xref: /linux/fs/direct-io.c (revision 47da88f36639b8de57f6cdd680f8c27528ccd67c)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
39 
40 /*
41  * How many user pages to map in one call to get_user_pages().  This determines
42  * the size of a structure on the stack.
43  */
44 #define DIO_PAGES	64
45 
46 /*
47  * This code generally works in units of "dio_blocks".  A dio_block is
48  * somewhere between the hard sector size and the filesystem block size.  it
49  * is determined on a per-invocation basis.   When talking to the filesystem
50  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
52  * to bio_block quantities by shifting left by blkfactor.
53  *
54  * If blkfactor is zero then the user's request was aligned to the filesystem's
55  * blocksize.
56  */
57 
58 struct dio {
59 	/* BIO submission state */
60 	struct bio *bio;		/* bio under assembly */
61 	struct inode *inode;
62 	int rw;
63 	loff_t i_size;			/* i_size when submitted */
64 	int flags;			/* doesn't change */
65 	unsigned blkbits;		/* doesn't change */
66 	unsigned blkfactor;		/* When we're using an alignment which
67 					   is finer than the filesystem's soft
68 					   blocksize, this specifies how much
69 					   finer.  blkfactor=2 means 1/4-block
70 					   alignment.  Does not change */
71 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
72 					   been performed at the start of a
73 					   write */
74 	int pages_in_io;		/* approximate total IO pages */
75 	size_t	size;			/* total request size (doesn't change)*/
76 	sector_t block_in_file;		/* Current offset into the underlying
77 					   file in dio_block units. */
78 	unsigned blocks_available;	/* At block_in_file.  changes */
79 	sector_t final_block_in_request;/* doesn't change */
80 	unsigned first_block_in_page;	/* doesn't change, Used only once */
81 	int boundary;			/* prev block is at a boundary */
82 	int reap_counter;		/* rate limit reaping */
83 	get_block_t *get_block;		/* block mapping function */
84 	dio_iodone_t *end_io;		/* IO completion function */
85 	dio_submit_t *submit_io;	/* IO submition function */
86 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
87 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
88 	sector_t next_block_for_io;	/* next block to be put under IO,
89 					   in dio_blocks units */
90 	struct buffer_head map_bh;	/* last get_block() result */
91 
92 	/*
93 	 * Deferred addition of a page to the dio.  These variables are
94 	 * private to dio_send_cur_page(), submit_page_section() and
95 	 * dio_bio_add_page().
96 	 */
97 	struct page *cur_page;		/* The page */
98 	unsigned cur_page_offset;	/* Offset into it, in bytes */
99 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
100 	sector_t cur_page_block;	/* Where it starts */
101 	loff_t cur_page_fs_offset;	/* Offset in file */
102 
103 	/* BIO completion state */
104 	spinlock_t bio_lock;		/* protects BIO fields below */
105 	unsigned long refcount;		/* direct_io_worker() and bios */
106 	struct bio *bio_list;		/* singly linked via bi_private */
107 	struct task_struct *waiter;	/* waiting task (NULL if none) */
108 
109 	/* AIO related stuff */
110 	struct kiocb *iocb;		/* kiocb */
111 	int is_async;			/* is IO async ? */
112 	int io_error;			/* IO error in completion path */
113 	ssize_t result;                 /* IO result */
114 
115 	/*
116 	 * Page fetching state. These variables belong to dio_refill_pages().
117 	 */
118 	int curr_page;			/* changes */
119 	int total_pages;		/* doesn't change */
120 	unsigned long curr_user_address;/* changes */
121 
122 	/*
123 	 * Page queue.  These variables belong to dio_refill_pages() and
124 	 * dio_get_page().
125 	 */
126 	unsigned head;			/* next page to process */
127 	unsigned tail;			/* last valid page + 1 */
128 	int page_errors;		/* errno from get_user_pages() */
129 
130 	/*
131 	 * pages[] (and any fields placed after it) are not zeroed out at
132 	 * allocation time.  Don't add new fields after pages[] unless you
133 	 * wish that they not be zeroed.
134 	 */
135 	struct page *pages[DIO_PAGES];	/* page buffer */
136 };
137 
138 /*
139  * How many pages are in the queue?
140  */
141 static inline unsigned dio_pages_present(struct dio *dio)
142 {
143 	return dio->tail - dio->head;
144 }
145 
146 /*
147  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
148  */
149 static int dio_refill_pages(struct dio *dio)
150 {
151 	int ret;
152 	int nr_pages;
153 
154 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
155 	ret = get_user_pages_fast(
156 		dio->curr_user_address,		/* Where from? */
157 		nr_pages,			/* How many pages? */
158 		dio->rw == READ,		/* Write to memory? */
159 		&dio->pages[0]);		/* Put results here */
160 
161 	if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
162 		struct page *page = ZERO_PAGE(0);
163 		/*
164 		 * A memory fault, but the filesystem has some outstanding
165 		 * mapped blocks.  We need to use those blocks up to avoid
166 		 * leaking stale data in the file.
167 		 */
168 		if (dio->page_errors == 0)
169 			dio->page_errors = ret;
170 		page_cache_get(page);
171 		dio->pages[0] = page;
172 		dio->head = 0;
173 		dio->tail = 1;
174 		ret = 0;
175 		goto out;
176 	}
177 
178 	if (ret >= 0) {
179 		dio->curr_user_address += ret * PAGE_SIZE;
180 		dio->curr_page += ret;
181 		dio->head = 0;
182 		dio->tail = ret;
183 		ret = 0;
184 	}
185 out:
186 	return ret;
187 }
188 
189 /*
190  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
191  * buffered inside the dio so that we can call get_user_pages() against a
192  * decent number of pages, less frequently.  To provide nicer use of the
193  * L1 cache.
194  */
195 static struct page *dio_get_page(struct dio *dio)
196 {
197 	if (dio_pages_present(dio) == 0) {
198 		int ret;
199 
200 		ret = dio_refill_pages(dio);
201 		if (ret)
202 			return ERR_PTR(ret);
203 		BUG_ON(dio_pages_present(dio) == 0);
204 	}
205 	return dio->pages[dio->head++];
206 }
207 
208 /**
209  * dio_complete() - called when all DIO BIO I/O has been completed
210  * @offset: the byte offset in the file of the completed operation
211  *
212  * This releases locks as dictated by the locking type, lets interested parties
213  * know that a DIO operation has completed, and calculates the resulting return
214  * code for the operation.
215  *
216  * It lets the filesystem know if it registered an interest earlier via
217  * get_block.  Pass the private field of the map buffer_head so that
218  * filesystems can use it to hold additional state between get_block calls and
219  * dio_complete.
220  */
221 static int dio_complete(struct dio *dio, loff_t offset, int ret, bool is_async)
222 {
223 	ssize_t transferred = 0;
224 
225 	/*
226 	 * AIO submission can race with bio completion to get here while
227 	 * expecting to have the last io completed by bio completion.
228 	 * In that case -EIOCBQUEUED is in fact not an error we want
229 	 * to preserve through this call.
230 	 */
231 	if (ret == -EIOCBQUEUED)
232 		ret = 0;
233 
234 	if (dio->result) {
235 		transferred = dio->result;
236 
237 		/* Check for short read case */
238 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
239 			transferred = dio->i_size - offset;
240 	}
241 
242 	if (ret == 0)
243 		ret = dio->page_errors;
244 	if (ret == 0)
245 		ret = dio->io_error;
246 	if (ret == 0)
247 		ret = transferred;
248 
249 	if (dio->end_io && dio->result) {
250 		dio->end_io(dio->iocb, offset, transferred,
251 			    dio->map_bh.b_private, ret, is_async);
252 	} else if (is_async) {
253 		aio_complete(dio->iocb, ret, 0);
254 	}
255 
256 	if (dio->flags & DIO_LOCKING)
257 		/* lockdep: non-owner release */
258 		up_read_non_owner(&dio->inode->i_alloc_sem);
259 
260 	return ret;
261 }
262 
263 static int dio_bio_complete(struct dio *dio, struct bio *bio);
264 /*
265  * Asynchronous IO callback.
266  */
267 static void dio_bio_end_aio(struct bio *bio, int error)
268 {
269 	struct dio *dio = bio->bi_private;
270 	unsigned long remaining;
271 	unsigned long flags;
272 
273 	/* cleanup the bio */
274 	dio_bio_complete(dio, bio);
275 
276 	spin_lock_irqsave(&dio->bio_lock, flags);
277 	remaining = --dio->refcount;
278 	if (remaining == 1 && dio->waiter)
279 		wake_up_process(dio->waiter);
280 	spin_unlock_irqrestore(&dio->bio_lock, flags);
281 
282 	if (remaining == 0) {
283 		dio_complete(dio, dio->iocb->ki_pos, 0, true);
284 		kfree(dio);
285 	}
286 }
287 
288 /*
289  * The BIO completion handler simply queues the BIO up for the process-context
290  * handler.
291  *
292  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
293  * implement a singly-linked list of completed BIOs, at dio->bio_list.
294  */
295 static void dio_bio_end_io(struct bio *bio, int error)
296 {
297 	struct dio *dio = bio->bi_private;
298 	unsigned long flags;
299 
300 	spin_lock_irqsave(&dio->bio_lock, flags);
301 	bio->bi_private = dio->bio_list;
302 	dio->bio_list = bio;
303 	if (--dio->refcount == 1 && dio->waiter)
304 		wake_up_process(dio->waiter);
305 	spin_unlock_irqrestore(&dio->bio_lock, flags);
306 }
307 
308 /**
309  * dio_end_io - handle the end io action for the given bio
310  * @bio: The direct io bio thats being completed
311  * @error: Error if there was one
312  *
313  * This is meant to be called by any filesystem that uses their own dio_submit_t
314  * so that the DIO specific endio actions are dealt with after the filesystem
315  * has done it's completion work.
316  */
317 void dio_end_io(struct bio *bio, int error)
318 {
319 	struct dio *dio = bio->bi_private;
320 
321 	if (dio->is_async)
322 		dio_bio_end_aio(bio, error);
323 	else
324 		dio_bio_end_io(bio, error);
325 }
326 EXPORT_SYMBOL_GPL(dio_end_io);
327 
328 static int
329 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
330 		sector_t first_sector, int nr_vecs)
331 {
332 	struct bio *bio;
333 
334 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
335 
336 	bio->bi_bdev = bdev;
337 	bio->bi_sector = first_sector;
338 	if (dio->is_async)
339 		bio->bi_end_io = dio_bio_end_aio;
340 	else
341 		bio->bi_end_io = dio_bio_end_io;
342 
343 	dio->bio = bio;
344 	dio->logical_offset_in_bio = dio->cur_page_fs_offset;
345 	return 0;
346 }
347 
348 /*
349  * In the AIO read case we speculatively dirty the pages before starting IO.
350  * During IO completion, any of these pages which happen to have been written
351  * back will be redirtied by bio_check_pages_dirty().
352  *
353  * bios hold a dio reference between submit_bio and ->end_io.
354  */
355 static void dio_bio_submit(struct dio *dio)
356 {
357 	struct bio *bio = dio->bio;
358 	unsigned long flags;
359 
360 	bio->bi_private = dio;
361 
362 	spin_lock_irqsave(&dio->bio_lock, flags);
363 	dio->refcount++;
364 	spin_unlock_irqrestore(&dio->bio_lock, flags);
365 
366 	if (dio->is_async && dio->rw == READ)
367 		bio_set_pages_dirty(bio);
368 
369 	if (dio->submit_io)
370 		dio->submit_io(dio->rw, bio, dio->inode,
371 			       dio->logical_offset_in_bio);
372 	else
373 		submit_bio(dio->rw, bio);
374 
375 	dio->bio = NULL;
376 	dio->boundary = 0;
377 	dio->logical_offset_in_bio = 0;
378 }
379 
380 /*
381  * Release any resources in case of a failure
382  */
383 static void dio_cleanup(struct dio *dio)
384 {
385 	while (dio_pages_present(dio))
386 		page_cache_release(dio_get_page(dio));
387 }
388 
389 /*
390  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
391  * returned once all BIOs have been completed.  This must only be called once
392  * all bios have been issued so that dio->refcount can only decrease.  This
393  * requires that that the caller hold a reference on the dio.
394  */
395 static struct bio *dio_await_one(struct dio *dio)
396 {
397 	unsigned long flags;
398 	struct bio *bio = NULL;
399 
400 	spin_lock_irqsave(&dio->bio_lock, flags);
401 
402 	/*
403 	 * Wait as long as the list is empty and there are bios in flight.  bio
404 	 * completion drops the count, maybe adds to the list, and wakes while
405 	 * holding the bio_lock so we don't need set_current_state()'s barrier
406 	 * and can call it after testing our condition.
407 	 */
408 	while (dio->refcount > 1 && dio->bio_list == NULL) {
409 		__set_current_state(TASK_UNINTERRUPTIBLE);
410 		dio->waiter = current;
411 		spin_unlock_irqrestore(&dio->bio_lock, flags);
412 		io_schedule();
413 		/* wake up sets us TASK_RUNNING */
414 		spin_lock_irqsave(&dio->bio_lock, flags);
415 		dio->waiter = NULL;
416 	}
417 	if (dio->bio_list) {
418 		bio = dio->bio_list;
419 		dio->bio_list = bio->bi_private;
420 	}
421 	spin_unlock_irqrestore(&dio->bio_lock, flags);
422 	return bio;
423 }
424 
425 /*
426  * Process one completed BIO.  No locks are held.
427  */
428 static int dio_bio_complete(struct dio *dio, struct bio *bio)
429 {
430 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
431 	struct bio_vec *bvec = bio->bi_io_vec;
432 	int page_no;
433 
434 	if (!uptodate)
435 		dio->io_error = -EIO;
436 
437 	if (dio->is_async && dio->rw == READ) {
438 		bio_check_pages_dirty(bio);	/* transfers ownership */
439 	} else {
440 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
441 			struct page *page = bvec[page_no].bv_page;
442 
443 			if (dio->rw == READ && !PageCompound(page))
444 				set_page_dirty_lock(page);
445 			page_cache_release(page);
446 		}
447 		bio_put(bio);
448 	}
449 	return uptodate ? 0 : -EIO;
450 }
451 
452 /*
453  * Wait on and process all in-flight BIOs.  This must only be called once
454  * all bios have been issued so that the refcount can only decrease.
455  * This just waits for all bios to make it through dio_bio_complete.  IO
456  * errors are propagated through dio->io_error and should be propagated via
457  * dio_complete().
458  */
459 static void dio_await_completion(struct dio *dio)
460 {
461 	struct bio *bio;
462 	do {
463 		bio = dio_await_one(dio);
464 		if (bio)
465 			dio_bio_complete(dio, bio);
466 	} while (bio);
467 }
468 
469 /*
470  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
471  * to keep the memory consumption sane we periodically reap any completed BIOs
472  * during the BIO generation phase.
473  *
474  * This also helps to limit the peak amount of pinned userspace memory.
475  */
476 static int dio_bio_reap(struct dio *dio)
477 {
478 	int ret = 0;
479 
480 	if (dio->reap_counter++ >= 64) {
481 		while (dio->bio_list) {
482 			unsigned long flags;
483 			struct bio *bio;
484 			int ret2;
485 
486 			spin_lock_irqsave(&dio->bio_lock, flags);
487 			bio = dio->bio_list;
488 			dio->bio_list = bio->bi_private;
489 			spin_unlock_irqrestore(&dio->bio_lock, flags);
490 			ret2 = dio_bio_complete(dio, bio);
491 			if (ret == 0)
492 				ret = ret2;
493 		}
494 		dio->reap_counter = 0;
495 	}
496 	return ret;
497 }
498 
499 /*
500  * Call into the fs to map some more disk blocks.  We record the current number
501  * of available blocks at dio->blocks_available.  These are in units of the
502  * fs blocksize, (1 << inode->i_blkbits).
503  *
504  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
505  * it uses the passed inode-relative block number as the file offset, as usual.
506  *
507  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
508  * has remaining to do.  The fs should not map more than this number of blocks.
509  *
510  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
511  * indicate how much contiguous disk space has been made available at
512  * bh->b_blocknr.
513  *
514  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
515  * This isn't very efficient...
516  *
517  * In the case of filesystem holes: the fs may return an arbitrarily-large
518  * hole by returning an appropriate value in b_size and by clearing
519  * buffer_mapped().  However the direct-io code will only process holes one
520  * block at a time - it will repeatedly call get_block() as it walks the hole.
521  */
522 static int get_more_blocks(struct dio *dio)
523 {
524 	int ret;
525 	struct buffer_head *map_bh = &dio->map_bh;
526 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
527 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
528 	unsigned long dio_count;/* Number of dio_block-sized blocks */
529 	unsigned long blkmask;
530 	int create;
531 
532 	/*
533 	 * If there was a memory error and we've overwritten all the
534 	 * mapped blocks then we can now return that memory error
535 	 */
536 	ret = dio->page_errors;
537 	if (ret == 0) {
538 		BUG_ON(dio->block_in_file >= dio->final_block_in_request);
539 		fs_startblk = dio->block_in_file >> dio->blkfactor;
540 		dio_count = dio->final_block_in_request - dio->block_in_file;
541 		fs_count = dio_count >> dio->blkfactor;
542 		blkmask = (1 << dio->blkfactor) - 1;
543 		if (dio_count & blkmask)
544 			fs_count++;
545 
546 		map_bh->b_state = 0;
547 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
548 
549 		/*
550 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
551 		 * forbid block creations: only overwrites are permitted.
552 		 * We will return early to the caller once we see an
553 		 * unmapped buffer head returned, and the caller will fall
554 		 * back to buffered I/O.
555 		 *
556 		 * Otherwise the decision is left to the get_blocks method,
557 		 * which may decide to handle it or also return an unmapped
558 		 * buffer head.
559 		 */
560 		create = dio->rw & WRITE;
561 		if (dio->flags & DIO_SKIP_HOLES) {
562 			if (dio->block_in_file < (i_size_read(dio->inode) >>
563 							dio->blkbits))
564 				create = 0;
565 		}
566 
567 		ret = (*dio->get_block)(dio->inode, fs_startblk,
568 						map_bh, create);
569 	}
570 	return ret;
571 }
572 
573 /*
574  * There is no bio.  Make one now.
575  */
576 static int dio_new_bio(struct dio *dio, sector_t start_sector)
577 {
578 	sector_t sector;
579 	int ret, nr_pages;
580 
581 	ret = dio_bio_reap(dio);
582 	if (ret)
583 		goto out;
584 	sector = start_sector << (dio->blkbits - 9);
585 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
586 	BUG_ON(nr_pages <= 0);
587 	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
588 	dio->boundary = 0;
589 out:
590 	return ret;
591 }
592 
593 /*
594  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
595  * that was successful then update final_block_in_bio and take a ref against
596  * the just-added page.
597  *
598  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
599  */
600 static int dio_bio_add_page(struct dio *dio)
601 {
602 	int ret;
603 
604 	ret = bio_add_page(dio->bio, dio->cur_page,
605 			dio->cur_page_len, dio->cur_page_offset);
606 	if (ret == dio->cur_page_len) {
607 		/*
608 		 * Decrement count only, if we are done with this page
609 		 */
610 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
611 			dio->pages_in_io--;
612 		page_cache_get(dio->cur_page);
613 		dio->final_block_in_bio = dio->cur_page_block +
614 			(dio->cur_page_len >> dio->blkbits);
615 		ret = 0;
616 	} else {
617 		ret = 1;
618 	}
619 	return ret;
620 }
621 
622 /*
623  * Put cur_page under IO.  The section of cur_page which is described by
624  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
625  * starts on-disk at cur_page_block.
626  *
627  * We take a ref against the page here (on behalf of its presence in the bio).
628  *
629  * The caller of this function is responsible for removing cur_page from the
630  * dio, and for dropping the refcount which came from that presence.
631  */
632 static int dio_send_cur_page(struct dio *dio)
633 {
634 	int ret = 0;
635 
636 	if (dio->bio) {
637 		loff_t cur_offset = dio->block_in_file << dio->blkbits;
638 		loff_t bio_next_offset = dio->logical_offset_in_bio +
639 			dio->bio->bi_size;
640 
641 		/*
642 		 * See whether this new request is contiguous with the old.
643 		 *
644 		 * Btrfs cannot handl having logically non-contiguous requests
645 		 * submitted.  For exmple if you have
646 		 *
647 		 * Logical:  [0-4095][HOLE][8192-12287]
648 		 * Phyiscal: [0-4095]      [4096-8181]
649 		 *
650 		 * We cannot submit those pages together as one BIO.  So if our
651 		 * current logical offset in the file does not equal what would
652 		 * be the next logical offset in the bio, submit the bio we
653 		 * have.
654 		 */
655 		if (dio->final_block_in_bio != dio->cur_page_block ||
656 		    cur_offset != bio_next_offset)
657 			dio_bio_submit(dio);
658 		/*
659 		 * Submit now if the underlying fs is about to perform a
660 		 * metadata read
661 		 */
662 		if (dio->boundary)
663 			dio_bio_submit(dio);
664 	}
665 
666 	if (dio->bio == NULL) {
667 		ret = dio_new_bio(dio, dio->cur_page_block);
668 		if (ret)
669 			goto out;
670 	}
671 
672 	if (dio_bio_add_page(dio) != 0) {
673 		dio_bio_submit(dio);
674 		ret = dio_new_bio(dio, dio->cur_page_block);
675 		if (ret == 0) {
676 			ret = dio_bio_add_page(dio);
677 			BUG_ON(ret != 0);
678 		}
679 	}
680 out:
681 	return ret;
682 }
683 
684 /*
685  * An autonomous function to put a chunk of a page under deferred IO.
686  *
687  * The caller doesn't actually know (or care) whether this piece of page is in
688  * a BIO, or is under IO or whatever.  We just take care of all possible
689  * situations here.  The separation between the logic of do_direct_IO() and
690  * that of submit_page_section() is important for clarity.  Please don't break.
691  *
692  * The chunk of page starts on-disk at blocknr.
693  *
694  * We perform deferred IO, by recording the last-submitted page inside our
695  * private part of the dio structure.  If possible, we just expand the IO
696  * across that page here.
697  *
698  * If that doesn't work out then we put the old page into the bio and add this
699  * page to the dio instead.
700  */
701 static int
702 submit_page_section(struct dio *dio, struct page *page,
703 		unsigned offset, unsigned len, sector_t blocknr)
704 {
705 	int ret = 0;
706 
707 	if (dio->rw & WRITE) {
708 		/*
709 		 * Read accounting is performed in submit_bio()
710 		 */
711 		task_io_account_write(len);
712 	}
713 
714 	/*
715 	 * Can we just grow the current page's presence in the dio?
716 	 */
717 	if (	(dio->cur_page == page) &&
718 		(dio->cur_page_offset + dio->cur_page_len == offset) &&
719 		(dio->cur_page_block +
720 			(dio->cur_page_len >> dio->blkbits) == blocknr)) {
721 		dio->cur_page_len += len;
722 
723 		/*
724 		 * If dio->boundary then we want to schedule the IO now to
725 		 * avoid metadata seeks.
726 		 */
727 		if (dio->boundary) {
728 			ret = dio_send_cur_page(dio);
729 			page_cache_release(dio->cur_page);
730 			dio->cur_page = NULL;
731 		}
732 		goto out;
733 	}
734 
735 	/*
736 	 * If there's a deferred page already there then send it.
737 	 */
738 	if (dio->cur_page) {
739 		ret = dio_send_cur_page(dio);
740 		page_cache_release(dio->cur_page);
741 		dio->cur_page = NULL;
742 		if (ret)
743 			goto out;
744 	}
745 
746 	page_cache_get(page);		/* It is in dio */
747 	dio->cur_page = page;
748 	dio->cur_page_offset = offset;
749 	dio->cur_page_len = len;
750 	dio->cur_page_block = blocknr;
751 	dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits;
752 out:
753 	return ret;
754 }
755 
756 /*
757  * Clean any dirty buffers in the blockdev mapping which alias newly-created
758  * file blocks.  Only called for S_ISREG files - blockdevs do not set
759  * buffer_new
760  */
761 static void clean_blockdev_aliases(struct dio *dio)
762 {
763 	unsigned i;
764 	unsigned nblocks;
765 
766 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
767 
768 	for (i = 0; i < nblocks; i++) {
769 		unmap_underlying_metadata(dio->map_bh.b_bdev,
770 					dio->map_bh.b_blocknr + i);
771 	}
772 }
773 
774 /*
775  * If we are not writing the entire block and get_block() allocated
776  * the block for us, we need to fill-in the unused portion of the
777  * block with zeros. This happens only if user-buffer, fileoffset or
778  * io length is not filesystem block-size multiple.
779  *
780  * `end' is zero if we're doing the start of the IO, 1 at the end of the
781  * IO.
782  */
783 static void dio_zero_block(struct dio *dio, int end)
784 {
785 	unsigned dio_blocks_per_fs_block;
786 	unsigned this_chunk_blocks;	/* In dio_blocks */
787 	unsigned this_chunk_bytes;
788 	struct page *page;
789 
790 	dio->start_zero_done = 1;
791 	if (!dio->blkfactor || !buffer_new(&dio->map_bh))
792 		return;
793 
794 	dio_blocks_per_fs_block = 1 << dio->blkfactor;
795 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
796 
797 	if (!this_chunk_blocks)
798 		return;
799 
800 	/*
801 	 * We need to zero out part of an fs block.  It is either at the
802 	 * beginning or the end of the fs block.
803 	 */
804 	if (end)
805 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
806 
807 	this_chunk_bytes = this_chunk_blocks << dio->blkbits;
808 
809 	page = ZERO_PAGE(0);
810 	if (submit_page_section(dio, page, 0, this_chunk_bytes,
811 				dio->next_block_for_io))
812 		return;
813 
814 	dio->next_block_for_io += this_chunk_blocks;
815 }
816 
817 /*
818  * Walk the user pages, and the file, mapping blocks to disk and generating
819  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
820  * into submit_page_section(), which takes care of the next stage of submission
821  *
822  * Direct IO against a blockdev is different from a file.  Because we can
823  * happily perform page-sized but 512-byte aligned IOs.  It is important that
824  * blockdev IO be able to have fine alignment and large sizes.
825  *
826  * So what we do is to permit the ->get_block function to populate bh.b_size
827  * with the size of IO which is permitted at this offset and this i_blkbits.
828  *
829  * For best results, the blockdev should be set up with 512-byte i_blkbits and
830  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
831  * fine alignment but still allows this function to work in PAGE_SIZE units.
832  */
833 static int do_direct_IO(struct dio *dio)
834 {
835 	const unsigned blkbits = dio->blkbits;
836 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
837 	struct page *page;
838 	unsigned block_in_page;
839 	struct buffer_head *map_bh = &dio->map_bh;
840 	int ret = 0;
841 
842 	/* The I/O can start at any block offset within the first page */
843 	block_in_page = dio->first_block_in_page;
844 
845 	while (dio->block_in_file < dio->final_block_in_request) {
846 		page = dio_get_page(dio);
847 		if (IS_ERR(page)) {
848 			ret = PTR_ERR(page);
849 			goto out;
850 		}
851 
852 		while (block_in_page < blocks_per_page) {
853 			unsigned offset_in_page = block_in_page << blkbits;
854 			unsigned this_chunk_bytes;	/* # of bytes mapped */
855 			unsigned this_chunk_blocks;	/* # of blocks */
856 			unsigned u;
857 
858 			if (dio->blocks_available == 0) {
859 				/*
860 				 * Need to go and map some more disk
861 				 */
862 				unsigned long blkmask;
863 				unsigned long dio_remainder;
864 
865 				ret = get_more_blocks(dio);
866 				if (ret) {
867 					page_cache_release(page);
868 					goto out;
869 				}
870 				if (!buffer_mapped(map_bh))
871 					goto do_holes;
872 
873 				dio->blocks_available =
874 						map_bh->b_size >> dio->blkbits;
875 				dio->next_block_for_io =
876 					map_bh->b_blocknr << dio->blkfactor;
877 				if (buffer_new(map_bh))
878 					clean_blockdev_aliases(dio);
879 
880 				if (!dio->blkfactor)
881 					goto do_holes;
882 
883 				blkmask = (1 << dio->blkfactor) - 1;
884 				dio_remainder = (dio->block_in_file & blkmask);
885 
886 				/*
887 				 * If we are at the start of IO and that IO
888 				 * starts partway into a fs-block,
889 				 * dio_remainder will be non-zero.  If the IO
890 				 * is a read then we can simply advance the IO
891 				 * cursor to the first block which is to be
892 				 * read.  But if the IO is a write and the
893 				 * block was newly allocated we cannot do that;
894 				 * the start of the fs block must be zeroed out
895 				 * on-disk
896 				 */
897 				if (!buffer_new(map_bh))
898 					dio->next_block_for_io += dio_remainder;
899 				dio->blocks_available -= dio_remainder;
900 			}
901 do_holes:
902 			/* Handle holes */
903 			if (!buffer_mapped(map_bh)) {
904 				loff_t i_size_aligned;
905 
906 				/* AKPM: eargh, -ENOTBLK is a hack */
907 				if (dio->rw & WRITE) {
908 					page_cache_release(page);
909 					return -ENOTBLK;
910 				}
911 
912 				/*
913 				 * Be sure to account for a partial block as the
914 				 * last block in the file
915 				 */
916 				i_size_aligned = ALIGN(i_size_read(dio->inode),
917 							1 << blkbits);
918 				if (dio->block_in_file >=
919 						i_size_aligned >> blkbits) {
920 					/* We hit eof */
921 					page_cache_release(page);
922 					goto out;
923 				}
924 				zero_user(page, block_in_page << blkbits,
925 						1 << blkbits);
926 				dio->block_in_file++;
927 				block_in_page++;
928 				goto next_block;
929 			}
930 
931 			/*
932 			 * If we're performing IO which has an alignment which
933 			 * is finer than the underlying fs, go check to see if
934 			 * we must zero out the start of this block.
935 			 */
936 			if (unlikely(dio->blkfactor && !dio->start_zero_done))
937 				dio_zero_block(dio, 0);
938 
939 			/*
940 			 * Work out, in this_chunk_blocks, how much disk we
941 			 * can add to this page
942 			 */
943 			this_chunk_blocks = dio->blocks_available;
944 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
945 			if (this_chunk_blocks > u)
946 				this_chunk_blocks = u;
947 			u = dio->final_block_in_request - dio->block_in_file;
948 			if (this_chunk_blocks > u)
949 				this_chunk_blocks = u;
950 			this_chunk_bytes = this_chunk_blocks << blkbits;
951 			BUG_ON(this_chunk_bytes == 0);
952 
953 			dio->boundary = buffer_boundary(map_bh);
954 			ret = submit_page_section(dio, page, offset_in_page,
955 				this_chunk_bytes, dio->next_block_for_io);
956 			if (ret) {
957 				page_cache_release(page);
958 				goto out;
959 			}
960 			dio->next_block_for_io += this_chunk_blocks;
961 
962 			dio->block_in_file += this_chunk_blocks;
963 			block_in_page += this_chunk_blocks;
964 			dio->blocks_available -= this_chunk_blocks;
965 next_block:
966 			BUG_ON(dio->block_in_file > dio->final_block_in_request);
967 			if (dio->block_in_file == dio->final_block_in_request)
968 				break;
969 		}
970 
971 		/* Drop the ref which was taken in get_user_pages() */
972 		page_cache_release(page);
973 		block_in_page = 0;
974 	}
975 out:
976 	return ret;
977 }
978 
979 /*
980  * Releases both i_mutex and i_alloc_sem
981  */
982 static ssize_t
983 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
984 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,
985 	unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
986 	dio_submit_t submit_io, struct dio *dio)
987 {
988 	unsigned long user_addr;
989 	unsigned long flags;
990 	int seg;
991 	ssize_t ret = 0;
992 	ssize_t ret2;
993 	size_t bytes;
994 
995 	dio->inode = inode;
996 	dio->rw = rw;
997 	dio->blkbits = blkbits;
998 	dio->blkfactor = inode->i_blkbits - blkbits;
999 	dio->block_in_file = offset >> blkbits;
1000 
1001 	dio->get_block = get_block;
1002 	dio->end_io = end_io;
1003 	dio->submit_io = submit_io;
1004 	dio->final_block_in_bio = -1;
1005 	dio->next_block_for_io = -1;
1006 
1007 	dio->iocb = iocb;
1008 	dio->i_size = i_size_read(inode);
1009 
1010 	spin_lock_init(&dio->bio_lock);
1011 	dio->refcount = 1;
1012 
1013 	/*
1014 	 * In case of non-aligned buffers, we may need 2 more
1015 	 * pages since we need to zero out first and last block.
1016 	 */
1017 	if (unlikely(dio->blkfactor))
1018 		dio->pages_in_io = 2;
1019 
1020 	for (seg = 0; seg < nr_segs; seg++) {
1021 		user_addr = (unsigned long)iov[seg].iov_base;
1022 		dio->pages_in_io +=
1023 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1024 				- user_addr/PAGE_SIZE);
1025 	}
1026 
1027 	for (seg = 0; seg < nr_segs; seg++) {
1028 		user_addr = (unsigned long)iov[seg].iov_base;
1029 		dio->size += bytes = iov[seg].iov_len;
1030 
1031 		/* Index into the first page of the first block */
1032 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1033 		dio->final_block_in_request = dio->block_in_file +
1034 						(bytes >> blkbits);
1035 		/* Page fetching state */
1036 		dio->head = 0;
1037 		dio->tail = 0;
1038 		dio->curr_page = 0;
1039 
1040 		dio->total_pages = 0;
1041 		if (user_addr & (PAGE_SIZE-1)) {
1042 			dio->total_pages++;
1043 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1044 		}
1045 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1046 		dio->curr_user_address = user_addr;
1047 
1048 		ret = do_direct_IO(dio);
1049 
1050 		dio->result += iov[seg].iov_len -
1051 			((dio->final_block_in_request - dio->block_in_file) <<
1052 					blkbits);
1053 
1054 		if (ret) {
1055 			dio_cleanup(dio);
1056 			break;
1057 		}
1058 	} /* end iovec loop */
1059 
1060 	if (ret == -ENOTBLK) {
1061 		/*
1062 		 * The remaining part of the request will be
1063 		 * be handled by buffered I/O when we return
1064 		 */
1065 		ret = 0;
1066 	}
1067 	/*
1068 	 * There may be some unwritten disk at the end of a part-written
1069 	 * fs-block-sized block.  Go zero that now.
1070 	 */
1071 	dio_zero_block(dio, 1);
1072 
1073 	if (dio->cur_page) {
1074 		ret2 = dio_send_cur_page(dio);
1075 		if (ret == 0)
1076 			ret = ret2;
1077 		page_cache_release(dio->cur_page);
1078 		dio->cur_page = NULL;
1079 	}
1080 	if (dio->bio)
1081 		dio_bio_submit(dio);
1082 
1083 	/*
1084 	 * It is possible that, we return short IO due to end of file.
1085 	 * In that case, we need to release all the pages we got hold on.
1086 	 */
1087 	dio_cleanup(dio);
1088 
1089 	/*
1090 	 * All block lookups have been performed. For READ requests
1091 	 * we can let i_mutex go now that its achieved its purpose
1092 	 * of protecting us from looking up uninitialized blocks.
1093 	 */
1094 	if (rw == READ && (dio->flags & DIO_LOCKING))
1095 		mutex_unlock(&dio->inode->i_mutex);
1096 
1097 	/*
1098 	 * The only time we want to leave bios in flight is when a successful
1099 	 * partial aio read or full aio write have been setup.  In that case
1100 	 * bio completion will call aio_complete.  The only time it's safe to
1101 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1102 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1103 	 */
1104 	BUG_ON(ret == -EIOCBQUEUED);
1105 	if (dio->is_async && ret == 0 && dio->result &&
1106 	    ((rw & READ) || (dio->result == dio->size)))
1107 		ret = -EIOCBQUEUED;
1108 
1109 	if (ret != -EIOCBQUEUED) {
1110 		/* All IO is now issued, send it on its way */
1111 		blk_run_address_space(inode->i_mapping);
1112 		dio_await_completion(dio);
1113 	}
1114 
1115 	/*
1116 	 * Sync will always be dropping the final ref and completing the
1117 	 * operation.  AIO can if it was a broken operation described above or
1118 	 * in fact if all the bios race to complete before we get here.  In
1119 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1120 	 * return code that the caller will hand to aio_complete().
1121 	 *
1122 	 * This is managed by the bio_lock instead of being an atomic_t so that
1123 	 * completion paths can drop their ref and use the remaining count to
1124 	 * decide to wake the submission path atomically.
1125 	 */
1126 	spin_lock_irqsave(&dio->bio_lock, flags);
1127 	ret2 = --dio->refcount;
1128 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1129 
1130 	if (ret2 == 0) {
1131 		ret = dio_complete(dio, offset, ret, false);
1132 		kfree(dio);
1133 	} else
1134 		BUG_ON(ret != -EIOCBQUEUED);
1135 
1136 	return ret;
1137 }
1138 
1139 /*
1140  * This is a library function for use by filesystem drivers.
1141  *
1142  * The locking rules are governed by the flags parameter:
1143  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1144  *    scheme for dumb filesystems.
1145  *    For writes this function is called under i_mutex and returns with
1146  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1147  *    taken and dropped again before returning.
1148  *    For reads and writes i_alloc_sem is taken in shared mode and released
1149  *    on I/O completion (which may happen asynchronously after returning to
1150  *    the caller).
1151  *
1152  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1153  *    internal locking but rather rely on the filesystem to synchronize
1154  *    direct I/O reads/writes versus each other and truncate.
1155  *    For reads and writes both i_mutex and i_alloc_sem are not held on
1156  *    entry and are never taken.
1157  */
1158 ssize_t
1159 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1160 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1161 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1162 	dio_submit_t submit_io,	int flags)
1163 {
1164 	int seg;
1165 	size_t size;
1166 	unsigned long addr;
1167 	unsigned blkbits = inode->i_blkbits;
1168 	unsigned bdev_blkbits = 0;
1169 	unsigned blocksize_mask = (1 << blkbits) - 1;
1170 	ssize_t retval = -EINVAL;
1171 	loff_t end = offset;
1172 	struct dio *dio;
1173 
1174 	if (rw & WRITE)
1175 		rw = WRITE_ODIRECT_PLUG;
1176 
1177 	if (bdev)
1178 		bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1179 
1180 	if (offset & blocksize_mask) {
1181 		if (bdev)
1182 			 blkbits = bdev_blkbits;
1183 		blocksize_mask = (1 << blkbits) - 1;
1184 		if (offset & blocksize_mask)
1185 			goto out;
1186 	}
1187 
1188 	/* Check the memory alignment.  Blocks cannot straddle pages */
1189 	for (seg = 0; seg < nr_segs; seg++) {
1190 		addr = (unsigned long)iov[seg].iov_base;
1191 		size = iov[seg].iov_len;
1192 		end += size;
1193 		if ((addr & blocksize_mask) || (size & blocksize_mask))  {
1194 			if (bdev)
1195 				 blkbits = bdev_blkbits;
1196 			blocksize_mask = (1 << blkbits) - 1;
1197 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1198 				goto out;
1199 		}
1200 	}
1201 
1202 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1203 	retval = -ENOMEM;
1204 	if (!dio)
1205 		goto out;
1206 	/*
1207 	 * Believe it or not, zeroing out the page array caused a .5%
1208 	 * performance regression in a database benchmark.  So, we take
1209 	 * care to only zero out what's needed.
1210 	 */
1211 	memset(dio, 0, offsetof(struct dio, pages));
1212 
1213 	dio->flags = flags;
1214 	if (dio->flags & DIO_LOCKING) {
1215 		/* watch out for a 0 len io from a tricksy fs */
1216 		if (rw == READ && end > offset) {
1217 			struct address_space *mapping =
1218 					iocb->ki_filp->f_mapping;
1219 
1220 			/* will be released by direct_io_worker */
1221 			mutex_lock(&inode->i_mutex);
1222 
1223 			retval = filemap_write_and_wait_range(mapping, offset,
1224 							      end - 1);
1225 			if (retval) {
1226 				mutex_unlock(&inode->i_mutex);
1227 				kfree(dio);
1228 				goto out;
1229 			}
1230 		}
1231 
1232 		/*
1233 		 * Will be released at I/O completion, possibly in a
1234 		 * different thread.
1235 		 */
1236 		down_read_non_owner(&inode->i_alloc_sem);
1237 	}
1238 
1239 	/*
1240 	 * For file extending writes updating i_size before data
1241 	 * writeouts complete can expose uninitialized blocks. So
1242 	 * even for AIO, we need to wait for i/o to complete before
1243 	 * returning in this case.
1244 	 */
1245 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1246 		(end > i_size_read(inode)));
1247 
1248 	retval = direct_io_worker(rw, iocb, inode, iov, offset,
1249 				nr_segs, blkbits, get_block, end_io,
1250 				submit_io, dio);
1251 
1252 out:
1253 	return retval;
1254 }
1255 EXPORT_SYMBOL(__blockdev_direct_IO);
1256