1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/direct-io.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * O_DIRECT 8 * 9 * 04Jul2002 Andrew Morton 10 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 21 */ 22 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 33 #include <linux/wait.h> 34 #include <linux/err.h> 35 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 38 #include <linux/uio.h> 39 #include <linux/atomic.h> 40 #include <linux/prefetch.h> 41 42 #include "internal.h" 43 44 /* 45 * How many user pages to map in one call to get_user_pages(). This determines 46 * the size of a structure in the slab cache 47 */ 48 #define DIO_PAGES 64 49 50 /* 51 * Flags for dio_complete() 52 */ 53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 55 56 /* 57 * This code generally works in units of "dio_blocks". A dio_block is 58 * somewhere between the hard sector size and the filesystem block size. it 59 * is determined on a per-invocation basis. When talking to the filesystem 60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 62 * to bio_block quantities by shifting left by blkfactor. 63 * 64 * If blkfactor is zero then the user's request was aligned to the filesystem's 65 * blocksize. 66 */ 67 68 /* dio_state only used in the submission path */ 69 70 struct dio_submit { 71 struct bio *bio; /* bio under assembly */ 72 unsigned blkbits; /* doesn't change */ 73 unsigned blkfactor; /* When we're using an alignment which 74 is finer than the filesystem's soft 75 blocksize, this specifies how much 76 finer. blkfactor=2 means 1/4-block 77 alignment. Does not change */ 78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 79 been performed at the start of a 80 write */ 81 int pages_in_io; /* approximate total IO pages */ 82 sector_t block_in_file; /* Current offset into the underlying 83 file in dio_block units. */ 84 unsigned blocks_available; /* At block_in_file. changes */ 85 int reap_counter; /* rate limit reaping */ 86 sector_t final_block_in_request;/* doesn't change */ 87 int boundary; /* prev block is at a boundary */ 88 get_block_t *get_block; /* block mapping function */ 89 dio_submit_t *submit_io; /* IO submition function */ 90 91 loff_t logical_offset_in_bio; /* current first logical block in bio */ 92 sector_t final_block_in_bio; /* current final block in bio + 1 */ 93 sector_t next_block_for_io; /* next block to be put under IO, 94 in dio_blocks units */ 95 96 /* 97 * Deferred addition of a page to the dio. These variables are 98 * private to dio_send_cur_page(), submit_page_section() and 99 * dio_bio_add_page(). 100 */ 101 struct page *cur_page; /* The page */ 102 unsigned cur_page_offset; /* Offset into it, in bytes */ 103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 104 sector_t cur_page_block; /* Where it starts */ 105 loff_t cur_page_fs_offset; /* Offset in file */ 106 107 struct iov_iter *iter; 108 /* 109 * Page queue. These variables belong to dio_refill_pages() and 110 * dio_get_page(). 111 */ 112 unsigned head; /* next page to process */ 113 unsigned tail; /* last valid page + 1 */ 114 size_t from, to; 115 }; 116 117 /* dio_state communicated between submission path and end_io */ 118 struct dio { 119 int flags; /* doesn't change */ 120 blk_opf_t opf; /* request operation type and flags */ 121 struct gendisk *bio_disk; 122 struct inode *inode; 123 loff_t i_size; /* i_size when submitted */ 124 dio_iodone_t *end_io; /* IO completion function */ 125 126 void *private; /* copy from map_bh.b_private */ 127 128 /* BIO completion state */ 129 spinlock_t bio_lock; /* protects BIO fields below */ 130 int page_errors; /* errno from get_user_pages() */ 131 int is_async; /* is IO async ? */ 132 bool defer_completion; /* defer AIO completion to workqueue? */ 133 bool should_dirty; /* if pages should be dirtied */ 134 int io_error; /* IO error in completion path */ 135 unsigned long refcount; /* direct_io_worker() and bios */ 136 struct bio *bio_list; /* singly linked via bi_private */ 137 struct task_struct *waiter; /* waiting task (NULL if none) */ 138 139 /* AIO related stuff */ 140 struct kiocb *iocb; /* kiocb */ 141 ssize_t result; /* IO result */ 142 143 /* 144 * pages[] (and any fields placed after it) are not zeroed out at 145 * allocation time. Don't add new fields after pages[] unless you 146 * wish that they not be zeroed. 147 */ 148 union { 149 struct page *pages[DIO_PAGES]; /* page buffer */ 150 struct work_struct complete_work;/* deferred AIO completion */ 151 }; 152 } ____cacheline_aligned_in_smp; 153 154 static struct kmem_cache *dio_cache __read_mostly; 155 156 /* 157 * How many pages are in the queue? 158 */ 159 static inline unsigned dio_pages_present(struct dio_submit *sdio) 160 { 161 return sdio->tail - sdio->head; 162 } 163 164 /* 165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 166 */ 167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 168 { 169 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 170 ssize_t ret; 171 172 ret = iov_iter_get_pages2(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 173 &sdio->from); 174 175 if (ret < 0 && sdio->blocks_available && dio_op == REQ_OP_WRITE) { 176 struct page *page = ZERO_PAGE(0); 177 /* 178 * A memory fault, but the filesystem has some outstanding 179 * mapped blocks. We need to use those blocks up to avoid 180 * leaking stale data in the file. 181 */ 182 if (dio->page_errors == 0) 183 dio->page_errors = ret; 184 get_page(page); 185 dio->pages[0] = page; 186 sdio->head = 0; 187 sdio->tail = 1; 188 sdio->from = 0; 189 sdio->to = PAGE_SIZE; 190 return 0; 191 } 192 193 if (ret >= 0) { 194 ret += sdio->from; 195 sdio->head = 0; 196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 198 return 0; 199 } 200 return ret; 201 } 202 203 /* 204 * Get another userspace page. Returns an ERR_PTR on error. Pages are 205 * buffered inside the dio so that we can call get_user_pages() against a 206 * decent number of pages, less frequently. To provide nicer use of the 207 * L1 cache. 208 */ 209 static inline struct page *dio_get_page(struct dio *dio, 210 struct dio_submit *sdio) 211 { 212 if (dio_pages_present(sdio) == 0) { 213 int ret; 214 215 ret = dio_refill_pages(dio, sdio); 216 if (ret) 217 return ERR_PTR(ret); 218 BUG_ON(dio_pages_present(sdio) == 0); 219 } 220 return dio->pages[sdio->head]; 221 } 222 223 /* 224 * dio_complete() - called when all DIO BIO I/O has been completed 225 * 226 * This drops i_dio_count, lets interested parties know that a DIO operation 227 * has completed, and calculates the resulting return code for the operation. 228 * 229 * It lets the filesystem know if it registered an interest earlier via 230 * get_block. Pass the private field of the map buffer_head so that 231 * filesystems can use it to hold additional state between get_block calls and 232 * dio_complete. 233 */ 234 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 235 { 236 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 237 loff_t offset = dio->iocb->ki_pos; 238 ssize_t transferred = 0; 239 int err; 240 241 /* 242 * AIO submission can race with bio completion to get here while 243 * expecting to have the last io completed by bio completion. 244 * In that case -EIOCBQUEUED is in fact not an error we want 245 * to preserve through this call. 246 */ 247 if (ret == -EIOCBQUEUED) 248 ret = 0; 249 250 if (dio->result) { 251 transferred = dio->result; 252 253 /* Check for short read case */ 254 if (dio_op == REQ_OP_READ && 255 ((offset + transferred) > dio->i_size)) 256 transferred = dio->i_size - offset; 257 /* ignore EFAULT if some IO has been done */ 258 if (unlikely(ret == -EFAULT) && transferred) 259 ret = 0; 260 } 261 262 if (ret == 0) 263 ret = dio->page_errors; 264 if (ret == 0) 265 ret = dio->io_error; 266 if (ret == 0) 267 ret = transferred; 268 269 if (dio->end_io) { 270 // XXX: ki_pos?? 271 err = dio->end_io(dio->iocb, offset, ret, dio->private); 272 if (err) 273 ret = err; 274 } 275 276 /* 277 * Try again to invalidate clean pages which might have been cached by 278 * non-direct readahead, or faulted in by get_user_pages() if the source 279 * of the write was an mmap'ed region of the file we're writing. Either 280 * one is a pretty crazy thing to do, so we don't support it 100%. If 281 * this invalidation fails, tough, the write still worked... 282 * 283 * And this page cache invalidation has to be after dio->end_io(), as 284 * some filesystems convert unwritten extents to real allocations in 285 * end_io() when necessary, otherwise a racing buffer read would cache 286 * zeros from unwritten extents. 287 */ 288 if (flags & DIO_COMPLETE_INVALIDATE && 289 ret > 0 && dio_op == REQ_OP_WRITE && 290 dio->inode->i_mapping->nrpages) { 291 err = invalidate_inode_pages2_range(dio->inode->i_mapping, 292 offset >> PAGE_SHIFT, 293 (offset + ret - 1) >> PAGE_SHIFT); 294 if (err) 295 dio_warn_stale_pagecache(dio->iocb->ki_filp); 296 } 297 298 inode_dio_end(dio->inode); 299 300 if (flags & DIO_COMPLETE_ASYNC) { 301 /* 302 * generic_write_sync expects ki_pos to have been updated 303 * already, but the submission path only does this for 304 * synchronous I/O. 305 */ 306 dio->iocb->ki_pos += transferred; 307 308 if (ret > 0 && dio_op == REQ_OP_WRITE) 309 ret = generic_write_sync(dio->iocb, ret); 310 dio->iocb->ki_complete(dio->iocb, ret); 311 } 312 313 kmem_cache_free(dio_cache, dio); 314 return ret; 315 } 316 317 static void dio_aio_complete_work(struct work_struct *work) 318 { 319 struct dio *dio = container_of(work, struct dio, complete_work); 320 321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 322 } 323 324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 325 326 /* 327 * Asynchronous IO callback. 328 */ 329 static void dio_bio_end_aio(struct bio *bio) 330 { 331 struct dio *dio = bio->bi_private; 332 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 333 unsigned long remaining; 334 unsigned long flags; 335 bool defer_completion = false; 336 337 /* cleanup the bio */ 338 dio_bio_complete(dio, bio); 339 340 spin_lock_irqsave(&dio->bio_lock, flags); 341 remaining = --dio->refcount; 342 if (remaining == 1 && dio->waiter) 343 wake_up_process(dio->waiter); 344 spin_unlock_irqrestore(&dio->bio_lock, flags); 345 346 if (remaining == 0) { 347 /* 348 * Defer completion when defer_completion is set or 349 * when the inode has pages mapped and this is AIO write. 350 * We need to invalidate those pages because there is a 351 * chance they contain stale data in the case buffered IO 352 * went in between AIO submission and completion into the 353 * same region. 354 */ 355 if (dio->result) 356 defer_completion = dio->defer_completion || 357 (dio_op == REQ_OP_WRITE && 358 dio->inode->i_mapping->nrpages); 359 if (defer_completion) { 360 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 361 queue_work(dio->inode->i_sb->s_dio_done_wq, 362 &dio->complete_work); 363 } else { 364 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 365 } 366 } 367 } 368 369 /* 370 * The BIO completion handler simply queues the BIO up for the process-context 371 * handler. 372 * 373 * During I/O bi_private points at the dio. After I/O, bi_private is used to 374 * implement a singly-linked list of completed BIOs, at dio->bio_list. 375 */ 376 static void dio_bio_end_io(struct bio *bio) 377 { 378 struct dio *dio = bio->bi_private; 379 unsigned long flags; 380 381 spin_lock_irqsave(&dio->bio_lock, flags); 382 bio->bi_private = dio->bio_list; 383 dio->bio_list = bio; 384 if (--dio->refcount == 1 && dio->waiter) 385 wake_up_process(dio->waiter); 386 spin_unlock_irqrestore(&dio->bio_lock, flags); 387 } 388 389 static inline void 390 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 391 struct block_device *bdev, 392 sector_t first_sector, int nr_vecs) 393 { 394 struct bio *bio; 395 396 /* 397 * bio_alloc() is guaranteed to return a bio when allowed to sleep and 398 * we request a valid number of vectors. 399 */ 400 bio = bio_alloc(bdev, nr_vecs, dio->opf, GFP_KERNEL); 401 bio->bi_iter.bi_sector = first_sector; 402 if (dio->is_async) 403 bio->bi_end_io = dio_bio_end_aio; 404 else 405 bio->bi_end_io = dio_bio_end_io; 406 sdio->bio = bio; 407 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 408 } 409 410 /* 411 * In the AIO read case we speculatively dirty the pages before starting IO. 412 * During IO completion, any of these pages which happen to have been written 413 * back will be redirtied by bio_check_pages_dirty(). 414 * 415 * bios hold a dio reference between submit_bio and ->end_io. 416 */ 417 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 418 { 419 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 420 struct bio *bio = sdio->bio; 421 unsigned long flags; 422 423 bio->bi_private = dio; 424 425 spin_lock_irqsave(&dio->bio_lock, flags); 426 dio->refcount++; 427 spin_unlock_irqrestore(&dio->bio_lock, flags); 428 429 if (dio->is_async && dio_op == REQ_OP_READ && dio->should_dirty) 430 bio_set_pages_dirty(bio); 431 432 dio->bio_disk = bio->bi_bdev->bd_disk; 433 434 if (sdio->submit_io) 435 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); 436 else 437 submit_bio(bio); 438 439 sdio->bio = NULL; 440 sdio->boundary = 0; 441 sdio->logical_offset_in_bio = 0; 442 } 443 444 /* 445 * Release any resources in case of a failure 446 */ 447 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 448 { 449 while (sdio->head < sdio->tail) 450 put_page(dio->pages[sdio->head++]); 451 } 452 453 /* 454 * Wait for the next BIO to complete. Remove it and return it. NULL is 455 * returned once all BIOs have been completed. This must only be called once 456 * all bios have been issued so that dio->refcount can only decrease. This 457 * requires that the caller hold a reference on the dio. 458 */ 459 static struct bio *dio_await_one(struct dio *dio) 460 { 461 unsigned long flags; 462 struct bio *bio = NULL; 463 464 spin_lock_irqsave(&dio->bio_lock, flags); 465 466 /* 467 * Wait as long as the list is empty and there are bios in flight. bio 468 * completion drops the count, maybe adds to the list, and wakes while 469 * holding the bio_lock so we don't need set_current_state()'s barrier 470 * and can call it after testing our condition. 471 */ 472 while (dio->refcount > 1 && dio->bio_list == NULL) { 473 __set_current_state(TASK_UNINTERRUPTIBLE); 474 dio->waiter = current; 475 spin_unlock_irqrestore(&dio->bio_lock, flags); 476 blk_io_schedule(); 477 /* wake up sets us TASK_RUNNING */ 478 spin_lock_irqsave(&dio->bio_lock, flags); 479 dio->waiter = NULL; 480 } 481 if (dio->bio_list) { 482 bio = dio->bio_list; 483 dio->bio_list = bio->bi_private; 484 } 485 spin_unlock_irqrestore(&dio->bio_lock, flags); 486 return bio; 487 } 488 489 /* 490 * Process one completed BIO. No locks are held. 491 */ 492 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 493 { 494 blk_status_t err = bio->bi_status; 495 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 496 bool should_dirty = dio_op == REQ_OP_READ && dio->should_dirty; 497 498 if (err) { 499 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 500 dio->io_error = -EAGAIN; 501 else 502 dio->io_error = -EIO; 503 } 504 505 if (dio->is_async && should_dirty) { 506 bio_check_pages_dirty(bio); /* transfers ownership */ 507 } else { 508 bio_release_pages(bio, should_dirty); 509 bio_put(bio); 510 } 511 return err; 512 } 513 514 /* 515 * Wait on and process all in-flight BIOs. This must only be called once 516 * all bios have been issued so that the refcount can only decrease. 517 * This just waits for all bios to make it through dio_bio_complete. IO 518 * errors are propagated through dio->io_error and should be propagated via 519 * dio_complete(). 520 */ 521 static void dio_await_completion(struct dio *dio) 522 { 523 struct bio *bio; 524 do { 525 bio = dio_await_one(dio); 526 if (bio) 527 dio_bio_complete(dio, bio); 528 } while (bio); 529 } 530 531 /* 532 * A really large O_DIRECT read or write can generate a lot of BIOs. So 533 * to keep the memory consumption sane we periodically reap any completed BIOs 534 * during the BIO generation phase. 535 * 536 * This also helps to limit the peak amount of pinned userspace memory. 537 */ 538 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 539 { 540 int ret = 0; 541 542 if (sdio->reap_counter++ >= 64) { 543 while (dio->bio_list) { 544 unsigned long flags; 545 struct bio *bio; 546 int ret2; 547 548 spin_lock_irqsave(&dio->bio_lock, flags); 549 bio = dio->bio_list; 550 dio->bio_list = bio->bi_private; 551 spin_unlock_irqrestore(&dio->bio_lock, flags); 552 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 553 if (ret == 0) 554 ret = ret2; 555 } 556 sdio->reap_counter = 0; 557 } 558 return ret; 559 } 560 561 static int dio_set_defer_completion(struct dio *dio) 562 { 563 struct super_block *sb = dio->inode->i_sb; 564 565 if (dio->defer_completion) 566 return 0; 567 dio->defer_completion = true; 568 if (!sb->s_dio_done_wq) 569 return sb_init_dio_done_wq(sb); 570 return 0; 571 } 572 573 /* 574 * Call into the fs to map some more disk blocks. We record the current number 575 * of available blocks at sdio->blocks_available. These are in units of the 576 * fs blocksize, i_blocksize(inode). 577 * 578 * The fs is allowed to map lots of blocks at once. If it wants to do that, 579 * it uses the passed inode-relative block number as the file offset, as usual. 580 * 581 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 582 * has remaining to do. The fs should not map more than this number of blocks. 583 * 584 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 585 * indicate how much contiguous disk space has been made available at 586 * bh->b_blocknr. 587 * 588 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 589 * This isn't very efficient... 590 * 591 * In the case of filesystem holes: the fs may return an arbitrarily-large 592 * hole by returning an appropriate value in b_size and by clearing 593 * buffer_mapped(). However the direct-io code will only process holes one 594 * block at a time - it will repeatedly call get_block() as it walks the hole. 595 */ 596 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 597 struct buffer_head *map_bh) 598 { 599 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 600 int ret; 601 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 602 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 603 unsigned long fs_count; /* Number of filesystem-sized blocks */ 604 int create; 605 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 606 loff_t i_size; 607 608 /* 609 * If there was a memory error and we've overwritten all the 610 * mapped blocks then we can now return that memory error 611 */ 612 ret = dio->page_errors; 613 if (ret == 0) { 614 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 615 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 616 fs_endblk = (sdio->final_block_in_request - 1) >> 617 sdio->blkfactor; 618 fs_count = fs_endblk - fs_startblk + 1; 619 620 map_bh->b_state = 0; 621 map_bh->b_size = fs_count << i_blkbits; 622 623 /* 624 * For writes that could fill holes inside i_size on a 625 * DIO_SKIP_HOLES filesystem we forbid block creations: only 626 * overwrites are permitted. We will return early to the caller 627 * once we see an unmapped buffer head returned, and the caller 628 * will fall back to buffered I/O. 629 * 630 * Otherwise the decision is left to the get_blocks method, 631 * which may decide to handle it or also return an unmapped 632 * buffer head. 633 */ 634 create = dio_op == REQ_OP_WRITE; 635 if (dio->flags & DIO_SKIP_HOLES) { 636 i_size = i_size_read(dio->inode); 637 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits) 638 create = 0; 639 } 640 641 ret = (*sdio->get_block)(dio->inode, fs_startblk, 642 map_bh, create); 643 644 /* Store for completion */ 645 dio->private = map_bh->b_private; 646 647 if (ret == 0 && buffer_defer_completion(map_bh)) 648 ret = dio_set_defer_completion(dio); 649 } 650 return ret; 651 } 652 653 /* 654 * There is no bio. Make one now. 655 */ 656 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 657 sector_t start_sector, struct buffer_head *map_bh) 658 { 659 sector_t sector; 660 int ret, nr_pages; 661 662 ret = dio_bio_reap(dio, sdio); 663 if (ret) 664 goto out; 665 sector = start_sector << (sdio->blkbits - 9); 666 nr_pages = bio_max_segs(sdio->pages_in_io); 667 BUG_ON(nr_pages <= 0); 668 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 669 sdio->boundary = 0; 670 out: 671 return ret; 672 } 673 674 /* 675 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 676 * that was successful then update final_block_in_bio and take a ref against 677 * the just-added page. 678 * 679 * Return zero on success. Non-zero means the caller needs to start a new BIO. 680 */ 681 static inline int dio_bio_add_page(struct dio_submit *sdio) 682 { 683 int ret; 684 685 ret = bio_add_page(sdio->bio, sdio->cur_page, 686 sdio->cur_page_len, sdio->cur_page_offset); 687 if (ret == sdio->cur_page_len) { 688 /* 689 * Decrement count only, if we are done with this page 690 */ 691 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 692 sdio->pages_in_io--; 693 get_page(sdio->cur_page); 694 sdio->final_block_in_bio = sdio->cur_page_block + 695 (sdio->cur_page_len >> sdio->blkbits); 696 ret = 0; 697 } else { 698 ret = 1; 699 } 700 return ret; 701 } 702 703 /* 704 * Put cur_page under IO. The section of cur_page which is described by 705 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 706 * starts on-disk at cur_page_block. 707 * 708 * We take a ref against the page here (on behalf of its presence in the bio). 709 * 710 * The caller of this function is responsible for removing cur_page from the 711 * dio, and for dropping the refcount which came from that presence. 712 */ 713 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 714 struct buffer_head *map_bh) 715 { 716 int ret = 0; 717 718 if (sdio->bio) { 719 loff_t cur_offset = sdio->cur_page_fs_offset; 720 loff_t bio_next_offset = sdio->logical_offset_in_bio + 721 sdio->bio->bi_iter.bi_size; 722 723 /* 724 * See whether this new request is contiguous with the old. 725 * 726 * Btrfs cannot handle having logically non-contiguous requests 727 * submitted. For example if you have 728 * 729 * Logical: [0-4095][HOLE][8192-12287] 730 * Physical: [0-4095] [4096-8191] 731 * 732 * We cannot submit those pages together as one BIO. So if our 733 * current logical offset in the file does not equal what would 734 * be the next logical offset in the bio, submit the bio we 735 * have. 736 */ 737 if (sdio->final_block_in_bio != sdio->cur_page_block || 738 cur_offset != bio_next_offset) 739 dio_bio_submit(dio, sdio); 740 } 741 742 if (sdio->bio == NULL) { 743 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 744 if (ret) 745 goto out; 746 } 747 748 if (dio_bio_add_page(sdio) != 0) { 749 dio_bio_submit(dio, sdio); 750 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 751 if (ret == 0) { 752 ret = dio_bio_add_page(sdio); 753 BUG_ON(ret != 0); 754 } 755 } 756 out: 757 return ret; 758 } 759 760 /* 761 * An autonomous function to put a chunk of a page under deferred IO. 762 * 763 * The caller doesn't actually know (or care) whether this piece of page is in 764 * a BIO, or is under IO or whatever. We just take care of all possible 765 * situations here. The separation between the logic of do_direct_IO() and 766 * that of submit_page_section() is important for clarity. Please don't break. 767 * 768 * The chunk of page starts on-disk at blocknr. 769 * 770 * We perform deferred IO, by recording the last-submitted page inside our 771 * private part of the dio structure. If possible, we just expand the IO 772 * across that page here. 773 * 774 * If that doesn't work out then we put the old page into the bio and add this 775 * page to the dio instead. 776 */ 777 static inline int 778 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 779 unsigned offset, unsigned len, sector_t blocknr, 780 struct buffer_head *map_bh) 781 { 782 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 783 int ret = 0; 784 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */ 785 786 if (dio_op == REQ_OP_WRITE) { 787 /* 788 * Read accounting is performed in submit_bio() 789 */ 790 task_io_account_write(len); 791 } 792 793 /* 794 * Can we just grow the current page's presence in the dio? 795 */ 796 if (sdio->cur_page == page && 797 sdio->cur_page_offset + sdio->cur_page_len == offset && 798 sdio->cur_page_block + 799 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 800 sdio->cur_page_len += len; 801 goto out; 802 } 803 804 /* 805 * If there's a deferred page already there then send it. 806 */ 807 if (sdio->cur_page) { 808 ret = dio_send_cur_page(dio, sdio, map_bh); 809 put_page(sdio->cur_page); 810 sdio->cur_page = NULL; 811 if (ret) 812 return ret; 813 } 814 815 get_page(page); /* It is in dio */ 816 sdio->cur_page = page; 817 sdio->cur_page_offset = offset; 818 sdio->cur_page_len = len; 819 sdio->cur_page_block = blocknr; 820 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 821 out: 822 /* 823 * If boundary then we want to schedule the IO now to 824 * avoid metadata seeks. 825 */ 826 if (boundary) { 827 ret = dio_send_cur_page(dio, sdio, map_bh); 828 if (sdio->bio) 829 dio_bio_submit(dio, sdio); 830 put_page(sdio->cur_page); 831 sdio->cur_page = NULL; 832 } 833 return ret; 834 } 835 836 /* 837 * If we are not writing the entire block and get_block() allocated 838 * the block for us, we need to fill-in the unused portion of the 839 * block with zeros. This happens only if user-buffer, fileoffset or 840 * io length is not filesystem block-size multiple. 841 * 842 * `end' is zero if we're doing the start of the IO, 1 at the end of the 843 * IO. 844 */ 845 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 846 int end, struct buffer_head *map_bh) 847 { 848 unsigned dio_blocks_per_fs_block; 849 unsigned this_chunk_blocks; /* In dio_blocks */ 850 unsigned this_chunk_bytes; 851 struct page *page; 852 853 sdio->start_zero_done = 1; 854 if (!sdio->blkfactor || !buffer_new(map_bh)) 855 return; 856 857 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 858 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 859 860 if (!this_chunk_blocks) 861 return; 862 863 /* 864 * We need to zero out part of an fs block. It is either at the 865 * beginning or the end of the fs block. 866 */ 867 if (end) 868 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 869 870 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 871 872 page = ZERO_PAGE(0); 873 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 874 sdio->next_block_for_io, map_bh)) 875 return; 876 877 sdio->next_block_for_io += this_chunk_blocks; 878 } 879 880 /* 881 * Walk the user pages, and the file, mapping blocks to disk and generating 882 * a sequence of (page,offset,len,block) mappings. These mappings are injected 883 * into submit_page_section(), which takes care of the next stage of submission 884 * 885 * Direct IO against a blockdev is different from a file. Because we can 886 * happily perform page-sized but 512-byte aligned IOs. It is important that 887 * blockdev IO be able to have fine alignment and large sizes. 888 * 889 * So what we do is to permit the ->get_block function to populate bh.b_size 890 * with the size of IO which is permitted at this offset and this i_blkbits. 891 * 892 * For best results, the blockdev should be set up with 512-byte i_blkbits and 893 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 894 * fine alignment but still allows this function to work in PAGE_SIZE units. 895 */ 896 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 897 struct buffer_head *map_bh) 898 { 899 const enum req_op dio_op = dio->opf & REQ_OP_MASK; 900 const unsigned blkbits = sdio->blkbits; 901 const unsigned i_blkbits = blkbits + sdio->blkfactor; 902 int ret = 0; 903 904 while (sdio->block_in_file < sdio->final_block_in_request) { 905 struct page *page; 906 size_t from, to; 907 908 page = dio_get_page(dio, sdio); 909 if (IS_ERR(page)) { 910 ret = PTR_ERR(page); 911 goto out; 912 } 913 from = sdio->head ? 0 : sdio->from; 914 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 915 sdio->head++; 916 917 while (from < to) { 918 unsigned this_chunk_bytes; /* # of bytes mapped */ 919 unsigned this_chunk_blocks; /* # of blocks */ 920 unsigned u; 921 922 if (sdio->blocks_available == 0) { 923 /* 924 * Need to go and map some more disk 925 */ 926 unsigned long blkmask; 927 unsigned long dio_remainder; 928 929 ret = get_more_blocks(dio, sdio, map_bh); 930 if (ret) { 931 put_page(page); 932 goto out; 933 } 934 if (!buffer_mapped(map_bh)) 935 goto do_holes; 936 937 sdio->blocks_available = 938 map_bh->b_size >> blkbits; 939 sdio->next_block_for_io = 940 map_bh->b_blocknr << sdio->blkfactor; 941 if (buffer_new(map_bh)) { 942 clean_bdev_aliases( 943 map_bh->b_bdev, 944 map_bh->b_blocknr, 945 map_bh->b_size >> i_blkbits); 946 } 947 948 if (!sdio->blkfactor) 949 goto do_holes; 950 951 blkmask = (1 << sdio->blkfactor) - 1; 952 dio_remainder = (sdio->block_in_file & blkmask); 953 954 /* 955 * If we are at the start of IO and that IO 956 * starts partway into a fs-block, 957 * dio_remainder will be non-zero. If the IO 958 * is a read then we can simply advance the IO 959 * cursor to the first block which is to be 960 * read. But if the IO is a write and the 961 * block was newly allocated we cannot do that; 962 * the start of the fs block must be zeroed out 963 * on-disk 964 */ 965 if (!buffer_new(map_bh)) 966 sdio->next_block_for_io += dio_remainder; 967 sdio->blocks_available -= dio_remainder; 968 } 969 do_holes: 970 /* Handle holes */ 971 if (!buffer_mapped(map_bh)) { 972 loff_t i_size_aligned; 973 974 /* AKPM: eargh, -ENOTBLK is a hack */ 975 if (dio_op == REQ_OP_WRITE) { 976 put_page(page); 977 return -ENOTBLK; 978 } 979 980 /* 981 * Be sure to account for a partial block as the 982 * last block in the file 983 */ 984 i_size_aligned = ALIGN(i_size_read(dio->inode), 985 1 << blkbits); 986 if (sdio->block_in_file >= 987 i_size_aligned >> blkbits) { 988 /* We hit eof */ 989 put_page(page); 990 goto out; 991 } 992 zero_user(page, from, 1 << blkbits); 993 sdio->block_in_file++; 994 from += 1 << blkbits; 995 dio->result += 1 << blkbits; 996 goto next_block; 997 } 998 999 /* 1000 * If we're performing IO which has an alignment which 1001 * is finer than the underlying fs, go check to see if 1002 * we must zero out the start of this block. 1003 */ 1004 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1005 dio_zero_block(dio, sdio, 0, map_bh); 1006 1007 /* 1008 * Work out, in this_chunk_blocks, how much disk we 1009 * can add to this page 1010 */ 1011 this_chunk_blocks = sdio->blocks_available; 1012 u = (to - from) >> blkbits; 1013 if (this_chunk_blocks > u) 1014 this_chunk_blocks = u; 1015 u = sdio->final_block_in_request - sdio->block_in_file; 1016 if (this_chunk_blocks > u) 1017 this_chunk_blocks = u; 1018 this_chunk_bytes = this_chunk_blocks << blkbits; 1019 BUG_ON(this_chunk_bytes == 0); 1020 1021 if (this_chunk_blocks == sdio->blocks_available) 1022 sdio->boundary = buffer_boundary(map_bh); 1023 ret = submit_page_section(dio, sdio, page, 1024 from, 1025 this_chunk_bytes, 1026 sdio->next_block_for_io, 1027 map_bh); 1028 if (ret) { 1029 put_page(page); 1030 goto out; 1031 } 1032 sdio->next_block_for_io += this_chunk_blocks; 1033 1034 sdio->block_in_file += this_chunk_blocks; 1035 from += this_chunk_bytes; 1036 dio->result += this_chunk_bytes; 1037 sdio->blocks_available -= this_chunk_blocks; 1038 next_block: 1039 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1040 if (sdio->block_in_file == sdio->final_block_in_request) 1041 break; 1042 } 1043 1044 /* Drop the ref which was taken in get_user_pages() */ 1045 put_page(page); 1046 } 1047 out: 1048 return ret; 1049 } 1050 1051 static inline int drop_refcount(struct dio *dio) 1052 { 1053 int ret2; 1054 unsigned long flags; 1055 1056 /* 1057 * Sync will always be dropping the final ref and completing the 1058 * operation. AIO can if it was a broken operation described above or 1059 * in fact if all the bios race to complete before we get here. In 1060 * that case dio_complete() translates the EIOCBQUEUED into the proper 1061 * return code that the caller will hand to ->complete(). 1062 * 1063 * This is managed by the bio_lock instead of being an atomic_t so that 1064 * completion paths can drop their ref and use the remaining count to 1065 * decide to wake the submission path atomically. 1066 */ 1067 spin_lock_irqsave(&dio->bio_lock, flags); 1068 ret2 = --dio->refcount; 1069 spin_unlock_irqrestore(&dio->bio_lock, flags); 1070 return ret2; 1071 } 1072 1073 /* 1074 * This is a library function for use by filesystem drivers. 1075 * 1076 * The locking rules are governed by the flags parameter: 1077 * - if the flags value contains DIO_LOCKING we use a fancy locking 1078 * scheme for dumb filesystems. 1079 * For writes this function is called under i_mutex and returns with 1080 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1081 * taken and dropped again before returning. 1082 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1083 * internal locking but rather rely on the filesystem to synchronize 1084 * direct I/O reads/writes versus each other and truncate. 1085 * 1086 * To help with locking against truncate we incremented the i_dio_count 1087 * counter before starting direct I/O, and decrement it once we are done. 1088 * Truncate can wait for it to reach zero to provide exclusion. It is 1089 * expected that filesystem provide exclusion between new direct I/O 1090 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1091 * but other filesystems need to take care of this on their own. 1092 * 1093 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1094 * is always inlined. Otherwise gcc is unable to split the structure into 1095 * individual fields and will generate much worse code. This is important 1096 * for the whole file. 1097 */ 1098 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1099 struct block_device *bdev, struct iov_iter *iter, 1100 get_block_t get_block, dio_iodone_t end_io, 1101 dio_submit_t submit_io, int flags) 1102 { 1103 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1104 unsigned blkbits = i_blkbits; 1105 unsigned blocksize_mask = (1 << blkbits) - 1; 1106 ssize_t retval = -EINVAL; 1107 const size_t count = iov_iter_count(iter); 1108 loff_t offset = iocb->ki_pos; 1109 const loff_t end = offset + count; 1110 struct dio *dio; 1111 struct dio_submit sdio = { 0, }; 1112 struct buffer_head map_bh = { 0, }; 1113 struct blk_plug plug; 1114 unsigned long align = offset | iov_iter_alignment(iter); 1115 1116 /* 1117 * Avoid references to bdev if not absolutely needed to give 1118 * the early prefetch in the caller enough time. 1119 */ 1120 1121 /* watch out for a 0 len io from a tricksy fs */ 1122 if (iov_iter_rw(iter) == READ && !count) 1123 return 0; 1124 1125 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1126 if (!dio) 1127 return -ENOMEM; 1128 /* 1129 * Believe it or not, zeroing out the page array caused a .5% 1130 * performance regression in a database benchmark. So, we take 1131 * care to only zero out what's needed. 1132 */ 1133 memset(dio, 0, offsetof(struct dio, pages)); 1134 1135 dio->flags = flags; 1136 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1137 /* will be released by direct_io_worker */ 1138 inode_lock(inode); 1139 } 1140 1141 /* Once we sampled i_size check for reads beyond EOF */ 1142 dio->i_size = i_size_read(inode); 1143 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1144 retval = 0; 1145 goto fail_dio; 1146 } 1147 1148 if (align & blocksize_mask) { 1149 if (bdev) 1150 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1151 blocksize_mask = (1 << blkbits) - 1; 1152 if (align & blocksize_mask) 1153 goto fail_dio; 1154 } 1155 1156 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) { 1157 struct address_space *mapping = iocb->ki_filp->f_mapping; 1158 1159 retval = filemap_write_and_wait_range(mapping, offset, end - 1); 1160 if (retval) 1161 goto fail_dio; 1162 } 1163 1164 /* 1165 * For file extending writes updating i_size before data writeouts 1166 * complete can expose uninitialized blocks in dumb filesystems. 1167 * In that case we need to wait for I/O completion even if asked 1168 * for an asynchronous write. 1169 */ 1170 if (is_sync_kiocb(iocb)) 1171 dio->is_async = false; 1172 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1173 dio->is_async = false; 1174 else 1175 dio->is_async = true; 1176 1177 dio->inode = inode; 1178 if (iov_iter_rw(iter) == WRITE) { 1179 dio->opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 1180 if (iocb->ki_flags & IOCB_NOWAIT) 1181 dio->opf |= REQ_NOWAIT; 1182 } else { 1183 dio->opf = REQ_OP_READ; 1184 } 1185 1186 /* 1187 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1188 * so that we can call ->fsync. 1189 */ 1190 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1191 retval = 0; 1192 if (iocb_is_dsync(iocb)) 1193 retval = dio_set_defer_completion(dio); 1194 else if (!dio->inode->i_sb->s_dio_done_wq) { 1195 /* 1196 * In case of AIO write racing with buffered read we 1197 * need to defer completion. We can't decide this now, 1198 * however the workqueue needs to be initialized here. 1199 */ 1200 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1201 } 1202 if (retval) 1203 goto fail_dio; 1204 } 1205 1206 /* 1207 * Will be decremented at I/O completion time. 1208 */ 1209 inode_dio_begin(inode); 1210 1211 retval = 0; 1212 sdio.blkbits = blkbits; 1213 sdio.blkfactor = i_blkbits - blkbits; 1214 sdio.block_in_file = offset >> blkbits; 1215 1216 sdio.get_block = get_block; 1217 dio->end_io = end_io; 1218 sdio.submit_io = submit_io; 1219 sdio.final_block_in_bio = -1; 1220 sdio.next_block_for_io = -1; 1221 1222 dio->iocb = iocb; 1223 1224 spin_lock_init(&dio->bio_lock); 1225 dio->refcount = 1; 1226 1227 dio->should_dirty = user_backed_iter(iter) && iov_iter_rw(iter) == READ; 1228 sdio.iter = iter; 1229 sdio.final_block_in_request = end >> blkbits; 1230 1231 /* 1232 * In case of non-aligned buffers, we may need 2 more 1233 * pages since we need to zero out first and last block. 1234 */ 1235 if (unlikely(sdio.blkfactor)) 1236 sdio.pages_in_io = 2; 1237 1238 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1239 1240 blk_start_plug(&plug); 1241 1242 retval = do_direct_IO(dio, &sdio, &map_bh); 1243 if (retval) 1244 dio_cleanup(dio, &sdio); 1245 1246 if (retval == -ENOTBLK) { 1247 /* 1248 * The remaining part of the request will be 1249 * handled by buffered I/O when we return 1250 */ 1251 retval = 0; 1252 } 1253 /* 1254 * There may be some unwritten disk at the end of a part-written 1255 * fs-block-sized block. Go zero that now. 1256 */ 1257 dio_zero_block(dio, &sdio, 1, &map_bh); 1258 1259 if (sdio.cur_page) { 1260 ssize_t ret2; 1261 1262 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1263 if (retval == 0) 1264 retval = ret2; 1265 put_page(sdio.cur_page); 1266 sdio.cur_page = NULL; 1267 } 1268 if (sdio.bio) 1269 dio_bio_submit(dio, &sdio); 1270 1271 blk_finish_plug(&plug); 1272 1273 /* 1274 * It is possible that, we return short IO due to end of file. 1275 * In that case, we need to release all the pages we got hold on. 1276 */ 1277 dio_cleanup(dio, &sdio); 1278 1279 /* 1280 * All block lookups have been performed. For READ requests 1281 * we can let i_mutex go now that its achieved its purpose 1282 * of protecting us from looking up uninitialized blocks. 1283 */ 1284 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1285 inode_unlock(dio->inode); 1286 1287 /* 1288 * The only time we want to leave bios in flight is when a successful 1289 * partial aio read or full aio write have been setup. In that case 1290 * bio completion will call aio_complete. The only time it's safe to 1291 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1292 * This had *better* be the only place that raises -EIOCBQUEUED. 1293 */ 1294 BUG_ON(retval == -EIOCBQUEUED); 1295 if (dio->is_async && retval == 0 && dio->result && 1296 (iov_iter_rw(iter) == READ || dio->result == count)) 1297 retval = -EIOCBQUEUED; 1298 else 1299 dio_await_completion(dio); 1300 1301 if (drop_refcount(dio) == 0) { 1302 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1303 } else 1304 BUG_ON(retval != -EIOCBQUEUED); 1305 1306 return retval; 1307 1308 fail_dio: 1309 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) 1310 inode_unlock(inode); 1311 1312 kmem_cache_free(dio_cache, dio); 1313 return retval; 1314 } 1315 EXPORT_SYMBOL(__blockdev_direct_IO); 1316 1317 static __init int dio_init(void) 1318 { 1319 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1320 return 0; 1321 } 1322 module_init(dio_init) 1323