xref: /linux/fs/direct-io.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
39 
40 /*
41  * How many user pages to map in one call to get_user_pages().  This determines
42  * the size of a structure on the stack.
43  */
44 #define DIO_PAGES	64
45 
46 /*
47  * This code generally works in units of "dio_blocks".  A dio_block is
48  * somewhere between the hard sector size and the filesystem block size.  it
49  * is determined on a per-invocation basis.   When talking to the filesystem
50  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52  * to bio_block quantities by shifting left by blkfactor.
53  *
54  * If blkfactor is zero then the user's request was aligned to the filesystem's
55  * blocksize.
56  *
57  * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58  * This determines whether we need to do the fancy locking which prevents
59  * direct-IO from being able to read uninitialised disk blocks.  If its zero
60  * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
61  * not held for the entire direct write (taken briefly, initially, during a
62  * direct read though, but its never held for the duration of a direct-IO).
63  */
64 
65 struct dio {
66 	/* BIO submission state */
67 	struct bio *bio;		/* bio under assembly */
68 	struct inode *inode;
69 	int rw;
70 	loff_t i_size;			/* i_size when submitted */
71 	int lock_type;			/* doesn't change */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	size_t	size;			/* total request size (doesn't change)*/
83 	sector_t block_in_file;		/* Current offset into the underlying
84 					   file in dio_block units. */
85 	unsigned blocks_available;	/* At block_in_file.  changes */
86 	sector_t final_block_in_request;/* doesn't change */
87 	unsigned first_block_in_page;	/* doesn't change, Used only once */
88 	int boundary;			/* prev block is at a boundary */
89 	int reap_counter;		/* rate limit reaping */
90 	get_block_t *get_block;		/* block mapping function */
91 	dio_iodone_t *end_io;		/* IO completion function */
92 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93 	sector_t next_block_for_io;	/* next block to be put under IO,
94 					   in dio_blocks units */
95 	struct buffer_head map_bh;	/* last get_block() result */
96 
97 	/*
98 	 * Deferred addition of a page to the dio.  These variables are
99 	 * private to dio_send_cur_page(), submit_page_section() and
100 	 * dio_bio_add_page().
101 	 */
102 	struct page *cur_page;		/* The page */
103 	unsigned cur_page_offset;	/* Offset into it, in bytes */
104 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
105 	sector_t cur_page_block;	/* Where it starts */
106 
107 	/*
108 	 * Page fetching state. These variables belong to dio_refill_pages().
109 	 */
110 	int curr_page;			/* changes */
111 	int total_pages;		/* doesn't change */
112 	unsigned long curr_user_address;/* changes */
113 
114 	/*
115 	 * Page queue.  These variables belong to dio_refill_pages() and
116 	 * dio_get_page().
117 	 */
118 	struct page *pages[DIO_PAGES];	/* page buffer */
119 	unsigned head;			/* next page to process */
120 	unsigned tail;			/* last valid page + 1 */
121 	int page_errors;		/* errno from get_user_pages() */
122 
123 	/* BIO completion state */
124 	spinlock_t bio_lock;		/* protects BIO fields below */
125 	unsigned long refcount;		/* direct_io_worker() and bios */
126 	struct bio *bio_list;		/* singly linked via bi_private */
127 	struct task_struct *waiter;	/* waiting task (NULL if none) */
128 
129 	/* AIO related stuff */
130 	struct kiocb *iocb;		/* kiocb */
131 	int is_async;			/* is IO async ? */
132 	int io_error;			/* IO error in completion path */
133 	ssize_t result;                 /* IO result */
134 };
135 
136 /*
137  * How many pages are in the queue?
138  */
139 static inline unsigned dio_pages_present(struct dio *dio)
140 {
141 	return dio->tail - dio->head;
142 }
143 
144 /*
145  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
146  */
147 static int dio_refill_pages(struct dio *dio)
148 {
149 	int ret;
150 	int nr_pages;
151 
152 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153 	ret = get_user_pages_fast(
154 		dio->curr_user_address,		/* Where from? */
155 		nr_pages,			/* How many pages? */
156 		dio->rw == READ,		/* Write to memory? */
157 		&dio->pages[0]);		/* Put results here */
158 
159 	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
160 		struct page *page = ZERO_PAGE(0);
161 		/*
162 		 * A memory fault, but the filesystem has some outstanding
163 		 * mapped blocks.  We need to use those blocks up to avoid
164 		 * leaking stale data in the file.
165 		 */
166 		if (dio->page_errors == 0)
167 			dio->page_errors = ret;
168 		page_cache_get(page);
169 		dio->pages[0] = page;
170 		dio->head = 0;
171 		dio->tail = 1;
172 		ret = 0;
173 		goto out;
174 	}
175 
176 	if (ret >= 0) {
177 		dio->curr_user_address += ret * PAGE_SIZE;
178 		dio->curr_page += ret;
179 		dio->head = 0;
180 		dio->tail = ret;
181 		ret = 0;
182 	}
183 out:
184 	return ret;
185 }
186 
187 /*
188  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
189  * buffered inside the dio so that we can call get_user_pages() against a
190  * decent number of pages, less frequently.  To provide nicer use of the
191  * L1 cache.
192  */
193 static struct page *dio_get_page(struct dio *dio)
194 {
195 	if (dio_pages_present(dio) == 0) {
196 		int ret;
197 
198 		ret = dio_refill_pages(dio);
199 		if (ret)
200 			return ERR_PTR(ret);
201 		BUG_ON(dio_pages_present(dio) == 0);
202 	}
203 	return dio->pages[dio->head++];
204 }
205 
206 /**
207  * dio_complete() - called when all DIO BIO I/O has been completed
208  * @offset: the byte offset in the file of the completed operation
209  *
210  * This releases locks as dictated by the locking type, lets interested parties
211  * know that a DIO operation has completed, and calculates the resulting return
212  * code for the operation.
213  *
214  * It lets the filesystem know if it registered an interest earlier via
215  * get_block.  Pass the private field of the map buffer_head so that
216  * filesystems can use it to hold additional state between get_block calls and
217  * dio_complete.
218  */
219 static int dio_complete(struct dio *dio, loff_t offset, int ret)
220 {
221 	ssize_t transferred = 0;
222 
223 	/*
224 	 * AIO submission can race with bio completion to get here while
225 	 * expecting to have the last io completed by bio completion.
226 	 * In that case -EIOCBQUEUED is in fact not an error we want
227 	 * to preserve through this call.
228 	 */
229 	if (ret == -EIOCBQUEUED)
230 		ret = 0;
231 
232 	if (dio->result) {
233 		transferred = dio->result;
234 
235 		/* Check for short read case */
236 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
237 			transferred = dio->i_size - offset;
238 	}
239 
240 	if (dio->end_io && dio->result)
241 		dio->end_io(dio->iocb, offset, transferred,
242 			    dio->map_bh.b_private);
243 	if (dio->lock_type == DIO_LOCKING)
244 		/* lockdep: non-owner release */
245 		up_read_non_owner(&dio->inode->i_alloc_sem);
246 
247 	if (ret == 0)
248 		ret = dio->page_errors;
249 	if (ret == 0)
250 		ret = dio->io_error;
251 	if (ret == 0)
252 		ret = transferred;
253 
254 	return ret;
255 }
256 
257 static int dio_bio_complete(struct dio *dio, struct bio *bio);
258 /*
259  * Asynchronous IO callback.
260  */
261 static void dio_bio_end_aio(struct bio *bio, int error)
262 {
263 	struct dio *dio = bio->bi_private;
264 	unsigned long remaining;
265 	unsigned long flags;
266 
267 	/* cleanup the bio */
268 	dio_bio_complete(dio, bio);
269 
270 	spin_lock_irqsave(&dio->bio_lock, flags);
271 	remaining = --dio->refcount;
272 	if (remaining == 1 && dio->waiter)
273 		wake_up_process(dio->waiter);
274 	spin_unlock_irqrestore(&dio->bio_lock, flags);
275 
276 	if (remaining == 0) {
277 		int ret = dio_complete(dio, dio->iocb->ki_pos, 0);
278 		aio_complete(dio->iocb, ret, 0);
279 		kfree(dio);
280 	}
281 }
282 
283 /*
284  * The BIO completion handler simply queues the BIO up for the process-context
285  * handler.
286  *
287  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
288  * implement a singly-linked list of completed BIOs, at dio->bio_list.
289  */
290 static void dio_bio_end_io(struct bio *bio, int error)
291 {
292 	struct dio *dio = bio->bi_private;
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&dio->bio_lock, flags);
296 	bio->bi_private = dio->bio_list;
297 	dio->bio_list = bio;
298 	if (--dio->refcount == 1 && dio->waiter)
299 		wake_up_process(dio->waiter);
300 	spin_unlock_irqrestore(&dio->bio_lock, flags);
301 }
302 
303 static int
304 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
305 		sector_t first_sector, int nr_vecs)
306 {
307 	struct bio *bio;
308 
309 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
310 	if (bio == NULL)
311 		return -ENOMEM;
312 
313 	bio->bi_bdev = bdev;
314 	bio->bi_sector = first_sector;
315 	if (dio->is_async)
316 		bio->bi_end_io = dio_bio_end_aio;
317 	else
318 		bio->bi_end_io = dio_bio_end_io;
319 
320 	dio->bio = bio;
321 	return 0;
322 }
323 
324 /*
325  * In the AIO read case we speculatively dirty the pages before starting IO.
326  * During IO completion, any of these pages which happen to have been written
327  * back will be redirtied by bio_check_pages_dirty().
328  *
329  * bios hold a dio reference between submit_bio and ->end_io.
330  */
331 static void dio_bio_submit(struct dio *dio)
332 {
333 	struct bio *bio = dio->bio;
334 	unsigned long flags;
335 
336 	bio->bi_private = dio;
337 
338 	spin_lock_irqsave(&dio->bio_lock, flags);
339 	dio->refcount++;
340 	spin_unlock_irqrestore(&dio->bio_lock, flags);
341 
342 	if (dio->is_async && dio->rw == READ)
343 		bio_set_pages_dirty(bio);
344 
345 	submit_bio(dio->rw, bio);
346 
347 	dio->bio = NULL;
348 	dio->boundary = 0;
349 }
350 
351 /*
352  * Release any resources in case of a failure
353  */
354 static void dio_cleanup(struct dio *dio)
355 {
356 	while (dio_pages_present(dio))
357 		page_cache_release(dio_get_page(dio));
358 }
359 
360 /*
361  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
362  * returned once all BIOs have been completed.  This must only be called once
363  * all bios have been issued so that dio->refcount can only decrease.  This
364  * requires that that the caller hold a reference on the dio.
365  */
366 static struct bio *dio_await_one(struct dio *dio)
367 {
368 	unsigned long flags;
369 	struct bio *bio = NULL;
370 
371 	spin_lock_irqsave(&dio->bio_lock, flags);
372 
373 	/*
374 	 * Wait as long as the list is empty and there are bios in flight.  bio
375 	 * completion drops the count, maybe adds to the list, and wakes while
376 	 * holding the bio_lock so we don't need set_current_state()'s barrier
377 	 * and can call it after testing our condition.
378 	 */
379 	while (dio->refcount > 1 && dio->bio_list == NULL) {
380 		__set_current_state(TASK_UNINTERRUPTIBLE);
381 		dio->waiter = current;
382 		spin_unlock_irqrestore(&dio->bio_lock, flags);
383 		io_schedule();
384 		/* wake up sets us TASK_RUNNING */
385 		spin_lock_irqsave(&dio->bio_lock, flags);
386 		dio->waiter = NULL;
387 	}
388 	if (dio->bio_list) {
389 		bio = dio->bio_list;
390 		dio->bio_list = bio->bi_private;
391 	}
392 	spin_unlock_irqrestore(&dio->bio_lock, flags);
393 	return bio;
394 }
395 
396 /*
397  * Process one completed BIO.  No locks are held.
398  */
399 static int dio_bio_complete(struct dio *dio, struct bio *bio)
400 {
401 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
402 	struct bio_vec *bvec = bio->bi_io_vec;
403 	int page_no;
404 
405 	if (!uptodate)
406 		dio->io_error = -EIO;
407 
408 	if (dio->is_async && dio->rw == READ) {
409 		bio_check_pages_dirty(bio);	/* transfers ownership */
410 	} else {
411 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
412 			struct page *page = bvec[page_no].bv_page;
413 
414 			if (dio->rw == READ && !PageCompound(page))
415 				set_page_dirty_lock(page);
416 			page_cache_release(page);
417 		}
418 		bio_put(bio);
419 	}
420 	return uptodate ? 0 : -EIO;
421 }
422 
423 /*
424  * Wait on and process all in-flight BIOs.  This must only be called once
425  * all bios have been issued so that the refcount can only decrease.
426  * This just waits for all bios to make it through dio_bio_complete.  IO
427  * errors are propagated through dio->io_error and should be propagated via
428  * dio_complete().
429  */
430 static void dio_await_completion(struct dio *dio)
431 {
432 	struct bio *bio;
433 	do {
434 		bio = dio_await_one(dio);
435 		if (bio)
436 			dio_bio_complete(dio, bio);
437 	} while (bio);
438 }
439 
440 /*
441  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
442  * to keep the memory consumption sane we periodically reap any completed BIOs
443  * during the BIO generation phase.
444  *
445  * This also helps to limit the peak amount of pinned userspace memory.
446  */
447 static int dio_bio_reap(struct dio *dio)
448 {
449 	int ret = 0;
450 
451 	if (dio->reap_counter++ >= 64) {
452 		while (dio->bio_list) {
453 			unsigned long flags;
454 			struct bio *bio;
455 			int ret2;
456 
457 			spin_lock_irqsave(&dio->bio_lock, flags);
458 			bio = dio->bio_list;
459 			dio->bio_list = bio->bi_private;
460 			spin_unlock_irqrestore(&dio->bio_lock, flags);
461 			ret2 = dio_bio_complete(dio, bio);
462 			if (ret == 0)
463 				ret = ret2;
464 		}
465 		dio->reap_counter = 0;
466 	}
467 	return ret;
468 }
469 
470 /*
471  * Call into the fs to map some more disk blocks.  We record the current number
472  * of available blocks at dio->blocks_available.  These are in units of the
473  * fs blocksize, (1 << inode->i_blkbits).
474  *
475  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
476  * it uses the passed inode-relative block number as the file offset, as usual.
477  *
478  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
479  * has remaining to do.  The fs should not map more than this number of blocks.
480  *
481  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
482  * indicate how much contiguous disk space has been made available at
483  * bh->b_blocknr.
484  *
485  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
486  * This isn't very efficient...
487  *
488  * In the case of filesystem holes: the fs may return an arbitrarily-large
489  * hole by returning an appropriate value in b_size and by clearing
490  * buffer_mapped().  However the direct-io code will only process holes one
491  * block at a time - it will repeatedly call get_block() as it walks the hole.
492  */
493 static int get_more_blocks(struct dio *dio)
494 {
495 	int ret;
496 	struct buffer_head *map_bh = &dio->map_bh;
497 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
498 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
499 	unsigned long dio_count;/* Number of dio_block-sized blocks */
500 	unsigned long blkmask;
501 	int create;
502 
503 	/*
504 	 * If there was a memory error and we've overwritten all the
505 	 * mapped blocks then we can now return that memory error
506 	 */
507 	ret = dio->page_errors;
508 	if (ret == 0) {
509 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
510 		fs_startblk = dio->block_in_file >> dio->blkfactor;
511 		dio_count = dio->final_block_in_request - dio->block_in_file;
512 		fs_count = dio_count >> dio->blkfactor;
513 		blkmask = (1 << dio->blkfactor) - 1;
514 		if (dio_count & blkmask)
515 			fs_count++;
516 
517 		map_bh->b_state = 0;
518 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
519 
520 		create = dio->rw & WRITE;
521 		if (dio->lock_type == DIO_LOCKING) {
522 			if (dio->block_in_file < (i_size_read(dio->inode) >>
523 							dio->blkbits))
524 				create = 0;
525 		} else if (dio->lock_type == DIO_NO_LOCKING) {
526 			create = 0;
527 		}
528 
529 		/*
530 		 * For writes inside i_size we forbid block creations: only
531 		 * overwrites are permitted.  We fall back to buffered writes
532 		 * at a higher level for inside-i_size block-instantiating
533 		 * writes.
534 		 */
535 		ret = (*dio->get_block)(dio->inode, fs_startblk,
536 						map_bh, create);
537 	}
538 	return ret;
539 }
540 
541 /*
542  * There is no bio.  Make one now.
543  */
544 static int dio_new_bio(struct dio *dio, sector_t start_sector)
545 {
546 	sector_t sector;
547 	int ret, nr_pages;
548 
549 	ret = dio_bio_reap(dio);
550 	if (ret)
551 		goto out;
552 	sector = start_sector << (dio->blkbits - 9);
553 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
554 	BUG_ON(nr_pages <= 0);
555 	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
556 	dio->boundary = 0;
557 out:
558 	return ret;
559 }
560 
561 /*
562  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
563  * that was successful then update final_block_in_bio and take a ref against
564  * the just-added page.
565  *
566  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
567  */
568 static int dio_bio_add_page(struct dio *dio)
569 {
570 	int ret;
571 
572 	ret = bio_add_page(dio->bio, dio->cur_page,
573 			dio->cur_page_len, dio->cur_page_offset);
574 	if (ret == dio->cur_page_len) {
575 		/*
576 		 * Decrement count only, if we are done with this page
577 		 */
578 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
579 			dio->pages_in_io--;
580 		page_cache_get(dio->cur_page);
581 		dio->final_block_in_bio = dio->cur_page_block +
582 			(dio->cur_page_len >> dio->blkbits);
583 		ret = 0;
584 	} else {
585 		ret = 1;
586 	}
587 	return ret;
588 }
589 
590 /*
591  * Put cur_page under IO.  The section of cur_page which is described by
592  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
593  * starts on-disk at cur_page_block.
594  *
595  * We take a ref against the page here (on behalf of its presence in the bio).
596  *
597  * The caller of this function is responsible for removing cur_page from the
598  * dio, and for dropping the refcount which came from that presence.
599  */
600 static int dio_send_cur_page(struct dio *dio)
601 {
602 	int ret = 0;
603 
604 	if (dio->bio) {
605 		/*
606 		 * See whether this new request is contiguous with the old
607 		 */
608 		if (dio->final_block_in_bio != dio->cur_page_block)
609 			dio_bio_submit(dio);
610 		/*
611 		 * Submit now if the underlying fs is about to perform a
612 		 * metadata read
613 		 */
614 		if (dio->boundary)
615 			dio_bio_submit(dio);
616 	}
617 
618 	if (dio->bio == NULL) {
619 		ret = dio_new_bio(dio, dio->cur_page_block);
620 		if (ret)
621 			goto out;
622 	}
623 
624 	if (dio_bio_add_page(dio) != 0) {
625 		dio_bio_submit(dio);
626 		ret = dio_new_bio(dio, dio->cur_page_block);
627 		if (ret == 0) {
628 			ret = dio_bio_add_page(dio);
629 			BUG_ON(ret != 0);
630 		}
631 	}
632 out:
633 	return ret;
634 }
635 
636 /*
637  * An autonomous function to put a chunk of a page under deferred IO.
638  *
639  * The caller doesn't actually know (or care) whether this piece of page is in
640  * a BIO, or is under IO or whatever.  We just take care of all possible
641  * situations here.  The separation between the logic of do_direct_IO() and
642  * that of submit_page_section() is important for clarity.  Please don't break.
643  *
644  * The chunk of page starts on-disk at blocknr.
645  *
646  * We perform deferred IO, by recording the last-submitted page inside our
647  * private part of the dio structure.  If possible, we just expand the IO
648  * across that page here.
649  *
650  * If that doesn't work out then we put the old page into the bio and add this
651  * page to the dio instead.
652  */
653 static int
654 submit_page_section(struct dio *dio, struct page *page,
655 		unsigned offset, unsigned len, sector_t blocknr)
656 {
657 	int ret = 0;
658 
659 	if (dio->rw & WRITE) {
660 		/*
661 		 * Read accounting is performed in submit_bio()
662 		 */
663 		task_io_account_write(len);
664 	}
665 
666 	/*
667 	 * Can we just grow the current page's presence in the dio?
668 	 */
669 	if (	(dio->cur_page == page) &&
670 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
671 		(dio->cur_page_block +
672 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
673 		dio->cur_page_len += len;
674 
675 		/*
676 		 * If dio->boundary then we want to schedule the IO now to
677 		 * avoid metadata seeks.
678 		 */
679 		if (dio->boundary) {
680 			ret = dio_send_cur_page(dio);
681 			page_cache_release(dio->cur_page);
682 			dio->cur_page = NULL;
683 		}
684 		goto out;
685 	}
686 
687 	/*
688 	 * If there's a deferred page already there then send it.
689 	 */
690 	if (dio->cur_page) {
691 		ret = dio_send_cur_page(dio);
692 		page_cache_release(dio->cur_page);
693 		dio->cur_page = NULL;
694 		if (ret)
695 			goto out;
696 	}
697 
698 	page_cache_get(page);		/* It is in dio */
699 	dio->cur_page = page;
700 	dio->cur_page_offset = offset;
701 	dio->cur_page_len = len;
702 	dio->cur_page_block = blocknr;
703 out:
704 	return ret;
705 }
706 
707 /*
708  * Clean any dirty buffers in the blockdev mapping which alias newly-created
709  * file blocks.  Only called for S_ISREG files - blockdevs do not set
710  * buffer_new
711  */
712 static void clean_blockdev_aliases(struct dio *dio)
713 {
714 	unsigned i;
715 	unsigned nblocks;
716 
717 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
718 
719 	for (i = 0; i < nblocks; i++) {
720 		unmap_underlying_metadata(dio->map_bh.b_bdev,
721 					dio->map_bh.b_blocknr + i);
722 	}
723 }
724 
725 /*
726  * If we are not writing the entire block and get_block() allocated
727  * the block for us, we need to fill-in the unused portion of the
728  * block with zeros. This happens only if user-buffer, fileoffset or
729  * io length is not filesystem block-size multiple.
730  *
731  * `end' is zero if we're doing the start of the IO, 1 at the end of the
732  * IO.
733  */
734 static void dio_zero_block(struct dio *dio, int end)
735 {
736 	unsigned dio_blocks_per_fs_block;
737 	unsigned this_chunk_blocks;	/* In dio_blocks */
738 	unsigned this_chunk_bytes;
739 	struct page *page;
740 
741 	dio->start_zero_done = 1;
742 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
743 		return;
744 
745 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
746 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
747 
748 	if (!this_chunk_blocks)
749 		return;
750 
751 	/*
752 	 * We need to zero out part of an fs block.  It is either at the
753 	 * beginning or the end of the fs block.
754 	 */
755 	if (end)
756 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
757 
758 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
759 
760 	page = ZERO_PAGE(0);
761 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
762 				dio->next_block_for_io))
763 		return;
764 
765 	dio->next_block_for_io += this_chunk_blocks;
766 }
767 
768 /*
769  * Walk the user pages, and the file, mapping blocks to disk and generating
770  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
771  * into submit_page_section(), which takes care of the next stage of submission
772  *
773  * Direct IO against a blockdev is different from a file.  Because we can
774  * happily perform page-sized but 512-byte aligned IOs.  It is important that
775  * blockdev IO be able to have fine alignment and large sizes.
776  *
777  * So what we do is to permit the ->get_block function to populate bh.b_size
778  * with the size of IO which is permitted at this offset and this i_blkbits.
779  *
780  * For best results, the blockdev should be set up with 512-byte i_blkbits and
781  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
782  * fine alignment but still allows this function to work in PAGE_SIZE units.
783  */
784 static int do_direct_IO(struct dio *dio)
785 {
786 	const unsigned blkbits = dio->blkbits;
787 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
788 	struct page *page;
789 	unsigned block_in_page;
790 	struct buffer_head *map_bh = &dio->map_bh;
791 	int ret = 0;
792 
793 	/* The I/O can start at any block offset within the first page */
794 	block_in_page = dio->first_block_in_page;
795 
796 	while (dio->block_in_file < dio->final_block_in_request) {
797 		page = dio_get_page(dio);
798 		if (IS_ERR(page)) {
799 			ret = PTR_ERR(page);
800 			goto out;
801 		}
802 
803 		while (block_in_page < blocks_per_page) {
804 			unsigned offset_in_page = block_in_page << blkbits;
805 			unsigned this_chunk_bytes;	/* # of bytes mapped */
806 			unsigned this_chunk_blocks;	/* # of blocks */
807 			unsigned u;
808 
809 			if (dio->blocks_available == 0) {
810 				/*
811 				 * Need to go and map some more disk
812 				 */
813 				unsigned long blkmask;
814 				unsigned long dio_remainder;
815 
816 				ret = get_more_blocks(dio);
817 				if (ret) {
818 					page_cache_release(page);
819 					goto out;
820 				}
821 				if (!buffer_mapped(map_bh))
822 					goto do_holes;
823 
824 				dio->blocks_available =
825 						map_bh->b_size >> dio->blkbits;
826 				dio->next_block_for_io =
827 					map_bh->b_blocknr << dio->blkfactor;
828 				if (buffer_new(map_bh))
829 					clean_blockdev_aliases(dio);
830 
831 				if (!dio->blkfactor)
832 					goto do_holes;
833 
834 				blkmask = (1 << dio->blkfactor) - 1;
835 				dio_remainder = (dio->block_in_file & blkmask);
836 
837 				/*
838 				 * If we are at the start of IO and that IO
839 				 * starts partway into a fs-block,
840 				 * dio_remainder will be non-zero.  If the IO
841 				 * is a read then we can simply advance the IO
842 				 * cursor to the first block which is to be
843 				 * read.  But if the IO is a write and the
844 				 * block was newly allocated we cannot do that;
845 				 * the start of the fs block must be zeroed out
846 				 * on-disk
847 				 */
848 				if (!buffer_new(map_bh))
849 					dio->next_block_for_io += dio_remainder;
850 				dio->blocks_available -= dio_remainder;
851 			}
852 do_holes:
853 			/* Handle holes */
854 			if (!buffer_mapped(map_bh)) {
855 				loff_t i_size_aligned;
856 
857 				/* AKPM: eargh, -ENOTBLK is a hack */
858 				if (dio->rw & WRITE) {
859 					page_cache_release(page);
860 					return -ENOTBLK;
861 				}
862 
863 				/*
864 				 * Be sure to account for a partial block as the
865 				 * last block in the file
866 				 */
867 				i_size_aligned = ALIGN(i_size_read(dio->inode),
868 							1 << blkbits);
869 				if (dio->block_in_file >=
870 						i_size_aligned >> blkbits) {
871 					/* We hit eof */
872 					page_cache_release(page);
873 					goto out;
874 				}
875 				zero_user(page, block_in_page << blkbits,
876 						1 << blkbits);
877 				dio->block_in_file++;
878 				block_in_page++;
879 				goto next_block;
880 			}
881 
882 			/*
883 			 * If we're performing IO which has an alignment which
884 			 * is finer than the underlying fs, go check to see if
885 			 * we must zero out the start of this block.
886 			 */
887 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
888 				dio_zero_block(dio, 0);
889 
890 			/*
891 			 * Work out, in this_chunk_blocks, how much disk we
892 			 * can add to this page
893 			 */
894 			this_chunk_blocks = dio->blocks_available;
895 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
896 			if (this_chunk_blocks > u)
897 				this_chunk_blocks = u;
898 			u = dio->final_block_in_request - dio->block_in_file;
899 			if (this_chunk_blocks > u)
900 				this_chunk_blocks = u;
901 			this_chunk_bytes = this_chunk_blocks << blkbits;
902 			BUG_ON(this_chunk_bytes == 0);
903 
904 			dio->boundary = buffer_boundary(map_bh);
905 			ret = submit_page_section(dio, page, offset_in_page,
906 				this_chunk_bytes, dio->next_block_for_io);
907 			if (ret) {
908 				page_cache_release(page);
909 				goto out;
910 			}
911 			dio->next_block_for_io += this_chunk_blocks;
912 
913 			dio->block_in_file += this_chunk_blocks;
914 			block_in_page += this_chunk_blocks;
915 			dio->blocks_available -= this_chunk_blocks;
916 next_block:
917 			BUG_ON(dio->block_in_file > dio->final_block_in_request);
918 			if (dio->block_in_file == dio->final_block_in_request)
919 				break;
920 		}
921 
922 		/* Drop the ref which was taken in get_user_pages() */
923 		page_cache_release(page);
924 		block_in_page = 0;
925 	}
926 out:
927 	return ret;
928 }
929 
930 /*
931  * Releases both i_mutex and i_alloc_sem
932  */
933 static ssize_t
934 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
935 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
936 	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
937 	struct dio *dio)
938 {
939 	unsigned long user_addr;
940 	unsigned long flags;
941 	int seg;
942 	ssize_t ret = 0;
943 	ssize_t ret2;
944 	size_t bytes;
945 
946 	dio->inode = inode;
947 	dio->rw = rw;
948 	dio->blkbits = blkbits;
949 	dio->blkfactor = inode->i_blkbits - blkbits;
950 	dio->block_in_file = offset >> blkbits;
951 
952 	dio->get_block = get_block;
953 	dio->end_io = end_io;
954 	dio->final_block_in_bio = -1;
955 	dio->next_block_for_io = -1;
956 
957 	dio->iocb = iocb;
958 	dio->i_size = i_size_read(inode);
959 
960 	spin_lock_init(&dio->bio_lock);
961 	dio->refcount = 1;
962 
963 	/*
964 	 * In case of non-aligned buffers, we may need 2 more
965 	 * pages since we need to zero out first and last block.
966 	 */
967 	if (unlikely(dio->blkfactor))
968 		dio->pages_in_io = 2;
969 
970 	for (seg = 0; seg < nr_segs; seg++) {
971 		user_addr = (unsigned long)iov[seg].iov_base;
972 		dio->pages_in_io +=
973 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
974 				- user_addr/PAGE_SIZE);
975 	}
976 
977 	for (seg = 0; seg < nr_segs; seg++) {
978 		user_addr = (unsigned long)iov[seg].iov_base;
979 		dio->size += bytes = iov[seg].iov_len;
980 
981 		/* Index into the first page of the first block */
982 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
983 		dio->final_block_in_request = dio->block_in_file +
984 						(bytes >> blkbits);
985 		/* Page fetching state */
986 		dio->head = 0;
987 		dio->tail = 0;
988 		dio->curr_page = 0;
989 
990 		dio->total_pages = 0;
991 		if (user_addr & (PAGE_SIZE-1)) {
992 			dio->total_pages++;
993 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
994 		}
995 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
996 		dio->curr_user_address = user_addr;
997 
998 		ret = do_direct_IO(dio);
999 
1000 		dio->result += iov[seg].iov_len -
1001 			((dio->final_block_in_request - dio->block_in_file) <<
1002 					blkbits);
1003 
1004 		if (ret) {
1005 			dio_cleanup(dio);
1006 			break;
1007 		}
1008 	} /* end iovec loop */
1009 
1010 	if (ret == -ENOTBLK && (rw & WRITE)) {
1011 		/*
1012 		 * The remaining part of the request will be
1013 		 * be handled by buffered I/O when we return
1014 		 */
1015 		ret = 0;
1016 	}
1017 	/*
1018 	 * There may be some unwritten disk at the end of a part-written
1019 	 * fs-block-sized block.  Go zero that now.
1020 	 */
1021 	dio_zero_block(dio, 1);
1022 
1023 	if (dio->cur_page) {
1024 		ret2 = dio_send_cur_page(dio);
1025 		if (ret == 0)
1026 			ret = ret2;
1027 		page_cache_release(dio->cur_page);
1028 		dio->cur_page = NULL;
1029 	}
1030 	if (dio->bio)
1031 		dio_bio_submit(dio);
1032 
1033 	/* All IO is now issued, send it on its way */
1034 	blk_run_address_space(inode->i_mapping);
1035 
1036 	/*
1037 	 * It is possible that, we return short IO due to end of file.
1038 	 * In that case, we need to release all the pages we got hold on.
1039 	 */
1040 	dio_cleanup(dio);
1041 
1042 	/*
1043 	 * All block lookups have been performed. For READ requests
1044 	 * we can let i_mutex go now that its achieved its purpose
1045 	 * of protecting us from looking up uninitialized blocks.
1046 	 */
1047 	if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1048 		mutex_unlock(&dio->inode->i_mutex);
1049 
1050 	/*
1051 	 * The only time we want to leave bios in flight is when a successful
1052 	 * partial aio read or full aio write have been setup.  In that case
1053 	 * bio completion will call aio_complete.  The only time it's safe to
1054 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1055 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1056 	 */
1057 	BUG_ON(ret == -EIOCBQUEUED);
1058 	if (dio->is_async && ret == 0 && dio->result &&
1059 	    ((rw & READ) || (dio->result == dio->size)))
1060 		ret = -EIOCBQUEUED;
1061 
1062 	if (ret != -EIOCBQUEUED)
1063 		dio_await_completion(dio);
1064 
1065 	/*
1066 	 * Sync will always be dropping the final ref and completing the
1067 	 * operation.  AIO can if it was a broken operation described above or
1068 	 * in fact if all the bios race to complete before we get here.  In
1069 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1070 	 * return code that the caller will hand to aio_complete().
1071 	 *
1072 	 * This is managed by the bio_lock instead of being an atomic_t so that
1073 	 * completion paths can drop their ref and use the remaining count to
1074 	 * decide to wake the submission path atomically.
1075 	 */
1076 	spin_lock_irqsave(&dio->bio_lock, flags);
1077 	ret2 = --dio->refcount;
1078 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1079 
1080 	if (ret2 == 0) {
1081 		ret = dio_complete(dio, offset, ret);
1082 		kfree(dio);
1083 	} else
1084 		BUG_ON(ret != -EIOCBQUEUED);
1085 
1086 	return ret;
1087 }
1088 
1089 /*
1090  * This is a library function for use by filesystem drivers.
1091  * The locking rules are governed by the dio_lock_type parameter.
1092  *
1093  * DIO_NO_LOCKING (no locking, for raw block device access)
1094  * For writes, i_mutex is not held on entry; it is never taken.
1095  *
1096  * DIO_LOCKING (simple locking for regular files)
1097  * For writes we are called under i_mutex and return with i_mutex held, even
1098  * though it is internally dropped.
1099  * For reads, i_mutex is not held on entry, but it is taken and dropped before
1100  * returning.
1101  *
1102  * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1103  *	uninitialised data, allowing parallel direct readers and writers)
1104  * For writes we are called without i_mutex, return without it, never touch it.
1105  * For reads we are called under i_mutex and return with i_mutex held, even
1106  * though it may be internally dropped.
1107  *
1108  * Additional i_alloc_sem locking requirements described inline below.
1109  */
1110 ssize_t
1111 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1112 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1113 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1114 	int dio_lock_type)
1115 {
1116 	int seg;
1117 	size_t size;
1118 	unsigned long addr;
1119 	unsigned blkbits = inode->i_blkbits;
1120 	unsigned bdev_blkbits = 0;
1121 	unsigned blocksize_mask = (1 << blkbits) - 1;
1122 	ssize_t retval = -EINVAL;
1123 	loff_t end = offset;
1124 	struct dio *dio;
1125 	int release_i_mutex = 0;
1126 	int acquire_i_mutex = 0;
1127 
1128 	if (rw & WRITE)
1129 		rw = WRITE_SYNC;
1130 
1131 	if (bdev)
1132 		bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1133 
1134 	if (offset & blocksize_mask) {
1135 		if (bdev)
1136 			 blkbits = bdev_blkbits;
1137 		blocksize_mask = (1 << blkbits) - 1;
1138 		if (offset & blocksize_mask)
1139 			goto out;
1140 	}
1141 
1142 	/* Check the memory alignment.  Blocks cannot straddle pages */
1143 	for (seg = 0; seg < nr_segs; seg++) {
1144 		addr = (unsigned long)iov[seg].iov_base;
1145 		size = iov[seg].iov_len;
1146 		end += size;
1147 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1148 			if (bdev)
1149 				 blkbits = bdev_blkbits;
1150 			blocksize_mask = (1 << blkbits) - 1;
1151 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1152 				goto out;
1153 		}
1154 	}
1155 
1156 	dio = kzalloc(sizeof(*dio), GFP_KERNEL);
1157 	retval = -ENOMEM;
1158 	if (!dio)
1159 		goto out;
1160 
1161 	/*
1162 	 * For block device access DIO_NO_LOCKING is used,
1163 	 *	neither readers nor writers do any locking at all
1164 	 * For regular files using DIO_LOCKING,
1165 	 *	readers need to grab i_mutex and i_alloc_sem
1166 	 *	writers need to grab i_alloc_sem only (i_mutex is already held)
1167 	 * For regular files using DIO_OWN_LOCKING,
1168 	 *	neither readers nor writers take any locks here
1169 	 */
1170 	dio->lock_type = dio_lock_type;
1171 	if (dio_lock_type != DIO_NO_LOCKING) {
1172 		/* watch out for a 0 len io from a tricksy fs */
1173 		if (rw == READ && end > offset) {
1174 			struct address_space *mapping;
1175 
1176 			mapping = iocb->ki_filp->f_mapping;
1177 			if (dio_lock_type != DIO_OWN_LOCKING) {
1178 				mutex_lock(&inode->i_mutex);
1179 				release_i_mutex = 1;
1180 			}
1181 
1182 			retval = filemap_write_and_wait_range(mapping, offset,
1183 							      end - 1);
1184 			if (retval) {
1185 				kfree(dio);
1186 				goto out;
1187 			}
1188 
1189 			if (dio_lock_type == DIO_OWN_LOCKING) {
1190 				mutex_unlock(&inode->i_mutex);
1191 				acquire_i_mutex = 1;
1192 			}
1193 		}
1194 
1195 		if (dio_lock_type == DIO_LOCKING)
1196 			/* lockdep: not the owner will release it */
1197 			down_read_non_owner(&inode->i_alloc_sem);
1198 	}
1199 
1200 	/*
1201 	 * For file extending writes updating i_size before data
1202 	 * writeouts complete can expose uninitialized blocks. So
1203 	 * even for AIO, we need to wait for i/o to complete before
1204 	 * returning in this case.
1205 	 */
1206 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1207 		(end > i_size_read(inode)));
1208 
1209 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1210 				nr_segs, blkbits, get_block, end_io, dio);
1211 
1212 	if (rw == READ && dio_lock_type == DIO_LOCKING)
1213 		release_i_mutex = 0;
1214 
1215 out:
1216 	if (release_i_mutex)
1217 		mutex_unlock(&inode->i_mutex);
1218 	else if (acquire_i_mutex)
1219 		mutex_lock(&inode->i_mutex);
1220 	return retval;
1221 }
1222 EXPORT_SYMBOL(__blockdev_direct_IO);
1223