1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 int op; 121 int op_flags; 122 struct gendisk *bio_disk; 123 struct inode *inode; 124 loff_t i_size; /* i_size when submitted */ 125 dio_iodone_t *end_io; /* IO completion function */ 126 127 void *private; /* copy from map_bh.b_private */ 128 129 /* BIO completion state */ 130 spinlock_t bio_lock; /* protects BIO fields below */ 131 int page_errors; /* errno from get_user_pages() */ 132 int is_async; /* is IO async ? */ 133 bool defer_completion; /* defer AIO completion to workqueue? */ 134 bool should_dirty; /* if pages should be dirtied */ 135 int io_error; /* IO error in completion path */ 136 unsigned long refcount; /* direct_io_worker() and bios */ 137 struct bio *bio_list; /* singly linked via bi_private */ 138 struct task_struct *waiter; /* waiting task (NULL if none) */ 139 140 /* AIO related stuff */ 141 struct kiocb *iocb; /* kiocb */ 142 ssize_t result; /* IO result */ 143 144 /* 145 * pages[] (and any fields placed after it) are not zeroed out at 146 * allocation time. Don't add new fields after pages[] unless you 147 * wish that they not be zeroed. 148 */ 149 union { 150 struct page *pages[DIO_PAGES]; /* page buffer */ 151 struct work_struct complete_work;/* deferred AIO completion */ 152 }; 153 } ____cacheline_aligned_in_smp; 154 155 static struct kmem_cache *dio_cache __read_mostly; 156 157 /* 158 * How many pages are in the queue? 159 */ 160 static inline unsigned dio_pages_present(struct dio_submit *sdio) 161 { 162 return sdio->tail - sdio->head; 163 } 164 165 /* 166 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 167 */ 168 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 169 { 170 ssize_t ret; 171 172 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 173 &sdio->from); 174 175 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { 176 struct page *page = ZERO_PAGE(0); 177 /* 178 * A memory fault, but the filesystem has some outstanding 179 * mapped blocks. We need to use those blocks up to avoid 180 * leaking stale data in the file. 181 */ 182 if (dio->page_errors == 0) 183 dio->page_errors = ret; 184 get_page(page); 185 dio->pages[0] = page; 186 sdio->head = 0; 187 sdio->tail = 1; 188 sdio->from = 0; 189 sdio->to = PAGE_SIZE; 190 return 0; 191 } 192 193 if (ret >= 0) { 194 iov_iter_advance(sdio->iter, ret); 195 ret += sdio->from; 196 sdio->head = 0; 197 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 198 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 199 return 0; 200 } 201 return ret; 202 } 203 204 /* 205 * Get another userspace page. Returns an ERR_PTR on error. Pages are 206 * buffered inside the dio so that we can call get_user_pages() against a 207 * decent number of pages, less frequently. To provide nicer use of the 208 * L1 cache. 209 */ 210 static inline struct page *dio_get_page(struct dio *dio, 211 struct dio_submit *sdio) 212 { 213 if (dio_pages_present(sdio) == 0) { 214 int ret; 215 216 ret = dio_refill_pages(dio, sdio); 217 if (ret) 218 return ERR_PTR(ret); 219 BUG_ON(dio_pages_present(sdio) == 0); 220 } 221 return dio->pages[sdio->head]; 222 } 223 224 /* 225 * dio_complete() - called when all DIO BIO I/O has been completed 226 * 227 * This drops i_dio_count, lets interested parties know that a DIO operation 228 * has completed, and calculates the resulting return code for the operation. 229 * 230 * It lets the filesystem know if it registered an interest earlier via 231 * get_block. Pass the private field of the map buffer_head so that 232 * filesystems can use it to hold additional state between get_block calls and 233 * dio_complete. 234 */ 235 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 236 { 237 loff_t offset = dio->iocb->ki_pos; 238 ssize_t transferred = 0; 239 int err; 240 241 /* 242 * AIO submission can race with bio completion to get here while 243 * expecting to have the last io completed by bio completion. 244 * In that case -EIOCBQUEUED is in fact not an error we want 245 * to preserve through this call. 246 */ 247 if (ret == -EIOCBQUEUED) 248 ret = 0; 249 250 if (dio->result) { 251 transferred = dio->result; 252 253 /* Check for short read case */ 254 if ((dio->op == REQ_OP_READ) && 255 ((offset + transferred) > dio->i_size)) 256 transferred = dio->i_size - offset; 257 /* ignore EFAULT if some IO has been done */ 258 if (unlikely(ret == -EFAULT) && transferred) 259 ret = 0; 260 } 261 262 if (ret == 0) 263 ret = dio->page_errors; 264 if (ret == 0) 265 ret = dio->io_error; 266 if (ret == 0) 267 ret = transferred; 268 269 if (dio->end_io) { 270 // XXX: ki_pos?? 271 err = dio->end_io(dio->iocb, offset, ret, dio->private); 272 if (err) 273 ret = err; 274 } 275 276 /* 277 * Try again to invalidate clean pages which might have been cached by 278 * non-direct readahead, or faulted in by get_user_pages() if the source 279 * of the write was an mmap'ed region of the file we're writing. Either 280 * one is a pretty crazy thing to do, so we don't support it 100%. If 281 * this invalidation fails, tough, the write still worked... 282 * 283 * And this page cache invalidation has to be after dio->end_io(), as 284 * some filesystems convert unwritten extents to real allocations in 285 * end_io() when necessary, otherwise a racing buffer read would cache 286 * zeros from unwritten extents. 287 */ 288 if (flags & DIO_COMPLETE_INVALIDATE && 289 ret > 0 && dio->op == REQ_OP_WRITE && 290 dio->inode->i_mapping->nrpages) { 291 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 292 offset >> PAGE_SHIFT, 293 (offset + ret - 1) >> PAGE_SHIFT); 294 if (err) 295 dio_warn_stale_pagecache(dio->iocb->ki_filp); 296 } 297 298 inode_dio_end(dio->inode); 299 300 if (flags & DIO_COMPLETE_ASYNC) { 301 /* 302 * generic_write_sync expects ki_pos to have been updated 303 * already, but the submission path only does this for 304 * synchronous I/O. 305 */ 306 dio->iocb->ki_pos += transferred; 307 308 if (ret > 0 && dio->op == REQ_OP_WRITE) 309 ret = generic_write_sync(dio->iocb, ret); 310 dio->iocb->ki_complete(dio->iocb, ret); 311 } 312 313 kmem_cache_free(dio_cache, dio); 314 return ret; 315 } 316 317 static void dio_aio_complete_work(struct work_struct *work) 318 { 319 struct dio *dio = container_of(work, struct dio, complete_work); 320 321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 322 } 323 324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 325 326 /* 327 * Asynchronous IO callback. 328 */ 329 static void dio_bio_end_aio(struct bio *bio) 330 { 331 struct dio *dio = bio->bi_private; 332 unsigned long remaining; 333 unsigned long flags; 334 bool defer_completion = false; 335 336 /* cleanup the bio */ 337 dio_bio_complete(dio, bio); 338 339 spin_lock_irqsave(&dio->bio_lock, flags); 340 remaining = --dio->refcount; 341 if (remaining == 1 && dio->waiter) 342 wake_up_process(dio->waiter); 343 spin_unlock_irqrestore(&dio->bio_lock, flags); 344 345 if (remaining == 0) { 346 /* 347 * Defer completion when defer_completion is set or 348 * when the inode has pages mapped and this is AIO write. 349 * We need to invalidate those pages because there is a 350 * chance they contain stale data in the case buffered IO 351 * went in between AIO submission and completion into the 352 * same region. 353 */ 354 if (dio->result) 355 defer_completion = dio->defer_completion || 356 (dio->op == REQ_OP_WRITE && 357 dio->inode->i_mapping->nrpages); 358 if (defer_completion) { 359 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 360 queue_work(dio->inode->i_sb->s_dio_done_wq, 361 &dio->complete_work); 362 } else { 363 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 364 } 365 } 366 } 367 368 /* 369 * The BIO completion handler simply queues the BIO up for the process-context 370 * handler. 371 * 372 * During I/O bi_private points at the dio. After I/O, bi_private is used to 373 * implement a singly-linked list of completed BIOs, at dio->bio_list. 374 */ 375 static void dio_bio_end_io(struct bio *bio) 376 { 377 struct dio *dio = bio->bi_private; 378 unsigned long flags; 379 380 spin_lock_irqsave(&dio->bio_lock, flags); 381 bio->bi_private = dio->bio_list; 382 dio->bio_list = bio; 383 if (--dio->refcount == 1 && dio->waiter) 384 wake_up_process(dio->waiter); 385 spin_unlock_irqrestore(&dio->bio_lock, flags); 386 } 387 388 static inline void 389 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 390 struct block_device *bdev, 391 sector_t first_sector, int nr_vecs) 392 { 393 struct bio *bio; 394 395 /* 396 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 397 * we request a valid number of vectors. 398 */ 399 bio = bio_alloc(bdev, nr_vecs, dio->op | dio->op_flags, GFP_KERNEL); 400 bio->bi_iter.bi_sector = first_sector; 401 if (dio->is_async) 402 bio->bi_end_io = dio_bio_end_aio; 403 else 404 bio->bi_end_io = dio_bio_end_io; 405 406 bio->bi_write_hint = dio->iocb->ki_hint; 407 408 sdio->bio = bio; 409 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 410 } 411 412 /* 413 * In the AIO read case we speculatively dirty the pages before starting IO. 414 * During IO completion, any of these pages which happen to have been written 415 * back will be redirtied by bio_check_pages_dirty(). 416 * 417 * bios hold a dio reference between submit_bio and ->end_io. 418 */ 419 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 420 { 421 struct bio *bio = sdio->bio; 422 unsigned long flags; 423 424 bio->bi_private = dio; 425 /* don't account direct I/O as memory stall */ 426 bio_clear_flag(bio, BIO_WORKINGSET); 427 428 spin_lock_irqsave(&dio->bio_lock, flags); 429 dio->refcount++; 430 spin_unlock_irqrestore(&dio->bio_lock, flags); 431 432 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 433 bio_set_pages_dirty(bio); 434 435 dio->bio_disk = bio->bi_bdev->bd_disk; 436 437 if (sdio->submit_io) 438 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 439 else 440 submit_bio(bio); 441 442 sdio->bio = NULL; 443 sdio->boundary = 0; 444 sdio->logical_offset_in_bio = 0; 445 } 446 447 /* 448 * Release any resources in case of a failure 449 */ 450 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 451 { 452 while (sdio->head < sdio->tail) 453 put_page(dio->pages[sdio->head++]); 454 } 455 456 /* 457 * Wait for the next BIO to complete. Remove it and return it. NULL is 458 * returned once all BIOs have been completed. This must only be called once 459 * all bios have been issued so that dio->refcount can only decrease. This 460 * requires that the caller hold a reference on the dio. 461 */ 462 static struct bio *dio_await_one(struct dio *dio) 463 { 464 unsigned long flags; 465 struct bio *bio = NULL; 466 467 spin_lock_irqsave(&dio->bio_lock, flags); 468 469 /* 470 * Wait as long as the list is empty and there are bios in flight. bio 471 * completion drops the count, maybe adds to the list, and wakes while 472 * holding the bio_lock so we don't need set_current_state()'s barrier 473 * and can call it after testing our condition. 474 */ 475 while (dio->refcount > 1 && dio->bio_list == NULL) { 476 __set_current_state(TASK_UNINTERRUPTIBLE); 477 dio->waiter = current; 478 spin_unlock_irqrestore(&dio->bio_lock, flags); 479 blk_io_schedule(); 480 /* wake up sets us TASK_RUNNING */ 481 spin_lock_irqsave(&dio->bio_lock, flags); 482 dio->waiter = NULL; 483 } 484 if (dio->bio_list) { 485 bio = dio->bio_list; 486 dio->bio_list = bio->bi_private; 487 } 488 spin_unlock_irqrestore(&dio->bio_lock, flags); 489 return bio; 490 } 491 492 /* 493 * Process one completed BIO. No locks are held. 494 */ 495 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 496 { 497 blk_status_t err = bio->bi_status; 498 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty; 499 500 if (err) { 501 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 502 dio->io_error = -EAGAIN; 503 else 504 dio->io_error = -EIO; 505 } 506 507 if (dio->is_async && should_dirty) { 508 bio_check_pages_dirty(bio); /* transfers ownership */ 509 } else { 510 bio_release_pages(bio, should_dirty); 511 bio_put(bio); 512 } 513 return err; 514 } 515 516 /* 517 * Wait on and process all in-flight BIOs. This must only be called once 518 * all bios have been issued so that the refcount can only decrease. 519 * This just waits for all bios to make it through dio_bio_complete. IO 520 * errors are propagated through dio->io_error and should be propagated via 521 * dio_complete(). 522 */ 523 static void dio_await_completion(struct dio *dio) 524 { 525 struct bio *bio; 526 do { 527 bio = dio_await_one(dio); 528 if (bio) 529 dio_bio_complete(dio, bio); 530 } while (bio); 531 } 532 533 /* 534 * A really large O_DIRECT read or write can generate a lot of BIOs. So 535 * to keep the memory consumption sane we periodically reap any completed BIOs 536 * during the BIO generation phase. 537 * 538 * This also helps to limit the peak amount of pinned userspace memory. 539 */ 540 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 541 { 542 int ret = 0; 543 544 if (sdio->reap_counter++ >= 64) { 545 while (dio->bio_list) { 546 unsigned long flags; 547 struct bio *bio; 548 int ret2; 549 550 spin_lock_irqsave(&dio->bio_lock, flags); 551 bio = dio->bio_list; 552 dio->bio_list = bio->bi_private; 553 spin_unlock_irqrestore(&dio->bio_lock, flags); 554 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 555 if (ret == 0) 556 ret = ret2; 557 } 558 sdio->reap_counter = 0; 559 } 560 return ret; 561 } 562 563 /* 564 * Create workqueue for deferred direct IO completions. We allocate the 565 * workqueue when it's first needed. This avoids creating workqueue for 566 * filesystems that don't need it and also allows us to create the workqueue 567 * late enough so the we can include s_id in the name of the workqueue. 568 */ 569 int sb_init_dio_done_wq(struct super_block *sb) 570 { 571 struct workqueue_struct *old; 572 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 573 WQ_MEM_RECLAIM, 0, 574 sb->s_id); 575 if (!wq) 576 return -ENOMEM; 577 /* 578 * This has to be atomic as more DIOs can race to create the workqueue 579 */ 580 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 581 /* Someone created workqueue before us? Free ours... */ 582 if (old) 583 destroy_workqueue(wq); 584 return 0; 585 } 586 587 static int dio_set_defer_completion(struct dio *dio) 588 { 589 struct super_block *sb = dio->inode->i_sb; 590 591 if (dio->defer_completion) 592 return 0; 593 dio->defer_completion = true; 594 if (!sb->s_dio_done_wq) 595 return sb_init_dio_done_wq(sb); 596 return 0; 597 } 598 599 /* 600 * Call into the fs to map some more disk blocks. We record the current number 601 * of available blocks at sdio->blocks_available. These are in units of the 602 * fs blocksize, i_blocksize(inode). 603 * 604 * The fs is allowed to map lots of blocks at once. If it wants to do that, 605 * it uses the passed inode-relative block number as the file offset, as usual. 606 * 607 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 608 * has remaining to do. The fs should not map more than this number of blocks. 609 * 610 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 611 * indicate how much contiguous disk space has been made available at 612 * bh->b_blocknr. 613 * 614 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 615 * This isn't very efficient... 616 * 617 * In the case of filesystem holes: the fs may return an arbitrarily-large 618 * hole by returning an appropriate value in b_size and by clearing 619 * buffer_mapped(). However the direct-io code will only process holes one 620 * block at a time - it will repeatedly call get_block() as it walks the hole. 621 */ 622 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 623 struct buffer_head *map_bh) 624 { 625 int ret; 626 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 627 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 628 unsigned long fs_count; /* Number of filesystem-sized blocks */ 629 int create; 630 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 631 loff_t i_size; 632 633 /* 634 * If there was a memory error and we've overwritten all the 635 * mapped blocks then we can now return that memory error 636 */ 637 ret = dio->page_errors; 638 if (ret == 0) { 639 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 640 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 641 fs_endblk = (sdio->final_block_in_request - 1) >> 642 sdio->blkfactor; 643 fs_count = fs_endblk - fs_startblk + 1; 644 645 map_bh->b_state = 0; 646 map_bh->b_size = fs_count << i_blkbits; 647 648 /* 649 * For writes that could fill holes inside i_size on a 650 * DIO_SKIP_HOLES filesystem we forbid block creations: only 651 * overwrites are permitted. We will return early to the caller 652 * once we see an unmapped buffer head returned, and the caller 653 * will fall back to buffered I/O. 654 * 655 * Otherwise the decision is left to the get_blocks method, 656 * which may decide to handle it or also return an unmapped 657 * buffer head. 658 */ 659 create = dio->op == REQ_OP_WRITE; 660 if (dio->flags & DIO_SKIP_HOLES) { 661 i_size = i_size_read(dio->inode); 662 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 663 create = 0; 664 } 665 666 ret = (*sdio->get_block)(dio->inode, fs_startblk, 667 map_bh, create); 668 669 /* Store for completion */ 670 dio->private = map_bh->b_private; 671 672 if (ret == 0 && buffer_defer_completion(map_bh)) 673 ret = dio_set_defer_completion(dio); 674 } 675 return ret; 676 } 677 678 /* 679 * There is no bio. Make one now. 680 */ 681 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 682 sector_t start_sector, struct buffer_head *map_bh) 683 { 684 sector_t sector; 685 int ret, nr_pages; 686 687 ret = dio_bio_reap(dio, sdio); 688 if (ret) 689 goto out; 690 sector = start_sector << (sdio->blkbits - 9); 691 nr_pages = bio_max_segs(sdio->pages_in_io); 692 BUG_ON(nr_pages <= 0); 693 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 694 sdio->boundary = 0; 695 out: 696 return ret; 697 } 698 699 /* 700 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 701 * that was successful then update final_block_in_bio and take a ref against 702 * the just-added page. 703 * 704 * Return zero on success. Non-zero means the caller needs to start a new BIO. 705 */ 706 static inline int dio_bio_add_page(struct dio_submit *sdio) 707 { 708 int ret; 709 710 ret = bio_add_page(sdio->bio, sdio->cur_page, 711 sdio->cur_page_len, sdio->cur_page_offset); 712 if (ret == sdio->cur_page_len) { 713 /* 714 * Decrement count only, if we are done with this page 715 */ 716 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 717 sdio->pages_in_io--; 718 get_page(sdio->cur_page); 719 sdio->final_block_in_bio = sdio->cur_page_block + 720 (sdio->cur_page_len >> sdio->blkbits); 721 ret = 0; 722 } else { 723 ret = 1; 724 } 725 return ret; 726 } 727 728 /* 729 * Put cur_page under IO. The section of cur_page which is described by 730 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 731 * starts on-disk at cur_page_block. 732 * 733 * We take a ref against the page here (on behalf of its presence in the bio). 734 * 735 * The caller of this function is responsible for removing cur_page from the 736 * dio, and for dropping the refcount which came from that presence. 737 */ 738 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 739 struct buffer_head *map_bh) 740 { 741 int ret = 0; 742 743 if (sdio->bio) { 744 loff_t cur_offset = sdio->cur_page_fs_offset; 745 loff_t bio_next_offset = sdio->logical_offset_in_bio + 746 sdio->bio->bi_iter.bi_size; 747 748 /* 749 * See whether this new request is contiguous with the old. 750 * 751 * Btrfs cannot handle having logically non-contiguous requests 752 * submitted. For example if you have 753 * 754 * Logical: [0-4095][HOLE][8192-12287] 755 * Physical: [0-4095] [4096-8191] 756 * 757 * We cannot submit those pages together as one BIO. So if our 758 * current logical offset in the file does not equal what would 759 * be the next logical offset in the bio, submit the bio we 760 * have. 761 */ 762 if (sdio->final_block_in_bio != sdio->cur_page_block || 763 cur_offset != bio_next_offset) 764 dio_bio_submit(dio, sdio); 765 } 766 767 if (sdio->bio == NULL) { 768 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 769 if (ret) 770 goto out; 771 } 772 773 if (dio_bio_add_page(sdio) != 0) { 774 dio_bio_submit(dio, sdio); 775 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 776 if (ret == 0) { 777 ret = dio_bio_add_page(sdio); 778 BUG_ON(ret != 0); 779 } 780 } 781 out: 782 return ret; 783 } 784 785 /* 786 * An autonomous function to put a chunk of a page under deferred IO. 787 * 788 * The caller doesn't actually know (or care) whether this piece of page is in 789 * a BIO, or is under IO or whatever. We just take care of all possible 790 * situations here. The separation between the logic of do_direct_IO() and 791 * that of submit_page_section() is important for clarity. Please don't break. 792 * 793 * The chunk of page starts on-disk at blocknr. 794 * 795 * We perform deferred IO, by recording the last-submitted page inside our 796 * private part of the dio structure. If possible, we just expand the IO 797 * across that page here. 798 * 799 * If that doesn't work out then we put the old page into the bio and add this 800 * page to the dio instead. 801 */ 802 static inline int 803 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 804 unsigned offset, unsigned len, sector_t blocknr, 805 struct buffer_head *map_bh) 806 { 807 int ret = 0; 808 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 809 810 if (dio->op == REQ_OP_WRITE) { 811 /* 812 * Read accounting is performed in submit_bio() 813 */ 814 task_io_account_write(len); 815 } 816 817 /* 818 * Can we just grow the current page's presence in the dio? 819 */ 820 if (sdio->cur_page == page && 821 sdio->cur_page_offset + sdio->cur_page_len == offset && 822 sdio->cur_page_block + 823 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 824 sdio->cur_page_len += len; 825 goto out; 826 } 827 828 /* 829 * If there's a deferred page already there then send it. 830 */ 831 if (sdio->cur_page) { 832 ret = dio_send_cur_page(dio, sdio, map_bh); 833 put_page(sdio->cur_page); 834 sdio->cur_page = NULL; 835 if (ret) 836 return ret; 837 } 838 839 get_page(page); /* It is in dio */ 840 sdio->cur_page = page; 841 sdio->cur_page_offset = offset; 842 sdio->cur_page_len = len; 843 sdio->cur_page_block = blocknr; 844 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 845 out: 846 /* 847 * If boundary then we want to schedule the IO now to 848 * avoid metadata seeks. 849 */ 850 if (boundary) { 851 ret = dio_send_cur_page(dio, sdio, map_bh); 852 if (sdio->bio) 853 dio_bio_submit(dio, sdio); 854 put_page(sdio->cur_page); 855 sdio->cur_page = NULL; 856 } 857 return ret; 858 } 859 860 /* 861 * If we are not writing the entire block and get_block() allocated 862 * the block for us, we need to fill-in the unused portion of the 863 * block with zeros. This happens only if user-buffer, fileoffset or 864 * io length is not filesystem block-size multiple. 865 * 866 * `end' is zero if we're doing the start of the IO, 1 at the end of the 867 * IO. 868 */ 869 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 870 int end, struct buffer_head *map_bh) 871 { 872 unsigned dio_blocks_per_fs_block; 873 unsigned this_chunk_blocks; /* In dio_blocks */ 874 unsigned this_chunk_bytes; 875 struct page *page; 876 877 sdio->start_zero_done = 1; 878 if (!sdio->blkfactor || !buffer_new(map_bh)) 879 return; 880 881 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 882 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 883 884 if (!this_chunk_blocks) 885 return; 886 887 /* 888 * We need to zero out part of an fs block. It is either at the 889 * beginning or the end of the fs block. 890 */ 891 if (end) 892 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 893 894 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 895 896 page = ZERO_PAGE(0); 897 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 898 sdio->next_block_for_io, map_bh)) 899 return; 900 901 sdio->next_block_for_io += this_chunk_blocks; 902 } 903 904 /* 905 * Walk the user pages, and the file, mapping blocks to disk and generating 906 * a sequence of (page,offset,len,block) mappings. These mappings are injected 907 * into submit_page_section(), which takes care of the next stage of submission 908 * 909 * Direct IO against a blockdev is different from a file. Because we can 910 * happily perform page-sized but 512-byte aligned IOs. It is important that 911 * blockdev IO be able to have fine alignment and large sizes. 912 * 913 * So what we do is to permit the ->get_block function to populate bh.b_size 914 * with the size of IO which is permitted at this offset and this i_blkbits. 915 * 916 * For best results, the blockdev should be set up with 512-byte i_blkbits and 917 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 918 * fine alignment but still allows this function to work in PAGE_SIZE units. 919 */ 920 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 921 struct buffer_head *map_bh) 922 { 923 const unsigned blkbits = sdio->blkbits; 924 const unsigned i_blkbits = blkbits + sdio->blkfactor; 925 int ret = 0; 926 927 while (sdio->block_in_file < sdio->final_block_in_request) { 928 struct page *page; 929 size_t from, to; 930 931 page = dio_get_page(dio, sdio); 932 if (IS_ERR(page)) { 933 ret = PTR_ERR(page); 934 goto out; 935 } 936 from = sdio->head ? 0 : sdio->from; 937 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 938 sdio->head++; 939 940 while (from < to) { 941 unsigned this_chunk_bytes; /* # of bytes mapped */ 942 unsigned this_chunk_blocks; /* # of blocks */ 943 unsigned u; 944 945 if (sdio->blocks_available == 0) { 946 /* 947 * Need to go and map some more disk 948 */ 949 unsigned long blkmask; 950 unsigned long dio_remainder; 951 952 ret = get_more_blocks(dio, sdio, map_bh); 953 if (ret) { 954 put_page(page); 955 goto out; 956 } 957 if (!buffer_mapped(map_bh)) 958 goto do_holes; 959 960 sdio->blocks_available = 961 map_bh->b_size >> blkbits; 962 sdio->next_block_for_io = 963 map_bh->b_blocknr << sdio->blkfactor; 964 if (buffer_new(map_bh)) { 965 clean_bdev_aliases( 966 map_bh->b_bdev, 967 map_bh->b_blocknr, 968 map_bh->b_size >> i_blkbits); 969 } 970 971 if (!sdio->blkfactor) 972 goto do_holes; 973 974 blkmask = (1 << sdio->blkfactor) - 1; 975 dio_remainder = (sdio->block_in_file & blkmask); 976 977 /* 978 * If we are at the start of IO and that IO 979 * starts partway into a fs-block, 980 * dio_remainder will be non-zero. If the IO 981 * is a read then we can simply advance the IO 982 * cursor to the first block which is to be 983 * read. But if the IO is a write and the 984 * block was newly allocated we cannot do that; 985 * the start of the fs block must be zeroed out 986 * on-disk 987 */ 988 if (!buffer_new(map_bh)) 989 sdio->next_block_for_io += dio_remainder; 990 sdio->blocks_available -= dio_remainder; 991 } 992 do_holes: 993 /* Handle holes */ 994 if (!buffer_mapped(map_bh)) { 995 loff_t i_size_aligned; 996 997 /* AKPM: eargh, -ENOTBLK is a hack */ 998 if (dio->op == REQ_OP_WRITE) { 999 put_page(page); 1000 return -ENOTBLK; 1001 } 1002 1003 /* 1004 * Be sure to account for a partial block as the 1005 * last block in the file 1006 */ 1007 i_size_aligned = ALIGN(i_size_read(dio->inode), 1008 1 << blkbits); 1009 if (sdio->block_in_file >= 1010 i_size_aligned >> blkbits) { 1011 /* We hit eof */ 1012 put_page(page); 1013 goto out; 1014 } 1015 zero_user(page, from, 1 << blkbits); 1016 sdio->block_in_file++; 1017 from += 1 << blkbits; 1018 dio->result += 1 << blkbits; 1019 goto next_block; 1020 } 1021 1022 /* 1023 * If we're performing IO which has an alignment which 1024 * is finer than the underlying fs, go check to see if 1025 * we must zero out the start of this block. 1026 */ 1027 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1028 dio_zero_block(dio, sdio, 0, map_bh); 1029 1030 /* 1031 * Work out, in this_chunk_blocks, how much disk we 1032 * can add to this page 1033 */ 1034 this_chunk_blocks = sdio->blocks_available; 1035 u = (to - from) >> blkbits; 1036 if (this_chunk_blocks > u) 1037 this_chunk_blocks = u; 1038 u = sdio->final_block_in_request - sdio->block_in_file; 1039 if (this_chunk_blocks > u) 1040 this_chunk_blocks = u; 1041 this_chunk_bytes = this_chunk_blocks << blkbits; 1042 BUG_ON(this_chunk_bytes == 0); 1043 1044 if (this_chunk_blocks == sdio->blocks_available) 1045 sdio->boundary = buffer_boundary(map_bh); 1046 ret = submit_page_section(dio, sdio, page, 1047 from, 1048 this_chunk_bytes, 1049 sdio->next_block_for_io, 1050 map_bh); 1051 if (ret) { 1052 put_page(page); 1053 goto out; 1054 } 1055 sdio->next_block_for_io += this_chunk_blocks; 1056 1057 sdio->block_in_file += this_chunk_blocks; 1058 from += this_chunk_bytes; 1059 dio->result += this_chunk_bytes; 1060 sdio->blocks_available -= this_chunk_blocks; 1061 next_block: 1062 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1063 if (sdio->block_in_file == sdio->final_block_in_request) 1064 break; 1065 } 1066 1067 /* Drop the ref which was taken in get_user_pages() */ 1068 put_page(page); 1069 } 1070 out: 1071 return ret; 1072 } 1073 1074 static inline int drop_refcount(struct dio *dio) 1075 { 1076 int ret2; 1077 unsigned long flags; 1078 1079 /* 1080 * Sync will always be dropping the final ref and completing the 1081 * operation. AIO can if it was a broken operation described above or 1082 * in fact if all the bios race to complete before we get here. In 1083 * that case dio_complete() translates the EIOCBQUEUED into the proper 1084 * return code that the caller will hand to ->complete(). 1085 * 1086 * This is managed by the bio_lock instead of being an atomic_t so that 1087 * completion paths can drop their ref and use the remaining count to 1088 * decide to wake the submission path atomically. 1089 */ 1090 spin_lock_irqsave(&dio->bio_lock, flags); 1091 ret2 = --dio->refcount; 1092 spin_unlock_irqrestore(&dio->bio_lock, flags); 1093 return ret2; 1094 } 1095 1096 /* 1097 * This is a library function for use by filesystem drivers. 1098 * 1099 * The locking rules are governed by the flags parameter: 1100 * - if the flags value contains DIO_LOCKING we use a fancy locking 1101 * scheme for dumb filesystems. 1102 * For writes this function is called under i_mutex and returns with 1103 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1104 * taken and dropped again before returning. 1105 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1106 * internal locking but rather rely on the filesystem to synchronize 1107 * direct I/O reads/writes versus each other and truncate. 1108 * 1109 * To help with locking against truncate we incremented the i_dio_count 1110 * counter before starting direct I/O, and decrement it once we are done. 1111 * Truncate can wait for it to reach zero to provide exclusion. It is 1112 * expected that filesystem provide exclusion between new direct I/O 1113 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1114 * but other filesystems need to take care of this on their own. 1115 * 1116 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1117 * is always inlined. Otherwise gcc is unable to split the structure into 1118 * individual fields and will generate much worse code. This is important 1119 * for the whole file. 1120 */ 1121 static inline ssize_t 1122 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1123 struct block_device *bdev, struct iov_iter *iter, 1124 get_block_t get_block, dio_iodone_t end_io, 1125 dio_submit_t submit_io, int flags) 1126 { 1127 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1128 unsigned blkbits = i_blkbits; 1129 unsigned blocksize_mask = (1 << blkbits) - 1; 1130 ssize_t retval = -EINVAL; 1131 const size_t count = iov_iter_count(iter); 1132 loff_t offset = iocb->ki_pos; 1133 const loff_t end = offset + count; 1134 struct dio *dio; 1135 struct dio_submit sdio = { 0, }; 1136 struct buffer_head map_bh = { 0, }; 1137 struct blk_plug plug; 1138 unsigned long align = offset | iov_iter_alignment(iter); 1139 1140 /* 1141 * Avoid references to bdev if not absolutely needed to give 1142 * the early prefetch in the caller enough time. 1143 */ 1144 1145 /* watch out for a 0 len io from a tricksy fs */ 1146 if (iov_iter_rw(iter) == READ && !count) 1147 return 0; 1148 1149 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1150 if (!dio) 1151 return -ENOMEM; 1152 /* 1153 * Believe it or not, zeroing out the page array caused a .5% 1154 * performance regression in a database benchmark. So, we take 1155 * care to only zero out what's needed. 1156 */ 1157 memset(dio, 0, offsetof(struct dio, pages)); 1158 1159 dio->flags = flags; 1160 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1161 /* will be released by direct_io_worker */ 1162 inode_lock(inode); 1163 } 1164 1165 /* Once we sampled i_size check for reads beyond EOF */ 1166 dio->i_size = i_size_read(inode); 1167 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1168 retval = 0; 1169 goto fail_dio; 1170 } 1171 1172 if (align & blocksize_mask) { 1173 if (bdev) 1174 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1175 blocksize_mask = (1 << blkbits) - 1; 1176 if (align & blocksize_mask) 1177 goto fail_dio; 1178 } 1179 1180 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1181 struct address_space *mapping = iocb->ki_filp->f_mapping; 1182 1183 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1184 if (retval) 1185 goto fail_dio; 1186 } 1187 1188 /* 1189 * For file extending writes updating i_size before data writeouts 1190 * complete can expose uninitialized blocks in dumb filesystems. 1191 * In that case we need to wait for I/O completion even if asked 1192 * for an asynchronous write. 1193 */ 1194 if (is_sync_kiocb(iocb)) 1195 dio->is_async = false; 1196 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1197 dio->is_async = false; 1198 else 1199 dio->is_async = true; 1200 1201 dio->inode = inode; 1202 if (iov_iter_rw(iter) == WRITE) { 1203 dio->op = REQ_OP_WRITE; 1204 dio->op_flags = REQ_SYNC | REQ_IDLE; 1205 if (iocb->ki_flags & IOCB_NOWAIT) 1206 dio->op_flags |= REQ_NOWAIT; 1207 } else { 1208 dio->op = REQ_OP_READ; 1209 } 1210 1211 /* 1212 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1213 * so that we can call ->fsync. 1214 */ 1215 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1216 retval = 0; 1217 if (iocb->ki_flags & IOCB_DSYNC) 1218 retval = dio_set_defer_completion(dio); 1219 else if (!dio->inode->i_sb->s_dio_done_wq) { 1220 /* 1221 * In case of AIO write racing with buffered read we 1222 * need to defer completion. We can't decide this now, 1223 * however the workqueue needs to be initialized here. 1224 */ 1225 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1226 } 1227 if (retval) 1228 goto fail_dio; 1229 } 1230 1231 /* 1232 * Will be decremented at I/O completion time. 1233 */ 1234 inode_dio_begin(inode); 1235 1236 retval = 0; 1237 sdio.blkbits = blkbits; 1238 sdio.blkfactor = i_blkbits - blkbits; 1239 sdio.block_in_file = offset >> blkbits; 1240 1241 sdio.get_block = get_block; 1242 dio->end_io = end_io; 1243 sdio.submit_io = submit_io; 1244 sdio.final_block_in_bio = -1; 1245 sdio.next_block_for_io = -1; 1246 1247 dio->iocb = iocb; 1248 1249 spin_lock_init(&dio->bio_lock); 1250 dio->refcount = 1; 1251 1252 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ; 1253 sdio.iter = iter; 1254 sdio.final_block_in_request = end >> blkbits; 1255 1256 /* 1257 * In case of non-aligned buffers, we may need 2 more 1258 * pages since we need to zero out first and last block. 1259 */ 1260 if (unlikely(sdio.blkfactor)) 1261 sdio.pages_in_io = 2; 1262 1263 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1264 1265 blk_start_plug(&plug); 1266 1267 retval = do_direct_IO(dio, &sdio, &map_bh); 1268 if (retval) 1269 dio_cleanup(dio, &sdio); 1270 1271 if (retval == -ENOTBLK) { 1272 /* 1273 * The remaining part of the request will be 1274 * handled by buffered I/O when we return 1275 */ 1276 retval = 0; 1277 } 1278 /* 1279 * There may be some unwritten disk at the end of a part-written 1280 * fs-block-sized block. Go zero that now. 1281 */ 1282 dio_zero_block(dio, &sdio, 1, &map_bh); 1283 1284 if (sdio.cur_page) { 1285 ssize_t ret2; 1286 1287 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1288 if (retval == 0) 1289 retval = ret2; 1290 put_page(sdio.cur_page); 1291 sdio.cur_page = NULL; 1292 } 1293 if (sdio.bio) 1294 dio_bio_submit(dio, &sdio); 1295 1296 blk_finish_plug(&plug); 1297 1298 /* 1299 * It is possible that, we return short IO due to end of file. 1300 * In that case, we need to release all the pages we got hold on. 1301 */ 1302 dio_cleanup(dio, &sdio); 1303 1304 /* 1305 * All block lookups have been performed. For READ requests 1306 * we can let i_mutex go now that its achieved its purpose 1307 * of protecting us from looking up uninitialized blocks. 1308 */ 1309 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1310 inode_unlock(dio->inode); 1311 1312 /* 1313 * The only time we want to leave bios in flight is when a successful 1314 * partial aio read or full aio write have been setup. In that case 1315 * bio completion will call aio_complete. The only time it's safe to 1316 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1317 * This had *better* be the only place that raises -EIOCBQUEUED. 1318 */ 1319 BUG_ON(retval == -EIOCBQUEUED); 1320 if (dio->is_async && retval == 0 && dio->result && 1321 (iov_iter_rw(iter) == READ || dio->result == count)) 1322 retval = -EIOCBQUEUED; 1323 else 1324 dio_await_completion(dio); 1325 1326 if (drop_refcount(dio) == 0) { 1327 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1328 } else 1329 BUG_ON(retval != -EIOCBQUEUED); 1330 1331 return retval; 1332 1333 fail_dio: 1334 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1335 inode_unlock(inode); 1336 1337 kmem_cache_free(dio_cache, dio); 1338 return retval; 1339 } 1340 1341 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1342 struct block_device *bdev, struct iov_iter *iter, 1343 get_block_t get_block, 1344 dio_iodone_t end_io, dio_submit_t submit_io, 1345 int flags) 1346 { 1347 /* 1348 * The block device state is needed in the end to finally 1349 * submit everything. Since it's likely to be cache cold 1350 * prefetch it here as first thing to hide some of the 1351 * latency. 1352 * 1353 * Attempt to prefetch the pieces we likely need later. 1354 */ 1355 prefetch(&bdev->bd_disk->part_tbl); 1356 prefetch(bdev->bd_disk->queue); 1357 prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES); 1358 1359 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1360 end_io, submit_io, flags); 1361 } 1362 1363 EXPORT_SYMBOL(__blockdev_direct_IO); 1364 1365 static __init int dio_init(void) 1366 { 1367 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1368 return 0; 1369 } 1370 module_init(dio_init) 1371