1 /* 2 * fs/direct-io.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * O_DIRECT 7 * 8 * 04Jul2002 Andrew Morton 9 * Initial version 10 * 11Sep2002 janetinc@us.ibm.com 11 * added readv/writev support. 12 * 29Oct2002 Andrew Morton 13 * rewrote bio_add_page() support. 14 * 30Oct2002 pbadari@us.ibm.com 15 * added support for non-aligned IO. 16 * 06Nov2002 pbadari@us.ibm.com 17 * added asynchronous IO support. 18 * 21Jul2003 nathans@sgi.com 19 * added IO completion notifier. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/types.h> 25 #include <linux/fs.h> 26 #include <linux/mm.h> 27 #include <linux/slab.h> 28 #include <linux/highmem.h> 29 #include <linux/pagemap.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/bio.h> 32 #include <linux/wait.h> 33 #include <linux/err.h> 34 #include <linux/blkdev.h> 35 #include <linux/buffer_head.h> 36 #include <linux/rwsem.h> 37 #include <linux/uio.h> 38 #include <linux/atomic.h> 39 #include <linux/prefetch.h> 40 41 /* 42 * How many user pages to map in one call to get_user_pages(). This determines 43 * the size of a structure in the slab cache 44 */ 45 #define DIO_PAGES 64 46 47 /* 48 * This code generally works in units of "dio_blocks". A dio_block is 49 * somewhere between the hard sector size and the filesystem block size. it 50 * is determined on a per-invocation basis. When talking to the filesystem 51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 53 * to bio_block quantities by shifting left by blkfactor. 54 * 55 * If blkfactor is zero then the user's request was aligned to the filesystem's 56 * blocksize. 57 */ 58 59 /* dio_state only used in the submission path */ 60 61 struct dio_submit { 62 struct bio *bio; /* bio under assembly */ 63 unsigned blkbits; /* doesn't change */ 64 unsigned blkfactor; /* When we're using an alignment which 65 is finer than the filesystem's soft 66 blocksize, this specifies how much 67 finer. blkfactor=2 means 1/4-block 68 alignment. Does not change */ 69 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 70 been performed at the start of a 71 write */ 72 int pages_in_io; /* approximate total IO pages */ 73 sector_t block_in_file; /* Current offset into the underlying 74 file in dio_block units. */ 75 unsigned blocks_available; /* At block_in_file. changes */ 76 int reap_counter; /* rate limit reaping */ 77 sector_t final_block_in_request;/* doesn't change */ 78 int boundary; /* prev block is at a boundary */ 79 get_block_t *get_block; /* block mapping function */ 80 dio_submit_t *submit_io; /* IO submition function */ 81 82 loff_t logical_offset_in_bio; /* current first logical block in bio */ 83 sector_t final_block_in_bio; /* current final block in bio + 1 */ 84 sector_t next_block_for_io; /* next block to be put under IO, 85 in dio_blocks units */ 86 87 /* 88 * Deferred addition of a page to the dio. These variables are 89 * private to dio_send_cur_page(), submit_page_section() and 90 * dio_bio_add_page(). 91 */ 92 struct page *cur_page; /* The page */ 93 unsigned cur_page_offset; /* Offset into it, in bytes */ 94 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 95 sector_t cur_page_block; /* Where it starts */ 96 loff_t cur_page_fs_offset; /* Offset in file */ 97 98 struct iov_iter *iter; 99 /* 100 * Page queue. These variables belong to dio_refill_pages() and 101 * dio_get_page(). 102 */ 103 unsigned head; /* next page to process */ 104 unsigned tail; /* last valid page + 1 */ 105 size_t from, to; 106 }; 107 108 /* dio_state communicated between submission path and end_io */ 109 struct dio { 110 int flags; /* doesn't change */ 111 int rw; 112 blk_qc_t bio_cookie; 113 struct block_device *bio_bdev; 114 struct inode *inode; 115 loff_t i_size; /* i_size when submitted */ 116 dio_iodone_t *end_io; /* IO completion function */ 117 118 void *private; /* copy from map_bh.b_private */ 119 120 /* BIO completion state */ 121 spinlock_t bio_lock; /* protects BIO fields below */ 122 int page_errors; /* errno from get_user_pages() */ 123 int is_async; /* is IO async ? */ 124 bool defer_completion; /* defer AIO completion to workqueue? */ 125 bool should_dirty; /* if pages should be dirtied */ 126 int io_error; /* IO error in completion path */ 127 unsigned long refcount; /* direct_io_worker() and bios */ 128 struct bio *bio_list; /* singly linked via bi_private */ 129 struct task_struct *waiter; /* waiting task (NULL if none) */ 130 131 /* AIO related stuff */ 132 struct kiocb *iocb; /* kiocb */ 133 ssize_t result; /* IO result */ 134 135 /* 136 * pages[] (and any fields placed after it) are not zeroed out at 137 * allocation time. Don't add new fields after pages[] unless you 138 * wish that they not be zeroed. 139 */ 140 union { 141 struct page *pages[DIO_PAGES]; /* page buffer */ 142 struct work_struct complete_work;/* deferred AIO completion */ 143 }; 144 } ____cacheline_aligned_in_smp; 145 146 static struct kmem_cache *dio_cache __read_mostly; 147 148 /* 149 * How many pages are in the queue? 150 */ 151 static inline unsigned dio_pages_present(struct dio_submit *sdio) 152 { 153 return sdio->tail - sdio->head; 154 } 155 156 /* 157 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 158 */ 159 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 160 { 161 ssize_t ret; 162 163 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 164 &sdio->from); 165 166 if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) { 167 struct page *page = ZERO_PAGE(0); 168 /* 169 * A memory fault, but the filesystem has some outstanding 170 * mapped blocks. We need to use those blocks up to avoid 171 * leaking stale data in the file. 172 */ 173 if (dio->page_errors == 0) 174 dio->page_errors = ret; 175 get_page(page); 176 dio->pages[0] = page; 177 sdio->head = 0; 178 sdio->tail = 1; 179 sdio->from = 0; 180 sdio->to = PAGE_SIZE; 181 return 0; 182 } 183 184 if (ret >= 0) { 185 iov_iter_advance(sdio->iter, ret); 186 ret += sdio->from; 187 sdio->head = 0; 188 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 189 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 190 return 0; 191 } 192 return ret; 193 } 194 195 /* 196 * Get another userspace page. Returns an ERR_PTR on error. Pages are 197 * buffered inside the dio so that we can call get_user_pages() against a 198 * decent number of pages, less frequently. To provide nicer use of the 199 * L1 cache. 200 */ 201 static inline struct page *dio_get_page(struct dio *dio, 202 struct dio_submit *sdio) 203 { 204 if (dio_pages_present(sdio) == 0) { 205 int ret; 206 207 ret = dio_refill_pages(dio, sdio); 208 if (ret) 209 return ERR_PTR(ret); 210 BUG_ON(dio_pages_present(sdio) == 0); 211 } 212 return dio->pages[sdio->head]; 213 } 214 215 /** 216 * dio_complete() - called when all DIO BIO I/O has been completed 217 * @offset: the byte offset in the file of the completed operation 218 * 219 * This drops i_dio_count, lets interested parties know that a DIO operation 220 * has completed, and calculates the resulting return code for the operation. 221 * 222 * It lets the filesystem know if it registered an interest earlier via 223 * get_block. Pass the private field of the map buffer_head so that 224 * filesystems can use it to hold additional state between get_block calls and 225 * dio_complete. 226 */ 227 static ssize_t dio_complete(struct dio *dio, ssize_t ret, bool is_async) 228 { 229 loff_t offset = dio->iocb->ki_pos; 230 ssize_t transferred = 0; 231 232 /* 233 * AIO submission can race with bio completion to get here while 234 * expecting to have the last io completed by bio completion. 235 * In that case -EIOCBQUEUED is in fact not an error we want 236 * to preserve through this call. 237 */ 238 if (ret == -EIOCBQUEUED) 239 ret = 0; 240 241 if (dio->result) { 242 transferred = dio->result; 243 244 /* Check for short read case */ 245 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size)) 246 transferred = dio->i_size - offset; 247 } 248 249 if (ret == 0) 250 ret = dio->page_errors; 251 if (ret == 0) 252 ret = dio->io_error; 253 if (ret == 0) 254 ret = transferred; 255 256 if (dio->end_io) { 257 int err; 258 259 // XXX: ki_pos?? 260 err = dio->end_io(dio->iocb, offset, ret, dio->private); 261 if (err) 262 ret = err; 263 } 264 265 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 266 inode_dio_end(dio->inode); 267 268 if (is_async) { 269 /* 270 * generic_write_sync expects ki_pos to have been updated 271 * already, but the submission path only does this for 272 * synchronous I/O. 273 */ 274 dio->iocb->ki_pos += transferred; 275 276 if (dio->rw & WRITE) 277 ret = generic_write_sync(dio->iocb, transferred); 278 dio->iocb->ki_complete(dio->iocb, ret, 0); 279 } 280 281 kmem_cache_free(dio_cache, dio); 282 return ret; 283 } 284 285 static void dio_aio_complete_work(struct work_struct *work) 286 { 287 struct dio *dio = container_of(work, struct dio, complete_work); 288 289 dio_complete(dio, 0, true); 290 } 291 292 static int dio_bio_complete(struct dio *dio, struct bio *bio); 293 294 /* 295 * Asynchronous IO callback. 296 */ 297 static void dio_bio_end_aio(struct bio *bio) 298 { 299 struct dio *dio = bio->bi_private; 300 unsigned long remaining; 301 unsigned long flags; 302 303 /* cleanup the bio */ 304 dio_bio_complete(dio, bio); 305 306 spin_lock_irqsave(&dio->bio_lock, flags); 307 remaining = --dio->refcount; 308 if (remaining == 1 && dio->waiter) 309 wake_up_process(dio->waiter); 310 spin_unlock_irqrestore(&dio->bio_lock, flags); 311 312 if (remaining == 0) { 313 if (dio->result && dio->defer_completion) { 314 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 315 queue_work(dio->inode->i_sb->s_dio_done_wq, 316 &dio->complete_work); 317 } else { 318 dio_complete(dio, 0, true); 319 } 320 } 321 } 322 323 /* 324 * The BIO completion handler simply queues the BIO up for the process-context 325 * handler. 326 * 327 * During I/O bi_private points at the dio. After I/O, bi_private is used to 328 * implement a singly-linked list of completed BIOs, at dio->bio_list. 329 */ 330 static void dio_bio_end_io(struct bio *bio) 331 { 332 struct dio *dio = bio->bi_private; 333 unsigned long flags; 334 335 spin_lock_irqsave(&dio->bio_lock, flags); 336 bio->bi_private = dio->bio_list; 337 dio->bio_list = bio; 338 if (--dio->refcount == 1 && dio->waiter) 339 wake_up_process(dio->waiter); 340 spin_unlock_irqrestore(&dio->bio_lock, flags); 341 } 342 343 /** 344 * dio_end_io - handle the end io action for the given bio 345 * @bio: The direct io bio thats being completed 346 * @error: Error if there was one 347 * 348 * This is meant to be called by any filesystem that uses their own dio_submit_t 349 * so that the DIO specific endio actions are dealt with after the filesystem 350 * has done it's completion work. 351 */ 352 void dio_end_io(struct bio *bio, int error) 353 { 354 struct dio *dio = bio->bi_private; 355 356 if (dio->is_async) 357 dio_bio_end_aio(bio); 358 else 359 dio_bio_end_io(bio); 360 } 361 EXPORT_SYMBOL_GPL(dio_end_io); 362 363 static inline void 364 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 365 struct block_device *bdev, 366 sector_t first_sector, int nr_vecs) 367 { 368 struct bio *bio; 369 370 /* 371 * bio_alloc() is guaranteed to return a bio when called with 372 * __GFP_RECLAIM and we request a valid number of vectors. 373 */ 374 bio = bio_alloc(GFP_KERNEL, nr_vecs); 375 376 bio->bi_bdev = bdev; 377 bio->bi_iter.bi_sector = first_sector; 378 if (dio->is_async) 379 bio->bi_end_io = dio_bio_end_aio; 380 else 381 bio->bi_end_io = dio_bio_end_io; 382 383 sdio->bio = bio; 384 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 385 } 386 387 /* 388 * In the AIO read case we speculatively dirty the pages before starting IO. 389 * During IO completion, any of these pages which happen to have been written 390 * back will be redirtied by bio_check_pages_dirty(). 391 * 392 * bios hold a dio reference between submit_bio and ->end_io. 393 */ 394 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 395 { 396 struct bio *bio = sdio->bio; 397 unsigned long flags; 398 399 bio->bi_private = dio; 400 401 spin_lock_irqsave(&dio->bio_lock, flags); 402 dio->refcount++; 403 spin_unlock_irqrestore(&dio->bio_lock, flags); 404 405 if (dio->is_async && dio->rw == READ && dio->should_dirty) 406 bio_set_pages_dirty(bio); 407 408 dio->bio_bdev = bio->bi_bdev; 409 410 if (sdio->submit_io) { 411 sdio->submit_io(dio->rw, bio, dio->inode, 412 sdio->logical_offset_in_bio); 413 dio->bio_cookie = BLK_QC_T_NONE; 414 } else 415 dio->bio_cookie = submit_bio(dio->rw, bio); 416 417 sdio->bio = NULL; 418 sdio->boundary = 0; 419 sdio->logical_offset_in_bio = 0; 420 } 421 422 /* 423 * Release any resources in case of a failure 424 */ 425 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 426 { 427 while (sdio->head < sdio->tail) 428 put_page(dio->pages[sdio->head++]); 429 } 430 431 /* 432 * Wait for the next BIO to complete. Remove it and return it. NULL is 433 * returned once all BIOs have been completed. This must only be called once 434 * all bios have been issued so that dio->refcount can only decrease. This 435 * requires that that the caller hold a reference on the dio. 436 */ 437 static struct bio *dio_await_one(struct dio *dio) 438 { 439 unsigned long flags; 440 struct bio *bio = NULL; 441 442 spin_lock_irqsave(&dio->bio_lock, flags); 443 444 /* 445 * Wait as long as the list is empty and there are bios in flight. bio 446 * completion drops the count, maybe adds to the list, and wakes while 447 * holding the bio_lock so we don't need set_current_state()'s barrier 448 * and can call it after testing our condition. 449 */ 450 while (dio->refcount > 1 && dio->bio_list == NULL) { 451 __set_current_state(TASK_UNINTERRUPTIBLE); 452 dio->waiter = current; 453 spin_unlock_irqrestore(&dio->bio_lock, flags); 454 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || 455 !blk_poll(bdev_get_queue(dio->bio_bdev), dio->bio_cookie)) 456 io_schedule(); 457 /* wake up sets us TASK_RUNNING */ 458 spin_lock_irqsave(&dio->bio_lock, flags); 459 dio->waiter = NULL; 460 } 461 if (dio->bio_list) { 462 bio = dio->bio_list; 463 dio->bio_list = bio->bi_private; 464 } 465 spin_unlock_irqrestore(&dio->bio_lock, flags); 466 return bio; 467 } 468 469 /* 470 * Process one completed BIO. No locks are held. 471 */ 472 static int dio_bio_complete(struct dio *dio, struct bio *bio) 473 { 474 struct bio_vec *bvec; 475 unsigned i; 476 int err; 477 478 if (bio->bi_error) 479 dio->io_error = -EIO; 480 481 if (dio->is_async && dio->rw == READ && dio->should_dirty) { 482 err = bio->bi_error; 483 bio_check_pages_dirty(bio); /* transfers ownership */ 484 } else { 485 bio_for_each_segment_all(bvec, bio, i) { 486 struct page *page = bvec->bv_page; 487 488 if (dio->rw == READ && !PageCompound(page) && 489 dio->should_dirty) 490 set_page_dirty_lock(page); 491 put_page(page); 492 } 493 err = bio->bi_error; 494 bio_put(bio); 495 } 496 return err; 497 } 498 499 /* 500 * Wait on and process all in-flight BIOs. This must only be called once 501 * all bios have been issued so that the refcount can only decrease. 502 * This just waits for all bios to make it through dio_bio_complete. IO 503 * errors are propagated through dio->io_error and should be propagated via 504 * dio_complete(). 505 */ 506 static void dio_await_completion(struct dio *dio) 507 { 508 struct bio *bio; 509 do { 510 bio = dio_await_one(dio); 511 if (bio) 512 dio_bio_complete(dio, bio); 513 } while (bio); 514 } 515 516 /* 517 * A really large O_DIRECT read or write can generate a lot of BIOs. So 518 * to keep the memory consumption sane we periodically reap any completed BIOs 519 * during the BIO generation phase. 520 * 521 * This also helps to limit the peak amount of pinned userspace memory. 522 */ 523 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 524 { 525 int ret = 0; 526 527 if (sdio->reap_counter++ >= 64) { 528 while (dio->bio_list) { 529 unsigned long flags; 530 struct bio *bio; 531 int ret2; 532 533 spin_lock_irqsave(&dio->bio_lock, flags); 534 bio = dio->bio_list; 535 dio->bio_list = bio->bi_private; 536 spin_unlock_irqrestore(&dio->bio_lock, flags); 537 ret2 = dio_bio_complete(dio, bio); 538 if (ret == 0) 539 ret = ret2; 540 } 541 sdio->reap_counter = 0; 542 } 543 return ret; 544 } 545 546 /* 547 * Create workqueue for deferred direct IO completions. We allocate the 548 * workqueue when it's first needed. This avoids creating workqueue for 549 * filesystems that don't need it and also allows us to create the workqueue 550 * late enough so the we can include s_id in the name of the workqueue. 551 */ 552 static int sb_init_dio_done_wq(struct super_block *sb) 553 { 554 struct workqueue_struct *old; 555 struct workqueue_struct *wq = alloc_workqueue("dio/%s", 556 WQ_MEM_RECLAIM, 0, 557 sb->s_id); 558 if (!wq) 559 return -ENOMEM; 560 /* 561 * This has to be atomic as more DIOs can race to create the workqueue 562 */ 563 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); 564 /* Someone created workqueue before us? Free ours... */ 565 if (old) 566 destroy_workqueue(wq); 567 return 0; 568 } 569 570 static int dio_set_defer_completion(struct dio *dio) 571 { 572 struct super_block *sb = dio->inode->i_sb; 573 574 if (dio->defer_completion) 575 return 0; 576 dio->defer_completion = true; 577 if (!sb->s_dio_done_wq) 578 return sb_init_dio_done_wq(sb); 579 return 0; 580 } 581 582 /* 583 * Call into the fs to map some more disk blocks. We record the current number 584 * of available blocks at sdio->blocks_available. These are in units of the 585 * fs blocksize, (1 << inode->i_blkbits). 586 * 587 * The fs is allowed to map lots of blocks at once. If it wants to do that, 588 * it uses the passed inode-relative block number as the file offset, as usual. 589 * 590 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 591 * has remaining to do. The fs should not map more than this number of blocks. 592 * 593 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 594 * indicate how much contiguous disk space has been made available at 595 * bh->b_blocknr. 596 * 597 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 598 * This isn't very efficient... 599 * 600 * In the case of filesystem holes: the fs may return an arbitrarily-large 601 * hole by returning an appropriate value in b_size and by clearing 602 * buffer_mapped(). However the direct-io code will only process holes one 603 * block at a time - it will repeatedly call get_block() as it walks the hole. 604 */ 605 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 606 struct buffer_head *map_bh) 607 { 608 int ret; 609 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 610 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 611 unsigned long fs_count; /* Number of filesystem-sized blocks */ 612 int create; 613 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 614 615 /* 616 * If there was a memory error and we've overwritten all the 617 * mapped blocks then we can now return that memory error 618 */ 619 ret = dio->page_errors; 620 if (ret == 0) { 621 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 622 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 623 fs_endblk = (sdio->final_block_in_request - 1) >> 624 sdio->blkfactor; 625 fs_count = fs_endblk - fs_startblk + 1; 626 627 map_bh->b_state = 0; 628 map_bh->b_size = fs_count << i_blkbits; 629 630 /* 631 * For writes that could fill holes inside i_size on a 632 * DIO_SKIP_HOLES filesystem we forbid block creations: only 633 * overwrites are permitted. We will return early to the caller 634 * once we see an unmapped buffer head returned, and the caller 635 * will fall back to buffered I/O. 636 * 637 * Otherwise the decision is left to the get_blocks method, 638 * which may decide to handle it or also return an unmapped 639 * buffer head. 640 */ 641 create = dio->rw & WRITE; 642 if (dio->flags & DIO_SKIP_HOLES) { 643 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >> 644 i_blkbits)) 645 create = 0; 646 } 647 648 ret = (*sdio->get_block)(dio->inode, fs_startblk, 649 map_bh, create); 650 651 /* Store for completion */ 652 dio->private = map_bh->b_private; 653 654 if (ret == 0 && buffer_defer_completion(map_bh)) 655 ret = dio_set_defer_completion(dio); 656 } 657 return ret; 658 } 659 660 /* 661 * There is no bio. Make one now. 662 */ 663 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 664 sector_t start_sector, struct buffer_head *map_bh) 665 { 666 sector_t sector; 667 int ret, nr_pages; 668 669 ret = dio_bio_reap(dio, sdio); 670 if (ret) 671 goto out; 672 sector = start_sector << (sdio->blkbits - 9); 673 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 674 BUG_ON(nr_pages <= 0); 675 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 676 sdio->boundary = 0; 677 out: 678 return ret; 679 } 680 681 /* 682 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 683 * that was successful then update final_block_in_bio and take a ref against 684 * the just-added page. 685 * 686 * Return zero on success. Non-zero means the caller needs to start a new BIO. 687 */ 688 static inline int dio_bio_add_page(struct dio_submit *sdio) 689 { 690 int ret; 691 692 ret = bio_add_page(sdio->bio, sdio->cur_page, 693 sdio->cur_page_len, sdio->cur_page_offset); 694 if (ret == sdio->cur_page_len) { 695 /* 696 * Decrement count only, if we are done with this page 697 */ 698 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 699 sdio->pages_in_io--; 700 get_page(sdio->cur_page); 701 sdio->final_block_in_bio = sdio->cur_page_block + 702 (sdio->cur_page_len >> sdio->blkbits); 703 ret = 0; 704 } else { 705 ret = 1; 706 } 707 return ret; 708 } 709 710 /* 711 * Put cur_page under IO. The section of cur_page which is described by 712 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 713 * starts on-disk at cur_page_block. 714 * 715 * We take a ref against the page here (on behalf of its presence in the bio). 716 * 717 * The caller of this function is responsible for removing cur_page from the 718 * dio, and for dropping the refcount which came from that presence. 719 */ 720 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 721 struct buffer_head *map_bh) 722 { 723 int ret = 0; 724 725 if (sdio->bio) { 726 loff_t cur_offset = sdio->cur_page_fs_offset; 727 loff_t bio_next_offset = sdio->logical_offset_in_bio + 728 sdio->bio->bi_iter.bi_size; 729 730 /* 731 * See whether this new request is contiguous with the old. 732 * 733 * Btrfs cannot handle having logically non-contiguous requests 734 * submitted. For example if you have 735 * 736 * Logical: [0-4095][HOLE][8192-12287] 737 * Physical: [0-4095] [4096-8191] 738 * 739 * We cannot submit those pages together as one BIO. So if our 740 * current logical offset in the file does not equal what would 741 * be the next logical offset in the bio, submit the bio we 742 * have. 743 */ 744 if (sdio->final_block_in_bio != sdio->cur_page_block || 745 cur_offset != bio_next_offset) 746 dio_bio_submit(dio, sdio); 747 } 748 749 if (sdio->bio == NULL) { 750 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 751 if (ret) 752 goto out; 753 } 754 755 if (dio_bio_add_page(sdio) != 0) { 756 dio_bio_submit(dio, sdio); 757 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 758 if (ret == 0) { 759 ret = dio_bio_add_page(sdio); 760 BUG_ON(ret != 0); 761 } 762 } 763 out: 764 return ret; 765 } 766 767 /* 768 * An autonomous function to put a chunk of a page under deferred IO. 769 * 770 * The caller doesn't actually know (or care) whether this piece of page is in 771 * a BIO, or is under IO or whatever. We just take care of all possible 772 * situations here. The separation between the logic of do_direct_IO() and 773 * that of submit_page_section() is important for clarity. Please don't break. 774 * 775 * The chunk of page starts on-disk at blocknr. 776 * 777 * We perform deferred IO, by recording the last-submitted page inside our 778 * private part of the dio structure. If possible, we just expand the IO 779 * across that page here. 780 * 781 * If that doesn't work out then we put the old page into the bio and add this 782 * page to the dio instead. 783 */ 784 static inline int 785 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 786 unsigned offset, unsigned len, sector_t blocknr, 787 struct buffer_head *map_bh) 788 { 789 int ret = 0; 790 791 if (dio->rw & WRITE) { 792 /* 793 * Read accounting is performed in submit_bio() 794 */ 795 task_io_account_write(len); 796 } 797 798 /* 799 * Can we just grow the current page's presence in the dio? 800 */ 801 if (sdio->cur_page == page && 802 sdio->cur_page_offset + sdio->cur_page_len == offset && 803 sdio->cur_page_block + 804 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 805 sdio->cur_page_len += len; 806 goto out; 807 } 808 809 /* 810 * If there's a deferred page already there then send it. 811 */ 812 if (sdio->cur_page) { 813 ret = dio_send_cur_page(dio, sdio, map_bh); 814 put_page(sdio->cur_page); 815 sdio->cur_page = NULL; 816 if (ret) 817 return ret; 818 } 819 820 get_page(page); /* It is in dio */ 821 sdio->cur_page = page; 822 sdio->cur_page_offset = offset; 823 sdio->cur_page_len = len; 824 sdio->cur_page_block = blocknr; 825 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 826 out: 827 /* 828 * If sdio->boundary then we want to schedule the IO now to 829 * avoid metadata seeks. 830 */ 831 if (sdio->boundary) { 832 ret = dio_send_cur_page(dio, sdio, map_bh); 833 dio_bio_submit(dio, sdio); 834 put_page(sdio->cur_page); 835 sdio->cur_page = NULL; 836 } 837 return ret; 838 } 839 840 /* 841 * Clean any dirty buffers in the blockdev mapping which alias newly-created 842 * file blocks. Only called for S_ISREG files - blockdevs do not set 843 * buffer_new 844 */ 845 static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh) 846 { 847 unsigned i; 848 unsigned nblocks; 849 850 nblocks = map_bh->b_size >> dio->inode->i_blkbits; 851 852 for (i = 0; i < nblocks; i++) { 853 unmap_underlying_metadata(map_bh->b_bdev, 854 map_bh->b_blocknr + i); 855 } 856 } 857 858 /* 859 * If we are not writing the entire block and get_block() allocated 860 * the block for us, we need to fill-in the unused portion of the 861 * block with zeros. This happens only if user-buffer, fileoffset or 862 * io length is not filesystem block-size multiple. 863 * 864 * `end' is zero if we're doing the start of the IO, 1 at the end of the 865 * IO. 866 */ 867 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 868 int end, struct buffer_head *map_bh) 869 { 870 unsigned dio_blocks_per_fs_block; 871 unsigned this_chunk_blocks; /* In dio_blocks */ 872 unsigned this_chunk_bytes; 873 struct page *page; 874 875 sdio->start_zero_done = 1; 876 if (!sdio->blkfactor || !buffer_new(map_bh)) 877 return; 878 879 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 880 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 881 882 if (!this_chunk_blocks) 883 return; 884 885 /* 886 * We need to zero out part of an fs block. It is either at the 887 * beginning or the end of the fs block. 888 */ 889 if (end) 890 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 891 892 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 893 894 page = ZERO_PAGE(0); 895 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 896 sdio->next_block_for_io, map_bh)) 897 return; 898 899 sdio->next_block_for_io += this_chunk_blocks; 900 } 901 902 /* 903 * Walk the user pages, and the file, mapping blocks to disk and generating 904 * a sequence of (page,offset,len,block) mappings. These mappings are injected 905 * into submit_page_section(), which takes care of the next stage of submission 906 * 907 * Direct IO against a blockdev is different from a file. Because we can 908 * happily perform page-sized but 512-byte aligned IOs. It is important that 909 * blockdev IO be able to have fine alignment and large sizes. 910 * 911 * So what we do is to permit the ->get_block function to populate bh.b_size 912 * with the size of IO which is permitted at this offset and this i_blkbits. 913 * 914 * For best results, the blockdev should be set up with 512-byte i_blkbits and 915 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 916 * fine alignment but still allows this function to work in PAGE_SIZE units. 917 */ 918 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 919 struct buffer_head *map_bh) 920 { 921 const unsigned blkbits = sdio->blkbits; 922 int ret = 0; 923 924 while (sdio->block_in_file < sdio->final_block_in_request) { 925 struct page *page; 926 size_t from, to; 927 928 page = dio_get_page(dio, sdio); 929 if (IS_ERR(page)) { 930 ret = PTR_ERR(page); 931 goto out; 932 } 933 from = sdio->head ? 0 : sdio->from; 934 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 935 sdio->head++; 936 937 while (from < to) { 938 unsigned this_chunk_bytes; /* # of bytes mapped */ 939 unsigned this_chunk_blocks; /* # of blocks */ 940 unsigned u; 941 942 if (sdio->blocks_available == 0) { 943 /* 944 * Need to go and map some more disk 945 */ 946 unsigned long blkmask; 947 unsigned long dio_remainder; 948 949 ret = get_more_blocks(dio, sdio, map_bh); 950 if (ret) { 951 put_page(page); 952 goto out; 953 } 954 if (!buffer_mapped(map_bh)) 955 goto do_holes; 956 957 sdio->blocks_available = 958 map_bh->b_size >> sdio->blkbits; 959 sdio->next_block_for_io = 960 map_bh->b_blocknr << sdio->blkfactor; 961 if (buffer_new(map_bh)) 962 clean_blockdev_aliases(dio, map_bh); 963 964 if (!sdio->blkfactor) 965 goto do_holes; 966 967 blkmask = (1 << sdio->blkfactor) - 1; 968 dio_remainder = (sdio->block_in_file & blkmask); 969 970 /* 971 * If we are at the start of IO and that IO 972 * starts partway into a fs-block, 973 * dio_remainder will be non-zero. If the IO 974 * is a read then we can simply advance the IO 975 * cursor to the first block which is to be 976 * read. But if the IO is a write and the 977 * block was newly allocated we cannot do that; 978 * the start of the fs block must be zeroed out 979 * on-disk 980 */ 981 if (!buffer_new(map_bh)) 982 sdio->next_block_for_io += dio_remainder; 983 sdio->blocks_available -= dio_remainder; 984 } 985 do_holes: 986 /* Handle holes */ 987 if (!buffer_mapped(map_bh)) { 988 loff_t i_size_aligned; 989 990 /* AKPM: eargh, -ENOTBLK is a hack */ 991 if (dio->rw & WRITE) { 992 put_page(page); 993 return -ENOTBLK; 994 } 995 996 /* 997 * Be sure to account for a partial block as the 998 * last block in the file 999 */ 1000 i_size_aligned = ALIGN(i_size_read(dio->inode), 1001 1 << blkbits); 1002 if (sdio->block_in_file >= 1003 i_size_aligned >> blkbits) { 1004 /* We hit eof */ 1005 put_page(page); 1006 goto out; 1007 } 1008 zero_user(page, from, 1 << blkbits); 1009 sdio->block_in_file++; 1010 from += 1 << blkbits; 1011 dio->result += 1 << blkbits; 1012 goto next_block; 1013 } 1014 1015 /* 1016 * If we're performing IO which has an alignment which 1017 * is finer than the underlying fs, go check to see if 1018 * we must zero out the start of this block. 1019 */ 1020 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1021 dio_zero_block(dio, sdio, 0, map_bh); 1022 1023 /* 1024 * Work out, in this_chunk_blocks, how much disk we 1025 * can add to this page 1026 */ 1027 this_chunk_blocks = sdio->blocks_available; 1028 u = (to - from) >> blkbits; 1029 if (this_chunk_blocks > u) 1030 this_chunk_blocks = u; 1031 u = sdio->final_block_in_request - sdio->block_in_file; 1032 if (this_chunk_blocks > u) 1033 this_chunk_blocks = u; 1034 this_chunk_bytes = this_chunk_blocks << blkbits; 1035 BUG_ON(this_chunk_bytes == 0); 1036 1037 if (this_chunk_blocks == sdio->blocks_available) 1038 sdio->boundary = buffer_boundary(map_bh); 1039 ret = submit_page_section(dio, sdio, page, 1040 from, 1041 this_chunk_bytes, 1042 sdio->next_block_for_io, 1043 map_bh); 1044 if (ret) { 1045 put_page(page); 1046 goto out; 1047 } 1048 sdio->next_block_for_io += this_chunk_blocks; 1049 1050 sdio->block_in_file += this_chunk_blocks; 1051 from += this_chunk_bytes; 1052 dio->result += this_chunk_bytes; 1053 sdio->blocks_available -= this_chunk_blocks; 1054 next_block: 1055 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1056 if (sdio->block_in_file == sdio->final_block_in_request) 1057 break; 1058 } 1059 1060 /* Drop the ref which was taken in get_user_pages() */ 1061 put_page(page); 1062 } 1063 out: 1064 return ret; 1065 } 1066 1067 static inline int drop_refcount(struct dio *dio) 1068 { 1069 int ret2; 1070 unsigned long flags; 1071 1072 /* 1073 * Sync will always be dropping the final ref and completing the 1074 * operation. AIO can if it was a broken operation described above or 1075 * in fact if all the bios race to complete before we get here. In 1076 * that case dio_complete() translates the EIOCBQUEUED into the proper 1077 * return code that the caller will hand to ->complete(). 1078 * 1079 * This is managed by the bio_lock instead of being an atomic_t so that 1080 * completion paths can drop their ref and use the remaining count to 1081 * decide to wake the submission path atomically. 1082 */ 1083 spin_lock_irqsave(&dio->bio_lock, flags); 1084 ret2 = --dio->refcount; 1085 spin_unlock_irqrestore(&dio->bio_lock, flags); 1086 return ret2; 1087 } 1088 1089 /* 1090 * This is a library function for use by filesystem drivers. 1091 * 1092 * The locking rules are governed by the flags parameter: 1093 * - if the flags value contains DIO_LOCKING we use a fancy locking 1094 * scheme for dumb filesystems. 1095 * For writes this function is called under i_mutex and returns with 1096 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1097 * taken and dropped again before returning. 1098 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1099 * internal locking but rather rely on the filesystem to synchronize 1100 * direct I/O reads/writes versus each other and truncate. 1101 * 1102 * To help with locking against truncate we incremented the i_dio_count 1103 * counter before starting direct I/O, and decrement it once we are done. 1104 * Truncate can wait for it to reach zero to provide exclusion. It is 1105 * expected that filesystem provide exclusion between new direct I/O 1106 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1107 * but other filesystems need to take care of this on their own. 1108 * 1109 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1110 * is always inlined. Otherwise gcc is unable to split the structure into 1111 * individual fields and will generate much worse code. This is important 1112 * for the whole file. 1113 */ 1114 static inline ssize_t 1115 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1116 struct block_device *bdev, struct iov_iter *iter, 1117 get_block_t get_block, dio_iodone_t end_io, 1118 dio_submit_t submit_io, int flags) 1119 { 1120 unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits); 1121 unsigned blkbits = i_blkbits; 1122 unsigned blocksize_mask = (1 << blkbits) - 1; 1123 ssize_t retval = -EINVAL; 1124 size_t count = iov_iter_count(iter); 1125 loff_t offset = iocb->ki_pos; 1126 loff_t end = offset + count; 1127 struct dio *dio; 1128 struct dio_submit sdio = { 0, }; 1129 struct buffer_head map_bh = { 0, }; 1130 struct blk_plug plug; 1131 unsigned long align = offset | iov_iter_alignment(iter); 1132 1133 /* 1134 * Avoid references to bdev if not absolutely needed to give 1135 * the early prefetch in the caller enough time. 1136 */ 1137 1138 if (align & blocksize_mask) { 1139 if (bdev) 1140 blkbits = blksize_bits(bdev_logical_block_size(bdev)); 1141 blocksize_mask = (1 << blkbits) - 1; 1142 if (align & blocksize_mask) 1143 goto out; 1144 } 1145 1146 /* watch out for a 0 len io from a tricksy fs */ 1147 if (iov_iter_rw(iter) == READ && !iov_iter_count(iter)) 1148 return 0; 1149 1150 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); 1151 retval = -ENOMEM; 1152 if (!dio) 1153 goto out; 1154 /* 1155 * Believe it or not, zeroing out the page array caused a .5% 1156 * performance regression in a database benchmark. So, we take 1157 * care to only zero out what's needed. 1158 */ 1159 memset(dio, 0, offsetof(struct dio, pages)); 1160 1161 dio->flags = flags; 1162 if (dio->flags & DIO_LOCKING) { 1163 if (iov_iter_rw(iter) == READ) { 1164 struct address_space *mapping = 1165 iocb->ki_filp->f_mapping; 1166 1167 /* will be released by direct_io_worker */ 1168 inode_lock(inode); 1169 1170 retval = filemap_write_and_wait_range(mapping, offset, 1171 end - 1); 1172 if (retval) { 1173 inode_unlock(inode); 1174 kmem_cache_free(dio_cache, dio); 1175 goto out; 1176 } 1177 } 1178 } 1179 1180 /* Once we sampled i_size check for reads beyond EOF */ 1181 dio->i_size = i_size_read(inode); 1182 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { 1183 if (dio->flags & DIO_LOCKING) 1184 inode_unlock(inode); 1185 kmem_cache_free(dio_cache, dio); 1186 retval = 0; 1187 goto out; 1188 } 1189 1190 /* 1191 * For file extending writes updating i_size before data writeouts 1192 * complete can expose uninitialized blocks in dumb filesystems. 1193 * In that case we need to wait for I/O completion even if asked 1194 * for an asynchronous write. 1195 */ 1196 if (is_sync_kiocb(iocb)) 1197 dio->is_async = false; 1198 else if (!(dio->flags & DIO_ASYNC_EXTEND) && 1199 iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1200 dio->is_async = false; 1201 else 1202 dio->is_async = true; 1203 1204 dio->inode = inode; 1205 dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ; 1206 1207 /* 1208 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1209 * so that we can call ->fsync. 1210 */ 1211 if (dio->is_async && iov_iter_rw(iter) == WRITE && 1212 ((iocb->ki_filp->f_flags & O_DSYNC) || 1213 IS_SYNC(iocb->ki_filp->f_mapping->host))) { 1214 retval = dio_set_defer_completion(dio); 1215 if (retval) { 1216 /* 1217 * We grab i_mutex only for reads so we don't have 1218 * to release it here 1219 */ 1220 kmem_cache_free(dio_cache, dio); 1221 goto out; 1222 } 1223 } 1224 1225 /* 1226 * Will be decremented at I/O completion time. 1227 */ 1228 if (!(dio->flags & DIO_SKIP_DIO_COUNT)) 1229 inode_dio_begin(inode); 1230 1231 retval = 0; 1232 sdio.blkbits = blkbits; 1233 sdio.blkfactor = i_blkbits - blkbits; 1234 sdio.block_in_file = offset >> blkbits; 1235 1236 sdio.get_block = get_block; 1237 dio->end_io = end_io; 1238 sdio.submit_io = submit_io; 1239 sdio.final_block_in_bio = -1; 1240 sdio.next_block_for_io = -1; 1241 1242 dio->iocb = iocb; 1243 1244 spin_lock_init(&dio->bio_lock); 1245 dio->refcount = 1; 1246 1247 dio->should_dirty = (iter->type == ITER_IOVEC); 1248 sdio.iter = iter; 1249 sdio.final_block_in_request = 1250 (offset + iov_iter_count(iter)) >> blkbits; 1251 1252 /* 1253 * In case of non-aligned buffers, we may need 2 more 1254 * pages since we need to zero out first and last block. 1255 */ 1256 if (unlikely(sdio.blkfactor)) 1257 sdio.pages_in_io = 2; 1258 1259 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1260 1261 blk_start_plug(&plug); 1262 1263 retval = do_direct_IO(dio, &sdio, &map_bh); 1264 if (retval) 1265 dio_cleanup(dio, &sdio); 1266 1267 if (retval == -ENOTBLK) { 1268 /* 1269 * The remaining part of the request will be 1270 * be handled by buffered I/O when we return 1271 */ 1272 retval = 0; 1273 } 1274 /* 1275 * There may be some unwritten disk at the end of a part-written 1276 * fs-block-sized block. Go zero that now. 1277 */ 1278 dio_zero_block(dio, &sdio, 1, &map_bh); 1279 1280 if (sdio.cur_page) { 1281 ssize_t ret2; 1282 1283 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1284 if (retval == 0) 1285 retval = ret2; 1286 put_page(sdio.cur_page); 1287 sdio.cur_page = NULL; 1288 } 1289 if (sdio.bio) 1290 dio_bio_submit(dio, &sdio); 1291 1292 blk_finish_plug(&plug); 1293 1294 /* 1295 * It is possible that, we return short IO due to end of file. 1296 * In that case, we need to release all the pages we got hold on. 1297 */ 1298 dio_cleanup(dio, &sdio); 1299 1300 /* 1301 * All block lookups have been performed. For READ requests 1302 * we can let i_mutex go now that its achieved its purpose 1303 * of protecting us from looking up uninitialized blocks. 1304 */ 1305 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1306 inode_unlock(dio->inode); 1307 1308 /* 1309 * The only time we want to leave bios in flight is when a successful 1310 * partial aio read or full aio write have been setup. In that case 1311 * bio completion will call aio_complete. The only time it's safe to 1312 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1313 * This had *better* be the only place that raises -EIOCBQUEUED. 1314 */ 1315 BUG_ON(retval == -EIOCBQUEUED); 1316 if (dio->is_async && retval == 0 && dio->result && 1317 (iov_iter_rw(iter) == READ || dio->result == count)) 1318 retval = -EIOCBQUEUED; 1319 else 1320 dio_await_completion(dio); 1321 1322 if (drop_refcount(dio) == 0) { 1323 retval = dio_complete(dio, retval, false); 1324 } else 1325 BUG_ON(retval != -EIOCBQUEUED); 1326 1327 out: 1328 return retval; 1329 } 1330 1331 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1332 struct block_device *bdev, struct iov_iter *iter, 1333 get_block_t get_block, 1334 dio_iodone_t end_io, dio_submit_t submit_io, 1335 int flags) 1336 { 1337 /* 1338 * The block device state is needed in the end to finally 1339 * submit everything. Since it's likely to be cache cold 1340 * prefetch it here as first thing to hide some of the 1341 * latency. 1342 * 1343 * Attempt to prefetch the pieces we likely need later. 1344 */ 1345 prefetch(&bdev->bd_disk->part_tbl); 1346 prefetch(bdev->bd_queue); 1347 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1348 1349 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1350 end_io, submit_io, flags); 1351 } 1352 1353 EXPORT_SYMBOL(__blockdev_direct_IO); 1354 1355 static __init int dio_init(void) 1356 { 1357 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1358 return 0; 1359 } 1360 module_init(dio_init) 1361