1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 /* 43 * How many user pages to map in one call to get_user_pages(). This determines 44 * the size of a structure in the slab cache 45 */ 46 #define DIO_PAGES 64 47 48 /* 49 * Flags for dio_complete() 50 */ 51 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 52 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 53 54 /* 55 * This code generally works in units of "dio_blocks". A dio_block is 56 * somewhere between the hard sector size and the filesystem block size. it 57 * is determined on a per-invocation basis. When talking to the filesystem 58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 59 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 60 * to bio_block quantities by shifting left by blkfactor. 61 * 62 * If blkfactor is zero then the user's request was aligned to the filesystem's 63 * blocksize. 64 */ 65 66 /* dio_state only used in the submission path */ 67 68 struct dio_submit { 69 struct bio *bio; /* bio under assembly */ 70 unsigned blkbits; /* doesn't change */ 71 unsigned blkfactor; /* When we're using an alignment which 72 is finer than the filesystem's soft 73 blocksize, this specifies how much 74 finer. blkfactor=2 means 1/4-block 75 alignment. Does not change */ 76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 77 been performed at the start of a 78 write */ 79 int pages_in_io; /* approximate total IO pages */ 80 sector_t block_in_file; /* Current offset into the underlying 81 file in dio_block units. */ 82 unsigned blocks_available; /* At block_in_file. changes */ 83 int reap_counter; /* rate limit reaping */ 84 sector_t final_block_in_request;/* doesn't change */ 85 int boundary; /* prev block is at a boundary */ 86 get_block_t *get_block; /* block mapping function */ 87 dio_submit_t *submit_io; /* IO submition function */ 88 89 loff_t logical_offset_in_bio; /* current first logical block in bio */ 90 sector_t final_block_in_bio; /* current final block in bio + 1 */ 91 sector_t next_block_for_io; /* next block to be put under IO, 92 in dio_blocks units */ 93 94 /* 95 * Deferred addition of a page to the dio. These variables are 96 * private to dio_send_cur_page(), submit_page_section() and 97 * dio_bio_add_page(). 98 */ 99 struct page *cur_page; /* The page */ 100 unsigned cur_page_offset; /* Offset into it, in bytes */ 101 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 102 sector_t cur_page_block; /* Where it starts */ 103 loff_t cur_page_fs_offset; /* Offset in file */ 104 105 struct iov_iter *iter; 106 /* 107 * Page queue. These variables belong to dio_refill_pages() and 108 * dio_get_page(). 109 */ 110 unsigned head; /* next page to process */ 111 unsigned tail; /* last valid page + 1 */ 112 size_t from, to; 113 }; 114 115 /* dio_state communicated between submission path and end_io */ 116 struct dio { 117 int flags; /* doesn't change */ 118 int op; 119 int op_flags; 120 blk_qc_t bio_cookie; 121 struct gendisk *bio_disk; 122 struct inode *inode; 123 loff_t i_size; /* i_size when submitted */ 124 dio_iodone_t *end_io; /* IO completion function */ 125 126 void *private; /* copy from map_bh.b_private */ 127 128 /* BIO completion state */ 129 spinlock_t bio_lock; /* protects BIO fields below */ 130 int page_errors; /* errno from get_user_pages() */ 131 int is_async; /* is IO async ? */ 132 bool defer_completion; /* defer AIO completion to workqueue? */ 133 bool should_dirty; /* if pages should be dirtied */ 134 int io_error; /* IO error in completion path */ 135 unsigned long refcount; /* direct_io_worker() and bios */ 136 struct bio *bio_list; /* singly linked via bi_private */ 137 struct task_struct *waiter; /* waiting task (NULL if none) */ 138 139 /* AIO related stuff */ 140 struct kiocb *iocb; /* kiocb */ 141 ssize_t result; /* IO result */ 142 143 /* 144 * pages[] (and any fields placed after it) are not zeroed out at 145 * allocation time. Don't add new fields after pages[] unless you 146 * wish that they not be zeroed. 147 */ 148 union { 149 struct page *pages[DIO_PAGES]; /* page buffer */ 150 struct work_struct complete_work;/* deferred AIO completion */ 151 }; 152 } ____cacheline_aligned_in_smp; 153 154 static struct kmem_cache *dio_cache __read_mostly; 155 156 /* 157 * How many pages are in the queue? 158 */ 159 static inline unsigned dio_pages_present(struct dio_submit *sdio) 160 { 161 return sdio->tail - sdio->head; 162 } 163 164 /* 165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 166 */ 167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 168 { 169 ssize_t ret; 170 171 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 172 &sdio->from); 173 174 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 175 struct page *page = ZERO_PAGE(0); 176 /* 177 * A memory fault, but the filesystem has some outstanding 178 * mapped blocks. We need to use those blocks up to avoid 179 * leaking stale data in the file. 180 */ 181 if (dio->page_errors == 0) 182 dio->page_errors = ret; 183 get_page(page); 184 dio->pages[0] = page; 185 sdio->head = 0; 186 sdio->tail = 1; 187 sdio->from = 0; 188 sdio->to = PAGE_SIZE; 189 return 0; 190 } 191 192 if (ret >= 0) { 193 iov_iter_advance(sdio->iter, ret); 194 ret += sdio->from; 195 sdio->head = 0; 196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 198 return 0; 199 } 200 return ret; 201 } 202 203 /* 204 * Get another userspace page. Returns an ERR_PTR on error. Pages are 205 * buffered inside the dio so that we can call get_user_pages() against a 206 * decent number of pages, less frequently. To provide nicer use of the 207 * L1 cache. 208 */ 209 static inline struct page *dio_get_page(struct dio *dio, 210 struct dio_submit *sdio) 211 { 212 if (dio_pages_present(sdio) == 0) { 213 int ret; 214 215 ret = dio_refill_pages(dio, sdio); 216 if (ret) 217 return ERR_PTR(ret); 218 BUG_ON(dio_pages_present(sdio) == 0); 219 } 220 return dio->pages[sdio->head]; 221 } 222 223 /* 224 * dio_complete() - called when all DIO BIO I/O has been completed 225 * 226 * This drops i_dio_count, lets interested parties know that a DIO operation 227 * has completed, and calculates the resulting return code for the operation. 228 * 229 * It lets the filesystem know if it registered an interest earlier via 230 * get_block. Pass the private field of the map buffer_head so that 231 * filesystems can use it to hold additional state between get_block calls and 232 * dio_complete. 233 */ 234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 235 { 236 loff_t offset = dio->iocb->ki_pos; 237 ssize_t transferred = 0; 238 int err; 239 240 /* 241 * AIO submission can race with bio completion to get here while 242 * expecting to have the last io completed by bio completion. 243 * In that case -EIOCBQUEUED is in fact not an error we want 244 * to preserve through this call. 245 */ 246 if (ret == -EIOCBQUEUED) 247 ret = 0; 248 249 if (dio->result) { 250 transferred = dio->result; 251 252 /* Check for short read case */ 253 if ((dio->op == REQ_OP_READ) && 254 ((offset + transferred) > dio->i_size)) 255 transferred = dio->i_size - offset; 256 /* ignore EFAULT if some IO has been done */ 257 if (unlikely(ret == -EFAULT) && transferred) 258 ret = 0; 259 } 260 261 if (ret == 0) 262 ret = dio->page_errors; 263 if (ret == 0) 264 ret = dio->io_error; 265 if (ret == 0) 266 ret = transferred; 267 268 if (dio->end_io) { 269 // XXX: ki_pos?? 270 err = dio->end_io(dio->iocb, offset, ret, dio->private); 271 if (err) 272 ret = err; 273 } 274 275 /* 276 * Try again to invalidate clean pages which might have been cached by 277 * non-direct readahead, or faulted in by get_user_pages() if the source 278 * of the write was an mmap'ed region of the file we're writing. Either 279 * one is a pretty crazy thing to do, so we don't support it 100%. If 280 * this invalidation fails, tough, the write still worked... 281 * 282 * And this page cache invalidation has to be after dio->end_io(), as 283 * some filesystems convert unwritten extents to real allocations in 284 * end_io() when necessary, otherwise a racing buffer read would cache 285 * zeros from unwritten extents. 286 */ 287 if (flags & DIO_COMPLETE_INVALIDATE && 288 ret > 0 && dio->op == REQ_OP_WRITE && 289 dio->inode->i_mapping->nrpages) { 290 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 291 offset >> PAGE_SHIFT, 292 (offset + ret - 1) >> PAGE_SHIFT); 293 if (err) 294 dio_warn_stale_pagecache(dio->iocb->ki_filp); 295 } 296 297 inode_dio_end(dio->inode); 298 299 if (flags & DIO_COMPLETE_ASYNC) { 300 /* 301 * generic_write_sync expects ki_pos to have been updated 302 * already, but the submission path only does this for 303 * synchronous I/O. 304 */ 305 dio->iocb->ki_pos += transferred; 306 307 if (ret > 0 && dio->op == REQ_OP_WRITE) 308 ret = generic_write_sync(dio->iocb, ret); 309 dio->iocb->ki_complete(dio->iocb, ret, 0); 310 } 311 312 kmem_cache_free(dio_cache, dio); 313 return ret; 314 } 315 316 static void dio_aio_complete_work(struct work_struct *work) 317 { 318 struct dio *dio = container_of(work, struct dio, complete_work); 319 320 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 321 } 322 323 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 324 325 /* 326 * Asynchronous IO callback. 327 */ 328 static void dio_bio_end_aio(struct bio *bio) 329 { 330 struct dio *dio = bio->bi_private; 331 unsigned long remaining; 332 unsigned long flags; 333 bool defer_completion = false; 334 335 /* cleanup the bio */ 336 dio_bio_complete(dio, bio); 337 338 spin_lock_irqsave(&dio->bio_lock, flags); 339 remaining = --dio->refcount; 340 if (remaining == 1 && dio->waiter) 341 wake_up_process(dio->waiter); 342 spin_unlock_irqrestore(&dio->bio_lock, flags); 343 344 if (remaining == 0) { 345 /* 346 * Defer completion when defer_completion is set or 347 * when the inode has pages mapped and this is AIO write. 348 * We need to invalidate those pages because there is a 349 * chance they contain stale data in the case buffered IO 350 * went in between AIO submission and completion into the 351 * same region. 352 */ 353 if (dio->result) 354 defer_completion = dio->defer_completion || 355 (dio->op == REQ_OP_WRITE && 356 dio->inode->i_mapping->nrpages); 357 if (defer_completion) { 358 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 359 queue_work(dio->inode->i_sb->s_dio_done_wq, 360 &dio->complete_work); 361 } else { 362 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 363 } 364 } 365 } 366 367 /* 368 * The BIO completion handler simply queues the BIO up for the process-context 369 * handler. 370 * 371 * During I/O bi_private points at the dio. After I/O, bi_private is used to 372 * implement a singly-linked list of completed BIOs, at dio->bio_list. 373 */ 374 static void dio_bio_end_io(struct bio *bio) 375 { 376 struct dio *dio = bio->bi_private; 377 unsigned long flags; 378 379 spin_lock_irqsave(&dio->bio_lock, flags); 380 bio->bi_private = dio->bio_list; 381 dio->bio_list = bio; 382 if (--dio->refcount == 1 && dio->waiter) 383 wake_up_process(dio->waiter); 384 spin_unlock_irqrestore(&dio->bio_lock, flags); 385 } 386 387 /** 388 * dio_end_io - handle the end io action for the given bio 389 * @bio: The direct io bio thats being completed 390 * 391 * This is meant to be called by any filesystem that uses their own dio_submit_t 392 * so that the DIO specific endio actions are dealt with after the filesystem 393 * has done it's completion work. 394 */ 395 void dio_end_io(struct bio *bio) 396 { 397 struct dio *dio = bio->bi_private; 398 399 if (dio->is_async) 400 dio_bio_end_aio(bio); 401 else 402 dio_bio_end_io(bio); 403 } 404 EXPORT_SYMBOL_GPL(dio_end_io); 405 406 static inline void 407 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 408 struct block_device *bdev, 409 sector_t first_sector, int nr_vecs) 410 { 411 struct bio *bio; 412 413 /* 414 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 415 * we request a valid number of vectors. 416 */ 417 bio = bio_alloc(GFP_KERNEL, nr_vecs); 418 419 bio_set_dev(bio, bdev); 420 bio->bi_iter.bi_sector = first_sector; 421 bio_set_op_attrs(bio, dio->op, dio->op_flags); 422 if (dio->is_async) 423 bio->bi_end_io = dio_bio_end_aio; 424 else 425 bio->bi_end_io = dio_bio_end_io; 426 427 bio->bi_write_hint = dio->iocb->ki_hint; 428 429 sdio->bio = bio; 430 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 431 } 432 433 /* 434 * In the AIO read case we speculatively dirty the pages before starting IO. 435 * During IO completion, any of these pages which happen to have been written 436 * back will be redirtied by bio_check_pages_dirty(). 437 * 438 * bios hold a dio reference between submit_bio and ->end_io. 439 */ 440 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 441 { 442 struct bio *bio = sdio->bio; 443 unsigned long flags; 444 445 bio->bi_private = dio; 446 447 spin_lock_irqsave(&dio->bio_lock, flags); 448 dio->refcount++; 449 spin_unlock_irqrestore(&dio->bio_lock, flags); 450 451 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 452 bio_set_pages_dirty(bio); 453 454 dio->bio_disk = bio->bi_disk; 455 456 if (sdio->submit_io) { 457 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 458 dio->bio_cookie = BLK_QC_T_NONE; 459 } else 460 dio->bio_cookie = submit_bio(bio); 461 462 sdio->bio = NULL; 463 sdio->boundary = 0; 464 sdio->logical_offset_in_bio = 0; 465 } 466 467 /* 468 * Release any resources in case of a failure 469 */ 470 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 471 { 472 while (sdio->head < sdio->tail) 473 put_page(dio->pages[sdio->head++]); 474 } 475 476 /* 477 * Wait for the next BIO to complete. Remove it and return it. NULL is 478 * returned once all BIOs have been completed. This must only be called once 479 * all bios have been issued so that dio->refcount can only decrease. This 480 * requires that that the caller hold a reference on the dio. 481 */ 482 static struct bio *dio_await_one(struct dio *dio) 483 { 484 unsigned long flags; 485 struct bio *bio = NULL; 486 487 spin_lock_irqsave(&dio->bio_lock, flags); 488 489 /* 490 * Wait as long as the list is empty and there are bios in flight. bio 491 * completion drops the count, maybe adds to the list, and wakes while 492 * holding the bio_lock so we don't need set_current_state()'s barrier 493 * and can call it after testing our condition. 494 */ 495 while (dio->refcount > 1 && dio->bio_list == NULL) { 496 __set_current_state(TASK_UNINTERRUPTIBLE); 497 dio->waiter = current; 498 spin_unlock_irqrestore(&dio->bio_lock, flags); 499 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 500 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true)) 501 io_schedule(); 502 /* wake up sets us TASK_RUNNING */ 503 spin_lock_irqsave(&dio->bio_lock, flags); 504 dio->waiter = NULL; 505 } 506 if (dio->bio_list) { 507 bio = dio->bio_list; 508 dio->bio_list = bio->bi_private; 509 } 510 spin_unlock_irqrestore(&dio->bio_lock, flags); 511 return bio; 512 } 513 514 /* 515 * Process one completed BIO. No locks are held. 516 */ 517 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 518 { 519 blk_status_t err = bio->bi_status; 520 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 521 522 if (err) { 523 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 524 dio->io_error = -EAGAIN; 525 else 526 dio->io_error = -EIO; 527 } 528 529 if (dio->is_async && should_dirty) { 530 bio_check_pages_dirty(bio); /* transfers ownership */ 531 } else { 532 bio_release_pages(bio, should_dirty); 533 bio_put(bio); 534 } 535 return err; 536 } 537 538 /* 539 * Wait on and process all in-flight BIOs. This must only be called once 540 * all bios have been issued so that the refcount can only decrease. 541 * This just waits for all bios to make it through dio_bio_complete. IO 542 * errors are propagated through dio->io_error and should be propagated via 543 * dio_complete(). 544 */ 545 static void dio_await_completion(struct dio *dio) 546 { 547 struct bio *bio; 548 do { 549 bio = dio_await_one(dio); 550 if (bio) 551 dio_bio_complete(dio, bio); 552 } while (bio); 553 } 554 555 /* 556 * A really large O_DIRECT read or write can generate a lot of BIOs. So 557 * to keep the memory consumption sane we periodically reap any completed BIOs 558 * during the BIO generation phase. 559 * 560 * This also helps to limit the peak amount of pinned userspace memory. 561 */ 562 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 563 { 564 int ret = 0; 565 566 if (sdio->reap_counter++ >= 64) { 567 while (dio->bio_list) { 568 unsigned long flags; 569 struct bio *bio; 570 int ret2; 571 572 spin_lock_irqsave(&dio->bio_lock, flags); 573 bio = dio->bio_list; 574 dio->bio_list = bio->bi_private; 575 spin_unlock_irqrestore(&dio->bio_lock, flags); 576 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 577 if (ret == 0) 578 ret = ret2; 579 } 580 sdio->reap_counter = 0; 581 } 582 return ret; 583 } 584 585 /* 586 * Create workqueue for deferred direct IO completions. We allocate the 587 * workqueue when it's first needed. This avoids creating workqueue for 588 * filesystems that don't need it and also allows us to create the workqueue 589 * late enough so the we can include s_id in the name of the workqueue. 590 */ 591 int sb_init_dio_done_wq(struct super_block *sb) 592 { 593 struct workqueue_struct *old; 594 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 595 WQ_MEM_RECLAIM, 0, 596 sb->s_id); 597 if (!wq) 598 return -ENOMEM; 599 /* 600 * This has to be atomic as more DIOs can race to create the workqueue 601 */ 602 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 603 /* Someone created workqueue before us? Free ours... */ 604 if (old) 605 destroy_workqueue(wq); 606 return 0; 607 } 608 609 static int dio_set_defer_completion(struct dio *dio) 610 { 611 struct super_block *sb = dio->inode->i_sb; 612 613 if (dio->defer_completion) 614 return 0; 615 dio->defer_completion = true; 616 if (!sb->s_dio_done_wq) 617 return sb_init_dio_done_wq(sb); 618 return 0; 619 } 620 621 /* 622 * Call into the fs to map some more disk blocks. We record the current number 623 * of available blocks at sdio->blocks_available. These are in units of the 624 * fs blocksize, i_blocksize(inode). 625 * 626 * The fs is allowed to map lots of blocks at once. If it wants to do that, 627 * it uses the passed inode-relative block number as the file offset, as usual. 628 * 629 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 630 * has remaining to do. The fs should not map more than this number of blocks. 631 * 632 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 633 * indicate how much contiguous disk space has been made available at 634 * bh->b_blocknr. 635 * 636 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 637 * This isn't very efficient... 638 * 639 * In the case of filesystem holes: the fs may return an arbitrarily-large 640 * hole by returning an appropriate value in b_size and by clearing 641 * buffer_mapped(). However the direct-io code will only process holes one 642 * block at a time - it will repeatedly call get_block() as it walks the hole. 643 */ 644 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 645 struct buffer_head *map_bh) 646 { 647 int ret; 648 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 649 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 650 unsigned long fs_count; /* Number of filesystem-sized blocks */ 651 int create; 652 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 653 loff_t i_size; 654 655 /* 656 * If there was a memory error and we've overwritten all the 657 * mapped blocks then we can now return that memory error 658 */ 659 ret = dio->page_errors; 660 if (ret == 0) { 661 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 662 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 663 fs_endblk = (sdio->final_block_in_request - 1) >> 664 sdio->blkfactor; 665 fs_count = fs_endblk - fs_startblk + 1; 666 667 map_bh->b_state = 0; 668 map_bh->b_size = fs_count << i_blkbits; 669 670 /* 671 * For writes that could fill holes inside i_size on a 672 * DIO_SKIP_HOLES filesystem we forbid block creations: only 673 * overwrites are permitted. We will return early to the caller 674 * once we see an unmapped buffer head returned, and the caller 675 * will fall back to buffered I/O. 676 * 677 * Otherwise the decision is left to the get_blocks method, 678 * which may decide to handle it or also return an unmapped 679 * buffer head. 680 */ 681 create = dio->op == REQ_OP_WRITE; 682 if (dio->flags & DIO_SKIP_HOLES) { 683 i_size = i_size_read(dio->inode); 684 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 685 create = 0; 686 } 687 688 ret = (*sdio->get_block)(dio->inode, fs_startblk, 689 map_bh, create); 690 691 /* Store for completion */ 692 dio->private = map_bh->b_private; 693 694 if (ret == 0 && buffer_defer_completion(map_bh)) 695 ret = dio_set_defer_completion(dio); 696 } 697 return ret; 698 } 699 700 /* 701 * There is no bio. Make one now. 702 */ 703 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 704 sector_t start_sector, struct buffer_head *map_bh) 705 { 706 sector_t sector; 707 int ret, nr_pages; 708 709 ret = dio_bio_reap(dio, sdio); 710 if (ret) 711 goto out; 712 sector = start_sector << (sdio->blkbits - 9); 713 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 714 BUG_ON(nr_pages <= 0); 715 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 716 sdio->boundary = 0; 717 out: 718 return ret; 719 } 720 721 /* 722 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 723 * that was successful then update final_block_in_bio and take a ref against 724 * the just-added page. 725 * 726 * Return zero on success. Non-zero means the caller needs to start a new BIO. 727 */ 728 static inline int dio_bio_add_page(struct dio_submit *sdio) 729 { 730 int ret; 731 732 ret = bio_add_page(sdio->bio, sdio->cur_page, 733 sdio->cur_page_len, sdio->cur_page_offset); 734 if (ret == sdio->cur_page_len) { 735 /* 736 * Decrement count only, if we are done with this page 737 */ 738 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 739 sdio->pages_in_io--; 740 get_page(sdio->cur_page); 741 sdio->final_block_in_bio = sdio->cur_page_block + 742 (sdio->cur_page_len >> sdio->blkbits); 743 ret = 0; 744 } else { 745 ret = 1; 746 } 747 return ret; 748 } 749 750 /* 751 * Put cur_page under IO. The section of cur_page which is described by 752 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 753 * starts on-disk at cur_page_block. 754 * 755 * We take a ref against the page here (on behalf of its presence in the bio). 756 * 757 * The caller of this function is responsible for removing cur_page from the 758 * dio, and for dropping the refcount which came from that presence. 759 */ 760 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 761 struct buffer_head *map_bh) 762 { 763 int ret = 0; 764 765 if (sdio->bio) { 766 loff_t cur_offset = sdio->cur_page_fs_offset; 767 loff_t bio_next_offset = sdio->logical_offset_in_bio + 768 sdio->bio->bi_iter.bi_size; 769 770 /* 771 * See whether this new request is contiguous with the old. 772 * 773 * Btrfs cannot handle having logically non-contiguous requests 774 * submitted. For example if you have 775 * 776 * Logical: [0-4095][HOLE][8192-12287] 777 * Physical: [0-4095] [4096-8191] 778 * 779 * We cannot submit those pages together as one BIO. So if our 780 * current logical offset in the file does not equal what would 781 * be the next logical offset in the bio, submit the bio we 782 * have. 783 */ 784 if (sdio->final_block_in_bio != sdio->cur_page_block || 785 cur_offset != bio_next_offset) 786 dio_bio_submit(dio, sdio); 787 } 788 789 if (sdio->bio == NULL) { 790 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 791 if (ret) 792 goto out; 793 } 794 795 if (dio_bio_add_page(sdio) != 0) { 796 dio_bio_submit(dio, sdio); 797 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 798 if (ret == 0) { 799 ret = dio_bio_add_page(sdio); 800 BUG_ON(ret != 0); 801 } 802 } 803 out: 804 return ret; 805 } 806 807 /* 808 * An autonomous function to put a chunk of a page under deferred IO. 809 * 810 * The caller doesn't actually know (or care) whether this piece of page is in 811 * a BIO, or is under IO or whatever. We just take care of all possible 812 * situations here. The separation between the logic of do_direct_IO() and 813 * that of submit_page_section() is important for clarity. Please don't break. 814 * 815 * The chunk of page starts on-disk at blocknr. 816 * 817 * We perform deferred IO, by recording the last-submitted page inside our 818 * private part of the dio structure. If possible, we just expand the IO 819 * across that page here. 820 * 821 * If that doesn't work out then we put the old page into the bio and add this 822 * page to the dio instead. 823 */ 824 static inline int 825 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 826 unsigned offset, unsigned len, sector_t blocknr, 827 struct buffer_head *map_bh) 828 { 829 int ret = 0; 830 831 if (dio->op == REQ_OP_WRITE) { 832 /* 833 * Read accounting is performed in submit_bio() 834 */ 835 task_io_account_write(len); 836 } 837 838 /* 839 * Can we just grow the current page's presence in the dio? 840 */ 841 if (sdio->cur_page == page && 842 sdio->cur_page_offset + sdio->cur_page_len == offset && 843 sdio->cur_page_block + 844 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 845 sdio->cur_page_len += len; 846 goto out; 847 } 848 849 /* 850 * If there's a deferred page already there then send it. 851 */ 852 if (sdio->cur_page) { 853 ret = dio_send_cur_page(dio, sdio, map_bh); 854 put_page(sdio->cur_page); 855 sdio->cur_page = NULL; 856 if (ret) 857 return ret; 858 } 859 860 get_page(page); /* It is in dio */ 861 sdio->cur_page = page; 862 sdio->cur_page_offset = offset; 863 sdio->cur_page_len = len; 864 sdio->cur_page_block = blocknr; 865 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 866 out: 867 /* 868 * If sdio->boundary then we want to schedule the IO now to 869 * avoid metadata seeks. 870 */ 871 if (sdio->boundary) { 872 ret = dio_send_cur_page(dio, sdio, map_bh); 873 if (sdio->bio) 874 dio_bio_submit(dio, sdio); 875 put_page(sdio->cur_page); 876 sdio->cur_page = NULL; 877 } 878 return ret; 879 } 880 881 /* 882 * If we are not writing the entire block and get_block() allocated 883 * the block for us, we need to fill-in the unused portion of the 884 * block with zeros. This happens only if user-buffer, fileoffset or 885 * io length is not filesystem block-size multiple. 886 * 887 * `end' is zero if we're doing the start of the IO, 1 at the end of the 888 * IO. 889 */ 890 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 891 int end, struct buffer_head *map_bh) 892 { 893 unsigned dio_blocks_per_fs_block; 894 unsigned this_chunk_blocks; /* In dio_blocks */ 895 unsigned this_chunk_bytes; 896 struct page *page; 897 898 sdio->start_zero_done = 1; 899 if (!sdio->blkfactor || !buffer_new(map_bh)) 900 return; 901 902 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 903 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 904 905 if (!this_chunk_blocks) 906 return; 907 908 /* 909 * We need to zero out part of an fs block. It is either at the 910 * beginning or the end of the fs block. 911 */ 912 if (end) 913 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 914 915 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 916 917 page = ZERO_PAGE(0); 918 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 919 sdio->next_block_for_io, map_bh)) 920 return; 921 922 sdio->next_block_for_io += this_chunk_blocks; 923 } 924 925 /* 926 * Walk the user pages, and the file, mapping blocks to disk and generating 927 * a sequence of (page,offset,len,block) mappings. These mappings are injected 928 * into submit_page_section(), which takes care of the next stage of submission 929 * 930 * Direct IO against a blockdev is different from a file. Because we can 931 * happily perform page-sized but 512-byte aligned IOs. It is important that 932 * blockdev IO be able to have fine alignment and large sizes. 933 * 934 * So what we do is to permit the ->get_block function to populate bh.b_size 935 * with the size of IO which is permitted at this offset and this i_blkbits. 936 * 937 * For best results, the blockdev should be set up with 512-byte i_blkbits and 938 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 939 * fine alignment but still allows this function to work in PAGE_SIZE units. 940 */ 941 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 942 struct buffer_head *map_bh) 943 { 944 const unsigned blkbits = sdio->blkbits; 945 const unsigned i_blkbits = blkbits + sdio->blkfactor; 946 int ret = 0; 947 948 while (sdio->block_in_file < sdio->final_block_in_request) { 949 struct page *page; 950 size_t from, to; 951 952 page = dio_get_page(dio, sdio); 953 if (IS_ERR(page)) { 954 ret = PTR_ERR(page); 955 goto out; 956 } 957 from = sdio->head ? 0 : sdio->from; 958 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 959 sdio->head++; 960 961 while (from < to) { 962 unsigned this_chunk_bytes; /* # of bytes mapped */ 963 unsigned this_chunk_blocks; /* # of blocks */ 964 unsigned u; 965 966 if (sdio->blocks_available == 0) { 967 /* 968 * Need to go and map some more disk 969 */ 970 unsigned long blkmask; 971 unsigned long dio_remainder; 972 973 ret = get_more_blocks(dio, sdio, map_bh); 974 if (ret) { 975 put_page(page); 976 goto out; 977 } 978 if (!buffer_mapped(map_bh)) 979 goto do_holes; 980 981 sdio->blocks_available = 982 map_bh->b_size >> blkbits; 983 sdio->next_block_for_io = 984 map_bh->b_blocknr << sdio->blkfactor; 985 if (buffer_new(map_bh)) { 986 clean_bdev_aliases( 987 map_bh->b_bdev, 988 map_bh->b_blocknr, 989 map_bh->b_size >> i_blkbits); 990 } 991 992 if (!sdio->blkfactor) 993 goto do_holes; 994 995 blkmask = (1 << sdio->blkfactor) - 1; 996 dio_remainder = (sdio->block_in_file & blkmask); 997 998 /* 999 * If we are at the start of IO and that IO 1000 * starts partway into a fs-block, 1001 * dio_remainder will be non-zero. If the IO 1002 * is a read then we can simply advance the IO 1003 * cursor to the first block which is to be 1004 * read. But if the IO is a write and the 1005 * block was newly allocated we cannot do that; 1006 * the start of the fs block must be zeroed out 1007 * on-disk 1008 */ 1009 if (!buffer_new(map_bh)) 1010 sdio->next_block_for_io += dio_remainder; 1011 sdio->blocks_available -= dio_remainder; 1012 } 1013 do_holes: 1014 /* Handle holes */ 1015 if (!buffer_mapped(map_bh)) { 1016 loff_t i_size_aligned; 1017 1018 /* AKPM: eargh, -ENOTBLK is a hack */ 1019 if (dio->op == REQ_OP_WRITE) { 1020 put_page(page); 1021 return -ENOTBLK; 1022 } 1023 1024 /* 1025 * Be sure to account for a partial block as the 1026 * last block in the file 1027 */ 1028 i_size_aligned = ALIGN(i_size_read(dio->inode), 1029 1 << blkbits); 1030 if (sdio->block_in_file >= 1031 i_size_aligned >> blkbits) { 1032 /* We hit eof */ 1033 put_page(page); 1034 goto out; 1035 } 1036 zero_user(page, from, 1 << blkbits); 1037 sdio->block_in_file++; 1038 from += 1 << blkbits; 1039 dio->result += 1 << blkbits; 1040 goto next_block; 1041 } 1042 1043 /* 1044 * If we're performing IO which has an alignment which 1045 * is finer than the underlying fs, go check to see if 1046 * we must zero out the start of this block. 1047 */ 1048 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1049 dio_zero_block(dio, sdio, 0, map_bh); 1050 1051 /* 1052 * Work out, in this_chunk_blocks, how much disk we 1053 * can add to this page 1054 */ 1055 this_chunk_blocks = sdio->blocks_available; 1056 u = (to - from) >> blkbits; 1057 if (this_chunk_blocks > u) 1058 this_chunk_blocks = u; 1059 u = sdio->final_block_in_request - sdio->block_in_file; 1060 if (this_chunk_blocks > u) 1061 this_chunk_blocks = u; 1062 this_chunk_bytes = this_chunk_blocks << blkbits; 1063 BUG_ON(this_chunk_bytes == 0); 1064 1065 if (this_chunk_blocks == sdio->blocks_available) 1066 sdio->boundary = buffer_boundary(map_bh); 1067 ret = submit_page_section(dio, sdio, page, 1068 from, 1069 this_chunk_bytes, 1070 sdio->next_block_for_io, 1071 map_bh); 1072 if (ret) { 1073 put_page(page); 1074 goto out; 1075 } 1076 sdio->next_block_for_io += this_chunk_blocks; 1077 1078 sdio->block_in_file += this_chunk_blocks; 1079 from += this_chunk_bytes; 1080 dio->result += this_chunk_bytes; 1081 sdio->blocks_available -= this_chunk_blocks; 1082 next_block: 1083 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1084 if (sdio->block_in_file == sdio->final_block_in_request) 1085 break; 1086 } 1087 1088 /* Drop the ref which was taken in get_user_pages() */ 1089 put_page(page); 1090 } 1091 out: 1092 return ret; 1093 } 1094 1095 static inline int drop_refcount(struct dio *dio) 1096 { 1097 int ret2; 1098 unsigned long flags; 1099 1100 /* 1101 * Sync will always be dropping the final ref and completing the 1102 * operation. AIO can if it was a broken operation described above or 1103 * in fact if all the bios race to complete before we get here. In 1104 * that case dio_complete() translates the EIOCBQUEUED into the proper 1105 * return code that the caller will hand to ->complete(). 1106 * 1107 * This is managed by the bio_lock instead of being an atomic_t so that 1108 * completion paths can drop their ref and use the remaining count to 1109 * decide to wake the submission path atomically. 1110 */ 1111 spin_lock_irqsave(&dio->bio_lock, flags); 1112 ret2 = --dio->refcount; 1113 spin_unlock_irqrestore(&dio->bio_lock, flags); 1114 return ret2; 1115 } 1116 1117 /* 1118 * This is a library function for use by filesystem drivers. 1119 * 1120 * The locking rules are governed by the flags parameter: 1121 * - if the flags value contains DIO_LOCKING we use a fancy locking 1122 * scheme for dumb filesystems. 1123 * For writes this function is called under i_mutex and returns with 1124 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1125 * taken and dropped again before returning. 1126 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1127 * internal locking but rather rely on the filesystem to synchronize 1128 * direct I/O reads/writes versus each other and truncate. 1129 * 1130 * To help with locking against truncate we incremented the i_dio_count 1131 * counter before starting direct I/O, and decrement it once we are done. 1132 * Truncate can wait for it to reach zero to provide exclusion. It is 1133 * expected that filesystem provide exclusion between new direct I/O 1134 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1135 * but other filesystems need to take care of this on their own. 1136 * 1137 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1138 * is always inlined. Otherwise gcc is unable to split the structure into 1139 * individual fields and will generate much worse code. This is important 1140 * for the whole file. 1141 */ 1142 static inline ssize_t 1143 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1144 struct block_device *bdev, struct iov_iter *iter, 1145 get_block_t get_block, dio_iodone_t end_io, 1146 dio_submit_t submit_io, int flags) 1147 { 1148 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1149 unsigned blkbits = i_blkbits; 1150 unsigned blocksize_mask = (1 << blkbits) - 1; 1151 ssize_t retval = -EINVAL; 1152 const size_t count = iov_iter_count(iter); 1153 loff_t offset = iocb->ki_pos; 1154 const loff_t end = offset + count; 1155 struct dio *dio; 1156 struct dio_submit sdio = { 0, }; 1157 struct buffer_head map_bh = { 0, }; 1158 struct blk_plug plug; 1159 unsigned long align = offset | iov_iter_alignment(iter); 1160 1161 /* 1162 * Avoid references to bdev if not absolutely needed to give 1163 * the early prefetch in the caller enough time. 1164 */ 1165 1166 if (align & blocksize_mask) { 1167 if (bdev) 1168 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1169 blocksize_mask = (1 << blkbits) - 1; 1170 if (align & blocksize_mask) 1171 goto out; 1172 } 1173 1174 /* watch out for a 0 len io from a tricksy fs */ 1175 if (iov_iter_rw(iter) == READ && !count) 1176 return 0; 1177 1178 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1179 retval = -ENOMEM; 1180 if (!dio) 1181 goto out; 1182 /* 1183 * Believe it or not, zeroing out the page array caused a .5% 1184 * performance regression in a database benchmark. So, we take 1185 * care to only zero out what's needed. 1186 */ 1187 memset(dio, 0, offsetof(struct dio, pages)); 1188 1189 dio->flags = flags; 1190 if (dio->flags & DIO_LOCKING) { 1191 if (iov_iter_rw(iter) == READ) { 1192 struct address_space *mapping = 1193 iocb->ki_filp->f_mapping; 1194 1195 /* will be released by direct_io_worker */ 1196 inode_lock(inode); 1197 1198 retval = filemap_write_and_wait_range(mapping, offset, 1199 end - 1); 1200 if (retval) { 1201 inode_unlock(inode); 1202 kmem_cache_free(dio_cache, dio); 1203 goto out; 1204 } 1205 } 1206 } 1207 1208 /* Once we sampled i_size check for reads beyond EOF */ 1209 dio->i_size = i_size_read(inode); 1210 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1211 if (dio->flags & DIO_LOCKING) 1212 inode_unlock(inode); 1213 kmem_cache_free(dio_cache, dio); 1214 retval = 0; 1215 goto out; 1216 } 1217 1218 /* 1219 * For file extending writes updating i_size before data writeouts 1220 * complete can expose uninitialized blocks in dumb filesystems. 1221 * In that case we need to wait for I/O completion even if asked 1222 * for an asynchronous write. 1223 */ 1224 if (is_sync_kiocb(iocb)) 1225 dio->is_async = false; 1226 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1227 dio->is_async = false; 1228 else 1229 dio->is_async = true; 1230 1231 dio->inode = inode; 1232 if (iov_iter_rw(iter) == WRITE) { 1233 dio->op = REQ_OP_WRITE; 1234 dio->op_flags = REQ_SYNC | REQ_IDLE; 1235 if (iocb->ki_flags & IOCB_NOWAIT) 1236 dio->op_flags |= REQ_NOWAIT; 1237 } else { 1238 dio->op = REQ_OP_READ; 1239 } 1240 if (iocb->ki_flags & IOCB_HIPRI) 1241 dio->op_flags |= REQ_HIPRI; 1242 1243 /* 1244 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1245 * so that we can call ->fsync. 1246 */ 1247 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1248 retval = 0; 1249 if (iocb->ki_flags & IOCB_DSYNC) 1250 retval = dio_set_defer_completion(dio); 1251 else if (!dio->inode->i_sb->s_dio_done_wq) { 1252 /* 1253 * In case of AIO write racing with buffered read we 1254 * need to defer completion. We can't decide this now, 1255 * however the workqueue needs to be initialized here. 1256 */ 1257 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1258 } 1259 if (retval) { 1260 /* 1261 * We grab i_mutex only for reads so we don't have 1262 * to release it here 1263 */ 1264 kmem_cache_free(dio_cache, dio); 1265 goto out; 1266 } 1267 } 1268 1269 /* 1270 * Will be decremented at I/O completion time. 1271 */ 1272 inode_dio_begin(inode); 1273 1274 retval = 0; 1275 sdio.blkbits = blkbits; 1276 sdio.blkfactor = i_blkbits - blkbits; 1277 sdio.block_in_file = offset >> blkbits; 1278 1279 sdio.get_block = get_block; 1280 dio->end_io = end_io; 1281 sdio.submit_io = submit_io; 1282 sdio.final_block_in_bio = -1; 1283 sdio.next_block_for_io = -1; 1284 1285 dio->iocb = iocb; 1286 1287 spin_lock_init(&dio->bio_lock); 1288 dio->refcount = 1; 1289 1290 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1291 sdio.iter = iter; 1292 sdio.final_block_in_request = end >> blkbits; 1293 1294 /* 1295 * In case of non-aligned buffers, we may need 2 more 1296 * pages since we need to zero out first and last block. 1297 */ 1298 if (unlikely(sdio.blkfactor)) 1299 sdio.pages_in_io = 2; 1300 1301 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1302 1303 blk_start_plug(&plug); 1304 1305 retval = do_direct_IO(dio, &sdio, &map_bh); 1306 if (retval) 1307 dio_cleanup(dio, &sdio); 1308 1309 if (retval == -ENOTBLK) { 1310 /* 1311 * The remaining part of the request will be 1312 * be handled by buffered I/O when we return 1313 */ 1314 retval = 0; 1315 } 1316 /* 1317 * There may be some unwritten disk at the end of a part-written 1318 * fs-block-sized block. Go zero that now. 1319 */ 1320 dio_zero_block(dio, &sdio, 1, &map_bh); 1321 1322 if (sdio.cur_page) { 1323 ssize_t ret2; 1324 1325 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1326 if (retval == 0) 1327 retval = ret2; 1328 put_page(sdio.cur_page); 1329 sdio.cur_page = NULL; 1330 } 1331 if (sdio.bio) 1332 dio_bio_submit(dio, &sdio); 1333 1334 blk_finish_plug(&plug); 1335 1336 /* 1337 * It is possible that, we return short IO due to end of file. 1338 * In that case, we need to release all the pages we got hold on. 1339 */ 1340 dio_cleanup(dio, &sdio); 1341 1342 /* 1343 * All block lookups have been performed. For READ requests 1344 * we can let i_mutex go now that its achieved its purpose 1345 * of protecting us from looking up uninitialized blocks. 1346 */ 1347 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1348 inode_unlock(dio->inode); 1349 1350 /* 1351 * The only time we want to leave bios in flight is when a successful 1352 * partial aio read or full aio write have been setup. In that case 1353 * bio completion will call aio_complete. The only time it's safe to 1354 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1355 * This had *better* be the only place that raises -EIOCBQUEUED. 1356 */ 1357 BUG_ON(retval == -EIOCBQUEUED); 1358 if (dio->is_async && retval == 0 && dio->result && 1359 (iov_iter_rw(iter) == READ || dio->result == count)) 1360 retval = -EIOCBQUEUED; 1361 else 1362 dio_await_completion(dio); 1363 1364 if (drop_refcount(dio) == 0) { 1365 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1366 } else 1367 BUG_ON(retval != -EIOCBQUEUED); 1368 1369 out: 1370 return retval; 1371 } 1372 1373 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1374 struct block_device *bdev, struct iov_iter *iter, 1375 get_block_t get_block, 1376 dio_iodone_t end_io, dio_submit_t submit_io, 1377 int flags) 1378 { 1379 /* 1380 * The block device state is needed in the end to finally 1381 * submit everything. Since it's likely to be cache cold 1382 * prefetch it here as first thing to hide some of the 1383 * latency. 1384 * 1385 * Attempt to prefetch the pieces we likely need later. 1386 */ 1387 prefetch(&bdev->bd_disk->part_tbl); 1388 prefetch(bdev->bd_queue); 1389 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1390 1391 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1392 end_io, submit_io, flags); 1393 } 1394 1395 EXPORT_SYMBOL(__blockdev_direct_IO); 1396 1397 static __init int dio_init(void) 1398 { 1399 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1400 return 0; 1401 } 1402 module_init(dio_init) 1403