1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 akpm@zip.com.au 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 akpm@zip.com.au 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/bio.h> 31 #include <linux/wait.h> 32 #include <linux/err.h> 33 #include <linux/blkdev.h> 34 #include <linux/buffer_head.h> 35 #include <linux/rwsem.h> 36 #include <linux/uio.h> 37 #include <asm/atomic.h> 38 39 /* 40 * How many user pages to map in one call to get_user_pages(). This determines 41 * the size of a structure on the stack. 42 */ 43 #define DIO_PAGES 64 44 45 /* 46 * This code generally works in units of "dio_blocks". A dio_block is 47 * somewhere between the hard sector size and the filesystem block size. it 48 * is determined on a per-invocation basis. When talking to the filesystem 49 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 50 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 51 * to bio_block quantities by shifting left by blkfactor. 52 * 53 * If blkfactor is zero then the user's request was aligned to the filesystem's 54 * blocksize. 55 * 56 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. 57 * This determines whether we need to do the fancy locking which prevents 58 * direct-IO from being able to read uninitialised disk blocks. If its zero 59 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is 60 * not held for the entire direct write (taken briefly, initially, during a 61 * direct read though, but its never held for the duration of a direct-IO). 62 */ 63 64 struct dio { 65 /* BIO submission state */ 66 struct bio *bio; /* bio under assembly */ 67 struct inode *inode; 68 int rw; 69 loff_t i_size; /* i_size when submitted */ 70 int lock_type; /* doesn't change */ 71 unsigned blkbits; /* doesn't change */ 72 unsigned blkfactor; /* When we're using an alignment which 73 is finer than the filesystem's soft 74 blocksize, this specifies how much 75 finer. blkfactor=2 means 1/4-block 76 alignment. Does not change */ 77 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 78 been performed at the start of a 79 write */ 80 int pages_in_io; /* approximate total IO pages */ 81 size_t size; /* total request size (doesn't change)*/ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 sector_t final_block_in_request;/* doesn't change */ 86 unsigned first_block_in_page; /* doesn't change, Used only once */ 87 int boundary; /* prev block is at a boundary */ 88 int reap_counter; /* rate limit reaping */ 89 get_block_t *get_block; /* block mapping function */ 90 dio_iodone_t *end_io; /* IO completion function */ 91 sector_t final_block_in_bio; /* current final block in bio + 1 */ 92 sector_t next_block_for_io; /* next block to be put under IO, 93 in dio_blocks units */ 94 struct buffer_head map_bh; /* last get_block() result */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 106 /* 107 * Page fetching state. These variables belong to dio_refill_pages(). 108 */ 109 int curr_page; /* changes */ 110 int total_pages; /* doesn't change */ 111 unsigned long curr_user_address;/* changes */ 112 113 /* 114 * Page queue. These variables belong to dio_refill_pages() and 115 * dio_get_page(). 116 */ 117 struct page *pages[DIO_PAGES]; /* page buffer */ 118 unsigned head; /* next page to process */ 119 unsigned tail; /* last valid page + 1 */ 120 int page_errors; /* errno from get_user_pages() */ 121 122 /* BIO completion state */ 123 spinlock_t bio_lock; /* protects BIO fields below */ 124 int bio_count; /* nr bios to be completed */ 125 int bios_in_flight; /* nr bios in flight */ 126 struct bio *bio_list; /* singly linked via bi_private */ 127 struct task_struct *waiter; /* waiting task (NULL if none) */ 128 129 /* AIO related stuff */ 130 struct kiocb *iocb; /* kiocb */ 131 int is_async; /* is IO async ? */ 132 int io_error; /* IO error in completion path */ 133 ssize_t result; /* IO result */ 134 }; 135 136 /* 137 * How many pages are in the queue? 138 */ 139 static inline unsigned dio_pages_present(struct dio *dio) 140 { 141 return dio->tail - dio->head; 142 } 143 144 /* 145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 146 */ 147 static int dio_refill_pages(struct dio *dio) 148 { 149 int ret; 150 int nr_pages; 151 152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 153 down_read(¤t->mm->mmap_sem); 154 ret = get_user_pages( 155 current, /* Task for fault acounting */ 156 current->mm, /* whose pages? */ 157 dio->curr_user_address, /* Where from? */ 158 nr_pages, /* How many pages? */ 159 dio->rw == READ, /* Write to memory? */ 160 0, /* force (?) */ 161 &dio->pages[0], 162 NULL); /* vmas */ 163 up_read(¤t->mm->mmap_sem); 164 165 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { 166 struct page *page = ZERO_PAGE(dio->curr_user_address); 167 /* 168 * A memory fault, but the filesystem has some outstanding 169 * mapped blocks. We need to use those blocks up to avoid 170 * leaking stale data in the file. 171 */ 172 if (dio->page_errors == 0) 173 dio->page_errors = ret; 174 page_cache_get(page); 175 dio->pages[0] = page; 176 dio->head = 0; 177 dio->tail = 1; 178 ret = 0; 179 goto out; 180 } 181 182 if (ret >= 0) { 183 dio->curr_user_address += ret * PAGE_SIZE; 184 dio->curr_page += ret; 185 dio->head = 0; 186 dio->tail = ret; 187 ret = 0; 188 } 189 out: 190 return ret; 191 } 192 193 /* 194 * Get another userspace page. Returns an ERR_PTR on error. Pages are 195 * buffered inside the dio so that we can call get_user_pages() against a 196 * decent number of pages, less frequently. To provide nicer use of the 197 * L1 cache. 198 */ 199 static struct page *dio_get_page(struct dio *dio) 200 { 201 if (dio_pages_present(dio) == 0) { 202 int ret; 203 204 ret = dio_refill_pages(dio); 205 if (ret) 206 return ERR_PTR(ret); 207 BUG_ON(dio_pages_present(dio) == 0); 208 } 209 return dio->pages[dio->head++]; 210 } 211 212 /* 213 * Called when all DIO BIO I/O has been completed - let the filesystem 214 * know, if it registered an interest earlier via get_block. Pass the 215 * private field of the map buffer_head so that filesystems can use it 216 * to hold additional state between get_block calls and dio_complete. 217 */ 218 static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes) 219 { 220 if (dio->end_io && dio->result) 221 dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private); 222 if (dio->lock_type == DIO_LOCKING) 223 /* lockdep: non-owner release */ 224 up_read_non_owner(&dio->inode->i_alloc_sem); 225 } 226 227 /* 228 * Called when a BIO has been processed. If the count goes to zero then IO is 229 * complete and we can signal this to the AIO layer. 230 */ 231 static void finished_one_bio(struct dio *dio) 232 { 233 unsigned long flags; 234 235 spin_lock_irqsave(&dio->bio_lock, flags); 236 if (dio->bio_count == 1) { 237 if (dio->is_async) { 238 ssize_t transferred; 239 loff_t offset; 240 241 /* 242 * Last reference to the dio is going away. 243 * Drop spinlock and complete the DIO. 244 */ 245 spin_unlock_irqrestore(&dio->bio_lock, flags); 246 247 /* Check for short read case */ 248 transferred = dio->result; 249 offset = dio->iocb->ki_pos; 250 251 if ((dio->rw == READ) && 252 ((offset + transferred) > dio->i_size)) 253 transferred = dio->i_size - offset; 254 255 /* check for error in completion path */ 256 if (dio->io_error) 257 transferred = dio->io_error; 258 259 dio_complete(dio, offset, transferred); 260 261 /* Complete AIO later if falling back to buffered i/o */ 262 if (dio->result == dio->size || 263 ((dio->rw == READ) && dio->result)) { 264 aio_complete(dio->iocb, transferred, 0); 265 kfree(dio); 266 return; 267 } else { 268 /* 269 * Falling back to buffered 270 */ 271 spin_lock_irqsave(&dio->bio_lock, flags); 272 dio->bio_count--; 273 if (dio->waiter) 274 wake_up_process(dio->waiter); 275 spin_unlock_irqrestore(&dio->bio_lock, flags); 276 return; 277 } 278 } 279 } 280 dio->bio_count--; 281 spin_unlock_irqrestore(&dio->bio_lock, flags); 282 } 283 284 static int dio_bio_complete(struct dio *dio, struct bio *bio); 285 /* 286 * Asynchronous IO callback. 287 */ 288 static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) 289 { 290 struct dio *dio = bio->bi_private; 291 292 if (bio->bi_size) 293 return 1; 294 295 /* cleanup the bio */ 296 dio_bio_complete(dio, bio); 297 return 0; 298 } 299 300 /* 301 * The BIO completion handler simply queues the BIO up for the process-context 302 * handler. 303 * 304 * During I/O bi_private points at the dio. After I/O, bi_private is used to 305 * implement a singly-linked list of completed BIOs, at dio->bio_list. 306 */ 307 static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) 308 { 309 struct dio *dio = bio->bi_private; 310 unsigned long flags; 311 312 if (bio->bi_size) 313 return 1; 314 315 spin_lock_irqsave(&dio->bio_lock, flags); 316 bio->bi_private = dio->bio_list; 317 dio->bio_list = bio; 318 dio->bios_in_flight--; 319 if (dio->waiter && dio->bios_in_flight == 0) 320 wake_up_process(dio->waiter); 321 spin_unlock_irqrestore(&dio->bio_lock, flags); 322 return 0; 323 } 324 325 static int 326 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 327 sector_t first_sector, int nr_vecs) 328 { 329 struct bio *bio; 330 331 bio = bio_alloc(GFP_KERNEL, nr_vecs); 332 if (bio == NULL) 333 return -ENOMEM; 334 335 bio->bi_bdev = bdev; 336 bio->bi_sector = first_sector; 337 if (dio->is_async) 338 bio->bi_end_io = dio_bio_end_aio; 339 else 340 bio->bi_end_io = dio_bio_end_io; 341 342 dio->bio = bio; 343 return 0; 344 } 345 346 /* 347 * In the AIO read case we speculatively dirty the pages before starting IO. 348 * During IO completion, any of these pages which happen to have been written 349 * back will be redirtied by bio_check_pages_dirty(). 350 */ 351 static void dio_bio_submit(struct dio *dio) 352 { 353 struct bio *bio = dio->bio; 354 unsigned long flags; 355 356 bio->bi_private = dio; 357 spin_lock_irqsave(&dio->bio_lock, flags); 358 dio->bio_count++; 359 dio->bios_in_flight++; 360 spin_unlock_irqrestore(&dio->bio_lock, flags); 361 if (dio->is_async && dio->rw == READ) 362 bio_set_pages_dirty(bio); 363 submit_bio(dio->rw, bio); 364 365 dio->bio = NULL; 366 dio->boundary = 0; 367 } 368 369 /* 370 * Release any resources in case of a failure 371 */ 372 static void dio_cleanup(struct dio *dio) 373 { 374 while (dio_pages_present(dio)) 375 page_cache_release(dio_get_page(dio)); 376 } 377 378 /* 379 * Wait for the next BIO to complete. Remove it and return it. 380 */ 381 static struct bio *dio_await_one(struct dio *dio) 382 { 383 unsigned long flags; 384 struct bio *bio; 385 386 spin_lock_irqsave(&dio->bio_lock, flags); 387 while (dio->bio_list == NULL) { 388 set_current_state(TASK_UNINTERRUPTIBLE); 389 if (dio->bio_list == NULL) { 390 dio->waiter = current; 391 spin_unlock_irqrestore(&dio->bio_lock, flags); 392 blk_run_address_space(dio->inode->i_mapping); 393 io_schedule(); 394 spin_lock_irqsave(&dio->bio_lock, flags); 395 dio->waiter = NULL; 396 } 397 set_current_state(TASK_RUNNING); 398 } 399 bio = dio->bio_list; 400 dio->bio_list = bio->bi_private; 401 spin_unlock_irqrestore(&dio->bio_lock, flags); 402 return bio; 403 } 404 405 /* 406 * Process one completed BIO. No locks are held. 407 */ 408 static int dio_bio_complete(struct dio *dio, struct bio *bio) 409 { 410 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 411 struct bio_vec *bvec = bio->bi_io_vec; 412 int page_no; 413 414 if (!uptodate) 415 dio->io_error = -EIO; 416 417 if (dio->is_async && dio->rw == READ) { 418 bio_check_pages_dirty(bio); /* transfers ownership */ 419 } else { 420 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 421 struct page *page = bvec[page_no].bv_page; 422 423 if (dio->rw == READ && !PageCompound(page)) 424 set_page_dirty_lock(page); 425 page_cache_release(page); 426 } 427 bio_put(bio); 428 } 429 finished_one_bio(dio); 430 return uptodate ? 0 : -EIO; 431 } 432 433 /* 434 * Wait on and process all in-flight BIOs. 435 */ 436 static int dio_await_completion(struct dio *dio) 437 { 438 int ret = 0; 439 440 if (dio->bio) 441 dio_bio_submit(dio); 442 443 /* 444 * The bio_lock is not held for the read of bio_count. 445 * This is ok since it is the dio_bio_complete() that changes 446 * bio_count. 447 */ 448 while (dio->bio_count) { 449 struct bio *bio = dio_await_one(dio); 450 int ret2; 451 452 ret2 = dio_bio_complete(dio, bio); 453 if (ret == 0) 454 ret = ret2; 455 } 456 return ret; 457 } 458 459 /* 460 * A really large O_DIRECT read or write can generate a lot of BIOs. So 461 * to keep the memory consumption sane we periodically reap any completed BIOs 462 * during the BIO generation phase. 463 * 464 * This also helps to limit the peak amount of pinned userspace memory. 465 */ 466 static int dio_bio_reap(struct dio *dio) 467 { 468 int ret = 0; 469 470 if (dio->reap_counter++ >= 64) { 471 while (dio->bio_list) { 472 unsigned long flags; 473 struct bio *bio; 474 int ret2; 475 476 spin_lock_irqsave(&dio->bio_lock, flags); 477 bio = dio->bio_list; 478 dio->bio_list = bio->bi_private; 479 spin_unlock_irqrestore(&dio->bio_lock, flags); 480 ret2 = dio_bio_complete(dio, bio); 481 if (ret == 0) 482 ret = ret2; 483 } 484 dio->reap_counter = 0; 485 } 486 return ret; 487 } 488 489 /* 490 * Call into the fs to map some more disk blocks. We record the current number 491 * of available blocks at dio->blocks_available. These are in units of the 492 * fs blocksize, (1 << inode->i_blkbits). 493 * 494 * The fs is allowed to map lots of blocks at once. If it wants to do that, 495 * it uses the passed inode-relative block number as the file offset, as usual. 496 * 497 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 498 * has remaining to do. The fs should not map more than this number of blocks. 499 * 500 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 501 * indicate how much contiguous disk space has been made available at 502 * bh->b_blocknr. 503 * 504 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 505 * This isn't very efficient... 506 * 507 * In the case of filesystem holes: the fs may return an arbitrarily-large 508 * hole by returning an appropriate value in b_size and by clearing 509 * buffer_mapped(). However the direct-io code will only process holes one 510 * block at a time - it will repeatedly call get_block() as it walks the hole. 511 */ 512 static int get_more_blocks(struct dio *dio) 513 { 514 int ret; 515 struct buffer_head *map_bh = &dio->map_bh; 516 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 517 unsigned long fs_count; /* Number of filesystem-sized blocks */ 518 unsigned long dio_count;/* Number of dio_block-sized blocks */ 519 unsigned long blkmask; 520 int create; 521 522 /* 523 * If there was a memory error and we've overwritten all the 524 * mapped blocks then we can now return that memory error 525 */ 526 ret = dio->page_errors; 527 if (ret == 0) { 528 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 529 fs_startblk = dio->block_in_file >> dio->blkfactor; 530 dio_count = dio->final_block_in_request - dio->block_in_file; 531 fs_count = dio_count >> dio->blkfactor; 532 blkmask = (1 << dio->blkfactor) - 1; 533 if (dio_count & blkmask) 534 fs_count++; 535 536 map_bh->b_state = 0; 537 map_bh->b_size = fs_count << dio->inode->i_blkbits; 538 539 create = dio->rw & WRITE; 540 if (dio->lock_type == DIO_LOCKING) { 541 if (dio->block_in_file < (i_size_read(dio->inode) >> 542 dio->blkbits)) 543 create = 0; 544 } else if (dio->lock_type == DIO_NO_LOCKING) { 545 create = 0; 546 } 547 548 /* 549 * For writes inside i_size we forbid block creations: only 550 * overwrites are permitted. We fall back to buffered writes 551 * at a higher level for inside-i_size block-instantiating 552 * writes. 553 */ 554 ret = (*dio->get_block)(dio->inode, fs_startblk, 555 map_bh, create); 556 } 557 return ret; 558 } 559 560 /* 561 * There is no bio. Make one now. 562 */ 563 static int dio_new_bio(struct dio *dio, sector_t start_sector) 564 { 565 sector_t sector; 566 int ret, nr_pages; 567 568 ret = dio_bio_reap(dio); 569 if (ret) 570 goto out; 571 sector = start_sector << (dio->blkbits - 9); 572 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 573 BUG_ON(nr_pages <= 0); 574 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 575 dio->boundary = 0; 576 out: 577 return ret; 578 } 579 580 /* 581 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 582 * that was successful then update final_block_in_bio and take a ref against 583 * the just-added page. 584 * 585 * Return zero on success. Non-zero means the caller needs to start a new BIO. 586 */ 587 static int dio_bio_add_page(struct dio *dio) 588 { 589 int ret; 590 591 ret = bio_add_page(dio->bio, dio->cur_page, 592 dio->cur_page_len, dio->cur_page_offset); 593 if (ret == dio->cur_page_len) { 594 /* 595 * Decrement count only, if we are done with this page 596 */ 597 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 598 dio->pages_in_io--; 599 page_cache_get(dio->cur_page); 600 dio->final_block_in_bio = dio->cur_page_block + 601 (dio->cur_page_len >> dio->blkbits); 602 ret = 0; 603 } else { 604 ret = 1; 605 } 606 return ret; 607 } 608 609 /* 610 * Put cur_page under IO. The section of cur_page which is described by 611 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 612 * starts on-disk at cur_page_block. 613 * 614 * We take a ref against the page here (on behalf of its presence in the bio). 615 * 616 * The caller of this function is responsible for removing cur_page from the 617 * dio, and for dropping the refcount which came from that presence. 618 */ 619 static int dio_send_cur_page(struct dio *dio) 620 { 621 int ret = 0; 622 623 if (dio->bio) { 624 /* 625 * See whether this new request is contiguous with the old 626 */ 627 if (dio->final_block_in_bio != dio->cur_page_block) 628 dio_bio_submit(dio); 629 /* 630 * Submit now if the underlying fs is about to perform a 631 * metadata read 632 */ 633 if (dio->boundary) 634 dio_bio_submit(dio); 635 } 636 637 if (dio->bio == NULL) { 638 ret = dio_new_bio(dio, dio->cur_page_block); 639 if (ret) 640 goto out; 641 } 642 643 if (dio_bio_add_page(dio) != 0) { 644 dio_bio_submit(dio); 645 ret = dio_new_bio(dio, dio->cur_page_block); 646 if (ret == 0) { 647 ret = dio_bio_add_page(dio); 648 BUG_ON(ret != 0); 649 } 650 } 651 out: 652 return ret; 653 } 654 655 /* 656 * An autonomous function to put a chunk of a page under deferred IO. 657 * 658 * The caller doesn't actually know (or care) whether this piece of page is in 659 * a BIO, or is under IO or whatever. We just take care of all possible 660 * situations here. The separation between the logic of do_direct_IO() and 661 * that of submit_page_section() is important for clarity. Please don't break. 662 * 663 * The chunk of page starts on-disk at blocknr. 664 * 665 * We perform deferred IO, by recording the last-submitted page inside our 666 * private part of the dio structure. If possible, we just expand the IO 667 * across that page here. 668 * 669 * If that doesn't work out then we put the old page into the bio and add this 670 * page to the dio instead. 671 */ 672 static int 673 submit_page_section(struct dio *dio, struct page *page, 674 unsigned offset, unsigned len, sector_t blocknr) 675 { 676 int ret = 0; 677 678 /* 679 * Can we just grow the current page's presence in the dio? 680 */ 681 if ( (dio->cur_page == page) && 682 (dio->cur_page_offset + dio->cur_page_len == offset) && 683 (dio->cur_page_block + 684 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 685 dio->cur_page_len += len; 686 687 /* 688 * If dio->boundary then we want to schedule the IO now to 689 * avoid metadata seeks. 690 */ 691 if (dio->boundary) { 692 ret = dio_send_cur_page(dio); 693 page_cache_release(dio->cur_page); 694 dio->cur_page = NULL; 695 } 696 goto out; 697 } 698 699 /* 700 * If there's a deferred page already there then send it. 701 */ 702 if (dio->cur_page) { 703 ret = dio_send_cur_page(dio); 704 page_cache_release(dio->cur_page); 705 dio->cur_page = NULL; 706 if (ret) 707 goto out; 708 } 709 710 page_cache_get(page); /* It is in dio */ 711 dio->cur_page = page; 712 dio->cur_page_offset = offset; 713 dio->cur_page_len = len; 714 dio->cur_page_block = blocknr; 715 out: 716 return ret; 717 } 718 719 /* 720 * Clean any dirty buffers in the blockdev mapping which alias newly-created 721 * file blocks. Only called for S_ISREG files - blockdevs do not set 722 * buffer_new 723 */ 724 static void clean_blockdev_aliases(struct dio *dio) 725 { 726 unsigned i; 727 unsigned nblocks; 728 729 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 730 731 for (i = 0; i < nblocks; i++) { 732 unmap_underlying_metadata(dio->map_bh.b_bdev, 733 dio->map_bh.b_blocknr + i); 734 } 735 } 736 737 /* 738 * If we are not writing the entire block and get_block() allocated 739 * the block for us, we need to fill-in the unused portion of the 740 * block with zeros. This happens only if user-buffer, fileoffset or 741 * io length is not filesystem block-size multiple. 742 * 743 * `end' is zero if we're doing the start of the IO, 1 at the end of the 744 * IO. 745 */ 746 static void dio_zero_block(struct dio *dio, int end) 747 { 748 unsigned dio_blocks_per_fs_block; 749 unsigned this_chunk_blocks; /* In dio_blocks */ 750 unsigned this_chunk_bytes; 751 struct page *page; 752 753 dio->start_zero_done = 1; 754 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 755 return; 756 757 dio_blocks_per_fs_block = 1 << dio->blkfactor; 758 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 759 760 if (!this_chunk_blocks) 761 return; 762 763 /* 764 * We need to zero out part of an fs block. It is either at the 765 * beginning or the end of the fs block. 766 */ 767 if (end) 768 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 769 770 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 771 772 page = ZERO_PAGE(dio->curr_user_address); 773 if (submit_page_section(dio, page, 0, this_chunk_bytes, 774 dio->next_block_for_io)) 775 return; 776 777 dio->next_block_for_io += this_chunk_blocks; 778 } 779 780 /* 781 * Walk the user pages, and the file, mapping blocks to disk and generating 782 * a sequence of (page,offset,len,block) mappings. These mappings are injected 783 * into submit_page_section(), which takes care of the next stage of submission 784 * 785 * Direct IO against a blockdev is different from a file. Because we can 786 * happily perform page-sized but 512-byte aligned IOs. It is important that 787 * blockdev IO be able to have fine alignment and large sizes. 788 * 789 * So what we do is to permit the ->get_block function to populate bh.b_size 790 * with the size of IO which is permitted at this offset and this i_blkbits. 791 * 792 * For best results, the blockdev should be set up with 512-byte i_blkbits and 793 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 794 * fine alignment but still allows this function to work in PAGE_SIZE units. 795 */ 796 static int do_direct_IO(struct dio *dio) 797 { 798 const unsigned blkbits = dio->blkbits; 799 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 800 struct page *page; 801 unsigned block_in_page; 802 struct buffer_head *map_bh = &dio->map_bh; 803 int ret = 0; 804 805 /* The I/O can start at any block offset within the first page */ 806 block_in_page = dio->first_block_in_page; 807 808 while (dio->block_in_file < dio->final_block_in_request) { 809 page = dio_get_page(dio); 810 if (IS_ERR(page)) { 811 ret = PTR_ERR(page); 812 goto out; 813 } 814 815 while (block_in_page < blocks_per_page) { 816 unsigned offset_in_page = block_in_page << blkbits; 817 unsigned this_chunk_bytes; /* # of bytes mapped */ 818 unsigned this_chunk_blocks; /* # of blocks */ 819 unsigned u; 820 821 if (dio->blocks_available == 0) { 822 /* 823 * Need to go and map some more disk 824 */ 825 unsigned long blkmask; 826 unsigned long dio_remainder; 827 828 ret = get_more_blocks(dio); 829 if (ret) { 830 page_cache_release(page); 831 goto out; 832 } 833 if (!buffer_mapped(map_bh)) 834 goto do_holes; 835 836 dio->blocks_available = 837 map_bh->b_size >> dio->blkbits; 838 dio->next_block_for_io = 839 map_bh->b_blocknr << dio->blkfactor; 840 if (buffer_new(map_bh)) 841 clean_blockdev_aliases(dio); 842 843 if (!dio->blkfactor) 844 goto do_holes; 845 846 blkmask = (1 << dio->blkfactor) - 1; 847 dio_remainder = (dio->block_in_file & blkmask); 848 849 /* 850 * If we are at the start of IO and that IO 851 * starts partway into a fs-block, 852 * dio_remainder will be non-zero. If the IO 853 * is a read then we can simply advance the IO 854 * cursor to the first block which is to be 855 * read. But if the IO is a write and the 856 * block was newly allocated we cannot do that; 857 * the start of the fs block must be zeroed out 858 * on-disk 859 */ 860 if (!buffer_new(map_bh)) 861 dio->next_block_for_io += dio_remainder; 862 dio->blocks_available -= dio_remainder; 863 } 864 do_holes: 865 /* Handle holes */ 866 if (!buffer_mapped(map_bh)) { 867 char *kaddr; 868 loff_t i_size_aligned; 869 870 /* AKPM: eargh, -ENOTBLK is a hack */ 871 if (dio->rw & WRITE) { 872 page_cache_release(page); 873 return -ENOTBLK; 874 } 875 876 /* 877 * Be sure to account for a partial block as the 878 * last block in the file 879 */ 880 i_size_aligned = ALIGN(i_size_read(dio->inode), 881 1 << blkbits); 882 if (dio->block_in_file >= 883 i_size_aligned >> blkbits) { 884 /* We hit eof */ 885 page_cache_release(page); 886 goto out; 887 } 888 kaddr = kmap_atomic(page, KM_USER0); 889 memset(kaddr + (block_in_page << blkbits), 890 0, 1 << blkbits); 891 flush_dcache_page(page); 892 kunmap_atomic(kaddr, KM_USER0); 893 dio->block_in_file++; 894 block_in_page++; 895 goto next_block; 896 } 897 898 /* 899 * If we're performing IO which has an alignment which 900 * is finer than the underlying fs, go check to see if 901 * we must zero out the start of this block. 902 */ 903 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 904 dio_zero_block(dio, 0); 905 906 /* 907 * Work out, in this_chunk_blocks, how much disk we 908 * can add to this page 909 */ 910 this_chunk_blocks = dio->blocks_available; 911 u = (PAGE_SIZE - offset_in_page) >> blkbits; 912 if (this_chunk_blocks > u) 913 this_chunk_blocks = u; 914 u = dio->final_block_in_request - dio->block_in_file; 915 if (this_chunk_blocks > u) 916 this_chunk_blocks = u; 917 this_chunk_bytes = this_chunk_blocks << blkbits; 918 BUG_ON(this_chunk_bytes == 0); 919 920 dio->boundary = buffer_boundary(map_bh); 921 ret = submit_page_section(dio, page, offset_in_page, 922 this_chunk_bytes, dio->next_block_for_io); 923 if (ret) { 924 page_cache_release(page); 925 goto out; 926 } 927 dio->next_block_for_io += this_chunk_blocks; 928 929 dio->block_in_file += this_chunk_blocks; 930 block_in_page += this_chunk_blocks; 931 dio->blocks_available -= this_chunk_blocks; 932 next_block: 933 BUG_ON(dio->block_in_file > dio->final_block_in_request); 934 if (dio->block_in_file == dio->final_block_in_request) 935 break; 936 } 937 938 /* Drop the ref which was taken in get_user_pages() */ 939 page_cache_release(page); 940 block_in_page = 0; 941 } 942 out: 943 return ret; 944 } 945 946 /* 947 * Releases both i_mutex and i_alloc_sem 948 */ 949 static ssize_t 950 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 951 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 952 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, 953 struct dio *dio) 954 { 955 unsigned long user_addr; 956 int seg; 957 ssize_t ret = 0; 958 ssize_t ret2; 959 size_t bytes; 960 961 dio->bio = NULL; 962 dio->inode = inode; 963 dio->rw = rw; 964 dio->blkbits = blkbits; 965 dio->blkfactor = inode->i_blkbits - blkbits; 966 dio->start_zero_done = 0; 967 dio->size = 0; 968 dio->block_in_file = offset >> blkbits; 969 dio->blocks_available = 0; 970 dio->cur_page = NULL; 971 972 dio->boundary = 0; 973 dio->reap_counter = 0; 974 dio->get_block = get_block; 975 dio->end_io = end_io; 976 dio->map_bh.b_private = NULL; 977 dio->final_block_in_bio = -1; 978 dio->next_block_for_io = -1; 979 980 dio->page_errors = 0; 981 dio->io_error = 0; 982 dio->result = 0; 983 dio->iocb = iocb; 984 dio->i_size = i_size_read(inode); 985 986 /* 987 * BIO completion state. 988 * 989 * ->bio_count starts out at one, and we decrement it to zero after all 990 * BIOs are submitted. This to avoid the situation where a really fast 991 * (or synchronous) device could take the count to zero while we're 992 * still submitting BIOs. 993 */ 994 dio->bio_count = 1; 995 dio->bios_in_flight = 0; 996 spin_lock_init(&dio->bio_lock); 997 dio->bio_list = NULL; 998 dio->waiter = NULL; 999 1000 /* 1001 * In case of non-aligned buffers, we may need 2 more 1002 * pages since we need to zero out first and last block. 1003 */ 1004 if (unlikely(dio->blkfactor)) 1005 dio->pages_in_io = 2; 1006 else 1007 dio->pages_in_io = 0; 1008 1009 for (seg = 0; seg < nr_segs; seg++) { 1010 user_addr = (unsigned long)iov[seg].iov_base; 1011 dio->pages_in_io += 1012 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 1013 - user_addr/PAGE_SIZE); 1014 } 1015 1016 for (seg = 0; seg < nr_segs; seg++) { 1017 user_addr = (unsigned long)iov[seg].iov_base; 1018 dio->size += bytes = iov[seg].iov_len; 1019 1020 /* Index into the first page of the first block */ 1021 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1022 dio->final_block_in_request = dio->block_in_file + 1023 (bytes >> blkbits); 1024 /* Page fetching state */ 1025 dio->head = 0; 1026 dio->tail = 0; 1027 dio->curr_page = 0; 1028 1029 dio->total_pages = 0; 1030 if (user_addr & (PAGE_SIZE-1)) { 1031 dio->total_pages++; 1032 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1033 } 1034 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1035 dio->curr_user_address = user_addr; 1036 1037 ret = do_direct_IO(dio); 1038 1039 dio->result += iov[seg].iov_len - 1040 ((dio->final_block_in_request - dio->block_in_file) << 1041 blkbits); 1042 1043 if (ret) { 1044 dio_cleanup(dio); 1045 break; 1046 } 1047 } /* end iovec loop */ 1048 1049 if (ret == -ENOTBLK && (rw & WRITE)) { 1050 /* 1051 * The remaining part of the request will be 1052 * be handled by buffered I/O when we return 1053 */ 1054 ret = 0; 1055 } 1056 /* 1057 * There may be some unwritten disk at the end of a part-written 1058 * fs-block-sized block. Go zero that now. 1059 */ 1060 dio_zero_block(dio, 1); 1061 1062 if (dio->cur_page) { 1063 ret2 = dio_send_cur_page(dio); 1064 if (ret == 0) 1065 ret = ret2; 1066 page_cache_release(dio->cur_page); 1067 dio->cur_page = NULL; 1068 } 1069 if (dio->bio) 1070 dio_bio_submit(dio); 1071 1072 /* 1073 * It is possible that, we return short IO due to end of file. 1074 * In that case, we need to release all the pages we got hold on. 1075 */ 1076 dio_cleanup(dio); 1077 1078 /* 1079 * All block lookups have been performed. For READ requests 1080 * we can let i_mutex go now that its achieved its purpose 1081 * of protecting us from looking up uninitialized blocks. 1082 */ 1083 if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) 1084 mutex_unlock(&dio->inode->i_mutex); 1085 1086 /* 1087 * OK, all BIOs are submitted, so we can decrement bio_count to truly 1088 * reflect the number of to-be-processed BIOs. 1089 */ 1090 if (dio->is_async) { 1091 int should_wait = 0; 1092 1093 if (dio->result < dio->size && (rw & WRITE)) { 1094 dio->waiter = current; 1095 should_wait = 1; 1096 } 1097 if (ret == 0) 1098 ret = dio->result; 1099 finished_one_bio(dio); /* This can free the dio */ 1100 blk_run_address_space(inode->i_mapping); 1101 if (should_wait) { 1102 unsigned long flags; 1103 /* 1104 * Wait for already issued I/O to drain out and 1105 * release its references to user-space pages 1106 * before returning to fallback on buffered I/O 1107 */ 1108 1109 spin_lock_irqsave(&dio->bio_lock, flags); 1110 set_current_state(TASK_UNINTERRUPTIBLE); 1111 while (dio->bio_count) { 1112 spin_unlock_irqrestore(&dio->bio_lock, flags); 1113 io_schedule(); 1114 spin_lock_irqsave(&dio->bio_lock, flags); 1115 set_current_state(TASK_UNINTERRUPTIBLE); 1116 } 1117 spin_unlock_irqrestore(&dio->bio_lock, flags); 1118 set_current_state(TASK_RUNNING); 1119 kfree(dio); 1120 } 1121 } else { 1122 ssize_t transferred = 0; 1123 1124 finished_one_bio(dio); 1125 ret2 = dio_await_completion(dio); 1126 if (ret == 0) 1127 ret = ret2; 1128 if (ret == 0) 1129 ret = dio->page_errors; 1130 if (dio->result) { 1131 loff_t i_size = i_size_read(inode); 1132 1133 transferred = dio->result; 1134 /* 1135 * Adjust the return value if the read crossed a 1136 * non-block-aligned EOF. 1137 */ 1138 if (rw == READ && (offset + transferred > i_size)) 1139 transferred = i_size - offset; 1140 } 1141 dio_complete(dio, offset, transferred); 1142 if (ret == 0) 1143 ret = transferred; 1144 1145 /* We could have also come here on an AIO file extend */ 1146 if (!is_sync_kiocb(iocb) && (rw & WRITE) && 1147 ret >= 0 && dio->result == dio->size) 1148 /* 1149 * For AIO writes where we have completed the 1150 * i/o, we have to mark the the aio complete. 1151 */ 1152 aio_complete(iocb, ret, 0); 1153 kfree(dio); 1154 } 1155 return ret; 1156 } 1157 1158 /* 1159 * This is a library function for use by filesystem drivers. 1160 * The locking rules are governed by the dio_lock_type parameter. 1161 * 1162 * DIO_NO_LOCKING (no locking, for raw block device access) 1163 * For writes, i_mutex is not held on entry; it is never taken. 1164 * 1165 * DIO_LOCKING (simple locking for regular files) 1166 * For writes we are called under i_mutex and return with i_mutex held, even 1167 * though it is internally dropped. 1168 * For reads, i_mutex is not held on entry, but it is taken and dropped before 1169 * returning. 1170 * 1171 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of 1172 * uninitialised data, allowing parallel direct readers and writers) 1173 * For writes we are called without i_mutex, return without it, never touch it. 1174 * For reads we are called under i_mutex and return with i_mutex held, even 1175 * though it may be internally dropped. 1176 * 1177 * Additional i_alloc_sem locking requirements described inline below. 1178 */ 1179 ssize_t 1180 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1181 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1182 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1183 int dio_lock_type) 1184 { 1185 int seg; 1186 size_t size; 1187 unsigned long addr; 1188 unsigned blkbits = inode->i_blkbits; 1189 unsigned bdev_blkbits = 0; 1190 unsigned blocksize_mask = (1 << blkbits) - 1; 1191 ssize_t retval = -EINVAL; 1192 loff_t end = offset; 1193 struct dio *dio; 1194 int release_i_mutex = 0; 1195 int acquire_i_mutex = 0; 1196 1197 if (rw & WRITE) 1198 rw = WRITE_SYNC; 1199 1200 if (bdev) 1201 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); 1202 1203 if (offset & blocksize_mask) { 1204 if (bdev) 1205 blkbits = bdev_blkbits; 1206 blocksize_mask = (1 << blkbits) - 1; 1207 if (offset & blocksize_mask) 1208 goto out; 1209 } 1210 1211 /* Check the memory alignment. Blocks cannot straddle pages */ 1212 for (seg = 0; seg < nr_segs; seg++) { 1213 addr = (unsigned long)iov[seg].iov_base; 1214 size = iov[seg].iov_len; 1215 end += size; 1216 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1217 if (bdev) 1218 blkbits = bdev_blkbits; 1219 blocksize_mask = (1 << blkbits) - 1; 1220 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1221 goto out; 1222 } 1223 } 1224 1225 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 1226 retval = -ENOMEM; 1227 if (!dio) 1228 goto out; 1229 1230 /* 1231 * For block device access DIO_NO_LOCKING is used, 1232 * neither readers nor writers do any locking at all 1233 * For regular files using DIO_LOCKING, 1234 * readers need to grab i_mutex and i_alloc_sem 1235 * writers need to grab i_alloc_sem only (i_mutex is already held) 1236 * For regular files using DIO_OWN_LOCKING, 1237 * neither readers nor writers take any locks here 1238 */ 1239 dio->lock_type = dio_lock_type; 1240 if (dio_lock_type != DIO_NO_LOCKING) { 1241 /* watch out for a 0 len io from a tricksy fs */ 1242 if (rw == READ && end > offset) { 1243 struct address_space *mapping; 1244 1245 mapping = iocb->ki_filp->f_mapping; 1246 if (dio_lock_type != DIO_OWN_LOCKING) { 1247 mutex_lock(&inode->i_mutex); 1248 release_i_mutex = 1; 1249 } 1250 1251 retval = filemap_write_and_wait_range(mapping, offset, 1252 end - 1); 1253 if (retval) { 1254 kfree(dio); 1255 goto out; 1256 } 1257 1258 if (dio_lock_type == DIO_OWN_LOCKING) { 1259 mutex_unlock(&inode->i_mutex); 1260 acquire_i_mutex = 1; 1261 } 1262 } 1263 1264 if (dio_lock_type == DIO_LOCKING) 1265 /* lockdep: not the owner will release it */ 1266 down_read_non_owner(&inode->i_alloc_sem); 1267 } 1268 1269 /* 1270 * For file extending writes updating i_size before data 1271 * writeouts complete can expose uninitialized blocks. So 1272 * even for AIO, we need to wait for i/o to complete before 1273 * returning in this case. 1274 */ 1275 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1276 (end > i_size_read(inode))); 1277 1278 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1279 nr_segs, blkbits, get_block, end_io, dio); 1280 1281 if (rw == READ && dio_lock_type == DIO_LOCKING) 1282 release_i_mutex = 0; 1283 1284 out: 1285 if (release_i_mutex) 1286 mutex_unlock(&inode->i_mutex); 1287 else if (acquire_i_mutex) 1288 mutex_lock(&inode->i_mutex); 1289 return retval; 1290 } 1291 EXPORT_SYMBOL(__blockdev_direct_IO); 1292