xref: /linux/fs/direct-io.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * This code generally works in units of "dio_blocks".  A dio_block is
49  * somewhere between the hard sector size and the filesystem block size.  it
50  * is determined on a per-invocation basis.   When talking to the filesystem
51  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
53  * to bio_block quantities by shifting left by blkfactor.
54  *
55  * If blkfactor is zero then the user's request was aligned to the filesystem's
56  * blocksize.
57  */
58 
59 /* dio_state only used in the submission path */
60 
61 struct dio_submit {
62 	struct bio *bio;		/* bio under assembly */
63 	unsigned blkbits;		/* doesn't change */
64 	unsigned blkfactor;		/* When we're using an alignment which
65 					   is finer than the filesystem's soft
66 					   blocksize, this specifies how much
67 					   finer.  blkfactor=2 means 1/4-block
68 					   alignment.  Does not change */
69 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
70 					   been performed at the start of a
71 					   write */
72 	int pages_in_io;		/* approximate total IO pages */
73 	size_t	size;			/* total request size (doesn't change)*/
74 	sector_t block_in_file;		/* Current offset into the underlying
75 					   file in dio_block units. */
76 	unsigned blocks_available;	/* At block_in_file.  changes */
77 	int reap_counter;		/* rate limit reaping */
78 	sector_t final_block_in_request;/* doesn't change */
79 	unsigned first_block_in_page;	/* doesn't change, Used only once */
80 	int boundary;			/* prev block is at a boundary */
81 	get_block_t *get_block;		/* block mapping function */
82 	dio_submit_t *submit_io;	/* IO submition function */
83 
84 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
85 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
86 	sector_t next_block_for_io;	/* next block to be put under IO,
87 					   in dio_blocks units */
88 
89 	/*
90 	 * Deferred addition of a page to the dio.  These variables are
91 	 * private to dio_send_cur_page(), submit_page_section() and
92 	 * dio_bio_add_page().
93 	 */
94 	struct page *cur_page;		/* The page */
95 	unsigned cur_page_offset;	/* Offset into it, in bytes */
96 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
97 	sector_t cur_page_block;	/* Where it starts */
98 	loff_t cur_page_fs_offset;	/* Offset in file */
99 
100 	/*
101 	 * Page fetching state. These variables belong to dio_refill_pages().
102 	 */
103 	int curr_page;			/* changes */
104 	int total_pages;		/* doesn't change */
105 	unsigned long curr_user_address;/* changes */
106 
107 	/*
108 	 * Page queue.  These variables belong to dio_refill_pages() and
109 	 * dio_get_page().
110 	 */
111 	unsigned head;			/* next page to process */
112 	unsigned tail;			/* last valid page + 1 */
113 };
114 
115 /* dio_state communicated between submission path and end_io */
116 struct dio {
117 	int flags;			/* doesn't change */
118 	int rw;
119 	struct inode *inode;
120 	loff_t i_size;			/* i_size when submitted */
121 	dio_iodone_t *end_io;		/* IO completion function */
122 
123 	void *private;			/* copy from map_bh.b_private */
124 
125 	/* BIO completion state */
126 	spinlock_t bio_lock;		/* protects BIO fields below */
127 	int page_errors;		/* errno from get_user_pages() */
128 	int is_async;			/* is IO async ? */
129 	int io_error;			/* IO error in completion path */
130 	unsigned long refcount;		/* direct_io_worker() and bios */
131 	struct bio *bio_list;		/* singly linked via bi_private */
132 	struct task_struct *waiter;	/* waiting task (NULL if none) */
133 
134 	/* AIO related stuff */
135 	struct kiocb *iocb;		/* kiocb */
136 	ssize_t result;                 /* IO result */
137 
138 	/*
139 	 * pages[] (and any fields placed after it) are not zeroed out at
140 	 * allocation time.  Don't add new fields after pages[] unless you
141 	 * wish that they not be zeroed.
142 	 */
143 	struct page *pages[DIO_PAGES];	/* page buffer */
144 } ____cacheline_aligned_in_smp;
145 
146 static struct kmem_cache *dio_cache __read_mostly;
147 
148 /*
149  * How many pages are in the queue?
150  */
151 static inline unsigned dio_pages_present(struct dio_submit *sdio)
152 {
153 	return sdio->tail - sdio->head;
154 }
155 
156 /*
157  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
158  */
159 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
160 {
161 	int ret;
162 	int nr_pages;
163 
164 	nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
165 	ret = get_user_pages_fast(
166 		sdio->curr_user_address,		/* Where from? */
167 		nr_pages,			/* How many pages? */
168 		dio->rw == READ,		/* Write to memory? */
169 		&dio->pages[0]);		/* Put results here */
170 
171 	if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
172 		struct page *page = ZERO_PAGE(0);
173 		/*
174 		 * A memory fault, but the filesystem has some outstanding
175 		 * mapped blocks.  We need to use those blocks up to avoid
176 		 * leaking stale data in the file.
177 		 */
178 		if (dio->page_errors == 0)
179 			dio->page_errors = ret;
180 		page_cache_get(page);
181 		dio->pages[0] = page;
182 		sdio->head = 0;
183 		sdio->tail = 1;
184 		ret = 0;
185 		goto out;
186 	}
187 
188 	if (ret >= 0) {
189 		sdio->curr_user_address += ret * PAGE_SIZE;
190 		sdio->curr_page += ret;
191 		sdio->head = 0;
192 		sdio->tail = ret;
193 		ret = 0;
194 	}
195 out:
196 	return ret;
197 }
198 
199 /*
200  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
201  * buffered inside the dio so that we can call get_user_pages() against a
202  * decent number of pages, less frequently.  To provide nicer use of the
203  * L1 cache.
204  */
205 static inline struct page *dio_get_page(struct dio *dio,
206 		struct dio_submit *sdio)
207 {
208 	if (dio_pages_present(sdio) == 0) {
209 		int ret;
210 
211 		ret = dio_refill_pages(dio, sdio);
212 		if (ret)
213 			return ERR_PTR(ret);
214 		BUG_ON(dio_pages_present(sdio) == 0);
215 	}
216 	return dio->pages[sdio->head++];
217 }
218 
219 /**
220  * dio_complete() - called when all DIO BIO I/O has been completed
221  * @offset: the byte offset in the file of the completed operation
222  *
223  * This releases locks as dictated by the locking type, lets interested parties
224  * know that a DIO operation has completed, and calculates the resulting return
225  * code for the operation.
226  *
227  * It lets the filesystem know if it registered an interest earlier via
228  * get_block.  Pass the private field of the map buffer_head so that
229  * filesystems can use it to hold additional state between get_block calls and
230  * dio_complete.
231  */
232 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
233 {
234 	ssize_t transferred = 0;
235 
236 	/*
237 	 * AIO submission can race with bio completion to get here while
238 	 * expecting to have the last io completed by bio completion.
239 	 * In that case -EIOCBQUEUED is in fact not an error we want
240 	 * to preserve through this call.
241 	 */
242 	if (ret == -EIOCBQUEUED)
243 		ret = 0;
244 
245 	if (dio->result) {
246 		transferred = dio->result;
247 
248 		/* Check for short read case */
249 		if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
250 			transferred = dio->i_size - offset;
251 	}
252 
253 	if (ret == 0)
254 		ret = dio->page_errors;
255 	if (ret == 0)
256 		ret = dio->io_error;
257 	if (ret == 0)
258 		ret = transferred;
259 
260 	if (dio->end_io && dio->result) {
261 		dio->end_io(dio->iocb, offset, transferred,
262 			    dio->private, ret, is_async);
263 	} else {
264 		if (is_async)
265 			aio_complete(dio->iocb, ret, 0);
266 		inode_dio_done(dio->inode);
267 	}
268 
269 	return ret;
270 }
271 
272 static int dio_bio_complete(struct dio *dio, struct bio *bio);
273 /*
274  * Asynchronous IO callback.
275  */
276 static void dio_bio_end_aio(struct bio *bio, int error)
277 {
278 	struct dio *dio = bio->bi_private;
279 	unsigned long remaining;
280 	unsigned long flags;
281 
282 	/* cleanup the bio */
283 	dio_bio_complete(dio, bio);
284 
285 	spin_lock_irqsave(&dio->bio_lock, flags);
286 	remaining = --dio->refcount;
287 	if (remaining == 1 && dio->waiter)
288 		wake_up_process(dio->waiter);
289 	spin_unlock_irqrestore(&dio->bio_lock, flags);
290 
291 	if (remaining == 0) {
292 		dio_complete(dio, dio->iocb->ki_pos, 0, true);
293 		kmem_cache_free(dio_cache, dio);
294 	}
295 }
296 
297 /*
298  * The BIO completion handler simply queues the BIO up for the process-context
299  * handler.
300  *
301  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
302  * implement a singly-linked list of completed BIOs, at dio->bio_list.
303  */
304 static void dio_bio_end_io(struct bio *bio, int error)
305 {
306 	struct dio *dio = bio->bi_private;
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&dio->bio_lock, flags);
310 	bio->bi_private = dio->bio_list;
311 	dio->bio_list = bio;
312 	if (--dio->refcount == 1 && dio->waiter)
313 		wake_up_process(dio->waiter);
314 	spin_unlock_irqrestore(&dio->bio_lock, flags);
315 }
316 
317 /**
318  * dio_end_io - handle the end io action for the given bio
319  * @bio: The direct io bio thats being completed
320  * @error: Error if there was one
321  *
322  * This is meant to be called by any filesystem that uses their own dio_submit_t
323  * so that the DIO specific endio actions are dealt with after the filesystem
324  * has done it's completion work.
325  */
326 void dio_end_io(struct bio *bio, int error)
327 {
328 	struct dio *dio = bio->bi_private;
329 
330 	if (dio->is_async)
331 		dio_bio_end_aio(bio, error);
332 	else
333 		dio_bio_end_io(bio, error);
334 }
335 EXPORT_SYMBOL_GPL(dio_end_io);
336 
337 static inline void
338 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
339 	      struct block_device *bdev,
340 	      sector_t first_sector, int nr_vecs)
341 {
342 	struct bio *bio;
343 
344 	/*
345 	 * bio_alloc() is guaranteed to return a bio when called with
346 	 * __GFP_WAIT and we request a valid number of vectors.
347 	 */
348 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
349 
350 	bio->bi_bdev = bdev;
351 	bio->bi_sector = first_sector;
352 	if (dio->is_async)
353 		bio->bi_end_io = dio_bio_end_aio;
354 	else
355 		bio->bi_end_io = dio_bio_end_io;
356 
357 	sdio->bio = bio;
358 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
359 }
360 
361 /*
362  * In the AIO read case we speculatively dirty the pages before starting IO.
363  * During IO completion, any of these pages which happen to have been written
364  * back will be redirtied by bio_check_pages_dirty().
365  *
366  * bios hold a dio reference between submit_bio and ->end_io.
367  */
368 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
369 {
370 	struct bio *bio = sdio->bio;
371 	unsigned long flags;
372 
373 	bio->bi_private = dio;
374 
375 	spin_lock_irqsave(&dio->bio_lock, flags);
376 	dio->refcount++;
377 	spin_unlock_irqrestore(&dio->bio_lock, flags);
378 
379 	if (dio->is_async && dio->rw == READ)
380 		bio_set_pages_dirty(bio);
381 
382 	if (sdio->submit_io)
383 		sdio->submit_io(dio->rw, bio, dio->inode,
384 			       sdio->logical_offset_in_bio);
385 	else
386 		submit_bio(dio->rw, bio);
387 
388 	sdio->bio = NULL;
389 	sdio->boundary = 0;
390 	sdio->logical_offset_in_bio = 0;
391 }
392 
393 /*
394  * Release any resources in case of a failure
395  */
396 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
397 {
398 	while (dio_pages_present(sdio))
399 		page_cache_release(dio_get_page(dio, sdio));
400 }
401 
402 /*
403  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
404  * returned once all BIOs have been completed.  This must only be called once
405  * all bios have been issued so that dio->refcount can only decrease.  This
406  * requires that that the caller hold a reference on the dio.
407  */
408 static struct bio *dio_await_one(struct dio *dio)
409 {
410 	unsigned long flags;
411 	struct bio *bio = NULL;
412 
413 	spin_lock_irqsave(&dio->bio_lock, flags);
414 
415 	/*
416 	 * Wait as long as the list is empty and there are bios in flight.  bio
417 	 * completion drops the count, maybe adds to the list, and wakes while
418 	 * holding the bio_lock so we don't need set_current_state()'s barrier
419 	 * and can call it after testing our condition.
420 	 */
421 	while (dio->refcount > 1 && dio->bio_list == NULL) {
422 		__set_current_state(TASK_UNINTERRUPTIBLE);
423 		dio->waiter = current;
424 		spin_unlock_irqrestore(&dio->bio_lock, flags);
425 		io_schedule();
426 		/* wake up sets us TASK_RUNNING */
427 		spin_lock_irqsave(&dio->bio_lock, flags);
428 		dio->waiter = NULL;
429 	}
430 	if (dio->bio_list) {
431 		bio = dio->bio_list;
432 		dio->bio_list = bio->bi_private;
433 	}
434 	spin_unlock_irqrestore(&dio->bio_lock, flags);
435 	return bio;
436 }
437 
438 /*
439  * Process one completed BIO.  No locks are held.
440  */
441 static int dio_bio_complete(struct dio *dio, struct bio *bio)
442 {
443 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444 	struct bio_vec *bvec = bio->bi_io_vec;
445 	int page_no;
446 
447 	if (!uptodate)
448 		dio->io_error = -EIO;
449 
450 	if (dio->is_async && dio->rw == READ) {
451 		bio_check_pages_dirty(bio);	/* transfers ownership */
452 	} else {
453 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
454 			struct page *page = bvec[page_no].bv_page;
455 
456 			if (dio->rw == READ && !PageCompound(page))
457 				set_page_dirty_lock(page);
458 			page_cache_release(page);
459 		}
460 		bio_put(bio);
461 	}
462 	return uptodate ? 0 : -EIO;
463 }
464 
465 /*
466  * Wait on and process all in-flight BIOs.  This must only be called once
467  * all bios have been issued so that the refcount can only decrease.
468  * This just waits for all bios to make it through dio_bio_complete.  IO
469  * errors are propagated through dio->io_error and should be propagated via
470  * dio_complete().
471  */
472 static void dio_await_completion(struct dio *dio)
473 {
474 	struct bio *bio;
475 	do {
476 		bio = dio_await_one(dio);
477 		if (bio)
478 			dio_bio_complete(dio, bio);
479 	} while (bio);
480 }
481 
482 /*
483  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
484  * to keep the memory consumption sane we periodically reap any completed BIOs
485  * during the BIO generation phase.
486  *
487  * This also helps to limit the peak amount of pinned userspace memory.
488  */
489 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
490 {
491 	int ret = 0;
492 
493 	if (sdio->reap_counter++ >= 64) {
494 		while (dio->bio_list) {
495 			unsigned long flags;
496 			struct bio *bio;
497 			int ret2;
498 
499 			spin_lock_irqsave(&dio->bio_lock, flags);
500 			bio = dio->bio_list;
501 			dio->bio_list = bio->bi_private;
502 			spin_unlock_irqrestore(&dio->bio_lock, flags);
503 			ret2 = dio_bio_complete(dio, bio);
504 			if (ret == 0)
505 				ret = ret2;
506 		}
507 		sdio->reap_counter = 0;
508 	}
509 	return ret;
510 }
511 
512 /*
513  * Call into the fs to map some more disk blocks.  We record the current number
514  * of available blocks at sdio->blocks_available.  These are in units of the
515  * fs blocksize, (1 << inode->i_blkbits).
516  *
517  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
518  * it uses the passed inode-relative block number as the file offset, as usual.
519  *
520  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
521  * has remaining to do.  The fs should not map more than this number of blocks.
522  *
523  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
524  * indicate how much contiguous disk space has been made available at
525  * bh->b_blocknr.
526  *
527  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
528  * This isn't very efficient...
529  *
530  * In the case of filesystem holes: the fs may return an arbitrarily-large
531  * hole by returning an appropriate value in b_size and by clearing
532  * buffer_mapped().  However the direct-io code will only process holes one
533  * block at a time - it will repeatedly call get_block() as it walks the hole.
534  */
535 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
536 			   struct buffer_head *map_bh)
537 {
538 	int ret;
539 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
540 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
541 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
542 	int create;
543 
544 	/*
545 	 * If there was a memory error and we've overwritten all the
546 	 * mapped blocks then we can now return that memory error
547 	 */
548 	ret = dio->page_errors;
549 	if (ret == 0) {
550 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
551 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
552 		fs_endblk = (sdio->final_block_in_request - 1) >>
553 					sdio->blkfactor;
554 		fs_count = fs_endblk - fs_startblk + 1;
555 
556 		map_bh->b_state = 0;
557 		map_bh->b_size = fs_count << dio->inode->i_blkbits;
558 
559 		/*
560 		 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
561 		 * forbid block creations: only overwrites are permitted.
562 		 * We will return early to the caller once we see an
563 		 * unmapped buffer head returned, and the caller will fall
564 		 * back to buffered I/O.
565 		 *
566 		 * Otherwise the decision is left to the get_blocks method,
567 		 * which may decide to handle it or also return an unmapped
568 		 * buffer head.
569 		 */
570 		create = dio->rw & WRITE;
571 		if (dio->flags & DIO_SKIP_HOLES) {
572 			if (sdio->block_in_file < (i_size_read(dio->inode) >>
573 							sdio->blkbits))
574 				create = 0;
575 		}
576 
577 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
578 						map_bh, create);
579 
580 		/* Store for completion */
581 		dio->private = map_bh->b_private;
582 	}
583 	return ret;
584 }
585 
586 /*
587  * There is no bio.  Make one now.
588  */
589 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
590 		sector_t start_sector, struct buffer_head *map_bh)
591 {
592 	sector_t sector;
593 	int ret, nr_pages;
594 
595 	ret = dio_bio_reap(dio, sdio);
596 	if (ret)
597 		goto out;
598 	sector = start_sector << (sdio->blkbits - 9);
599 	nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
600 	nr_pages = min(nr_pages, BIO_MAX_PAGES);
601 	BUG_ON(nr_pages <= 0);
602 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
603 	sdio->boundary = 0;
604 out:
605 	return ret;
606 }
607 
608 /*
609  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
610  * that was successful then update final_block_in_bio and take a ref against
611  * the just-added page.
612  *
613  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
614  */
615 static inline int dio_bio_add_page(struct dio_submit *sdio)
616 {
617 	int ret;
618 
619 	ret = bio_add_page(sdio->bio, sdio->cur_page,
620 			sdio->cur_page_len, sdio->cur_page_offset);
621 	if (ret == sdio->cur_page_len) {
622 		/*
623 		 * Decrement count only, if we are done with this page
624 		 */
625 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
626 			sdio->pages_in_io--;
627 		page_cache_get(sdio->cur_page);
628 		sdio->final_block_in_bio = sdio->cur_page_block +
629 			(sdio->cur_page_len >> sdio->blkbits);
630 		ret = 0;
631 	} else {
632 		ret = 1;
633 	}
634 	return ret;
635 }
636 
637 /*
638  * Put cur_page under IO.  The section of cur_page which is described by
639  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
640  * starts on-disk at cur_page_block.
641  *
642  * We take a ref against the page here (on behalf of its presence in the bio).
643  *
644  * The caller of this function is responsible for removing cur_page from the
645  * dio, and for dropping the refcount which came from that presence.
646  */
647 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
648 		struct buffer_head *map_bh)
649 {
650 	int ret = 0;
651 
652 	if (sdio->bio) {
653 		loff_t cur_offset = sdio->cur_page_fs_offset;
654 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
655 			sdio->bio->bi_size;
656 
657 		/*
658 		 * See whether this new request is contiguous with the old.
659 		 *
660 		 * Btrfs cannot handle having logically non-contiguous requests
661 		 * submitted.  For example if you have
662 		 *
663 		 * Logical:  [0-4095][HOLE][8192-12287]
664 		 * Physical: [0-4095]      [4096-8191]
665 		 *
666 		 * We cannot submit those pages together as one BIO.  So if our
667 		 * current logical offset in the file does not equal what would
668 		 * be the next logical offset in the bio, submit the bio we
669 		 * have.
670 		 */
671 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
672 		    cur_offset != bio_next_offset)
673 			dio_bio_submit(dio, sdio);
674 		/*
675 		 * Submit now if the underlying fs is about to perform a
676 		 * metadata read
677 		 */
678 		else if (sdio->boundary)
679 			dio_bio_submit(dio, sdio);
680 	}
681 
682 	if (sdio->bio == NULL) {
683 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
684 		if (ret)
685 			goto out;
686 	}
687 
688 	if (dio_bio_add_page(sdio) != 0) {
689 		dio_bio_submit(dio, sdio);
690 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
691 		if (ret == 0) {
692 			ret = dio_bio_add_page(sdio);
693 			BUG_ON(ret != 0);
694 		}
695 	}
696 out:
697 	return ret;
698 }
699 
700 /*
701  * An autonomous function to put a chunk of a page under deferred IO.
702  *
703  * The caller doesn't actually know (or care) whether this piece of page is in
704  * a BIO, or is under IO or whatever.  We just take care of all possible
705  * situations here.  The separation between the logic of do_direct_IO() and
706  * that of submit_page_section() is important for clarity.  Please don't break.
707  *
708  * The chunk of page starts on-disk at blocknr.
709  *
710  * We perform deferred IO, by recording the last-submitted page inside our
711  * private part of the dio structure.  If possible, we just expand the IO
712  * across that page here.
713  *
714  * If that doesn't work out then we put the old page into the bio and add this
715  * page to the dio instead.
716  */
717 static inline int
718 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
719 		    unsigned offset, unsigned len, sector_t blocknr,
720 		    struct buffer_head *map_bh)
721 {
722 	int ret = 0;
723 
724 	if (dio->rw & WRITE) {
725 		/*
726 		 * Read accounting is performed in submit_bio()
727 		 */
728 		task_io_account_write(len);
729 	}
730 
731 	/*
732 	 * Can we just grow the current page's presence in the dio?
733 	 */
734 	if (sdio->cur_page == page &&
735 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
736 	    sdio->cur_page_block +
737 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
738 		sdio->cur_page_len += len;
739 
740 		/*
741 		 * If sdio->boundary then we want to schedule the IO now to
742 		 * avoid metadata seeks.
743 		 */
744 		if (sdio->boundary) {
745 			ret = dio_send_cur_page(dio, sdio, map_bh);
746 			page_cache_release(sdio->cur_page);
747 			sdio->cur_page = NULL;
748 		}
749 		goto out;
750 	}
751 
752 	/*
753 	 * If there's a deferred page already there then send it.
754 	 */
755 	if (sdio->cur_page) {
756 		ret = dio_send_cur_page(dio, sdio, map_bh);
757 		page_cache_release(sdio->cur_page);
758 		sdio->cur_page = NULL;
759 		if (ret)
760 			goto out;
761 	}
762 
763 	page_cache_get(page);		/* It is in dio */
764 	sdio->cur_page = page;
765 	sdio->cur_page_offset = offset;
766 	sdio->cur_page_len = len;
767 	sdio->cur_page_block = blocknr;
768 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
769 out:
770 	return ret;
771 }
772 
773 /*
774  * Clean any dirty buffers in the blockdev mapping which alias newly-created
775  * file blocks.  Only called for S_ISREG files - blockdevs do not set
776  * buffer_new
777  */
778 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
779 {
780 	unsigned i;
781 	unsigned nblocks;
782 
783 	nblocks = map_bh->b_size >> dio->inode->i_blkbits;
784 
785 	for (i = 0; i < nblocks; i++) {
786 		unmap_underlying_metadata(map_bh->b_bdev,
787 					  map_bh->b_blocknr + i);
788 	}
789 }
790 
791 /*
792  * If we are not writing the entire block and get_block() allocated
793  * the block for us, we need to fill-in the unused portion of the
794  * block with zeros. This happens only if user-buffer, fileoffset or
795  * io length is not filesystem block-size multiple.
796  *
797  * `end' is zero if we're doing the start of the IO, 1 at the end of the
798  * IO.
799  */
800 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
801 		int end, struct buffer_head *map_bh)
802 {
803 	unsigned dio_blocks_per_fs_block;
804 	unsigned this_chunk_blocks;	/* In dio_blocks */
805 	unsigned this_chunk_bytes;
806 	struct page *page;
807 
808 	sdio->start_zero_done = 1;
809 	if (!sdio->blkfactor || !buffer_new(map_bh))
810 		return;
811 
812 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
813 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
814 
815 	if (!this_chunk_blocks)
816 		return;
817 
818 	/*
819 	 * We need to zero out part of an fs block.  It is either at the
820 	 * beginning or the end of the fs block.
821 	 */
822 	if (end)
823 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
824 
825 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
826 
827 	page = ZERO_PAGE(0);
828 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
829 				sdio->next_block_for_io, map_bh))
830 		return;
831 
832 	sdio->next_block_for_io += this_chunk_blocks;
833 }
834 
835 /*
836  * Walk the user pages, and the file, mapping blocks to disk and generating
837  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
838  * into submit_page_section(), which takes care of the next stage of submission
839  *
840  * Direct IO against a blockdev is different from a file.  Because we can
841  * happily perform page-sized but 512-byte aligned IOs.  It is important that
842  * blockdev IO be able to have fine alignment and large sizes.
843  *
844  * So what we do is to permit the ->get_block function to populate bh.b_size
845  * with the size of IO which is permitted at this offset and this i_blkbits.
846  *
847  * For best results, the blockdev should be set up with 512-byte i_blkbits and
848  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
849  * fine alignment but still allows this function to work in PAGE_SIZE units.
850  */
851 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
852 			struct buffer_head *map_bh)
853 {
854 	const unsigned blkbits = sdio->blkbits;
855 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
856 	struct page *page;
857 	unsigned block_in_page;
858 	int ret = 0;
859 
860 	/* The I/O can start at any block offset within the first page */
861 	block_in_page = sdio->first_block_in_page;
862 
863 	while (sdio->block_in_file < sdio->final_block_in_request) {
864 		page = dio_get_page(dio, sdio);
865 		if (IS_ERR(page)) {
866 			ret = PTR_ERR(page);
867 			goto out;
868 		}
869 
870 		while (block_in_page < blocks_per_page) {
871 			unsigned offset_in_page = block_in_page << blkbits;
872 			unsigned this_chunk_bytes;	/* # of bytes mapped */
873 			unsigned this_chunk_blocks;	/* # of blocks */
874 			unsigned u;
875 
876 			if (sdio->blocks_available == 0) {
877 				/*
878 				 * Need to go and map some more disk
879 				 */
880 				unsigned long blkmask;
881 				unsigned long dio_remainder;
882 
883 				ret = get_more_blocks(dio, sdio, map_bh);
884 				if (ret) {
885 					page_cache_release(page);
886 					goto out;
887 				}
888 				if (!buffer_mapped(map_bh))
889 					goto do_holes;
890 
891 				sdio->blocks_available =
892 						map_bh->b_size >> sdio->blkbits;
893 				sdio->next_block_for_io =
894 					map_bh->b_blocknr << sdio->blkfactor;
895 				if (buffer_new(map_bh))
896 					clean_blockdev_aliases(dio, map_bh);
897 
898 				if (!sdio->blkfactor)
899 					goto do_holes;
900 
901 				blkmask = (1 << sdio->blkfactor) - 1;
902 				dio_remainder = (sdio->block_in_file & blkmask);
903 
904 				/*
905 				 * If we are at the start of IO and that IO
906 				 * starts partway into a fs-block,
907 				 * dio_remainder will be non-zero.  If the IO
908 				 * is a read then we can simply advance the IO
909 				 * cursor to the first block which is to be
910 				 * read.  But if the IO is a write and the
911 				 * block was newly allocated we cannot do that;
912 				 * the start of the fs block must be zeroed out
913 				 * on-disk
914 				 */
915 				if (!buffer_new(map_bh))
916 					sdio->next_block_for_io += dio_remainder;
917 				sdio->blocks_available -= dio_remainder;
918 			}
919 do_holes:
920 			/* Handle holes */
921 			if (!buffer_mapped(map_bh)) {
922 				loff_t i_size_aligned;
923 
924 				/* AKPM: eargh, -ENOTBLK is a hack */
925 				if (dio->rw & WRITE) {
926 					page_cache_release(page);
927 					return -ENOTBLK;
928 				}
929 
930 				/*
931 				 * Be sure to account for a partial block as the
932 				 * last block in the file
933 				 */
934 				i_size_aligned = ALIGN(i_size_read(dio->inode),
935 							1 << blkbits);
936 				if (sdio->block_in_file >=
937 						i_size_aligned >> blkbits) {
938 					/* We hit eof */
939 					page_cache_release(page);
940 					goto out;
941 				}
942 				zero_user(page, block_in_page << blkbits,
943 						1 << blkbits);
944 				sdio->block_in_file++;
945 				block_in_page++;
946 				goto next_block;
947 			}
948 
949 			/*
950 			 * If we're performing IO which has an alignment which
951 			 * is finer than the underlying fs, go check to see if
952 			 * we must zero out the start of this block.
953 			 */
954 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
955 				dio_zero_block(dio, sdio, 0, map_bh);
956 
957 			/*
958 			 * Work out, in this_chunk_blocks, how much disk we
959 			 * can add to this page
960 			 */
961 			this_chunk_blocks = sdio->blocks_available;
962 			u = (PAGE_SIZE - offset_in_page) >> blkbits;
963 			if (this_chunk_blocks > u)
964 				this_chunk_blocks = u;
965 			u = sdio->final_block_in_request - sdio->block_in_file;
966 			if (this_chunk_blocks > u)
967 				this_chunk_blocks = u;
968 			this_chunk_bytes = this_chunk_blocks << blkbits;
969 			BUG_ON(this_chunk_bytes == 0);
970 
971 			sdio->boundary = buffer_boundary(map_bh);
972 			ret = submit_page_section(dio, sdio, page,
973 						  offset_in_page,
974 						  this_chunk_bytes,
975 						  sdio->next_block_for_io,
976 						  map_bh);
977 			if (ret) {
978 				page_cache_release(page);
979 				goto out;
980 			}
981 			sdio->next_block_for_io += this_chunk_blocks;
982 
983 			sdio->block_in_file += this_chunk_blocks;
984 			block_in_page += this_chunk_blocks;
985 			sdio->blocks_available -= this_chunk_blocks;
986 next_block:
987 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
988 			if (sdio->block_in_file == sdio->final_block_in_request)
989 				break;
990 		}
991 
992 		/* Drop the ref which was taken in get_user_pages() */
993 		page_cache_release(page);
994 		block_in_page = 0;
995 	}
996 out:
997 	return ret;
998 }
999 
1000 static inline int drop_refcount(struct dio *dio)
1001 {
1002 	int ret2;
1003 	unsigned long flags;
1004 
1005 	/*
1006 	 * Sync will always be dropping the final ref and completing the
1007 	 * operation.  AIO can if it was a broken operation described above or
1008 	 * in fact if all the bios race to complete before we get here.  In
1009 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1010 	 * return code that the caller will hand to aio_complete().
1011 	 *
1012 	 * This is managed by the bio_lock instead of being an atomic_t so that
1013 	 * completion paths can drop their ref and use the remaining count to
1014 	 * decide to wake the submission path atomically.
1015 	 */
1016 	spin_lock_irqsave(&dio->bio_lock, flags);
1017 	ret2 = --dio->refcount;
1018 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1019 	return ret2;
1020 }
1021 
1022 /*
1023  * This is a library function for use by filesystem drivers.
1024  *
1025  * The locking rules are governed by the flags parameter:
1026  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1027  *    scheme for dumb filesystems.
1028  *    For writes this function is called under i_mutex and returns with
1029  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1030  *    taken and dropped again before returning.
1031  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1032  *    internal locking but rather rely on the filesystem to synchronize
1033  *    direct I/O reads/writes versus each other and truncate.
1034  *
1035  * To help with locking against truncate we incremented the i_dio_count
1036  * counter before starting direct I/O, and decrement it once we are done.
1037  * Truncate can wait for it to reach zero to provide exclusion.  It is
1038  * expected that filesystem provide exclusion between new direct I/O
1039  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1040  * but other filesystems need to take care of this on their own.
1041  *
1042  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1043  * is always inlined. Otherwise gcc is unable to split the structure into
1044  * individual fields and will generate much worse code. This is important
1045  * for the whole file.
1046  */
1047 static inline ssize_t
1048 do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1049 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1050 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1051 	dio_submit_t submit_io,	int flags)
1052 {
1053 	int seg;
1054 	size_t size;
1055 	unsigned long addr;
1056 	unsigned blkbits = inode->i_blkbits;
1057 	unsigned blocksize_mask = (1 << blkbits) - 1;
1058 	ssize_t retval = -EINVAL;
1059 	loff_t end = offset;
1060 	struct dio *dio;
1061 	struct dio_submit sdio = { 0, };
1062 	unsigned long user_addr;
1063 	size_t bytes;
1064 	struct buffer_head map_bh = { 0, };
1065 	struct blk_plug plug;
1066 
1067 	if (rw & WRITE)
1068 		rw = WRITE_ODIRECT;
1069 
1070 	/*
1071 	 * Avoid references to bdev if not absolutely needed to give
1072 	 * the early prefetch in the caller enough time.
1073 	 */
1074 
1075 	if (offset & blocksize_mask) {
1076 		if (bdev)
1077 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1078 		blocksize_mask = (1 << blkbits) - 1;
1079 		if (offset & blocksize_mask)
1080 			goto out;
1081 	}
1082 
1083 	/* Check the memory alignment.  Blocks cannot straddle pages */
1084 	for (seg = 0; seg < nr_segs; seg++) {
1085 		addr = (unsigned long)iov[seg].iov_base;
1086 		size = iov[seg].iov_len;
1087 		end += size;
1088 		if (unlikely((addr & blocksize_mask) ||
1089 			     (size & blocksize_mask))) {
1090 			if (bdev)
1091 				blkbits = blksize_bits(
1092 					 bdev_logical_block_size(bdev));
1093 			blocksize_mask = (1 << blkbits) - 1;
1094 			if ((addr & blocksize_mask) || (size & blocksize_mask))
1095 				goto out;
1096 		}
1097 	}
1098 
1099 	/* watch out for a 0 len io from a tricksy fs */
1100 	if (rw == READ && end == offset)
1101 		return 0;
1102 
1103 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1104 	retval = -ENOMEM;
1105 	if (!dio)
1106 		goto out;
1107 	/*
1108 	 * Believe it or not, zeroing out the page array caused a .5%
1109 	 * performance regression in a database benchmark.  So, we take
1110 	 * care to only zero out what's needed.
1111 	 */
1112 	memset(dio, 0, offsetof(struct dio, pages));
1113 
1114 	dio->flags = flags;
1115 	if (dio->flags & DIO_LOCKING) {
1116 		if (rw == READ) {
1117 			struct address_space *mapping =
1118 					iocb->ki_filp->f_mapping;
1119 
1120 			/* will be released by direct_io_worker */
1121 			mutex_lock(&inode->i_mutex);
1122 
1123 			retval = filemap_write_and_wait_range(mapping, offset,
1124 							      end - 1);
1125 			if (retval) {
1126 				mutex_unlock(&inode->i_mutex);
1127 				kmem_cache_free(dio_cache, dio);
1128 				goto out;
1129 			}
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * Will be decremented at I/O completion time.
1135 	 */
1136 	atomic_inc(&inode->i_dio_count);
1137 
1138 	/*
1139 	 * For file extending writes updating i_size before data
1140 	 * writeouts complete can expose uninitialized blocks. So
1141 	 * even for AIO, we need to wait for i/o to complete before
1142 	 * returning in this case.
1143 	 */
1144 	dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1145 		(end > i_size_read(inode)));
1146 
1147 	retval = 0;
1148 
1149 	dio->inode = inode;
1150 	dio->rw = rw;
1151 	sdio.blkbits = blkbits;
1152 	sdio.blkfactor = inode->i_blkbits - blkbits;
1153 	sdio.block_in_file = offset >> blkbits;
1154 
1155 	sdio.get_block = get_block;
1156 	dio->end_io = end_io;
1157 	sdio.submit_io = submit_io;
1158 	sdio.final_block_in_bio = -1;
1159 	sdio.next_block_for_io = -1;
1160 
1161 	dio->iocb = iocb;
1162 	dio->i_size = i_size_read(inode);
1163 
1164 	spin_lock_init(&dio->bio_lock);
1165 	dio->refcount = 1;
1166 
1167 	/*
1168 	 * In case of non-aligned buffers, we may need 2 more
1169 	 * pages since we need to zero out first and last block.
1170 	 */
1171 	if (unlikely(sdio.blkfactor))
1172 		sdio.pages_in_io = 2;
1173 
1174 	for (seg = 0; seg < nr_segs; seg++) {
1175 		user_addr = (unsigned long)iov[seg].iov_base;
1176 		sdio.pages_in_io +=
1177 			((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1178 				PAGE_SIZE - user_addr / PAGE_SIZE);
1179 	}
1180 
1181 	blk_start_plug(&plug);
1182 
1183 	for (seg = 0; seg < nr_segs; seg++) {
1184 		user_addr = (unsigned long)iov[seg].iov_base;
1185 		sdio.size += bytes = iov[seg].iov_len;
1186 
1187 		/* Index into the first page of the first block */
1188 		sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1189 		sdio.final_block_in_request = sdio.block_in_file +
1190 						(bytes >> blkbits);
1191 		/* Page fetching state */
1192 		sdio.head = 0;
1193 		sdio.tail = 0;
1194 		sdio.curr_page = 0;
1195 
1196 		sdio.total_pages = 0;
1197 		if (user_addr & (PAGE_SIZE-1)) {
1198 			sdio.total_pages++;
1199 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1200 		}
1201 		sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1202 		sdio.curr_user_address = user_addr;
1203 
1204 		retval = do_direct_IO(dio, &sdio, &map_bh);
1205 
1206 		dio->result += iov[seg].iov_len -
1207 			((sdio.final_block_in_request - sdio.block_in_file) <<
1208 					blkbits);
1209 
1210 		if (retval) {
1211 			dio_cleanup(dio, &sdio);
1212 			break;
1213 		}
1214 	} /* end iovec loop */
1215 
1216 	if (retval == -ENOTBLK) {
1217 		/*
1218 		 * The remaining part of the request will be
1219 		 * be handled by buffered I/O when we return
1220 		 */
1221 		retval = 0;
1222 	}
1223 	/*
1224 	 * There may be some unwritten disk at the end of a part-written
1225 	 * fs-block-sized block.  Go zero that now.
1226 	 */
1227 	dio_zero_block(dio, &sdio, 1, &map_bh);
1228 
1229 	if (sdio.cur_page) {
1230 		ssize_t ret2;
1231 
1232 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1233 		if (retval == 0)
1234 			retval = ret2;
1235 		page_cache_release(sdio.cur_page);
1236 		sdio.cur_page = NULL;
1237 	}
1238 	if (sdio.bio)
1239 		dio_bio_submit(dio, &sdio);
1240 
1241 	blk_finish_plug(&plug);
1242 
1243 	/*
1244 	 * It is possible that, we return short IO due to end of file.
1245 	 * In that case, we need to release all the pages we got hold on.
1246 	 */
1247 	dio_cleanup(dio, &sdio);
1248 
1249 	/*
1250 	 * All block lookups have been performed. For READ requests
1251 	 * we can let i_mutex go now that its achieved its purpose
1252 	 * of protecting us from looking up uninitialized blocks.
1253 	 */
1254 	if (rw == READ && (dio->flags & DIO_LOCKING))
1255 		mutex_unlock(&dio->inode->i_mutex);
1256 
1257 	/*
1258 	 * The only time we want to leave bios in flight is when a successful
1259 	 * partial aio read or full aio write have been setup.  In that case
1260 	 * bio completion will call aio_complete.  The only time it's safe to
1261 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1262 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1263 	 */
1264 	BUG_ON(retval == -EIOCBQUEUED);
1265 	if (dio->is_async && retval == 0 && dio->result &&
1266 	    ((rw == READ) || (dio->result == sdio.size)))
1267 		retval = -EIOCBQUEUED;
1268 
1269 	if (retval != -EIOCBQUEUED)
1270 		dio_await_completion(dio);
1271 
1272 	if (drop_refcount(dio) == 0) {
1273 		retval = dio_complete(dio, offset, retval, false);
1274 		kmem_cache_free(dio_cache, dio);
1275 	} else
1276 		BUG_ON(retval != -EIOCBQUEUED);
1277 
1278 out:
1279 	return retval;
1280 }
1281 
1282 ssize_t
1283 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1284 	struct block_device *bdev, const struct iovec *iov, loff_t offset,
1285 	unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1286 	dio_submit_t submit_io,	int flags)
1287 {
1288 	/*
1289 	 * The block device state is needed in the end to finally
1290 	 * submit everything.  Since it's likely to be cache cold
1291 	 * prefetch it here as first thing to hide some of the
1292 	 * latency.
1293 	 *
1294 	 * Attempt to prefetch the pieces we likely need later.
1295 	 */
1296 	prefetch(&bdev->bd_disk->part_tbl);
1297 	prefetch(bdev->bd_queue);
1298 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1299 
1300 	return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1301 				     nr_segs, get_block, end_io,
1302 				     submit_io, flags);
1303 }
1304 
1305 EXPORT_SYMBOL(__blockdev_direct_IO);
1306 
1307 static __init int dio_init(void)
1308 {
1309 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1310 	return 0;
1311 }
1312 module_init(dio_init)
1313