773 * Direct IO against a blockdev is different from a file. Because we can 774 * happily perform page-sized but 512-byte aligned IOs. It is important that 775 * blockdev IO be able to have fine alignment and large sizes. 776 * 777 * So what we do is to permit the ->get_block function to populate bh.b_size 778 * with the size of IO which is permitted at this offset and this i_blkbits. 779 * 780 * For best results, the blockdev should be set up with 512-byte i_blkbits and 781 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 782 * fine alignment but still allows this function to work in PAGE_SIZE units. 783 */ 784 static int do_direct_IO(struct dio *dio) 785 { 786 const unsigned blkbits = dio->blkbits; 787 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 788 struct page *page; 789 unsigned block_in_page; 790 struct buffer_head *map_bh = &dio->map_bh; 791 int ret = 0; 792 793 /* The I/O can start at any block offset within the first page */ 794 block_in_page = dio->first_block_in_page; 795 796 while (dio->block_in_file < dio->final_block_in_request) { 797 page = dio_get_page(dio); 798 if (IS_ERR(page)) { 799 ret = PTR_ERR(page); 800 goto out; 801 } 802 803 while (block_in_page < blocks_per_page) { 804 unsigned offset_in_page = block_in_page << blkbits; 805 unsigned this_chunk_bytes; /* # of bytes mapped */ 806 unsigned this_chunk_blocks; /* # of blocks */ 807 unsigned u; 808 809 if (dio->blocks_available == 0) { 810 /* 811 * Need to go and map some more disk 812 */ 813 unsigned long blkmask; 814 unsigned long dio_remainder; 815 816 ret = get_more_blocks(dio); 817 if (ret) { 818 page_cache_release(page); 819 goto out; 820 } 821 if (!buffer_mapped(map_bh)) 822 goto do_holes; 823 824 dio->blocks_available = 825 map_bh->b_size >> dio->blkbits; 826 dio->next_block_for_io = 827 map_bh->b_blocknr << dio->blkfactor; 828 if (buffer_new(map_bh)) 829 clean_blockdev_aliases(dio); 830 831 if (!dio->blkfactor) 832 goto do_holes; 833 834 blkmask = (1 << dio->blkfactor) - 1; 835 dio_remainder = (dio->block_in_file & blkmask); 836 837 /* 838 * If we are at the start of IO and that IO 839 * starts partway into a fs-block, 840 * dio_remainder will be non-zero. If the IO 841 * is a read then we can simply advance the IO 842 * cursor to the first block which is to be 843 * read. But if the IO is a write and the 844 * block was newly allocated we cannot do that; 845 * the start of the fs block must be zeroed out 846 * on-disk 847 */ 848 if (!buffer_new(map_bh)) 849 dio->next_block_for_io += dio_remainder; 850 dio->blocks_available -= dio_remainder; 851 } 852 do_holes: 853 /* Handle holes */ 854 if (!buffer_mapped(map_bh)) { 855 loff_t i_size_aligned; 856 857 /* AKPM: eargh, -ENOTBLK is a hack */ 858 if (dio->rw & WRITE) { 859 page_cache_release(page); 860 return -ENOTBLK; 861 } 862 863 /* 864 * Be sure to account for a partial block as the 865 * last block in the file 866 */ 867 i_size_aligned = ALIGN(i_size_read(dio->inode), 868 1 << blkbits); 869 if (dio->block_in_file >= 870 i_size_aligned >> blkbits) { 871 /* We hit eof */ 872 page_cache_release(page); 873 goto out; 874 } 875 zero_user(page, block_in_page << blkbits, 876 1 << blkbits); 877 dio->block_in_file++; 878 block_in_page++; 879 goto next_block; 880 } 881 882 /* 883 * If we're performing IO which has an alignment which 884 * is finer than the underlying fs, go check to see if 885 * we must zero out the start of this block. 886 */ 887 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 888 dio_zero_block(dio, 0); 889 890 /* 891 * Work out, in this_chunk_blocks, how much disk we 892 * can add to this page 893 */ 894 this_chunk_blocks = dio->blocks_available; 895 u = (PAGE_SIZE - offset_in_page) >> blkbits; 896 if (this_chunk_blocks > u) 897 this_chunk_blocks = u; 898 u = dio->final_block_in_request - dio->block_in_file; 899 if (this_chunk_blocks > u) 900 this_chunk_blocks = u; 901 this_chunk_bytes = this_chunk_blocks << blkbits; 902 BUG_ON(this_chunk_bytes == 0); 903 904 dio->boundary = buffer_boundary(map_bh); 905 ret = submit_page_section(dio, page, offset_in_page, 906 this_chunk_bytes, dio->next_block_for_io); 907 if (ret) { 908 page_cache_release(page); 909 goto out; 910 } 911 dio->next_block_for_io += this_chunk_blocks; 912 913 dio->block_in_file += this_chunk_blocks; 914 block_in_page += this_chunk_blocks; 915 dio->blocks_available -= this_chunk_blocks; 916 next_block: 917 BUG_ON(dio->block_in_file > dio->final_block_in_request); 918 if (dio->block_in_file == dio->final_block_in_request) 919 break; 920 } 921 922 /* Drop the ref which was taken in get_user_pages() */ 923 page_cache_release(page); 924 block_in_page = 0; 925 } 926 out: 927 return ret; 928 } 929 930 /* 931 * Releases both i_mutex and i_alloc_sem 932 */ 933 static ssize_t 934 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 935 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 936 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, 937 struct dio *dio) 938 { 939 unsigned long user_addr; 940 unsigned long flags; 941 int seg; 942 ssize_t ret = 0; 943 ssize_t ret2; 944 size_t bytes; 945 946 dio->inode = inode; 947 dio->rw = rw; 948 dio->blkbits = blkbits; 949 dio->blkfactor = inode->i_blkbits - blkbits; 950 dio->block_in_file = offset >> blkbits; 951 952 dio->get_block = get_block; 953 dio->end_io = end_io; 954 dio->final_block_in_bio = -1; 955 dio->next_block_for_io = -1; 956 957 dio->iocb = iocb; 958 dio->i_size = i_size_read(inode); 959 960 spin_lock_init(&dio->bio_lock); 961 dio->refcount = 1; 962 963 /* 964 * In case of non-aligned buffers, we may need 2 more 965 * pages since we need to zero out first and last block. 966 */ 967 if (unlikely(dio->blkfactor)) 968 dio->pages_in_io = 2; 969 970 for (seg = 0; seg < nr_segs; seg++) { 971 user_addr = (unsigned long)iov[seg].iov_base; 972 dio->pages_in_io += 973 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 974 - user_addr/PAGE_SIZE); 975 } 976 977 for (seg = 0; seg < nr_segs; seg++) { 978 user_addr = (unsigned long)iov[seg].iov_base; 979 dio->size += bytes = iov[seg].iov_len; 980 981 /* Index into the first page of the first block */ 982 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 983 dio->final_block_in_request = dio->block_in_file + 984 (bytes >> blkbits); 985 /* Page fetching state */ 986 dio->head = 0; 987 dio->tail = 0; 988 dio->curr_page = 0; 989 990 dio->total_pages = 0; 991 if (user_addr & (PAGE_SIZE-1)) { 992 dio->total_pages++; 993 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 994 } 995 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 996 dio->curr_user_address = user_addr; 997 998 ret = do_direct_IO(dio); 999 1000 dio->result += iov[seg].iov_len - 1001 ((dio->final_block_in_request - dio->block_in_file) << 1002 blkbits); 1003 1004 if (ret) { 1005 dio_cleanup(dio); 1006 break; 1007 } 1008 } /* end iovec loop */ 1009 1010 if (ret == -ENOTBLK && (rw & WRITE)) { 1011 /* 1012 * The remaining part of the request will be 1013 * be handled by buffered I/O when we return 1014 */ 1015 ret = 0; 1016 } 1017 /* 1018 * There may be some unwritten disk at the end of a part-written 1019 * fs-block-sized block. Go zero that now. 1020 */ 1021 dio_zero_block(dio, 1); 1022 1023 if (dio->cur_page) { 1024 ret2 = dio_send_cur_page(dio); 1025 if (ret == 0) 1026 ret = ret2; 1027 page_cache_release(dio->cur_page); 1028 dio->cur_page = NULL; 1029 } 1030 if (dio->bio) 1031 dio_bio_submit(dio); 1032 1033 /* All IO is now issued, send it on its way */ 1034 blk_run_address_space(inode->i_mapping); 1035 1036 /* 1037 * It is possible that, we return short IO due to end of file. 1038 * In that case, we need to release all the pages we got hold on. 1039 */ 1040 dio_cleanup(dio); 1041 1042 /* 1043 * All block lookups have been performed. For READ requests 1044 * we can let i_mutex go now that its achieved its purpose 1045 * of protecting us from looking up uninitialized blocks. 1046 */ 1047 if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) 1048 mutex_unlock(&dio->inode->i_mutex); 1049 1050 /* 1051 * The only time we want to leave bios in flight is when a successful 1052 * partial aio read or full aio write have been setup. In that case 1053 * bio completion will call aio_complete. The only time it's safe to 1054 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1055 * This had *better* be the only place that raises -EIOCBQUEUED. 1056 */ 1057 BUG_ON(ret == -EIOCBQUEUED); 1058 if (dio->is_async && ret == 0 && dio->result && 1059 ((rw & READ) || (dio->result == dio->size))) 1060 ret = -EIOCBQUEUED; 1061 1062 if (ret != -EIOCBQUEUED) 1063 dio_await_completion(dio); 1064 1065 /* 1066 * Sync will always be dropping the final ref and completing the 1067 * operation. AIO can if it was a broken operation described above or 1068 * in fact if all the bios race to complete before we get here. In 1069 * that case dio_complete() translates the EIOCBQUEUED into the proper 1070 * return code that the caller will hand to aio_complete(). 1071 * 1072 * This is managed by the bio_lock instead of being an atomic_t so that 1073 * completion paths can drop their ref and use the remaining count to 1074 * decide to wake the submission path atomically. 1075 */ 1076 spin_lock_irqsave(&dio->bio_lock, flags); 1077 ret2 = --dio->refcount; 1078 spin_unlock_irqrestore(&dio->bio_lock, flags); 1079 1080 if (ret2 == 0) { 1081 ret = dio_complete(dio, offset, ret); 1082 kfree(dio); 1083 } else 1084 BUG_ON(ret != -EIOCBQUEUED); 1085 1086 return ret; 1087 } 1088 1089 /* 1090 * This is a library function for use by filesystem drivers. 1091 * The locking rules are governed by the dio_lock_type parameter. 1092 * 1093 * DIO_NO_LOCKING (no locking, for raw block device access) 1094 * For writes, i_mutex is not held on entry; it is never taken. 1095 * 1096 * DIO_LOCKING (simple locking for regular files) 1097 * For writes we are called under i_mutex and return with i_mutex held, even 1098 * though it is internally dropped. 1099 * For reads, i_mutex is not held on entry, but it is taken and dropped before 1100 * returning. 1101 * 1102 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of 1103 * uninitialised data, allowing parallel direct readers and writers) 1104 * For writes we are called without i_mutex, return without it, never touch it. 1105 * For reads we are called under i_mutex and return with i_mutex held, even 1106 * though it may be internally dropped. 1107 * 1108 * Additional i_alloc_sem locking requirements described inline below. 1109 */ 1110 ssize_t 1111 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1112 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1113 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1114 int dio_lock_type) 1115 { 1116 int seg; 1117 size_t size; 1118 unsigned long addr; 1119 unsigned blkbits = inode->i_blkbits; 1120 unsigned bdev_blkbits = 0; 1121 unsigned blocksize_mask = (1 << blkbits) - 1; 1122 ssize_t retval = -EINVAL; 1123 loff_t end = offset; 1124 struct dio *dio; 1125 int release_i_mutex = 0; 1126 int acquire_i_mutex = 0; 1127 1128 if (rw & WRITE) 1129 rw = WRITE_SYNC; 1130 1131 if (bdev) 1132 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); 1133 1134 if (offset & blocksize_mask) { 1135 if (bdev) 1136 blkbits = bdev_blkbits; 1137 blocksize_mask = (1 << blkbits) - 1; 1138 if (offset & blocksize_mask) 1139 goto out; 1140 } 1141 1142 /* Check the memory alignment. Blocks cannot straddle pages */ 1143 for (seg = 0; seg < nr_segs; seg++) { 1144 addr = (unsigned long)iov[seg].iov_base; 1145 size = iov[seg].iov_len; 1146 end += size; 1147 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1148 if (bdev) 1149 blkbits = bdev_blkbits; 1150 blocksize_mask = (1 << blkbits) - 1; 1151 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1152 goto out; 1153 } 1154 } 1155 1156 dio = kzalloc(sizeof(*dio), GFP_KERNEL); 1157 retval = -ENOMEM; 1158 if (!dio) 1159 goto out; 1160 1161 /* 1162 * For block device access DIO_NO_LOCKING is used, 1163 * neither readers nor writers do any locking at all 1164 * For regular files using DIO_LOCKING, 1165 * readers need to grab i_mutex and i_alloc_sem 1166 * writers need to grab i_alloc_sem only (i_mutex is already held) 1167 * For regular files using DIO_OWN_LOCKING, 1168 * neither readers nor writers take any locks here 1169 */ 1170 dio->lock_type = dio_lock_type; 1171 if (dio_lock_type != DIO_NO_LOCKING) { 1172 /* watch out for a 0 len io from a tricksy fs */ 1173 if (rw == READ && end > offset) { 1174 struct address_space *mapping; 1175 1176 mapping = iocb->ki_filp->f_mapping; 1177 if (dio_lock_type != DIO_OWN_LOCKING) { 1178 mutex_lock(&inode->i_mutex); 1179 release_i_mutex = 1; 1180 } 1181 1182 retval = filemap_write_and_wait_range(mapping, offset, 1183 end - 1); 1184 if (retval) { 1185 kfree(dio); 1186 goto out; 1187 } 1188 1189 if (dio_lock_type == DIO_OWN_LOCKING) { 1190 mutex_unlock(&inode->i_mutex); 1191 acquire_i_mutex = 1; 1192 } 1193 } 1194 1195 if (dio_lock_type == DIO_LOCKING) 1196 /* lockdep: not the owner will release it */ 1197 down_read_non_owner(&inode->i_alloc_sem); 1198 } 1199 1200 /* 1201 * For file extending writes updating i_size before data 1202 * writeouts complete can expose uninitialized blocks. So 1203 * even for AIO, we need to wait for i/o to complete before 1204 * returning in this case. 1205 */ 1206 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1207 (end > i_size_read(inode))); 1208 1209 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1210 nr_segs, blkbits, get_block, end_io, dio); 1211 1212 if (rw == READ && dio_lock_type == DIO_LOCKING) 1213 release_i_mutex = 0; 1214 1215 out: 1216 if (release_i_mutex) 1217 mutex_unlock(&inode->i_mutex); 1218 else if (acquire_i_mutex) 1219 mutex_lock(&inode->i_mutex); 1220 return retval; 1221 } 1222 EXPORT_SYMBOL(__blockdev_direct_IO); 1223