xref: /linux/fs/direct-io.c (revision 1bc191051dca28fa6d20fd1dc34a1903e7d4fb62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/direct-io.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * O_DIRECT
8  *
9  * 04Jul2002	Andrew Morton
10  *		Initial version
11  * 11Sep2002	janetinc@us.ibm.com
12  * 		added readv/writev support.
13  * 29Oct2002	Andrew Morton
14  *		rewrote bio_add_page() support.
15  * 30Oct2002	pbadari@us.ibm.com
16  *		added support for non-aligned IO.
17  * 06Nov2002	pbadari@us.ibm.com
18  *		added asynchronous IO support.
19  * 21Jul2003	nathans@sgi.com
20  *		added IO completion notifier.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41 
42 #include "internal.h"
43 
44 /*
45  * How many user pages to map in one call to get_user_pages().  This determines
46  * the size of a structure in the slab cache
47  */
48 #define DIO_PAGES	64
49 
50 /*
51  * Flags for dio_complete()
52  */
53 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
55 
56 /*
57  * This code generally works in units of "dio_blocks".  A dio_block is
58  * somewhere between the hard sector size and the filesystem block size.  it
59  * is determined on a per-invocation basis.   When talking to the filesystem
60  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
62  * to bio_block quantities by shifting left by blkfactor.
63  *
64  * If blkfactor is zero then the user's request was aligned to the filesystem's
65  * blocksize.
66  */
67 
68 /* dio_state only used in the submission path */
69 
70 struct dio_submit {
71 	struct bio *bio;		/* bio under assembly */
72 	unsigned blkbits;		/* doesn't change */
73 	unsigned blkfactor;		/* When we're using an alignment which
74 					   is finer than the filesystem's soft
75 					   blocksize, this specifies how much
76 					   finer.  blkfactor=2 means 1/4-block
77 					   alignment.  Does not change */
78 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
79 					   been performed at the start of a
80 					   write */
81 	int pages_in_io;		/* approximate total IO pages */
82 	sector_t block_in_file;		/* Current offset into the underlying
83 					   file in dio_block units. */
84 	unsigned blocks_available;	/* At block_in_file.  changes */
85 	int reap_counter;		/* rate limit reaping */
86 	sector_t final_block_in_request;/* doesn't change */
87 	int boundary;			/* prev block is at a boundary */
88 	get_block_t *get_block;		/* block mapping function */
89 	dio_submit_t *submit_io;	/* IO submition function */
90 
91 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
92 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
93 	sector_t next_block_for_io;	/* next block to be put under IO,
94 					   in dio_blocks units */
95 
96 	/*
97 	 * Deferred addition of a page to the dio.  These variables are
98 	 * private to dio_send_cur_page(), submit_page_section() and
99 	 * dio_bio_add_page().
100 	 */
101 	struct page *cur_page;		/* The page */
102 	unsigned cur_page_offset;	/* Offset into it, in bytes */
103 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
104 	sector_t cur_page_block;	/* Where it starts */
105 	loff_t cur_page_fs_offset;	/* Offset in file */
106 
107 	struct iov_iter *iter;
108 	/*
109 	 * Page queue.  These variables belong to dio_refill_pages() and
110 	 * dio_get_page().
111 	 */
112 	unsigned head;			/* next page to process */
113 	unsigned tail;			/* last valid page + 1 */
114 	size_t from, to;
115 };
116 
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 	int flags;			/* doesn't change */
120 	int op;
121 	int op_flags;
122 	struct gendisk *bio_disk;
123 	struct inode *inode;
124 	loff_t i_size;			/* i_size when submitted */
125 	dio_iodone_t *end_io;		/* IO completion function */
126 
127 	void *private;			/* copy from map_bh.b_private */
128 
129 	/* BIO completion state */
130 	spinlock_t bio_lock;		/* protects BIO fields below */
131 	int page_errors;		/* errno from get_user_pages() */
132 	int is_async;			/* is IO async ? */
133 	bool defer_completion;		/* defer AIO completion to workqueue? */
134 	bool should_dirty;		/* if pages should be dirtied */
135 	int io_error;			/* IO error in completion path */
136 	unsigned long refcount;		/* direct_io_worker() and bios */
137 	struct bio *bio_list;		/* singly linked via bi_private */
138 	struct task_struct *waiter;	/* waiting task (NULL if none) */
139 
140 	/* AIO related stuff */
141 	struct kiocb *iocb;		/* kiocb */
142 	ssize_t result;                 /* IO result */
143 
144 	/*
145 	 * pages[] (and any fields placed after it) are not zeroed out at
146 	 * allocation time.  Don't add new fields after pages[] unless you
147 	 * wish that they not be zeroed.
148 	 */
149 	union {
150 		struct page *pages[DIO_PAGES];	/* page buffer */
151 		struct work_struct complete_work;/* deferred AIO completion */
152 	};
153 } ____cacheline_aligned_in_smp;
154 
155 static struct kmem_cache *dio_cache __read_mostly;
156 
157 /*
158  * How many pages are in the queue?
159  */
160 static inline unsigned dio_pages_present(struct dio_submit *sdio)
161 {
162 	return sdio->tail - sdio->head;
163 }
164 
165 /*
166  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
167  */
168 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
169 {
170 	ssize_t ret;
171 
172 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
173 				&sdio->from);
174 
175 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
176 		struct page *page = ZERO_PAGE(0);
177 		/*
178 		 * A memory fault, but the filesystem has some outstanding
179 		 * mapped blocks.  We need to use those blocks up to avoid
180 		 * leaking stale data in the file.
181 		 */
182 		if (dio->page_errors == 0)
183 			dio->page_errors = ret;
184 		get_page(page);
185 		dio->pages[0] = page;
186 		sdio->head = 0;
187 		sdio->tail = 1;
188 		sdio->from = 0;
189 		sdio->to = PAGE_SIZE;
190 		return 0;
191 	}
192 
193 	if (ret >= 0) {
194 		iov_iter_advance(sdio->iter, ret);
195 		ret += sdio->from;
196 		sdio->head = 0;
197 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
198 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
199 		return 0;
200 	}
201 	return ret;
202 }
203 
204 /*
205  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
206  * buffered inside the dio so that we can call get_user_pages() against a
207  * decent number of pages, less frequently.  To provide nicer use of the
208  * L1 cache.
209  */
210 static inline struct page *dio_get_page(struct dio *dio,
211 					struct dio_submit *sdio)
212 {
213 	if (dio_pages_present(sdio) == 0) {
214 		int ret;
215 
216 		ret = dio_refill_pages(dio, sdio);
217 		if (ret)
218 			return ERR_PTR(ret);
219 		BUG_ON(dio_pages_present(sdio) == 0);
220 	}
221 	return dio->pages[sdio->head];
222 }
223 
224 /*
225  * dio_complete() - called when all DIO BIO I/O has been completed
226  *
227  * This drops i_dio_count, lets interested parties know that a DIO operation
228  * has completed, and calculates the resulting return code for the operation.
229  *
230  * It lets the filesystem know if it registered an interest earlier via
231  * get_block.  Pass the private field of the map buffer_head so that
232  * filesystems can use it to hold additional state between get_block calls and
233  * dio_complete.
234  */
235 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
236 {
237 	loff_t offset = dio->iocb->ki_pos;
238 	ssize_t transferred = 0;
239 	int err;
240 
241 	/*
242 	 * AIO submission can race with bio completion to get here while
243 	 * expecting to have the last io completed by bio completion.
244 	 * In that case -EIOCBQUEUED is in fact not an error we want
245 	 * to preserve through this call.
246 	 */
247 	if (ret == -EIOCBQUEUED)
248 		ret = 0;
249 
250 	if (dio->result) {
251 		transferred = dio->result;
252 
253 		/* Check for short read case */
254 		if ((dio->op == REQ_OP_READ) &&
255 		    ((offset + transferred) > dio->i_size))
256 			transferred = dio->i_size - offset;
257 		/* ignore EFAULT if some IO has been done */
258 		if (unlikely(ret == -EFAULT) && transferred)
259 			ret = 0;
260 	}
261 
262 	if (ret == 0)
263 		ret = dio->page_errors;
264 	if (ret == 0)
265 		ret = dio->io_error;
266 	if (ret == 0)
267 		ret = transferred;
268 
269 	if (dio->end_io) {
270 		// XXX: ki_pos??
271 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
272 		if (err)
273 			ret = err;
274 	}
275 
276 	/*
277 	 * Try again to invalidate clean pages which might have been cached by
278 	 * non-direct readahead, or faulted in by get_user_pages() if the source
279 	 * of the write was an mmap'ed region of the file we're writing.  Either
280 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
281 	 * this invalidation fails, tough, the write still worked...
282 	 *
283 	 * And this page cache invalidation has to be after dio->end_io(), as
284 	 * some filesystems convert unwritten extents to real allocations in
285 	 * end_io() when necessary, otherwise a racing buffer read would cache
286 	 * zeros from unwritten extents.
287 	 */
288 	if (flags & DIO_COMPLETE_INVALIDATE &&
289 	    ret > 0 && dio->op == REQ_OP_WRITE &&
290 	    dio->inode->i_mapping->nrpages) {
291 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
292 					offset >> PAGE_SHIFT,
293 					(offset + ret - 1) >> PAGE_SHIFT);
294 		if (err)
295 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
296 	}
297 
298 	inode_dio_end(dio->inode);
299 
300 	if (flags & DIO_COMPLETE_ASYNC) {
301 		/*
302 		 * generic_write_sync expects ki_pos to have been updated
303 		 * already, but the submission path only does this for
304 		 * synchronous I/O.
305 		 */
306 		dio->iocb->ki_pos += transferred;
307 
308 		if (ret > 0 && dio->op == REQ_OP_WRITE)
309 			ret = generic_write_sync(dio->iocb, ret);
310 		dio->iocb->ki_complete(dio->iocb, ret);
311 	}
312 
313 	kmem_cache_free(dio_cache, dio);
314 	return ret;
315 }
316 
317 static void dio_aio_complete_work(struct work_struct *work)
318 {
319 	struct dio *dio = container_of(work, struct dio, complete_work);
320 
321 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
322 }
323 
324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
325 
326 /*
327  * Asynchronous IO callback.
328  */
329 static void dio_bio_end_aio(struct bio *bio)
330 {
331 	struct dio *dio = bio->bi_private;
332 	unsigned long remaining;
333 	unsigned long flags;
334 	bool defer_completion = false;
335 
336 	/* cleanup the bio */
337 	dio_bio_complete(dio, bio);
338 
339 	spin_lock_irqsave(&dio->bio_lock, flags);
340 	remaining = --dio->refcount;
341 	if (remaining == 1 && dio->waiter)
342 		wake_up_process(dio->waiter);
343 	spin_unlock_irqrestore(&dio->bio_lock, flags);
344 
345 	if (remaining == 0) {
346 		/*
347 		 * Defer completion when defer_completion is set or
348 		 * when the inode has pages mapped and this is AIO write.
349 		 * We need to invalidate those pages because there is a
350 		 * chance they contain stale data in the case buffered IO
351 		 * went in between AIO submission and completion into the
352 		 * same region.
353 		 */
354 		if (dio->result)
355 			defer_completion = dio->defer_completion ||
356 					   (dio->op == REQ_OP_WRITE &&
357 					    dio->inode->i_mapping->nrpages);
358 		if (defer_completion) {
359 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
360 			queue_work(dio->inode->i_sb->s_dio_done_wq,
361 				   &dio->complete_work);
362 		} else {
363 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
364 		}
365 	}
366 }
367 
368 /*
369  * The BIO completion handler simply queues the BIO up for the process-context
370  * handler.
371  *
372  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
373  * implement a singly-linked list of completed BIOs, at dio->bio_list.
374  */
375 static void dio_bio_end_io(struct bio *bio)
376 {
377 	struct dio *dio = bio->bi_private;
378 	unsigned long flags;
379 
380 	spin_lock_irqsave(&dio->bio_lock, flags);
381 	bio->bi_private = dio->bio_list;
382 	dio->bio_list = bio;
383 	if (--dio->refcount == 1 && dio->waiter)
384 		wake_up_process(dio->waiter);
385 	spin_unlock_irqrestore(&dio->bio_lock, flags);
386 }
387 
388 static inline void
389 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
390 	      struct block_device *bdev,
391 	      sector_t first_sector, int nr_vecs)
392 {
393 	struct bio *bio;
394 
395 	/*
396 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
397 	 * we request a valid number of vectors.
398 	 */
399 	bio = bio_alloc(bdev, nr_vecs, dio->op | dio->op_flags, GFP_KERNEL);
400 	bio->bi_iter.bi_sector = first_sector;
401 	if (dio->is_async)
402 		bio->bi_end_io = dio_bio_end_aio;
403 	else
404 		bio->bi_end_io = dio_bio_end_io;
405 
406 	bio->bi_write_hint = dio->iocb->ki_hint;
407 
408 	sdio->bio = bio;
409 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
410 }
411 
412 /*
413  * In the AIO read case we speculatively dirty the pages before starting IO.
414  * During IO completion, any of these pages which happen to have been written
415  * back will be redirtied by bio_check_pages_dirty().
416  *
417  * bios hold a dio reference between submit_bio and ->end_io.
418  */
419 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
420 {
421 	struct bio *bio = sdio->bio;
422 	unsigned long flags;
423 
424 	bio->bi_private = dio;
425 	/* don't account direct I/O as memory stall */
426 	bio_clear_flag(bio, BIO_WORKINGSET);
427 
428 	spin_lock_irqsave(&dio->bio_lock, flags);
429 	dio->refcount++;
430 	spin_unlock_irqrestore(&dio->bio_lock, flags);
431 
432 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
433 		bio_set_pages_dirty(bio);
434 
435 	dio->bio_disk = bio->bi_bdev->bd_disk;
436 
437 	if (sdio->submit_io)
438 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
439 	else
440 		submit_bio(bio);
441 
442 	sdio->bio = NULL;
443 	sdio->boundary = 0;
444 	sdio->logical_offset_in_bio = 0;
445 }
446 
447 /*
448  * Release any resources in case of a failure
449  */
450 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
451 {
452 	while (sdio->head < sdio->tail)
453 		put_page(dio->pages[sdio->head++]);
454 }
455 
456 /*
457  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
458  * returned once all BIOs have been completed.  This must only be called once
459  * all bios have been issued so that dio->refcount can only decrease.  This
460  * requires that the caller hold a reference on the dio.
461  */
462 static struct bio *dio_await_one(struct dio *dio)
463 {
464 	unsigned long flags;
465 	struct bio *bio = NULL;
466 
467 	spin_lock_irqsave(&dio->bio_lock, flags);
468 
469 	/*
470 	 * Wait as long as the list is empty and there are bios in flight.  bio
471 	 * completion drops the count, maybe adds to the list, and wakes while
472 	 * holding the bio_lock so we don't need set_current_state()'s barrier
473 	 * and can call it after testing our condition.
474 	 */
475 	while (dio->refcount > 1 && dio->bio_list == NULL) {
476 		__set_current_state(TASK_UNINTERRUPTIBLE);
477 		dio->waiter = current;
478 		spin_unlock_irqrestore(&dio->bio_lock, flags);
479 		blk_io_schedule();
480 		/* wake up sets us TASK_RUNNING */
481 		spin_lock_irqsave(&dio->bio_lock, flags);
482 		dio->waiter = NULL;
483 	}
484 	if (dio->bio_list) {
485 		bio = dio->bio_list;
486 		dio->bio_list = bio->bi_private;
487 	}
488 	spin_unlock_irqrestore(&dio->bio_lock, flags);
489 	return bio;
490 }
491 
492 /*
493  * Process one completed BIO.  No locks are held.
494  */
495 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
496 {
497 	blk_status_t err = bio->bi_status;
498 	bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
499 
500 	if (err) {
501 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
502 			dio->io_error = -EAGAIN;
503 		else
504 			dio->io_error = -EIO;
505 	}
506 
507 	if (dio->is_async && should_dirty) {
508 		bio_check_pages_dirty(bio);	/* transfers ownership */
509 	} else {
510 		bio_release_pages(bio, should_dirty);
511 		bio_put(bio);
512 	}
513 	return err;
514 }
515 
516 /*
517  * Wait on and process all in-flight BIOs.  This must only be called once
518  * all bios have been issued so that the refcount can only decrease.
519  * This just waits for all bios to make it through dio_bio_complete.  IO
520  * errors are propagated through dio->io_error and should be propagated via
521  * dio_complete().
522  */
523 static void dio_await_completion(struct dio *dio)
524 {
525 	struct bio *bio;
526 	do {
527 		bio = dio_await_one(dio);
528 		if (bio)
529 			dio_bio_complete(dio, bio);
530 	} while (bio);
531 }
532 
533 /*
534  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
535  * to keep the memory consumption sane we periodically reap any completed BIOs
536  * during the BIO generation phase.
537  *
538  * This also helps to limit the peak amount of pinned userspace memory.
539  */
540 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
541 {
542 	int ret = 0;
543 
544 	if (sdio->reap_counter++ >= 64) {
545 		while (dio->bio_list) {
546 			unsigned long flags;
547 			struct bio *bio;
548 			int ret2;
549 
550 			spin_lock_irqsave(&dio->bio_lock, flags);
551 			bio = dio->bio_list;
552 			dio->bio_list = bio->bi_private;
553 			spin_unlock_irqrestore(&dio->bio_lock, flags);
554 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
555 			if (ret == 0)
556 				ret = ret2;
557 		}
558 		sdio->reap_counter = 0;
559 	}
560 	return ret;
561 }
562 
563 /*
564  * Create workqueue for deferred direct IO completions. We allocate the
565  * workqueue when it's first needed. This avoids creating workqueue for
566  * filesystems that don't need it and also allows us to create the workqueue
567  * late enough so the we can include s_id in the name of the workqueue.
568  */
569 int sb_init_dio_done_wq(struct super_block *sb)
570 {
571 	struct workqueue_struct *old;
572 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
573 						      WQ_MEM_RECLAIM, 0,
574 						      sb->s_id);
575 	if (!wq)
576 		return -ENOMEM;
577 	/*
578 	 * This has to be atomic as more DIOs can race to create the workqueue
579 	 */
580 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
581 	/* Someone created workqueue before us? Free ours... */
582 	if (old)
583 		destroy_workqueue(wq);
584 	return 0;
585 }
586 
587 static int dio_set_defer_completion(struct dio *dio)
588 {
589 	struct super_block *sb = dio->inode->i_sb;
590 
591 	if (dio->defer_completion)
592 		return 0;
593 	dio->defer_completion = true;
594 	if (!sb->s_dio_done_wq)
595 		return sb_init_dio_done_wq(sb);
596 	return 0;
597 }
598 
599 /*
600  * Call into the fs to map some more disk blocks.  We record the current number
601  * of available blocks at sdio->blocks_available.  These are in units of the
602  * fs blocksize, i_blocksize(inode).
603  *
604  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
605  * it uses the passed inode-relative block number as the file offset, as usual.
606  *
607  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
608  * has remaining to do.  The fs should not map more than this number of blocks.
609  *
610  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
611  * indicate how much contiguous disk space has been made available at
612  * bh->b_blocknr.
613  *
614  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
615  * This isn't very efficient...
616  *
617  * In the case of filesystem holes: the fs may return an arbitrarily-large
618  * hole by returning an appropriate value in b_size and by clearing
619  * buffer_mapped().  However the direct-io code will only process holes one
620  * block at a time - it will repeatedly call get_block() as it walks the hole.
621  */
622 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
623 			   struct buffer_head *map_bh)
624 {
625 	int ret;
626 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
627 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
628 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
629 	int create;
630 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
631 	loff_t i_size;
632 
633 	/*
634 	 * If there was a memory error and we've overwritten all the
635 	 * mapped blocks then we can now return that memory error
636 	 */
637 	ret = dio->page_errors;
638 	if (ret == 0) {
639 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
640 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
641 		fs_endblk = (sdio->final_block_in_request - 1) >>
642 					sdio->blkfactor;
643 		fs_count = fs_endblk - fs_startblk + 1;
644 
645 		map_bh->b_state = 0;
646 		map_bh->b_size = fs_count << i_blkbits;
647 
648 		/*
649 		 * For writes that could fill holes inside i_size on a
650 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
651 		 * overwrites are permitted. We will return early to the caller
652 		 * once we see an unmapped buffer head returned, and the caller
653 		 * will fall back to buffered I/O.
654 		 *
655 		 * Otherwise the decision is left to the get_blocks method,
656 		 * which may decide to handle it or also return an unmapped
657 		 * buffer head.
658 		 */
659 		create = dio->op == REQ_OP_WRITE;
660 		if (dio->flags & DIO_SKIP_HOLES) {
661 			i_size = i_size_read(dio->inode);
662 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
663 				create = 0;
664 		}
665 
666 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
667 						map_bh, create);
668 
669 		/* Store for completion */
670 		dio->private = map_bh->b_private;
671 
672 		if (ret == 0 && buffer_defer_completion(map_bh))
673 			ret = dio_set_defer_completion(dio);
674 	}
675 	return ret;
676 }
677 
678 /*
679  * There is no bio.  Make one now.
680  */
681 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
682 		sector_t start_sector, struct buffer_head *map_bh)
683 {
684 	sector_t sector;
685 	int ret, nr_pages;
686 
687 	ret = dio_bio_reap(dio, sdio);
688 	if (ret)
689 		goto out;
690 	sector = start_sector << (sdio->blkbits - 9);
691 	nr_pages = bio_max_segs(sdio->pages_in_io);
692 	BUG_ON(nr_pages <= 0);
693 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
694 	sdio->boundary = 0;
695 out:
696 	return ret;
697 }
698 
699 /*
700  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
701  * that was successful then update final_block_in_bio and take a ref against
702  * the just-added page.
703  *
704  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
705  */
706 static inline int dio_bio_add_page(struct dio_submit *sdio)
707 {
708 	int ret;
709 
710 	ret = bio_add_page(sdio->bio, sdio->cur_page,
711 			sdio->cur_page_len, sdio->cur_page_offset);
712 	if (ret == sdio->cur_page_len) {
713 		/*
714 		 * Decrement count only, if we are done with this page
715 		 */
716 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
717 			sdio->pages_in_io--;
718 		get_page(sdio->cur_page);
719 		sdio->final_block_in_bio = sdio->cur_page_block +
720 			(sdio->cur_page_len >> sdio->blkbits);
721 		ret = 0;
722 	} else {
723 		ret = 1;
724 	}
725 	return ret;
726 }
727 
728 /*
729  * Put cur_page under IO.  The section of cur_page which is described by
730  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
731  * starts on-disk at cur_page_block.
732  *
733  * We take a ref against the page here (on behalf of its presence in the bio).
734  *
735  * The caller of this function is responsible for removing cur_page from the
736  * dio, and for dropping the refcount which came from that presence.
737  */
738 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
739 		struct buffer_head *map_bh)
740 {
741 	int ret = 0;
742 
743 	if (sdio->bio) {
744 		loff_t cur_offset = sdio->cur_page_fs_offset;
745 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
746 			sdio->bio->bi_iter.bi_size;
747 
748 		/*
749 		 * See whether this new request is contiguous with the old.
750 		 *
751 		 * Btrfs cannot handle having logically non-contiguous requests
752 		 * submitted.  For example if you have
753 		 *
754 		 * Logical:  [0-4095][HOLE][8192-12287]
755 		 * Physical: [0-4095]      [4096-8191]
756 		 *
757 		 * We cannot submit those pages together as one BIO.  So if our
758 		 * current logical offset in the file does not equal what would
759 		 * be the next logical offset in the bio, submit the bio we
760 		 * have.
761 		 */
762 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
763 		    cur_offset != bio_next_offset)
764 			dio_bio_submit(dio, sdio);
765 	}
766 
767 	if (sdio->bio == NULL) {
768 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
769 		if (ret)
770 			goto out;
771 	}
772 
773 	if (dio_bio_add_page(sdio) != 0) {
774 		dio_bio_submit(dio, sdio);
775 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
776 		if (ret == 0) {
777 			ret = dio_bio_add_page(sdio);
778 			BUG_ON(ret != 0);
779 		}
780 	}
781 out:
782 	return ret;
783 }
784 
785 /*
786  * An autonomous function to put a chunk of a page under deferred IO.
787  *
788  * The caller doesn't actually know (or care) whether this piece of page is in
789  * a BIO, or is under IO or whatever.  We just take care of all possible
790  * situations here.  The separation between the logic of do_direct_IO() and
791  * that of submit_page_section() is important for clarity.  Please don't break.
792  *
793  * The chunk of page starts on-disk at blocknr.
794  *
795  * We perform deferred IO, by recording the last-submitted page inside our
796  * private part of the dio structure.  If possible, we just expand the IO
797  * across that page here.
798  *
799  * If that doesn't work out then we put the old page into the bio and add this
800  * page to the dio instead.
801  */
802 static inline int
803 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
804 		    unsigned offset, unsigned len, sector_t blocknr,
805 		    struct buffer_head *map_bh)
806 {
807 	int ret = 0;
808 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
809 
810 	if (dio->op == REQ_OP_WRITE) {
811 		/*
812 		 * Read accounting is performed in submit_bio()
813 		 */
814 		task_io_account_write(len);
815 	}
816 
817 	/*
818 	 * Can we just grow the current page's presence in the dio?
819 	 */
820 	if (sdio->cur_page == page &&
821 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
822 	    sdio->cur_page_block +
823 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
824 		sdio->cur_page_len += len;
825 		goto out;
826 	}
827 
828 	/*
829 	 * If there's a deferred page already there then send it.
830 	 */
831 	if (sdio->cur_page) {
832 		ret = dio_send_cur_page(dio, sdio, map_bh);
833 		put_page(sdio->cur_page);
834 		sdio->cur_page = NULL;
835 		if (ret)
836 			return ret;
837 	}
838 
839 	get_page(page);		/* It is in dio */
840 	sdio->cur_page = page;
841 	sdio->cur_page_offset = offset;
842 	sdio->cur_page_len = len;
843 	sdio->cur_page_block = blocknr;
844 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
845 out:
846 	/*
847 	 * If boundary then we want to schedule the IO now to
848 	 * avoid metadata seeks.
849 	 */
850 	if (boundary) {
851 		ret = dio_send_cur_page(dio, sdio, map_bh);
852 		if (sdio->bio)
853 			dio_bio_submit(dio, sdio);
854 		put_page(sdio->cur_page);
855 		sdio->cur_page = NULL;
856 	}
857 	return ret;
858 }
859 
860 /*
861  * If we are not writing the entire block and get_block() allocated
862  * the block for us, we need to fill-in the unused portion of the
863  * block with zeros. This happens only if user-buffer, fileoffset or
864  * io length is not filesystem block-size multiple.
865  *
866  * `end' is zero if we're doing the start of the IO, 1 at the end of the
867  * IO.
868  */
869 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
870 		int end, struct buffer_head *map_bh)
871 {
872 	unsigned dio_blocks_per_fs_block;
873 	unsigned this_chunk_blocks;	/* In dio_blocks */
874 	unsigned this_chunk_bytes;
875 	struct page *page;
876 
877 	sdio->start_zero_done = 1;
878 	if (!sdio->blkfactor || !buffer_new(map_bh))
879 		return;
880 
881 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
882 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
883 
884 	if (!this_chunk_blocks)
885 		return;
886 
887 	/*
888 	 * We need to zero out part of an fs block.  It is either at the
889 	 * beginning or the end of the fs block.
890 	 */
891 	if (end)
892 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
893 
894 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
895 
896 	page = ZERO_PAGE(0);
897 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
898 				sdio->next_block_for_io, map_bh))
899 		return;
900 
901 	sdio->next_block_for_io += this_chunk_blocks;
902 }
903 
904 /*
905  * Walk the user pages, and the file, mapping blocks to disk and generating
906  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
907  * into submit_page_section(), which takes care of the next stage of submission
908  *
909  * Direct IO against a blockdev is different from a file.  Because we can
910  * happily perform page-sized but 512-byte aligned IOs.  It is important that
911  * blockdev IO be able to have fine alignment and large sizes.
912  *
913  * So what we do is to permit the ->get_block function to populate bh.b_size
914  * with the size of IO which is permitted at this offset and this i_blkbits.
915  *
916  * For best results, the blockdev should be set up with 512-byte i_blkbits and
917  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
918  * fine alignment but still allows this function to work in PAGE_SIZE units.
919  */
920 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
921 			struct buffer_head *map_bh)
922 {
923 	const unsigned blkbits = sdio->blkbits;
924 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
925 	int ret = 0;
926 
927 	while (sdio->block_in_file < sdio->final_block_in_request) {
928 		struct page *page;
929 		size_t from, to;
930 
931 		page = dio_get_page(dio, sdio);
932 		if (IS_ERR(page)) {
933 			ret = PTR_ERR(page);
934 			goto out;
935 		}
936 		from = sdio->head ? 0 : sdio->from;
937 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
938 		sdio->head++;
939 
940 		while (from < to) {
941 			unsigned this_chunk_bytes;	/* # of bytes mapped */
942 			unsigned this_chunk_blocks;	/* # of blocks */
943 			unsigned u;
944 
945 			if (sdio->blocks_available == 0) {
946 				/*
947 				 * Need to go and map some more disk
948 				 */
949 				unsigned long blkmask;
950 				unsigned long dio_remainder;
951 
952 				ret = get_more_blocks(dio, sdio, map_bh);
953 				if (ret) {
954 					put_page(page);
955 					goto out;
956 				}
957 				if (!buffer_mapped(map_bh))
958 					goto do_holes;
959 
960 				sdio->blocks_available =
961 						map_bh->b_size >> blkbits;
962 				sdio->next_block_for_io =
963 					map_bh->b_blocknr << sdio->blkfactor;
964 				if (buffer_new(map_bh)) {
965 					clean_bdev_aliases(
966 						map_bh->b_bdev,
967 						map_bh->b_blocknr,
968 						map_bh->b_size >> i_blkbits);
969 				}
970 
971 				if (!sdio->blkfactor)
972 					goto do_holes;
973 
974 				blkmask = (1 << sdio->blkfactor) - 1;
975 				dio_remainder = (sdio->block_in_file & blkmask);
976 
977 				/*
978 				 * If we are at the start of IO and that IO
979 				 * starts partway into a fs-block,
980 				 * dio_remainder will be non-zero.  If the IO
981 				 * is a read then we can simply advance the IO
982 				 * cursor to the first block which is to be
983 				 * read.  But if the IO is a write and the
984 				 * block was newly allocated we cannot do that;
985 				 * the start of the fs block must be zeroed out
986 				 * on-disk
987 				 */
988 				if (!buffer_new(map_bh))
989 					sdio->next_block_for_io += dio_remainder;
990 				sdio->blocks_available -= dio_remainder;
991 			}
992 do_holes:
993 			/* Handle holes */
994 			if (!buffer_mapped(map_bh)) {
995 				loff_t i_size_aligned;
996 
997 				/* AKPM: eargh, -ENOTBLK is a hack */
998 				if (dio->op == REQ_OP_WRITE) {
999 					put_page(page);
1000 					return -ENOTBLK;
1001 				}
1002 
1003 				/*
1004 				 * Be sure to account for a partial block as the
1005 				 * last block in the file
1006 				 */
1007 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1008 							1 << blkbits);
1009 				if (sdio->block_in_file >=
1010 						i_size_aligned >> blkbits) {
1011 					/* We hit eof */
1012 					put_page(page);
1013 					goto out;
1014 				}
1015 				zero_user(page, from, 1 << blkbits);
1016 				sdio->block_in_file++;
1017 				from += 1 << blkbits;
1018 				dio->result += 1 << blkbits;
1019 				goto next_block;
1020 			}
1021 
1022 			/*
1023 			 * If we're performing IO which has an alignment which
1024 			 * is finer than the underlying fs, go check to see if
1025 			 * we must zero out the start of this block.
1026 			 */
1027 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1028 				dio_zero_block(dio, sdio, 0, map_bh);
1029 
1030 			/*
1031 			 * Work out, in this_chunk_blocks, how much disk we
1032 			 * can add to this page
1033 			 */
1034 			this_chunk_blocks = sdio->blocks_available;
1035 			u = (to - from) >> blkbits;
1036 			if (this_chunk_blocks > u)
1037 				this_chunk_blocks = u;
1038 			u = sdio->final_block_in_request - sdio->block_in_file;
1039 			if (this_chunk_blocks > u)
1040 				this_chunk_blocks = u;
1041 			this_chunk_bytes = this_chunk_blocks << blkbits;
1042 			BUG_ON(this_chunk_bytes == 0);
1043 
1044 			if (this_chunk_blocks == sdio->blocks_available)
1045 				sdio->boundary = buffer_boundary(map_bh);
1046 			ret = submit_page_section(dio, sdio, page,
1047 						  from,
1048 						  this_chunk_bytes,
1049 						  sdio->next_block_for_io,
1050 						  map_bh);
1051 			if (ret) {
1052 				put_page(page);
1053 				goto out;
1054 			}
1055 			sdio->next_block_for_io += this_chunk_blocks;
1056 
1057 			sdio->block_in_file += this_chunk_blocks;
1058 			from += this_chunk_bytes;
1059 			dio->result += this_chunk_bytes;
1060 			sdio->blocks_available -= this_chunk_blocks;
1061 next_block:
1062 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1063 			if (sdio->block_in_file == sdio->final_block_in_request)
1064 				break;
1065 		}
1066 
1067 		/* Drop the ref which was taken in get_user_pages() */
1068 		put_page(page);
1069 	}
1070 out:
1071 	return ret;
1072 }
1073 
1074 static inline int drop_refcount(struct dio *dio)
1075 {
1076 	int ret2;
1077 	unsigned long flags;
1078 
1079 	/*
1080 	 * Sync will always be dropping the final ref and completing the
1081 	 * operation.  AIO can if it was a broken operation described above or
1082 	 * in fact if all the bios race to complete before we get here.  In
1083 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1084 	 * return code that the caller will hand to ->complete().
1085 	 *
1086 	 * This is managed by the bio_lock instead of being an atomic_t so that
1087 	 * completion paths can drop their ref and use the remaining count to
1088 	 * decide to wake the submission path atomically.
1089 	 */
1090 	spin_lock_irqsave(&dio->bio_lock, flags);
1091 	ret2 = --dio->refcount;
1092 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1093 	return ret2;
1094 }
1095 
1096 /*
1097  * This is a library function for use by filesystem drivers.
1098  *
1099  * The locking rules are governed by the flags parameter:
1100  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1101  *    scheme for dumb filesystems.
1102  *    For writes this function is called under i_mutex and returns with
1103  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1104  *    taken and dropped again before returning.
1105  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1106  *    internal locking but rather rely on the filesystem to synchronize
1107  *    direct I/O reads/writes versus each other and truncate.
1108  *
1109  * To help with locking against truncate we incremented the i_dio_count
1110  * counter before starting direct I/O, and decrement it once we are done.
1111  * Truncate can wait for it to reach zero to provide exclusion.  It is
1112  * expected that filesystem provide exclusion between new direct I/O
1113  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1114  * but other filesystems need to take care of this on their own.
1115  *
1116  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1117  * is always inlined. Otherwise gcc is unable to split the structure into
1118  * individual fields and will generate much worse code. This is important
1119  * for the whole file.
1120  */
1121 static inline ssize_t
1122 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1123 		      struct block_device *bdev, struct iov_iter *iter,
1124 		      get_block_t get_block, dio_iodone_t end_io,
1125 		      dio_submit_t submit_io, int flags)
1126 {
1127 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1128 	unsigned blkbits = i_blkbits;
1129 	unsigned blocksize_mask = (1 << blkbits) - 1;
1130 	ssize_t retval = -EINVAL;
1131 	const size_t count = iov_iter_count(iter);
1132 	loff_t offset = iocb->ki_pos;
1133 	const loff_t end = offset + count;
1134 	struct dio *dio;
1135 	struct dio_submit sdio = { 0, };
1136 	struct buffer_head map_bh = { 0, };
1137 	struct blk_plug plug;
1138 	unsigned long align = offset | iov_iter_alignment(iter);
1139 
1140 	/*
1141 	 * Avoid references to bdev if not absolutely needed to give
1142 	 * the early prefetch in the caller enough time.
1143 	 */
1144 
1145 	/* watch out for a 0 len io from a tricksy fs */
1146 	if (iov_iter_rw(iter) == READ && !count)
1147 		return 0;
1148 
1149 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1150 	if (!dio)
1151 		return -ENOMEM;
1152 	/*
1153 	 * Believe it or not, zeroing out the page array caused a .5%
1154 	 * performance regression in a database benchmark.  So, we take
1155 	 * care to only zero out what's needed.
1156 	 */
1157 	memset(dio, 0, offsetof(struct dio, pages));
1158 
1159 	dio->flags = flags;
1160 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1161 		/* will be released by direct_io_worker */
1162 		inode_lock(inode);
1163 	}
1164 
1165 	/* Once we sampled i_size check for reads beyond EOF */
1166 	dio->i_size = i_size_read(inode);
1167 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1168 		retval = 0;
1169 		goto fail_dio;
1170 	}
1171 
1172 	if (align & blocksize_mask) {
1173 		if (bdev)
1174 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1175 		blocksize_mask = (1 << blkbits) - 1;
1176 		if (align & blocksize_mask)
1177 			goto fail_dio;
1178 	}
1179 
1180 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1181 		struct address_space *mapping = iocb->ki_filp->f_mapping;
1182 
1183 		retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1184 		if (retval)
1185 			goto fail_dio;
1186 	}
1187 
1188 	/*
1189 	 * For file extending writes updating i_size before data writeouts
1190 	 * complete can expose uninitialized blocks in dumb filesystems.
1191 	 * In that case we need to wait for I/O completion even if asked
1192 	 * for an asynchronous write.
1193 	 */
1194 	if (is_sync_kiocb(iocb))
1195 		dio->is_async = false;
1196 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1197 		dio->is_async = false;
1198 	else
1199 		dio->is_async = true;
1200 
1201 	dio->inode = inode;
1202 	if (iov_iter_rw(iter) == WRITE) {
1203 		dio->op = REQ_OP_WRITE;
1204 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1205 		if (iocb->ki_flags & IOCB_NOWAIT)
1206 			dio->op_flags |= REQ_NOWAIT;
1207 	} else {
1208 		dio->op = REQ_OP_READ;
1209 	}
1210 
1211 	/*
1212 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1213 	 * so that we can call ->fsync.
1214 	 */
1215 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1216 		retval = 0;
1217 		if (iocb->ki_flags & IOCB_DSYNC)
1218 			retval = dio_set_defer_completion(dio);
1219 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1220 			/*
1221 			 * In case of AIO write racing with buffered read we
1222 			 * need to defer completion. We can't decide this now,
1223 			 * however the workqueue needs to be initialized here.
1224 			 */
1225 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1226 		}
1227 		if (retval)
1228 			goto fail_dio;
1229 	}
1230 
1231 	/*
1232 	 * Will be decremented at I/O completion time.
1233 	 */
1234 	inode_dio_begin(inode);
1235 
1236 	retval = 0;
1237 	sdio.blkbits = blkbits;
1238 	sdio.blkfactor = i_blkbits - blkbits;
1239 	sdio.block_in_file = offset >> blkbits;
1240 
1241 	sdio.get_block = get_block;
1242 	dio->end_io = end_io;
1243 	sdio.submit_io = submit_io;
1244 	sdio.final_block_in_bio = -1;
1245 	sdio.next_block_for_io = -1;
1246 
1247 	dio->iocb = iocb;
1248 
1249 	spin_lock_init(&dio->bio_lock);
1250 	dio->refcount = 1;
1251 
1252 	dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1253 	sdio.iter = iter;
1254 	sdio.final_block_in_request = end >> blkbits;
1255 
1256 	/*
1257 	 * In case of non-aligned buffers, we may need 2 more
1258 	 * pages since we need to zero out first and last block.
1259 	 */
1260 	if (unlikely(sdio.blkfactor))
1261 		sdio.pages_in_io = 2;
1262 
1263 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1264 
1265 	blk_start_plug(&plug);
1266 
1267 	retval = do_direct_IO(dio, &sdio, &map_bh);
1268 	if (retval)
1269 		dio_cleanup(dio, &sdio);
1270 
1271 	if (retval == -ENOTBLK) {
1272 		/*
1273 		 * The remaining part of the request will be
1274 		 * handled by buffered I/O when we return
1275 		 */
1276 		retval = 0;
1277 	}
1278 	/*
1279 	 * There may be some unwritten disk at the end of a part-written
1280 	 * fs-block-sized block.  Go zero that now.
1281 	 */
1282 	dio_zero_block(dio, &sdio, 1, &map_bh);
1283 
1284 	if (sdio.cur_page) {
1285 		ssize_t ret2;
1286 
1287 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1288 		if (retval == 0)
1289 			retval = ret2;
1290 		put_page(sdio.cur_page);
1291 		sdio.cur_page = NULL;
1292 	}
1293 	if (sdio.bio)
1294 		dio_bio_submit(dio, &sdio);
1295 
1296 	blk_finish_plug(&plug);
1297 
1298 	/*
1299 	 * It is possible that, we return short IO due to end of file.
1300 	 * In that case, we need to release all the pages we got hold on.
1301 	 */
1302 	dio_cleanup(dio, &sdio);
1303 
1304 	/*
1305 	 * All block lookups have been performed. For READ requests
1306 	 * we can let i_mutex go now that its achieved its purpose
1307 	 * of protecting us from looking up uninitialized blocks.
1308 	 */
1309 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1310 		inode_unlock(dio->inode);
1311 
1312 	/*
1313 	 * The only time we want to leave bios in flight is when a successful
1314 	 * partial aio read or full aio write have been setup.  In that case
1315 	 * bio completion will call aio_complete.  The only time it's safe to
1316 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1317 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1318 	 */
1319 	BUG_ON(retval == -EIOCBQUEUED);
1320 	if (dio->is_async && retval == 0 && dio->result &&
1321 	    (iov_iter_rw(iter) == READ || dio->result == count))
1322 		retval = -EIOCBQUEUED;
1323 	else
1324 		dio_await_completion(dio);
1325 
1326 	if (drop_refcount(dio) == 0) {
1327 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1328 	} else
1329 		BUG_ON(retval != -EIOCBQUEUED);
1330 
1331 	return retval;
1332 
1333 fail_dio:
1334 	if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1335 		inode_unlock(inode);
1336 
1337 	kmem_cache_free(dio_cache, dio);
1338 	return retval;
1339 }
1340 
1341 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1342 			     struct block_device *bdev, struct iov_iter *iter,
1343 			     get_block_t get_block,
1344 			     dio_iodone_t end_io, dio_submit_t submit_io,
1345 			     int flags)
1346 {
1347 	/*
1348 	 * The block device state is needed in the end to finally
1349 	 * submit everything.  Since it's likely to be cache cold
1350 	 * prefetch it here as first thing to hide some of the
1351 	 * latency.
1352 	 *
1353 	 * Attempt to prefetch the pieces we likely need later.
1354 	 */
1355 	prefetch(&bdev->bd_disk->part_tbl);
1356 	prefetch(bdev->bd_disk->queue);
1357 	prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES);
1358 
1359 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1360 				     end_io, submit_io, flags);
1361 }
1362 
1363 EXPORT_SYMBOL(__blockdev_direct_IO);
1364 
1365 static __init int dio_init(void)
1366 {
1367 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1368 	return 0;
1369 }
1370 module_init(dio_init)
1371