1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <asm/atomic.h> 39 40 /* 41 * How many user pages to map in one call to get_user_pages(). This determines 42 * the size of a structure on the stack. 43 */ 44 #define DIO_PAGES 64 45 46 /* 47 * This code generally works in units of "dio_blocks". A dio_block is 48 * somewhere between the hard sector size and the filesystem block size. it 49 * is determined on a per-invocation basis. When talking to the filesystem 50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 52 * to bio_block quantities by shifting left by blkfactor. 53 * 54 * If blkfactor is zero then the user's request was aligned to the filesystem's 55 * blocksize. 56 */ 57 58 struct dio { 59 /* BIO submission state */ 60 struct bio *bio; /* bio under assembly */ 61 struct inode *inode; 62 int rw; 63 loff_t i_size; /* i_size when submitted */ 64 int flags; /* doesn't change */ 65 unsigned blkbits; /* doesn't change */ 66 unsigned blkfactor; /* When we're using an alignment which 67 is finer than the filesystem's soft 68 blocksize, this specifies how much 69 finer. blkfactor=2 means 1/4-block 70 alignment. Does not change */ 71 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 72 been performed at the start of a 73 write */ 74 int pages_in_io; /* approximate total IO pages */ 75 size_t size; /* total request size (doesn't change)*/ 76 sector_t block_in_file; /* Current offset into the underlying 77 file in dio_block units. */ 78 unsigned blocks_available; /* At block_in_file. changes */ 79 sector_t final_block_in_request;/* doesn't change */ 80 unsigned first_block_in_page; /* doesn't change, Used only once */ 81 int boundary; /* prev block is at a boundary */ 82 int reap_counter; /* rate limit reaping */ 83 get_block_t *get_block; /* block mapping function */ 84 dio_iodone_t *end_io; /* IO completion function */ 85 dio_submit_t *submit_io; /* IO submition function */ 86 loff_t logical_offset_in_bio; /* current first logical block in bio */ 87 sector_t final_block_in_bio; /* current final block in bio + 1 */ 88 sector_t next_block_for_io; /* next block to be put under IO, 89 in dio_blocks units */ 90 struct buffer_head map_bh; /* last get_block() result */ 91 92 /* 93 * Deferred addition of a page to the dio. These variables are 94 * private to dio_send_cur_page(), submit_page_section() and 95 * dio_bio_add_page(). 96 */ 97 struct page *cur_page; /* The page */ 98 unsigned cur_page_offset; /* Offset into it, in bytes */ 99 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 100 sector_t cur_page_block; /* Where it starts */ 101 loff_t cur_page_fs_offset; /* Offset in file */ 102 103 /* BIO completion state */ 104 spinlock_t bio_lock; /* protects BIO fields below */ 105 unsigned long refcount; /* direct_io_worker() and bios */ 106 struct bio *bio_list; /* singly linked via bi_private */ 107 struct task_struct *waiter; /* waiting task (NULL if none) */ 108 109 /* AIO related stuff */ 110 struct kiocb *iocb; /* kiocb */ 111 int is_async; /* is IO async ? */ 112 int io_error; /* IO error in completion path */ 113 ssize_t result; /* IO result */ 114 115 /* 116 * Page fetching state. These variables belong to dio_refill_pages(). 117 */ 118 int curr_page; /* changes */ 119 int total_pages; /* doesn't change */ 120 unsigned long curr_user_address;/* changes */ 121 122 /* 123 * Page queue. These variables belong to dio_refill_pages() and 124 * dio_get_page(). 125 */ 126 unsigned head; /* next page to process */ 127 unsigned tail; /* last valid page + 1 */ 128 int page_errors; /* errno from get_user_pages() */ 129 130 /* 131 * pages[] (and any fields placed after it) are not zeroed out at 132 * allocation time. Don't add new fields after pages[] unless you 133 * wish that they not be zeroed. 134 */ 135 struct page *pages[DIO_PAGES]; /* page buffer */ 136 }; 137 138 /* 139 * How many pages are in the queue? 140 */ 141 static inline unsigned dio_pages_present(struct dio *dio) 142 { 143 return dio->tail - dio->head; 144 } 145 146 /* 147 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 148 */ 149 static int dio_refill_pages(struct dio *dio) 150 { 151 int ret; 152 int nr_pages; 153 154 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); 155 ret = get_user_pages_fast( 156 dio->curr_user_address, /* Where from? */ 157 nr_pages, /* How many pages? */ 158 dio->rw == READ, /* Write to memory? */ 159 &dio->pages[0]); /* Put results here */ 160 161 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) { 162 struct page *page = ZERO_PAGE(0); 163 /* 164 * A memory fault, but the filesystem has some outstanding 165 * mapped blocks. We need to use those blocks up to avoid 166 * leaking stale data in the file. 167 */ 168 if (dio->page_errors == 0) 169 dio->page_errors = ret; 170 page_cache_get(page); 171 dio->pages[0] = page; 172 dio->head = 0; 173 dio->tail = 1; 174 ret = 0; 175 goto out; 176 } 177 178 if (ret >= 0) { 179 dio->curr_user_address += ret * PAGE_SIZE; 180 dio->curr_page += ret; 181 dio->head = 0; 182 dio->tail = ret; 183 ret = 0; 184 } 185 out: 186 return ret; 187 } 188 189 /* 190 * Get another userspace page. Returns an ERR_PTR on error. Pages are 191 * buffered inside the dio so that we can call get_user_pages() against a 192 * decent number of pages, less frequently. To provide nicer use of the 193 * L1 cache. 194 */ 195 static struct page *dio_get_page(struct dio *dio) 196 { 197 if (dio_pages_present(dio) == 0) { 198 int ret; 199 200 ret = dio_refill_pages(dio); 201 if (ret) 202 return ERR_PTR(ret); 203 BUG_ON(dio_pages_present(dio) == 0); 204 } 205 return dio->pages[dio->head++]; 206 } 207 208 /** 209 * dio_complete() - called when all DIO BIO I/O has been completed 210 * @offset: the byte offset in the file of the completed operation 211 * 212 * This releases locks as dictated by the locking type, lets interested parties 213 * know that a DIO operation has completed, and calculates the resulting return 214 * code for the operation. 215 * 216 * It lets the filesystem know if it registered an interest earlier via 217 * get_block. Pass the private field of the map buffer_head so that 218 * filesystems can use it to hold additional state between get_block calls and 219 * dio_complete. 220 */ 221 static int dio_complete(struct dio *dio, loff_t offset, int ret) 222 { 223 ssize_t transferred = 0; 224 225 /* 226 * AIO submission can race with bio completion to get here while 227 * expecting to have the last io completed by bio completion. 228 * In that case -EIOCBQUEUED is in fact not an error we want 229 * to preserve through this call. 230 */ 231 if (ret == -EIOCBQUEUED) 232 ret = 0; 233 234 if (dio->result) { 235 transferred = dio->result; 236 237 /* Check for short read case */ 238 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 239 transferred = dio->i_size - offset; 240 } 241 242 if (dio->end_io && dio->result) 243 dio->end_io(dio->iocb, offset, transferred, 244 dio->map_bh.b_private); 245 246 if (dio->flags & DIO_LOCKING) 247 /* lockdep: non-owner release */ 248 up_read_non_owner(&dio->inode->i_alloc_sem); 249 250 if (ret == 0) 251 ret = dio->page_errors; 252 if (ret == 0) 253 ret = dio->io_error; 254 if (ret == 0) 255 ret = transferred; 256 257 return ret; 258 } 259 260 static int dio_bio_complete(struct dio *dio, struct bio *bio); 261 /* 262 * Asynchronous IO callback. 263 */ 264 static void dio_bio_end_aio(struct bio *bio, int error) 265 { 266 struct dio *dio = bio->bi_private; 267 unsigned long remaining; 268 unsigned long flags; 269 270 /* cleanup the bio */ 271 dio_bio_complete(dio, bio); 272 273 spin_lock_irqsave(&dio->bio_lock, flags); 274 remaining = --dio->refcount; 275 if (remaining == 1 && dio->waiter) 276 wake_up_process(dio->waiter); 277 spin_unlock_irqrestore(&dio->bio_lock, flags); 278 279 if (remaining == 0) { 280 int ret = dio_complete(dio, dio->iocb->ki_pos, 0); 281 aio_complete(dio->iocb, ret, 0); 282 kfree(dio); 283 } 284 } 285 286 /* 287 * The BIO completion handler simply queues the BIO up for the process-context 288 * handler. 289 * 290 * During I/O bi_private points at the dio. After I/O, bi_private is used to 291 * implement a singly-linked list of completed BIOs, at dio->bio_list. 292 */ 293 static void dio_bio_end_io(struct bio *bio, int error) 294 { 295 struct dio *dio = bio->bi_private; 296 unsigned long flags; 297 298 spin_lock_irqsave(&dio->bio_lock, flags); 299 bio->bi_private = dio->bio_list; 300 dio->bio_list = bio; 301 if (--dio->refcount == 1 && dio->waiter) 302 wake_up_process(dio->waiter); 303 spin_unlock_irqrestore(&dio->bio_lock, flags); 304 } 305 306 /** 307 * dio_end_io - handle the end io action for the given bio 308 * @bio: The direct io bio thats being completed 309 * @error: Error if there was one 310 * 311 * This is meant to be called by any filesystem that uses their own dio_submit_t 312 * so that the DIO specific endio actions are dealt with after the filesystem 313 * has done it's completion work. 314 */ 315 void dio_end_io(struct bio *bio, int error) 316 { 317 struct dio *dio = bio->bi_private; 318 319 if (dio->is_async) 320 dio_bio_end_aio(bio, error); 321 else 322 dio_bio_end_io(bio, error); 323 } 324 EXPORT_SYMBOL_GPL(dio_end_io); 325 326 static int 327 dio_bio_alloc(struct dio *dio, struct block_device *bdev, 328 sector_t first_sector, int nr_vecs) 329 { 330 struct bio *bio; 331 332 bio = bio_alloc(GFP_KERNEL, nr_vecs); 333 334 bio->bi_bdev = bdev; 335 bio->bi_sector = first_sector; 336 if (dio->is_async) 337 bio->bi_end_io = dio_bio_end_aio; 338 else 339 bio->bi_end_io = dio_bio_end_io; 340 341 dio->bio = bio; 342 dio->logical_offset_in_bio = dio->cur_page_fs_offset; 343 return 0; 344 } 345 346 /* 347 * In the AIO read case we speculatively dirty the pages before starting IO. 348 * During IO completion, any of these pages which happen to have been written 349 * back will be redirtied by bio_check_pages_dirty(). 350 * 351 * bios hold a dio reference between submit_bio and ->end_io. 352 */ 353 static void dio_bio_submit(struct dio *dio) 354 { 355 struct bio *bio = dio->bio; 356 unsigned long flags; 357 358 bio->bi_private = dio; 359 360 spin_lock_irqsave(&dio->bio_lock, flags); 361 dio->refcount++; 362 spin_unlock_irqrestore(&dio->bio_lock, flags); 363 364 if (dio->is_async && dio->rw == READ) 365 bio_set_pages_dirty(bio); 366 367 if (dio->submit_io) 368 dio->submit_io(dio->rw, bio, dio->inode, 369 dio->logical_offset_in_bio); 370 else 371 submit_bio(dio->rw, bio); 372 373 dio->bio = NULL; 374 dio->boundary = 0; 375 dio->logical_offset_in_bio = 0; 376 } 377 378 /* 379 * Release any resources in case of a failure 380 */ 381 static void dio_cleanup(struct dio *dio) 382 { 383 while (dio_pages_present(dio)) 384 page_cache_release(dio_get_page(dio)); 385 } 386 387 /* 388 * Wait for the next BIO to complete. Remove it and return it. NULL is 389 * returned once all BIOs have been completed. This must only be called once 390 * all bios have been issued so that dio->refcount can only decrease. This 391 * requires that that the caller hold a reference on the dio. 392 */ 393 static struct bio *dio_await_one(struct dio *dio) 394 { 395 unsigned long flags; 396 struct bio *bio = NULL; 397 398 spin_lock_irqsave(&dio->bio_lock, flags); 399 400 /* 401 * Wait as long as the list is empty and there are bios in flight. bio 402 * completion drops the count, maybe adds to the list, and wakes while 403 * holding the bio_lock so we don't need set_current_state()'s barrier 404 * and can call it after testing our condition. 405 */ 406 while (dio->refcount > 1 && dio->bio_list == NULL) { 407 __set_current_state(TASK_UNINTERRUPTIBLE); 408 dio->waiter = current; 409 spin_unlock_irqrestore(&dio->bio_lock, flags); 410 io_schedule(); 411 /* wake up sets us TASK_RUNNING */ 412 spin_lock_irqsave(&dio->bio_lock, flags); 413 dio->waiter = NULL; 414 } 415 if (dio->bio_list) { 416 bio = dio->bio_list; 417 dio->bio_list = bio->bi_private; 418 } 419 spin_unlock_irqrestore(&dio->bio_lock, flags); 420 return bio; 421 } 422 423 /* 424 * Process one completed BIO. No locks are held. 425 */ 426 static int dio_bio_complete(struct dio *dio, struct bio *bio) 427 { 428 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 429 struct bio_vec *bvec = bio->bi_io_vec; 430 int page_no; 431 432 if (!uptodate) 433 dio->io_error = -EIO; 434 435 if (dio->is_async && dio->rw == READ) { 436 bio_check_pages_dirty(bio); /* transfers ownership */ 437 } else { 438 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { 439 struct page *page = bvec[page_no].bv_page; 440 441 if (dio->rw == READ && !PageCompound(page)) 442 set_page_dirty_lock(page); 443 page_cache_release(page); 444 } 445 bio_put(bio); 446 } 447 return uptodate ? 0 : -EIO; 448 } 449 450 /* 451 * Wait on and process all in-flight BIOs. This must only be called once 452 * all bios have been issued so that the refcount can only decrease. 453 * This just waits for all bios to make it through dio_bio_complete. IO 454 * errors are propagated through dio->io_error and should be propagated via 455 * dio_complete(). 456 */ 457 static void dio_await_completion(struct dio *dio) 458 { 459 struct bio *bio; 460 do { 461 bio = dio_await_one(dio); 462 if (bio) 463 dio_bio_complete(dio, bio); 464 } while (bio); 465 } 466 467 /* 468 * A really large O_DIRECT read or write can generate a lot of BIOs. So 469 * to keep the memory consumption sane we periodically reap any completed BIOs 470 * during the BIO generation phase. 471 * 472 * This also helps to limit the peak amount of pinned userspace memory. 473 */ 474 static int dio_bio_reap(struct dio *dio) 475 { 476 int ret = 0; 477 478 if (dio->reap_counter++ >= 64) { 479 while (dio->bio_list) { 480 unsigned long flags; 481 struct bio *bio; 482 int ret2; 483 484 spin_lock_irqsave(&dio->bio_lock, flags); 485 bio = dio->bio_list; 486 dio->bio_list = bio->bi_private; 487 spin_unlock_irqrestore(&dio->bio_lock, flags); 488 ret2 = dio_bio_complete(dio, bio); 489 if (ret == 0) 490 ret = ret2; 491 } 492 dio->reap_counter = 0; 493 } 494 return ret; 495 } 496 497 /* 498 * Call into the fs to map some more disk blocks. We record the current number 499 * of available blocks at dio->blocks_available. These are in units of the 500 * fs blocksize, (1 << inode->i_blkbits). 501 * 502 * The fs is allowed to map lots of blocks at once. If it wants to do that, 503 * it uses the passed inode-relative block number as the file offset, as usual. 504 * 505 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 506 * has remaining to do. The fs should not map more than this number of blocks. 507 * 508 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 509 * indicate how much contiguous disk space has been made available at 510 * bh->b_blocknr. 511 * 512 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 513 * This isn't very efficient... 514 * 515 * In the case of filesystem holes: the fs may return an arbitrarily-large 516 * hole by returning an appropriate value in b_size and by clearing 517 * buffer_mapped(). However the direct-io code will only process holes one 518 * block at a time - it will repeatedly call get_block() as it walks the hole. 519 */ 520 static int get_more_blocks(struct dio *dio) 521 { 522 int ret; 523 struct buffer_head *map_bh = &dio->map_bh; 524 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 525 unsigned long fs_count; /* Number of filesystem-sized blocks */ 526 unsigned long dio_count;/* Number of dio_block-sized blocks */ 527 unsigned long blkmask; 528 int create; 529 530 /* 531 * If there was a memory error and we've overwritten all the 532 * mapped blocks then we can now return that memory error 533 */ 534 ret = dio->page_errors; 535 if (ret == 0) { 536 BUG_ON(dio->block_in_file >= dio->final_block_in_request); 537 fs_startblk = dio->block_in_file >> dio->blkfactor; 538 dio_count = dio->final_block_in_request - dio->block_in_file; 539 fs_count = dio_count >> dio->blkfactor; 540 blkmask = (1 << dio->blkfactor) - 1; 541 if (dio_count & blkmask) 542 fs_count++; 543 544 map_bh->b_state = 0; 545 map_bh->b_size = fs_count << dio->inode->i_blkbits; 546 547 /* 548 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we 549 * forbid block creations: only overwrites are permitted. 550 * We will return early to the caller once we see an 551 * unmapped buffer head returned, and the caller will fall 552 * back to buffered I/O. 553 * 554 * Otherwise the decision is left to the get_blocks method, 555 * which may decide to handle it or also return an unmapped 556 * buffer head. 557 */ 558 create = dio->rw & WRITE; 559 if (dio->flags & DIO_SKIP_HOLES) { 560 if (dio->block_in_file < (i_size_read(dio->inode) >> 561 dio->blkbits)) 562 create = 0; 563 } 564 565 ret = (*dio->get_block)(dio->inode, fs_startblk, 566 map_bh, create); 567 } 568 return ret; 569 } 570 571 /* 572 * There is no bio. Make one now. 573 */ 574 static int dio_new_bio(struct dio *dio, sector_t start_sector) 575 { 576 sector_t sector; 577 int ret, nr_pages; 578 579 ret = dio_bio_reap(dio); 580 if (ret) 581 goto out; 582 sector = start_sector << (dio->blkbits - 9); 583 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); 584 BUG_ON(nr_pages <= 0); 585 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); 586 dio->boundary = 0; 587 out: 588 return ret; 589 } 590 591 /* 592 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 593 * that was successful then update final_block_in_bio and take a ref against 594 * the just-added page. 595 * 596 * Return zero on success. Non-zero means the caller needs to start a new BIO. 597 */ 598 static int dio_bio_add_page(struct dio *dio) 599 { 600 int ret; 601 602 ret = bio_add_page(dio->bio, dio->cur_page, 603 dio->cur_page_len, dio->cur_page_offset); 604 if (ret == dio->cur_page_len) { 605 /* 606 * Decrement count only, if we are done with this page 607 */ 608 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) 609 dio->pages_in_io--; 610 page_cache_get(dio->cur_page); 611 dio->final_block_in_bio = dio->cur_page_block + 612 (dio->cur_page_len >> dio->blkbits); 613 ret = 0; 614 } else { 615 ret = 1; 616 } 617 return ret; 618 } 619 620 /* 621 * Put cur_page under IO. The section of cur_page which is described by 622 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 623 * starts on-disk at cur_page_block. 624 * 625 * We take a ref against the page here (on behalf of its presence in the bio). 626 * 627 * The caller of this function is responsible for removing cur_page from the 628 * dio, and for dropping the refcount which came from that presence. 629 */ 630 static int dio_send_cur_page(struct dio *dio) 631 { 632 int ret = 0; 633 634 if (dio->bio) { 635 loff_t cur_offset = dio->block_in_file << dio->blkbits; 636 loff_t bio_next_offset = dio->logical_offset_in_bio + 637 dio->bio->bi_size; 638 639 /* 640 * See whether this new request is contiguous with the old. 641 * 642 * Btrfs cannot handl having logically non-contiguous requests 643 * submitted. For exmple if you have 644 * 645 * Logical: [0-4095][HOLE][8192-12287] 646 * Phyiscal: [0-4095] [4096-8181] 647 * 648 * We cannot submit those pages together as one BIO. So if our 649 * current logical offset in the file does not equal what would 650 * be the next logical offset in the bio, submit the bio we 651 * have. 652 */ 653 if (dio->final_block_in_bio != dio->cur_page_block || 654 cur_offset != bio_next_offset) 655 dio_bio_submit(dio); 656 /* 657 * Submit now if the underlying fs is about to perform a 658 * metadata read 659 */ 660 if (dio->boundary) 661 dio_bio_submit(dio); 662 } 663 664 if (dio->bio == NULL) { 665 ret = dio_new_bio(dio, dio->cur_page_block); 666 if (ret) 667 goto out; 668 } 669 670 if (dio_bio_add_page(dio) != 0) { 671 dio_bio_submit(dio); 672 ret = dio_new_bio(dio, dio->cur_page_block); 673 if (ret == 0) { 674 ret = dio_bio_add_page(dio); 675 BUG_ON(ret != 0); 676 } 677 } 678 out: 679 return ret; 680 } 681 682 /* 683 * An autonomous function to put a chunk of a page under deferred IO. 684 * 685 * The caller doesn't actually know (or care) whether this piece of page is in 686 * a BIO, or is under IO or whatever. We just take care of all possible 687 * situations here. The separation between the logic of do_direct_IO() and 688 * that of submit_page_section() is important for clarity. Please don't break. 689 * 690 * The chunk of page starts on-disk at blocknr. 691 * 692 * We perform deferred IO, by recording the last-submitted page inside our 693 * private part of the dio structure. If possible, we just expand the IO 694 * across that page here. 695 * 696 * If that doesn't work out then we put the old page into the bio and add this 697 * page to the dio instead. 698 */ 699 static int 700 submit_page_section(struct dio *dio, struct page *page, 701 unsigned offset, unsigned len, sector_t blocknr) 702 { 703 int ret = 0; 704 705 if (dio->rw & WRITE) { 706 /* 707 * Read accounting is performed in submit_bio() 708 */ 709 task_io_account_write(len); 710 } 711 712 /* 713 * Can we just grow the current page's presence in the dio? 714 */ 715 if ( (dio->cur_page == page) && 716 (dio->cur_page_offset + dio->cur_page_len == offset) && 717 (dio->cur_page_block + 718 (dio->cur_page_len >> dio->blkbits) == blocknr)) { 719 dio->cur_page_len += len; 720 721 /* 722 * If dio->boundary then we want to schedule the IO now to 723 * avoid metadata seeks. 724 */ 725 if (dio->boundary) { 726 ret = dio_send_cur_page(dio); 727 page_cache_release(dio->cur_page); 728 dio->cur_page = NULL; 729 } 730 goto out; 731 } 732 733 /* 734 * If there's a deferred page already there then send it. 735 */ 736 if (dio->cur_page) { 737 ret = dio_send_cur_page(dio); 738 page_cache_release(dio->cur_page); 739 dio->cur_page = NULL; 740 if (ret) 741 goto out; 742 } 743 744 page_cache_get(page); /* It is in dio */ 745 dio->cur_page = page; 746 dio->cur_page_offset = offset; 747 dio->cur_page_len = len; 748 dio->cur_page_block = blocknr; 749 dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits; 750 out: 751 return ret; 752 } 753 754 /* 755 * Clean any dirty buffers in the blockdev mapping which alias newly-created 756 * file blocks. Only called for S_ISREG files - blockdevs do not set 757 * buffer_new 758 */ 759 static void clean_blockdev_aliases(struct dio *dio) 760 { 761 unsigned i; 762 unsigned nblocks; 763 764 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; 765 766 for (i = 0; i < nblocks; i++) { 767 unmap_underlying_metadata(dio->map_bh.b_bdev, 768 dio->map_bh.b_blocknr + i); 769 } 770 } 771 772 /* 773 * If we are not writing the entire block and get_block() allocated 774 * the block for us, we need to fill-in the unused portion of the 775 * block with zeros. This happens only if user-buffer, fileoffset or 776 * io length is not filesystem block-size multiple. 777 * 778 * `end' is zero if we're doing the start of the IO, 1 at the end of the 779 * IO. 780 */ 781 static void dio_zero_block(struct dio *dio, int end) 782 { 783 unsigned dio_blocks_per_fs_block; 784 unsigned this_chunk_blocks; /* In dio_blocks */ 785 unsigned this_chunk_bytes; 786 struct page *page; 787 788 dio->start_zero_done = 1; 789 if (!dio->blkfactor || !buffer_new(&dio->map_bh)) 790 return; 791 792 dio_blocks_per_fs_block = 1 << dio->blkfactor; 793 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); 794 795 if (!this_chunk_blocks) 796 return; 797 798 /* 799 * We need to zero out part of an fs block. It is either at the 800 * beginning or the end of the fs block. 801 */ 802 if (end) 803 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 804 805 this_chunk_bytes = this_chunk_blocks << dio->blkbits; 806 807 page = ZERO_PAGE(0); 808 if (submit_page_section(dio, page, 0, this_chunk_bytes, 809 dio->next_block_for_io)) 810 return; 811 812 dio->next_block_for_io += this_chunk_blocks; 813 } 814 815 /* 816 * Walk the user pages, and the file, mapping blocks to disk and generating 817 * a sequence of (page,offset,len,block) mappings. These mappings are injected 818 * into submit_page_section(), which takes care of the next stage of submission 819 * 820 * Direct IO against a blockdev is different from a file. Because we can 821 * happily perform page-sized but 512-byte aligned IOs. It is important that 822 * blockdev IO be able to have fine alignment and large sizes. 823 * 824 * So what we do is to permit the ->get_block function to populate bh.b_size 825 * with the size of IO which is permitted at this offset and this i_blkbits. 826 * 827 * For best results, the blockdev should be set up with 512-byte i_blkbits and 828 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 829 * fine alignment but still allows this function to work in PAGE_SIZE units. 830 */ 831 static int do_direct_IO(struct dio *dio) 832 { 833 const unsigned blkbits = dio->blkbits; 834 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 835 struct page *page; 836 unsigned block_in_page; 837 struct buffer_head *map_bh = &dio->map_bh; 838 int ret = 0; 839 840 /* The I/O can start at any block offset within the first page */ 841 block_in_page = dio->first_block_in_page; 842 843 while (dio->block_in_file < dio->final_block_in_request) { 844 page = dio_get_page(dio); 845 if (IS_ERR(page)) { 846 ret = PTR_ERR(page); 847 goto out; 848 } 849 850 while (block_in_page < blocks_per_page) { 851 unsigned offset_in_page = block_in_page << blkbits; 852 unsigned this_chunk_bytes; /* # of bytes mapped */ 853 unsigned this_chunk_blocks; /* # of blocks */ 854 unsigned u; 855 856 if (dio->blocks_available == 0) { 857 /* 858 * Need to go and map some more disk 859 */ 860 unsigned long blkmask; 861 unsigned long dio_remainder; 862 863 ret = get_more_blocks(dio); 864 if (ret) { 865 page_cache_release(page); 866 goto out; 867 } 868 if (!buffer_mapped(map_bh)) 869 goto do_holes; 870 871 dio->blocks_available = 872 map_bh->b_size >> dio->blkbits; 873 dio->next_block_for_io = 874 map_bh->b_blocknr << dio->blkfactor; 875 if (buffer_new(map_bh)) 876 clean_blockdev_aliases(dio); 877 878 if (!dio->blkfactor) 879 goto do_holes; 880 881 blkmask = (1 << dio->blkfactor) - 1; 882 dio_remainder = (dio->block_in_file & blkmask); 883 884 /* 885 * If we are at the start of IO and that IO 886 * starts partway into a fs-block, 887 * dio_remainder will be non-zero. If the IO 888 * is a read then we can simply advance the IO 889 * cursor to the first block which is to be 890 * read. But if the IO is a write and the 891 * block was newly allocated we cannot do that; 892 * the start of the fs block must be zeroed out 893 * on-disk 894 */ 895 if (!buffer_new(map_bh)) 896 dio->next_block_for_io += dio_remainder; 897 dio->blocks_available -= dio_remainder; 898 } 899 do_holes: 900 /* Handle holes */ 901 if (!buffer_mapped(map_bh)) { 902 loff_t i_size_aligned; 903 904 /* AKPM: eargh, -ENOTBLK is a hack */ 905 if (dio->rw & WRITE) { 906 page_cache_release(page); 907 return -ENOTBLK; 908 } 909 910 /* 911 * Be sure to account for a partial block as the 912 * last block in the file 913 */ 914 i_size_aligned = ALIGN(i_size_read(dio->inode), 915 1 << blkbits); 916 if (dio->block_in_file >= 917 i_size_aligned >> blkbits) { 918 /* We hit eof */ 919 page_cache_release(page); 920 goto out; 921 } 922 zero_user(page, block_in_page << blkbits, 923 1 << blkbits); 924 dio->block_in_file++; 925 block_in_page++; 926 goto next_block; 927 } 928 929 /* 930 * If we're performing IO which has an alignment which 931 * is finer than the underlying fs, go check to see if 932 * we must zero out the start of this block. 933 */ 934 if (unlikely(dio->blkfactor && !dio->start_zero_done)) 935 dio_zero_block(dio, 0); 936 937 /* 938 * Work out, in this_chunk_blocks, how much disk we 939 * can add to this page 940 */ 941 this_chunk_blocks = dio->blocks_available; 942 u = (PAGE_SIZE - offset_in_page) >> blkbits; 943 if (this_chunk_blocks > u) 944 this_chunk_blocks = u; 945 u = dio->final_block_in_request - dio->block_in_file; 946 if (this_chunk_blocks > u) 947 this_chunk_blocks = u; 948 this_chunk_bytes = this_chunk_blocks << blkbits; 949 BUG_ON(this_chunk_bytes == 0); 950 951 dio->boundary = buffer_boundary(map_bh); 952 ret = submit_page_section(dio, page, offset_in_page, 953 this_chunk_bytes, dio->next_block_for_io); 954 if (ret) { 955 page_cache_release(page); 956 goto out; 957 } 958 dio->next_block_for_io += this_chunk_blocks; 959 960 dio->block_in_file += this_chunk_blocks; 961 block_in_page += this_chunk_blocks; 962 dio->blocks_available -= this_chunk_blocks; 963 next_block: 964 BUG_ON(dio->block_in_file > dio->final_block_in_request); 965 if (dio->block_in_file == dio->final_block_in_request) 966 break; 967 } 968 969 /* Drop the ref which was taken in get_user_pages() */ 970 page_cache_release(page); 971 block_in_page = 0; 972 } 973 out: 974 return ret; 975 } 976 977 /* 978 * Releases both i_mutex and i_alloc_sem 979 */ 980 static ssize_t 981 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode, 982 const struct iovec *iov, loff_t offset, unsigned long nr_segs, 983 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io, 984 dio_submit_t submit_io, struct dio *dio) 985 { 986 unsigned long user_addr; 987 unsigned long flags; 988 int seg; 989 ssize_t ret = 0; 990 ssize_t ret2; 991 size_t bytes; 992 993 dio->inode = inode; 994 dio->rw = rw; 995 dio->blkbits = blkbits; 996 dio->blkfactor = inode->i_blkbits - blkbits; 997 dio->block_in_file = offset >> blkbits; 998 999 dio->get_block = get_block; 1000 dio->end_io = end_io; 1001 dio->submit_io = submit_io; 1002 dio->final_block_in_bio = -1; 1003 dio->next_block_for_io = -1; 1004 1005 dio->iocb = iocb; 1006 dio->i_size = i_size_read(inode); 1007 1008 spin_lock_init(&dio->bio_lock); 1009 dio->refcount = 1; 1010 1011 /* 1012 * In case of non-aligned buffers, we may need 2 more 1013 * pages since we need to zero out first and last block. 1014 */ 1015 if (unlikely(dio->blkfactor)) 1016 dio->pages_in_io = 2; 1017 1018 for (seg = 0; seg < nr_segs; seg++) { 1019 user_addr = (unsigned long)iov[seg].iov_base; 1020 dio->pages_in_io += 1021 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE 1022 - user_addr/PAGE_SIZE); 1023 } 1024 1025 for (seg = 0; seg < nr_segs; seg++) { 1026 user_addr = (unsigned long)iov[seg].iov_base; 1027 dio->size += bytes = iov[seg].iov_len; 1028 1029 /* Index into the first page of the first block */ 1030 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; 1031 dio->final_block_in_request = dio->block_in_file + 1032 (bytes >> blkbits); 1033 /* Page fetching state */ 1034 dio->head = 0; 1035 dio->tail = 0; 1036 dio->curr_page = 0; 1037 1038 dio->total_pages = 0; 1039 if (user_addr & (PAGE_SIZE-1)) { 1040 dio->total_pages++; 1041 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); 1042 } 1043 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; 1044 dio->curr_user_address = user_addr; 1045 1046 ret = do_direct_IO(dio); 1047 1048 dio->result += iov[seg].iov_len - 1049 ((dio->final_block_in_request - dio->block_in_file) << 1050 blkbits); 1051 1052 if (ret) { 1053 dio_cleanup(dio); 1054 break; 1055 } 1056 } /* end iovec loop */ 1057 1058 if (ret == -ENOTBLK) { 1059 /* 1060 * The remaining part of the request will be 1061 * be handled by buffered I/O when we return 1062 */ 1063 ret = 0; 1064 } 1065 /* 1066 * There may be some unwritten disk at the end of a part-written 1067 * fs-block-sized block. Go zero that now. 1068 */ 1069 dio_zero_block(dio, 1); 1070 1071 if (dio->cur_page) { 1072 ret2 = dio_send_cur_page(dio); 1073 if (ret == 0) 1074 ret = ret2; 1075 page_cache_release(dio->cur_page); 1076 dio->cur_page = NULL; 1077 } 1078 if (dio->bio) 1079 dio_bio_submit(dio); 1080 1081 /* 1082 * It is possible that, we return short IO due to end of file. 1083 * In that case, we need to release all the pages we got hold on. 1084 */ 1085 dio_cleanup(dio); 1086 1087 /* 1088 * All block lookups have been performed. For READ requests 1089 * we can let i_mutex go now that its achieved its purpose 1090 * of protecting us from looking up uninitialized blocks. 1091 */ 1092 if (rw == READ && (dio->flags & DIO_LOCKING)) 1093 mutex_unlock(&dio->inode->i_mutex); 1094 1095 /* 1096 * The only time we want to leave bios in flight is when a successful 1097 * partial aio read or full aio write have been setup. In that case 1098 * bio completion will call aio_complete. The only time it's safe to 1099 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1100 * This had *better* be the only place that raises -EIOCBQUEUED. 1101 */ 1102 BUG_ON(ret == -EIOCBQUEUED); 1103 if (dio->is_async && ret == 0 && dio->result && 1104 ((rw & READ) || (dio->result == dio->size))) 1105 ret = -EIOCBQUEUED; 1106 1107 if (ret != -EIOCBQUEUED) { 1108 /* All IO is now issued, send it on its way */ 1109 blk_run_address_space(inode->i_mapping); 1110 dio_await_completion(dio); 1111 } 1112 1113 /* 1114 * Sync will always be dropping the final ref and completing the 1115 * operation. AIO can if it was a broken operation described above or 1116 * in fact if all the bios race to complete before we get here. In 1117 * that case dio_complete() translates the EIOCBQUEUED into the proper 1118 * return code that the caller will hand to aio_complete(). 1119 * 1120 * This is managed by the bio_lock instead of being an atomic_t so that 1121 * completion paths can drop their ref and use the remaining count to 1122 * decide to wake the submission path atomically. 1123 */ 1124 spin_lock_irqsave(&dio->bio_lock, flags); 1125 ret2 = --dio->refcount; 1126 spin_unlock_irqrestore(&dio->bio_lock, flags); 1127 1128 if (ret2 == 0) { 1129 ret = dio_complete(dio, offset, ret); 1130 kfree(dio); 1131 } else 1132 BUG_ON(ret != -EIOCBQUEUED); 1133 1134 return ret; 1135 } 1136 1137 ssize_t 1138 __blockdev_direct_IO_newtrunc(int rw, struct kiocb *iocb, struct inode *inode, 1139 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1140 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1141 dio_submit_t submit_io, int flags) 1142 { 1143 int seg; 1144 size_t size; 1145 unsigned long addr; 1146 unsigned blkbits = inode->i_blkbits; 1147 unsigned bdev_blkbits = 0; 1148 unsigned blocksize_mask = (1 << blkbits) - 1; 1149 ssize_t retval = -EINVAL; 1150 loff_t end = offset; 1151 struct dio *dio; 1152 1153 if (rw & WRITE) 1154 rw = WRITE_ODIRECT_PLUG; 1155 1156 if (bdev) 1157 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1158 1159 if (offset & blocksize_mask) { 1160 if (bdev) 1161 blkbits = bdev_blkbits; 1162 blocksize_mask = (1 << blkbits) - 1; 1163 if (offset & blocksize_mask) 1164 goto out; 1165 } 1166 1167 /* Check the memory alignment. Blocks cannot straddle pages */ 1168 for (seg = 0; seg < nr_segs; seg++) { 1169 addr = (unsigned long)iov[seg].iov_base; 1170 size = iov[seg].iov_len; 1171 end += size; 1172 if ((addr & blocksize_mask) || (size & blocksize_mask)) { 1173 if (bdev) 1174 blkbits = bdev_blkbits; 1175 blocksize_mask = (1 << blkbits) - 1; 1176 if ((addr & blocksize_mask) || (size & blocksize_mask)) 1177 goto out; 1178 } 1179 } 1180 1181 dio = kmalloc(sizeof(*dio), GFP_KERNEL); 1182 retval = -ENOMEM; 1183 if (!dio) 1184 goto out; 1185 /* 1186 * Believe it or not, zeroing out the page array caused a .5% 1187 * performance regression in a database benchmark. So, we take 1188 * care to only zero out what's needed. 1189 */ 1190 memset(dio, 0, offsetof(struct dio, pages)); 1191 1192 dio->flags = flags; 1193 if (dio->flags & DIO_LOCKING) { 1194 /* watch out for a 0 len io from a tricksy fs */ 1195 if (rw == READ && end > offset) { 1196 struct address_space *mapping = 1197 iocb->ki_filp->f_mapping; 1198 1199 /* will be released by direct_io_worker */ 1200 mutex_lock(&inode->i_mutex); 1201 1202 retval = filemap_write_and_wait_range(mapping, offset, 1203 end - 1); 1204 if (retval) { 1205 mutex_unlock(&inode->i_mutex); 1206 kfree(dio); 1207 goto out; 1208 } 1209 } 1210 1211 /* 1212 * Will be released at I/O completion, possibly in a 1213 * different thread. 1214 */ 1215 down_read_non_owner(&inode->i_alloc_sem); 1216 } 1217 1218 /* 1219 * For file extending writes updating i_size before data 1220 * writeouts complete can expose uninitialized blocks. So 1221 * even for AIO, we need to wait for i/o to complete before 1222 * returning in this case. 1223 */ 1224 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) && 1225 (end > i_size_read(inode))); 1226 1227 retval = direct_io_worker(rw, iocb, inode, iov, offset, 1228 nr_segs, blkbits, get_block, end_io, 1229 submit_io, dio); 1230 1231 out: 1232 return retval; 1233 } 1234 EXPORT_SYMBOL(__blockdev_direct_IO_newtrunc); 1235 1236 /* 1237 * This is a library function for use by filesystem drivers. 1238 * 1239 * The locking rules are governed by the flags parameter: 1240 * - if the flags value contains DIO_LOCKING we use a fancy locking 1241 * scheme for dumb filesystems. 1242 * For writes this function is called under i_mutex and returns with 1243 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1244 * taken and dropped again before returning. 1245 * For reads and writes i_alloc_sem is taken in shared mode and released 1246 * on I/O completion (which may happen asynchronously after returning to 1247 * the caller). 1248 * 1249 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1250 * internal locking but rather rely on the filesystem to synchronize 1251 * direct I/O reads/writes versus each other and truncate. 1252 * For reads and writes both i_mutex and i_alloc_sem are not held on 1253 * entry and are never taken. 1254 */ 1255 ssize_t 1256 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, 1257 struct block_device *bdev, const struct iovec *iov, loff_t offset, 1258 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, 1259 dio_submit_t submit_io, int flags) 1260 { 1261 ssize_t retval; 1262 1263 retval = __blockdev_direct_IO_newtrunc(rw, iocb, inode, bdev, iov, 1264 offset, nr_segs, get_block, end_io, submit_io, flags); 1265 /* 1266 * In case of error extending write may have instantiated a few 1267 * blocks outside i_size. Trim these off again for DIO_LOCKING. 1268 * NOTE: DIO_NO_LOCK/DIO_OWN_LOCK callers have to handle this in 1269 * their own manner. This is a further example of where the old 1270 * truncate sequence is inadequate. 1271 * 1272 * NOTE: filesystems with their own locking have to handle this 1273 * on their own. 1274 */ 1275 if (flags & DIO_LOCKING) { 1276 if (unlikely((rw & WRITE) && retval < 0)) { 1277 loff_t isize = i_size_read(inode); 1278 loff_t end = offset + iov_length(iov, nr_segs); 1279 1280 if (end > isize) 1281 vmtruncate(inode, isize); 1282 } 1283 } 1284 1285 return retval; 1286 } 1287 EXPORT_SYMBOL(__blockdev_direct_IO); 1288