xref: /linux/fs/dcache.c (revision fcab107abe1ab5be9dbe874baa722372da8f4f73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 #include <asm/runtime-const.h>
39 
40 /*
41  * Usage:
42  * dcache->d_inode->i_lock protects:
43  *   - i_dentry, d_u.d_alias, d_inode of aliases
44  * dcache_hash_bucket lock protects:
45  *   - the dcache hash table
46  * s_roots bl list spinlock protects:
47  *   - the s_roots list (see __d_drop)
48  * dentry->d_sb->s_dentry_lru_lock protects:
49  *   - the dcache lru lists and counters
50  * d_lock protects:
51  *   - d_flags
52  *   - d_name
53  *   - d_lru
54  *   - d_count
55  *   - d_unhashed()
56  *   - d_parent and d_chilren
57  *   - childrens' d_sib and d_parent
58  *   - d_u.d_alias, d_inode
59  *
60  * Ordering:
61  * dentry->d_inode->i_lock
62  *   dentry->d_lock
63  *     dentry->d_sb->s_dentry_lru_lock
64  *     dcache_hash_bucket lock
65  *     s_roots lock
66  *
67  * If there is an ancestor relationship:
68  * dentry->d_parent->...->d_parent->d_lock
69  *   ...
70  *     dentry->d_parent->d_lock
71  *       dentry->d_lock
72  *
73  * If no ancestor relationship:
74  * arbitrary, since it's serialized on rename_lock
75  */
76 static int sysctl_vfs_cache_pressure __read_mostly = 100;
77 static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78 
79 unsigned long vfs_pressure_ratio(unsigned long val)
80 {
81 	return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82 }
83 EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __ro_after_init;
90 
91 const struct qstr empty_name = QSTR_INIT("", 0);
92 EXPORT_SYMBOL(empty_name);
93 const struct qstr slash_name = QSTR_INIT("/", 1);
94 EXPORT_SYMBOL(slash_name);
95 const struct qstr dotdot_name = QSTR_INIT("..", 2);
96 EXPORT_SYMBOL(dotdot_name);
97 
98 /*
99  * This is the single most critical data structure when it comes
100  * to the dcache: the hashtable for lookups. Somebody should try
101  * to make this good - I've just made it work.
102  *
103  * This hash-function tries to avoid losing too many bits of hash
104  * information, yet avoid using a prime hash-size or similar.
105  *
106  * Marking the variables "used" ensures that the compiler doesn't
107  * optimize them away completely on architectures with runtime
108  * constant infrastructure, this allows debuggers to see their
109  * values. But updating these values has no effect on those arches.
110  */
111 
112 static unsigned int d_hash_shift __ro_after_init __used;
113 
114 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
115 
116 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
117 {
118 	return runtime_const_ptr(dentry_hashtable) +
119 		runtime_const_shift_right_32(hashlen, d_hash_shift);
120 }
121 
122 #define IN_LOOKUP_SHIFT 10
123 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
124 
125 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
126 					unsigned int hash)
127 {
128 	hash += (unsigned long) parent / L1_CACHE_BYTES;
129 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
130 }
131 
132 struct dentry_stat_t {
133 	long nr_dentry;
134 	long nr_unused;
135 	long age_limit;		/* age in seconds */
136 	long want_pages;	/* pages requested by system */
137 	long nr_negative;	/* # of unused negative dentries */
138 	long dummy;		/* Reserved for future use */
139 };
140 
141 static DEFINE_PER_CPU(long, nr_dentry);
142 static DEFINE_PER_CPU(long, nr_dentry_unused);
143 static DEFINE_PER_CPU(long, nr_dentry_negative);
144 static int dentry_negative_policy;
145 
146 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
147 /* Statistics gathering. */
148 static struct dentry_stat_t dentry_stat = {
149 	.age_limit = 45,
150 };
151 
152 /*
153  * Here we resort to our own counters instead of using generic per-cpu counters
154  * for consistency with what the vfs inode code does. We are expected to harvest
155  * better code and performance by having our own specialized counters.
156  *
157  * Please note that the loop is done over all possible CPUs, not over all online
158  * CPUs. The reason for this is that we don't want to play games with CPUs going
159  * on and off. If one of them goes off, we will just keep their counters.
160  *
161  * glommer: See cffbc8a for details, and if you ever intend to change this,
162  * please update all vfs counters to match.
163  */
164 static long get_nr_dentry(void)
165 {
166 	int i;
167 	long sum = 0;
168 	for_each_possible_cpu(i)
169 		sum += per_cpu(nr_dentry, i);
170 	return sum < 0 ? 0 : sum;
171 }
172 
173 static long get_nr_dentry_unused(void)
174 {
175 	int i;
176 	long sum = 0;
177 	for_each_possible_cpu(i)
178 		sum += per_cpu(nr_dentry_unused, i);
179 	return sum < 0 ? 0 : sum;
180 }
181 
182 static long get_nr_dentry_negative(void)
183 {
184 	int i;
185 	long sum = 0;
186 
187 	for_each_possible_cpu(i)
188 		sum += per_cpu(nr_dentry_negative, i);
189 	return sum < 0 ? 0 : sum;
190 }
191 
192 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
193 			  size_t *lenp, loff_t *ppos)
194 {
195 	dentry_stat.nr_dentry = get_nr_dentry();
196 	dentry_stat.nr_unused = get_nr_dentry_unused();
197 	dentry_stat.nr_negative = get_nr_dentry_negative();
198 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
199 }
200 
201 static const struct ctl_table fs_dcache_sysctls[] = {
202 	{
203 		.procname	= "dentry-state",
204 		.data		= &dentry_stat,
205 		.maxlen		= 6*sizeof(long),
206 		.mode		= 0444,
207 		.proc_handler	= proc_nr_dentry,
208 	},
209 	{
210 		.procname	= "dentry-negative",
211 		.data		= &dentry_negative_policy,
212 		.maxlen		= sizeof(dentry_negative_policy),
213 		.mode		= 0644,
214 		.proc_handler	= proc_dointvec_minmax,
215 		.extra1		= SYSCTL_ZERO,
216 		.extra2		= SYSCTL_ONE,
217 	},
218 };
219 
220 static const struct ctl_table vm_dcache_sysctls[] = {
221 	{
222 		.procname	= "vfs_cache_pressure",
223 		.data		= &sysctl_vfs_cache_pressure,
224 		.maxlen		= sizeof(sysctl_vfs_cache_pressure),
225 		.mode		= 0644,
226 		.proc_handler	= proc_dointvec_minmax,
227 		.extra1		= SYSCTL_ZERO,
228 	},
229 	{
230 		.procname	= "vfs_cache_pressure_denom",
231 		.data		= &sysctl_vfs_cache_pressure_denom,
232 		.maxlen		= sizeof(sysctl_vfs_cache_pressure_denom),
233 		.mode		= 0644,
234 		.proc_handler	= proc_dointvec_minmax,
235 		.extra1		= SYSCTL_ONE_HUNDRED,
236 	},
237 };
238 
239 static int __init init_fs_dcache_sysctls(void)
240 {
241 	register_sysctl_init("vm", vm_dcache_sysctls);
242 	register_sysctl_init("fs", fs_dcache_sysctls);
243 	return 0;
244 }
245 fs_initcall(init_fs_dcache_sysctls);
246 #endif
247 
248 /*
249  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
250  * The strings are both count bytes long, and count is non-zero.
251  */
252 #ifdef CONFIG_DCACHE_WORD_ACCESS
253 
254 #include <asm/word-at-a-time.h>
255 /*
256  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
257  * aligned allocation for this particular component. We don't
258  * strictly need the load_unaligned_zeropad() safety, but it
259  * doesn't hurt either.
260  *
261  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
262  * need the careful unaligned handling.
263  */
264 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
265 {
266 	unsigned long a,b,mask;
267 
268 	for (;;) {
269 		a = read_word_at_a_time(cs);
270 		b = load_unaligned_zeropad(ct);
271 		if (tcount < sizeof(unsigned long))
272 			break;
273 		if (unlikely(a != b))
274 			return 1;
275 		cs += sizeof(unsigned long);
276 		ct += sizeof(unsigned long);
277 		tcount -= sizeof(unsigned long);
278 		if (!tcount)
279 			return 0;
280 	}
281 	mask = bytemask_from_count(tcount);
282 	return unlikely(!!((a ^ b) & mask));
283 }
284 
285 #else
286 
287 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
288 {
289 	do {
290 		if (*cs != *ct)
291 			return 1;
292 		cs++;
293 		ct++;
294 		tcount--;
295 	} while (tcount);
296 	return 0;
297 }
298 
299 #endif
300 
301 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
302 {
303 	/*
304 	 * Be careful about RCU walk racing with rename:
305 	 * use 'READ_ONCE' to fetch the name pointer.
306 	 *
307 	 * NOTE! Even if a rename will mean that the length
308 	 * was not loaded atomically, we don't care. The
309 	 * RCU walk will check the sequence count eventually,
310 	 * and catch it. And we won't overrun the buffer,
311 	 * because we're reading the name pointer atomically,
312 	 * and a dentry name is guaranteed to be properly
313 	 * terminated with a NUL byte.
314 	 *
315 	 * End result: even if 'len' is wrong, we'll exit
316 	 * early because the data cannot match (there can
317 	 * be no NUL in the ct/tcount data)
318 	 */
319 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
320 
321 	return dentry_string_cmp(cs, ct, tcount);
322 }
323 
324 /*
325  * long names are allocated separately from dentry and never modified.
326  * Refcounted, freeing is RCU-delayed.  See take_dentry_name_snapshot()
327  * for the reason why ->count and ->head can't be combined into a union.
328  * dentry_string_cmp() relies upon ->name[] being word-aligned.
329  */
330 struct external_name {
331 	atomic_t count;
332 	struct rcu_head head;
333 	unsigned char name[] __aligned(sizeof(unsigned long));
334 };
335 
336 static inline struct external_name *external_name(struct dentry *dentry)
337 {
338 	return container_of(dentry->d_name.name, struct external_name, name[0]);
339 }
340 
341 static void __d_free(struct rcu_head *head)
342 {
343 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
344 
345 	kmem_cache_free(dentry_cache, dentry);
346 }
347 
348 static void __d_free_external(struct rcu_head *head)
349 {
350 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
351 	kfree(external_name(dentry));
352 	kmem_cache_free(dentry_cache, dentry);
353 }
354 
355 static inline int dname_external(const struct dentry *dentry)
356 {
357 	return dentry->d_name.name != dentry->d_shortname.string;
358 }
359 
360 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
361 {
362 	unsigned seq;
363 	const unsigned char *s;
364 
365 	rcu_read_lock();
366 retry:
367 	seq = read_seqcount_begin(&dentry->d_seq);
368 	s = READ_ONCE(dentry->d_name.name);
369 	name->name.hash_len = dentry->d_name.hash_len;
370 	name->name.name = name->inline_name.string;
371 	if (likely(s == dentry->d_shortname.string)) {
372 		name->inline_name = dentry->d_shortname;
373 	} else {
374 		struct external_name *p;
375 		p = container_of(s, struct external_name, name[0]);
376 		// get a valid reference
377 		if (unlikely(!atomic_inc_not_zero(&p->count)))
378 			goto retry;
379 		name->name.name = s;
380 	}
381 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
382 		release_dentry_name_snapshot(name);
383 		goto retry;
384 	}
385 	rcu_read_unlock();
386 }
387 EXPORT_SYMBOL(take_dentry_name_snapshot);
388 
389 void release_dentry_name_snapshot(struct name_snapshot *name)
390 {
391 	if (unlikely(name->name.name != name->inline_name.string)) {
392 		struct external_name *p;
393 		p = container_of(name->name.name, struct external_name, name[0]);
394 		if (unlikely(atomic_dec_and_test(&p->count)))
395 			kfree_rcu(p, head);
396 	}
397 }
398 EXPORT_SYMBOL(release_dentry_name_snapshot);
399 
400 static inline void __d_set_inode_and_type(struct dentry *dentry,
401 					  struct inode *inode,
402 					  unsigned type_flags)
403 {
404 	unsigned flags;
405 
406 	dentry->d_inode = inode;
407 	flags = READ_ONCE(dentry->d_flags);
408 	flags &= ~DCACHE_ENTRY_TYPE;
409 	flags |= type_flags;
410 	smp_store_release(&dentry->d_flags, flags);
411 }
412 
413 static inline void __d_clear_type_and_inode(struct dentry *dentry)
414 {
415 	unsigned flags = READ_ONCE(dentry->d_flags);
416 
417 	flags &= ~DCACHE_ENTRY_TYPE;
418 	WRITE_ONCE(dentry->d_flags, flags);
419 	dentry->d_inode = NULL;
420 	/*
421 	 * The negative counter only tracks dentries on the LRU. Don't inc if
422 	 * d_lru is on another list.
423 	 */
424 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
425 		this_cpu_inc(nr_dentry_negative);
426 }
427 
428 static void dentry_free(struct dentry *dentry)
429 {
430 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
431 	if (unlikely(dname_external(dentry))) {
432 		struct external_name *p = external_name(dentry);
433 		if (likely(atomic_dec_and_test(&p->count))) {
434 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
435 			return;
436 		}
437 	}
438 	/* if dentry was never visible to RCU, immediate free is OK */
439 	if (dentry->d_flags & DCACHE_NORCU)
440 		__d_free(&dentry->d_u.d_rcu);
441 	else
442 		call_rcu(&dentry->d_u.d_rcu, __d_free);
443 }
444 
445 /*
446  * Release the dentry's inode, using the filesystem
447  * d_iput() operation if defined.
448  */
449 static void dentry_unlink_inode(struct dentry * dentry)
450 	__releases(dentry->d_lock)
451 	__releases(dentry->d_inode->i_lock)
452 {
453 	struct inode *inode = dentry->d_inode;
454 
455 	raw_write_seqcount_begin(&dentry->d_seq);
456 	__d_clear_type_and_inode(dentry);
457 	hlist_del_init(&dentry->d_u.d_alias);
458 	raw_write_seqcount_end(&dentry->d_seq);
459 	spin_unlock(&dentry->d_lock);
460 	spin_unlock(&inode->i_lock);
461 	if (!inode->i_nlink)
462 		fsnotify_inoderemove(inode);
463 	if (dentry->d_op && dentry->d_op->d_iput)
464 		dentry->d_op->d_iput(dentry, inode);
465 	else
466 		iput(inode);
467 }
468 
469 /*
470  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
471  * is in use - which includes both the "real" per-superblock
472  * LRU list _and_ the DCACHE_SHRINK_LIST use.
473  *
474  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
475  * on the shrink list (ie not on the superblock LRU list).
476  *
477  * The per-cpu "nr_dentry_unused" counters are updated with
478  * the DCACHE_LRU_LIST bit.
479  *
480  * The per-cpu "nr_dentry_negative" counters are only updated
481  * when deleted from or added to the per-superblock LRU list, not
482  * from/to the shrink list. That is to avoid an unneeded dec/inc
483  * pair when moving from LRU to shrink list in select_collect().
484  *
485  * These helper functions make sure we always follow the
486  * rules. d_lock must be held by the caller.
487  */
488 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
489 static void d_lru_add(struct dentry *dentry)
490 {
491 	D_FLAG_VERIFY(dentry, 0);
492 	dentry->d_flags |= DCACHE_LRU_LIST;
493 	this_cpu_inc(nr_dentry_unused);
494 	if (d_is_negative(dentry))
495 		this_cpu_inc(nr_dentry_negative);
496 	WARN_ON_ONCE(!list_lru_add_obj(
497 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
498 }
499 
500 static void d_lru_del(struct dentry *dentry)
501 {
502 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
503 	dentry->d_flags &= ~DCACHE_LRU_LIST;
504 	this_cpu_dec(nr_dentry_unused);
505 	if (d_is_negative(dentry))
506 		this_cpu_dec(nr_dentry_negative);
507 	WARN_ON_ONCE(!list_lru_del_obj(
508 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
509 }
510 
511 static void d_shrink_del(struct dentry *dentry)
512 {
513 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
514 	list_del_init(&dentry->d_lru);
515 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
516 	this_cpu_dec(nr_dentry_unused);
517 }
518 
519 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
520 {
521 	D_FLAG_VERIFY(dentry, 0);
522 	list_add(&dentry->d_lru, list);
523 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
524 	this_cpu_inc(nr_dentry_unused);
525 }
526 
527 /*
528  * These can only be called under the global LRU lock, ie during the
529  * callback for freeing the LRU list. "isolate" removes it from the
530  * LRU lists entirely, while shrink_move moves it to the indicated
531  * private list.
532  */
533 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
534 {
535 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
536 	dentry->d_flags &= ~DCACHE_LRU_LIST;
537 	this_cpu_dec(nr_dentry_unused);
538 	if (d_is_negative(dentry))
539 		this_cpu_dec(nr_dentry_negative);
540 	list_lru_isolate(lru, &dentry->d_lru);
541 }
542 
543 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
544 			      struct list_head *list)
545 {
546 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
547 	dentry->d_flags |= DCACHE_SHRINK_LIST;
548 	if (d_is_negative(dentry))
549 		this_cpu_dec(nr_dentry_negative);
550 	list_lru_isolate_move(lru, &dentry->d_lru, list);
551 }
552 
553 static void ___d_drop(struct dentry *dentry)
554 {
555 	struct hlist_bl_head *b;
556 	/*
557 	 * Hashed dentries are normally on the dentry hashtable,
558 	 * with the exception of those newly allocated by
559 	 * d_obtain_root, which are always IS_ROOT:
560 	 */
561 	if (unlikely(IS_ROOT(dentry)))
562 		b = &dentry->d_sb->s_roots;
563 	else
564 		b = d_hash(dentry->d_name.hash);
565 
566 	hlist_bl_lock(b);
567 	__hlist_bl_del(&dentry->d_hash);
568 	hlist_bl_unlock(b);
569 }
570 
571 void __d_drop(struct dentry *dentry)
572 {
573 	if (!d_unhashed(dentry)) {
574 		___d_drop(dentry);
575 		dentry->d_hash.pprev = NULL;
576 		write_seqcount_invalidate(&dentry->d_seq);
577 	}
578 }
579 EXPORT_SYMBOL(__d_drop);
580 
581 /**
582  * d_drop - drop a dentry
583  * @dentry: dentry to drop
584  *
585  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
586  * be found through a VFS lookup any more. Note that this is different from
587  * deleting the dentry - d_delete will try to mark the dentry negative if
588  * possible, giving a successful _negative_ lookup, while d_drop will
589  * just make the cache lookup fail.
590  *
591  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
592  * reason (NFS timeouts or autofs deletes).
593  *
594  * __d_drop requires dentry->d_lock
595  *
596  * ___d_drop doesn't mark dentry as "unhashed"
597  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
598  */
599 void d_drop(struct dentry *dentry)
600 {
601 	spin_lock(&dentry->d_lock);
602 	__d_drop(dentry);
603 	spin_unlock(&dentry->d_lock);
604 }
605 EXPORT_SYMBOL(d_drop);
606 
607 static inline void dentry_unlist(struct dentry *dentry)
608 {
609 	struct dentry *next;
610 	/*
611 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
612 	 * attached to the dentry tree
613 	 */
614 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
615 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
616 		return;
617 	__hlist_del(&dentry->d_sib);
618 	/*
619 	 * Cursors can move around the list of children.  While we'd been
620 	 * a normal list member, it didn't matter - ->d_sib.next would've
621 	 * been updated.  However, from now on it won't be and for the
622 	 * things like d_walk() it might end up with a nasty surprise.
623 	 * Normally d_walk() doesn't care about cursors moving around -
624 	 * ->d_lock on parent prevents that and since a cursor has no children
625 	 * of its own, we get through it without ever unlocking the parent.
626 	 * There is one exception, though - if we ascend from a child that
627 	 * gets killed as soon as we unlock it, the next sibling is found
628 	 * using the value left in its ->d_sib.next.  And if _that_
629 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
630 	 * before d_walk() regains parent->d_lock, we'll end up skipping
631 	 * everything the cursor had been moved past.
632 	 *
633 	 * Solution: make sure that the pointer left behind in ->d_sib.next
634 	 * points to something that won't be moving around.  I.e. skip the
635 	 * cursors.
636 	 */
637 	while (dentry->d_sib.next) {
638 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
639 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
640 			break;
641 		dentry->d_sib.next = next->d_sib.next;
642 	}
643 }
644 
645 static struct dentry *__dentry_kill(struct dentry *dentry)
646 {
647 	struct dentry *parent = NULL;
648 	bool can_free = true;
649 
650 	/*
651 	 * The dentry is now unrecoverably dead to the world.
652 	 */
653 	lockref_mark_dead(&dentry->d_lockref);
654 
655 	/*
656 	 * inform the fs via d_prune that this dentry is about to be
657 	 * unhashed and destroyed.
658 	 */
659 	if (dentry->d_flags & DCACHE_OP_PRUNE)
660 		dentry->d_op->d_prune(dentry);
661 
662 	if (dentry->d_flags & DCACHE_LRU_LIST) {
663 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
664 			d_lru_del(dentry);
665 	}
666 	/* if it was on the hash then remove it */
667 	__d_drop(dentry);
668 	if (dentry->d_inode)
669 		dentry_unlink_inode(dentry);
670 	else
671 		spin_unlock(&dentry->d_lock);
672 	this_cpu_dec(nr_dentry);
673 	if (dentry->d_op && dentry->d_op->d_release)
674 		dentry->d_op->d_release(dentry);
675 
676 	cond_resched();
677 	/* now that it's negative, ->d_parent is stable */
678 	if (!IS_ROOT(dentry)) {
679 		parent = dentry->d_parent;
680 		spin_lock(&parent->d_lock);
681 	}
682 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
683 	dentry_unlist(dentry);
684 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
685 		can_free = false;
686 	spin_unlock(&dentry->d_lock);
687 	if (likely(can_free))
688 		dentry_free(dentry);
689 	if (parent && --parent->d_lockref.count) {
690 		spin_unlock(&parent->d_lock);
691 		return NULL;
692 	}
693 	return parent;
694 }
695 
696 /*
697  * Lock a dentry for feeding it to __dentry_kill().
698  * Called under rcu_read_lock() and dentry->d_lock; the former
699  * guarantees that nothing we access will be freed under us.
700  * Note that dentry is *not* protected from concurrent dentry_kill(),
701  * d_delete(), etc.
702  *
703  * Return false if dentry is busy.  Otherwise, return true and have
704  * that dentry's inode locked.
705  */
706 
707 static bool lock_for_kill(struct dentry *dentry)
708 {
709 	struct inode *inode = dentry->d_inode;
710 
711 	if (unlikely(dentry->d_lockref.count))
712 		return false;
713 
714 	if (!inode || likely(spin_trylock(&inode->i_lock)))
715 		return true;
716 
717 	do {
718 		spin_unlock(&dentry->d_lock);
719 		spin_lock(&inode->i_lock);
720 		spin_lock(&dentry->d_lock);
721 		if (likely(inode == dentry->d_inode))
722 			break;
723 		spin_unlock(&inode->i_lock);
724 		inode = dentry->d_inode;
725 	} while (inode);
726 	if (likely(!dentry->d_lockref.count))
727 		return true;
728 	if (inode)
729 		spin_unlock(&inode->i_lock);
730 	return false;
731 }
732 
733 /*
734  * Decide if dentry is worth retaining.  Usually this is called with dentry
735  * locked; if not locked, we are more limited and might not be able to tell
736  * without a lock.  False in this case means "punt to locked path and recheck".
737  *
738  * In case we aren't locked, these predicates are not "stable". However, it is
739  * sufficient that at some point after we dropped the reference the dentry was
740  * hashed and the flags had the proper value. Other dentry users may have
741  * re-gotten a reference to the dentry and change that, but our work is done -
742  * we can leave the dentry around with a zero refcount.
743  */
744 static inline bool retain_dentry(struct dentry *dentry, bool locked)
745 {
746 	unsigned int d_flags;
747 
748 	smp_rmb();
749 	d_flags = READ_ONCE(dentry->d_flags);
750 
751 	// Unreachable? Nobody would be able to look it up, no point retaining
752 	if (unlikely(d_unhashed(dentry)))
753 		return false;
754 
755 	// Same if it's disconnected
756 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
757 		return false;
758 
759 	// ->d_delete() might tell us not to bother, but that requires
760 	// ->d_lock; can't decide without it
761 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
762 		if (!locked || dentry->d_op->d_delete(dentry))
763 			return false;
764 	}
765 
766 	// Explicitly told not to bother
767 	if (unlikely(d_flags & DCACHE_DONTCACHE))
768 		return false;
769 
770 	// At this point it looks like we ought to keep it.  We also might
771 	// need to do something - put it on LRU if it wasn't there already
772 	// and mark it referenced if it was on LRU, but not marked yet.
773 	// Unfortunately, both actions require ->d_lock, so in lockless
774 	// case we'd have to punt rather than doing those.
775 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
776 		if (!locked)
777 			return false;
778 		d_lru_add(dentry);
779 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
780 		if (!locked)
781 			return false;
782 		dentry->d_flags |= DCACHE_REFERENCED;
783 	}
784 	return true;
785 }
786 
787 void d_mark_dontcache(struct inode *inode)
788 {
789 	struct dentry *de;
790 
791 	spin_lock(&inode->i_lock);
792 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
793 		spin_lock(&de->d_lock);
794 		de->d_flags |= DCACHE_DONTCACHE;
795 		spin_unlock(&de->d_lock);
796 	}
797 	inode->i_state |= I_DONTCACHE;
798 	spin_unlock(&inode->i_lock);
799 }
800 EXPORT_SYMBOL(d_mark_dontcache);
801 
802 /*
803  * Try to do a lockless dput(), and return whether that was successful.
804  *
805  * If unsuccessful, we return false, having already taken the dentry lock.
806  * In that case refcount is guaranteed to be zero and we have already
807  * decided that it's not worth keeping around.
808  *
809  * The caller needs to hold the RCU read lock, so that the dentry is
810  * guaranteed to stay around even if the refcount goes down to zero!
811  */
812 static inline bool fast_dput(struct dentry *dentry)
813 {
814 	int ret;
815 
816 	/*
817 	 * try to decrement the lockref optimistically.
818 	 */
819 	ret = lockref_put_return(&dentry->d_lockref);
820 
821 	/*
822 	 * If the lockref_put_return() failed due to the lock being held
823 	 * by somebody else, the fast path has failed. We will need to
824 	 * get the lock, and then check the count again.
825 	 */
826 	if (unlikely(ret < 0)) {
827 		spin_lock(&dentry->d_lock);
828 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
829 			spin_unlock(&dentry->d_lock);
830 			return true;
831 		}
832 		dentry->d_lockref.count--;
833 		goto locked;
834 	}
835 
836 	/*
837 	 * If we weren't the last ref, we're done.
838 	 */
839 	if (ret)
840 		return true;
841 
842 	/*
843 	 * Can we decide that decrement of refcount is all we needed without
844 	 * taking the lock?  There's a very common case when it's all we need -
845 	 * dentry looks like it ought to be retained and there's nothing else
846 	 * to do.
847 	 */
848 	if (retain_dentry(dentry, false))
849 		return true;
850 
851 	/*
852 	 * Either not worth retaining or we can't tell without the lock.
853 	 * Get the lock, then.  We've already decremented the refcount to 0,
854 	 * but we'll need to re-check the situation after getting the lock.
855 	 */
856 	spin_lock(&dentry->d_lock);
857 
858 	/*
859 	 * Did somebody else grab a reference to it in the meantime, and
860 	 * we're no longer the last user after all? Alternatively, somebody
861 	 * else could have killed it and marked it dead. Either way, we
862 	 * don't need to do anything else.
863 	 */
864 locked:
865 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
866 		spin_unlock(&dentry->d_lock);
867 		return true;
868 	}
869 	return false;
870 }
871 
872 
873 /*
874  * This is dput
875  *
876  * This is complicated by the fact that we do not want to put
877  * dentries that are no longer on any hash chain on the unused
878  * list: we'd much rather just get rid of them immediately.
879  *
880  * However, that implies that we have to traverse the dentry
881  * tree upwards to the parents which might _also_ now be
882  * scheduled for deletion (it may have been only waiting for
883  * its last child to go away).
884  *
885  * This tail recursion is done by hand as we don't want to depend
886  * on the compiler to always get this right (gcc generally doesn't).
887  * Real recursion would eat up our stack space.
888  */
889 
890 /*
891  * dput - release a dentry
892  * @dentry: dentry to release
893  *
894  * Release a dentry. This will drop the usage count and if appropriate
895  * call the dentry unlink method as well as removing it from the queues and
896  * releasing its resources. If the parent dentries were scheduled for release
897  * they too may now get deleted.
898  */
899 void dput(struct dentry *dentry)
900 {
901 	if (!dentry)
902 		return;
903 	might_sleep();
904 	rcu_read_lock();
905 	if (likely(fast_dput(dentry))) {
906 		rcu_read_unlock();
907 		return;
908 	}
909 	while (lock_for_kill(dentry)) {
910 		rcu_read_unlock();
911 		dentry = __dentry_kill(dentry);
912 		if (!dentry)
913 			return;
914 		if (retain_dentry(dentry, true)) {
915 			spin_unlock(&dentry->d_lock);
916 			return;
917 		}
918 		rcu_read_lock();
919 	}
920 	rcu_read_unlock();
921 	spin_unlock(&dentry->d_lock);
922 }
923 EXPORT_SYMBOL(dput);
924 
925 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
926 __must_hold(&dentry->d_lock)
927 {
928 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
929 		if (dentry->d_flags & DCACHE_LRU_LIST)
930 			d_lru_del(dentry);
931 		d_shrink_add(dentry, list);
932 	}
933 }
934 
935 void dput_to_list(struct dentry *dentry, struct list_head *list)
936 {
937 	rcu_read_lock();
938 	if (likely(fast_dput(dentry))) {
939 		rcu_read_unlock();
940 		return;
941 	}
942 	rcu_read_unlock();
943 	to_shrink_list(dentry, list);
944 	spin_unlock(&dentry->d_lock);
945 }
946 
947 struct dentry *dget_parent(struct dentry *dentry)
948 {
949 	int gotref;
950 	struct dentry *ret;
951 	unsigned seq;
952 
953 	/*
954 	 * Do optimistic parent lookup without any
955 	 * locking.
956 	 */
957 	rcu_read_lock();
958 	seq = raw_seqcount_begin(&dentry->d_seq);
959 	ret = READ_ONCE(dentry->d_parent);
960 	gotref = lockref_get_not_zero(&ret->d_lockref);
961 	rcu_read_unlock();
962 	if (likely(gotref)) {
963 		if (!read_seqcount_retry(&dentry->d_seq, seq))
964 			return ret;
965 		dput(ret);
966 	}
967 
968 repeat:
969 	/*
970 	 * Don't need rcu_dereference because we re-check it was correct under
971 	 * the lock.
972 	 */
973 	rcu_read_lock();
974 	ret = dentry->d_parent;
975 	spin_lock(&ret->d_lock);
976 	if (unlikely(ret != dentry->d_parent)) {
977 		spin_unlock(&ret->d_lock);
978 		rcu_read_unlock();
979 		goto repeat;
980 	}
981 	rcu_read_unlock();
982 	BUG_ON(!ret->d_lockref.count);
983 	ret->d_lockref.count++;
984 	spin_unlock(&ret->d_lock);
985 	return ret;
986 }
987 EXPORT_SYMBOL(dget_parent);
988 
989 static struct dentry * __d_find_any_alias(struct inode *inode)
990 {
991 	struct dentry *alias;
992 
993 	if (hlist_empty(&inode->i_dentry))
994 		return NULL;
995 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
996 	lockref_get(&alias->d_lockref);
997 	return alias;
998 }
999 
1000 /**
1001  * d_find_any_alias - find any alias for a given inode
1002  * @inode: inode to find an alias for
1003  *
1004  * If any aliases exist for the given inode, take and return a
1005  * reference for one of them.  If no aliases exist, return %NULL.
1006  */
1007 struct dentry *d_find_any_alias(struct inode *inode)
1008 {
1009 	struct dentry *de;
1010 
1011 	spin_lock(&inode->i_lock);
1012 	de = __d_find_any_alias(inode);
1013 	spin_unlock(&inode->i_lock);
1014 	return de;
1015 }
1016 EXPORT_SYMBOL(d_find_any_alias);
1017 
1018 static struct dentry *__d_find_alias(struct inode *inode)
1019 {
1020 	struct dentry *alias;
1021 
1022 	if (S_ISDIR(inode->i_mode))
1023 		return __d_find_any_alias(inode);
1024 
1025 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1026 		spin_lock(&alias->d_lock);
1027  		if (!d_unhashed(alias)) {
1028 			dget_dlock(alias);
1029 			spin_unlock(&alias->d_lock);
1030 			return alias;
1031 		}
1032 		spin_unlock(&alias->d_lock);
1033 	}
1034 	return NULL;
1035 }
1036 
1037 /**
1038  * d_find_alias - grab a hashed alias of inode
1039  * @inode: inode in question
1040  *
1041  * If inode has a hashed alias, or is a directory and has any alias,
1042  * acquire the reference to alias and return it. Otherwise return NULL.
1043  * Notice that if inode is a directory there can be only one alias and
1044  * it can be unhashed only if it has no children, or if it is the root
1045  * of a filesystem, or if the directory was renamed and d_revalidate
1046  * was the first vfs operation to notice.
1047  *
1048  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1049  * any other hashed alias over that one.
1050  */
1051 struct dentry *d_find_alias(struct inode *inode)
1052 {
1053 	struct dentry *de = NULL;
1054 
1055 	if (!hlist_empty(&inode->i_dentry)) {
1056 		spin_lock(&inode->i_lock);
1057 		de = __d_find_alias(inode);
1058 		spin_unlock(&inode->i_lock);
1059 	}
1060 	return de;
1061 }
1062 EXPORT_SYMBOL(d_find_alias);
1063 
1064 /*
1065  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1066  *  that inode won't get freed until rcu_read_unlock().
1067  */
1068 struct dentry *d_find_alias_rcu(struct inode *inode)
1069 {
1070 	struct hlist_head *l = &inode->i_dentry;
1071 	struct dentry *de = NULL;
1072 
1073 	spin_lock(&inode->i_lock);
1074 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1075 	// used without having I_FREEING set, which means no aliases left
1076 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1077 		if (S_ISDIR(inode->i_mode)) {
1078 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1079 		} else {
1080 			hlist_for_each_entry(de, l, d_u.d_alias)
1081 				if (!d_unhashed(de))
1082 					break;
1083 		}
1084 	}
1085 	spin_unlock(&inode->i_lock);
1086 	return de;
1087 }
1088 
1089 /*
1090  *	Try to kill dentries associated with this inode.
1091  * WARNING: you must own a reference to inode.
1092  */
1093 void d_prune_aliases(struct inode *inode)
1094 {
1095 	LIST_HEAD(dispose);
1096 	struct dentry *dentry;
1097 
1098 	spin_lock(&inode->i_lock);
1099 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1100 		spin_lock(&dentry->d_lock);
1101 		if (!dentry->d_lockref.count)
1102 			to_shrink_list(dentry, &dispose);
1103 		spin_unlock(&dentry->d_lock);
1104 	}
1105 	spin_unlock(&inode->i_lock);
1106 	shrink_dentry_list(&dispose);
1107 }
1108 EXPORT_SYMBOL(d_prune_aliases);
1109 
1110 static inline void shrink_kill(struct dentry *victim)
1111 {
1112 	do {
1113 		rcu_read_unlock();
1114 		victim = __dentry_kill(victim);
1115 		rcu_read_lock();
1116 	} while (victim && lock_for_kill(victim));
1117 	rcu_read_unlock();
1118 	if (victim)
1119 		spin_unlock(&victim->d_lock);
1120 }
1121 
1122 void shrink_dentry_list(struct list_head *list)
1123 {
1124 	while (!list_empty(list)) {
1125 		struct dentry *dentry;
1126 
1127 		dentry = list_entry(list->prev, struct dentry, d_lru);
1128 		spin_lock(&dentry->d_lock);
1129 		rcu_read_lock();
1130 		if (!lock_for_kill(dentry)) {
1131 			bool can_free;
1132 			rcu_read_unlock();
1133 			d_shrink_del(dentry);
1134 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1135 			spin_unlock(&dentry->d_lock);
1136 			if (can_free)
1137 				dentry_free(dentry);
1138 			continue;
1139 		}
1140 		d_shrink_del(dentry);
1141 		shrink_kill(dentry);
1142 	}
1143 }
1144 
1145 static enum lru_status dentry_lru_isolate(struct list_head *item,
1146 		struct list_lru_one *lru, void *arg)
1147 {
1148 	struct list_head *freeable = arg;
1149 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1150 
1151 
1152 	/*
1153 	 * we are inverting the lru lock/dentry->d_lock here,
1154 	 * so use a trylock. If we fail to get the lock, just skip
1155 	 * it
1156 	 */
1157 	if (!spin_trylock(&dentry->d_lock))
1158 		return LRU_SKIP;
1159 
1160 	/*
1161 	 * Referenced dentries are still in use. If they have active
1162 	 * counts, just remove them from the LRU. Otherwise give them
1163 	 * another pass through the LRU.
1164 	 */
1165 	if (dentry->d_lockref.count) {
1166 		d_lru_isolate(lru, dentry);
1167 		spin_unlock(&dentry->d_lock);
1168 		return LRU_REMOVED;
1169 	}
1170 
1171 	if (dentry->d_flags & DCACHE_REFERENCED) {
1172 		dentry->d_flags &= ~DCACHE_REFERENCED;
1173 		spin_unlock(&dentry->d_lock);
1174 
1175 		/*
1176 		 * The list move itself will be made by the common LRU code. At
1177 		 * this point, we've dropped the dentry->d_lock but keep the
1178 		 * lru lock. This is safe to do, since every list movement is
1179 		 * protected by the lru lock even if both locks are held.
1180 		 *
1181 		 * This is guaranteed by the fact that all LRU management
1182 		 * functions are intermediated by the LRU API calls like
1183 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1184 		 * only ever occur through this functions or through callbacks
1185 		 * like this one, that are called from the LRU API.
1186 		 *
1187 		 * The only exceptions to this are functions like
1188 		 * shrink_dentry_list, and code that first checks for the
1189 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1190 		 * operating only with stack provided lists after they are
1191 		 * properly isolated from the main list.  It is thus, always a
1192 		 * local access.
1193 		 */
1194 		return LRU_ROTATE;
1195 	}
1196 
1197 	d_lru_shrink_move(lru, dentry, freeable);
1198 	spin_unlock(&dentry->d_lock);
1199 
1200 	return LRU_REMOVED;
1201 }
1202 
1203 /**
1204  * prune_dcache_sb - shrink the dcache
1205  * @sb: superblock
1206  * @sc: shrink control, passed to list_lru_shrink_walk()
1207  *
1208  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1209  * is done when we need more memory and called from the superblock shrinker
1210  * function.
1211  *
1212  * This function may fail to free any resources if all the dentries are in
1213  * use.
1214  */
1215 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1216 {
1217 	LIST_HEAD(dispose);
1218 	long freed;
1219 
1220 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1221 				     dentry_lru_isolate, &dispose);
1222 	shrink_dentry_list(&dispose);
1223 	return freed;
1224 }
1225 
1226 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1227 		struct list_lru_one *lru, void *arg)
1228 {
1229 	struct list_head *freeable = arg;
1230 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1231 
1232 	/*
1233 	 * we are inverting the lru lock/dentry->d_lock here,
1234 	 * so use a trylock. If we fail to get the lock, just skip
1235 	 * it
1236 	 */
1237 	if (!spin_trylock(&dentry->d_lock))
1238 		return LRU_SKIP;
1239 
1240 	d_lru_shrink_move(lru, dentry, freeable);
1241 	spin_unlock(&dentry->d_lock);
1242 
1243 	return LRU_REMOVED;
1244 }
1245 
1246 
1247 /**
1248  * shrink_dcache_sb - shrink dcache for a superblock
1249  * @sb: superblock
1250  *
1251  * Shrink the dcache for the specified super block. This is used to free
1252  * the dcache before unmounting a file system.
1253  */
1254 void shrink_dcache_sb(struct super_block *sb)
1255 {
1256 	do {
1257 		LIST_HEAD(dispose);
1258 
1259 		list_lru_walk(&sb->s_dentry_lru,
1260 			dentry_lru_isolate_shrink, &dispose, 1024);
1261 		shrink_dentry_list(&dispose);
1262 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1263 }
1264 EXPORT_SYMBOL(shrink_dcache_sb);
1265 
1266 /**
1267  * enum d_walk_ret - action to talke during tree walk
1268  * @D_WALK_CONTINUE:	contrinue walk
1269  * @D_WALK_QUIT:	quit walk
1270  * @D_WALK_NORETRY:	quit when retry is needed
1271  * @D_WALK_SKIP:	skip this dentry and its children
1272  */
1273 enum d_walk_ret {
1274 	D_WALK_CONTINUE,
1275 	D_WALK_QUIT,
1276 	D_WALK_NORETRY,
1277 	D_WALK_SKIP,
1278 };
1279 
1280 /**
1281  * d_walk - walk the dentry tree
1282  * @parent:	start of walk
1283  * @data:	data passed to @enter() and @finish()
1284  * @enter:	callback when first entering the dentry
1285  *
1286  * The @enter() callbacks are called with d_lock held.
1287  */
1288 static void d_walk(struct dentry *parent, void *data,
1289 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1290 {
1291 	struct dentry *this_parent, *dentry;
1292 	unsigned seq = 0;
1293 	enum d_walk_ret ret;
1294 	bool retry = true;
1295 
1296 again:
1297 	read_seqbegin_or_lock(&rename_lock, &seq);
1298 	this_parent = parent;
1299 	spin_lock(&this_parent->d_lock);
1300 
1301 	ret = enter(data, this_parent);
1302 	switch (ret) {
1303 	case D_WALK_CONTINUE:
1304 		break;
1305 	case D_WALK_QUIT:
1306 	case D_WALK_SKIP:
1307 		goto out_unlock;
1308 	case D_WALK_NORETRY:
1309 		retry = false;
1310 		break;
1311 	}
1312 repeat:
1313 	dentry = d_first_child(this_parent);
1314 resume:
1315 	hlist_for_each_entry_from(dentry, d_sib) {
1316 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1317 			continue;
1318 
1319 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1320 
1321 		ret = enter(data, dentry);
1322 		switch (ret) {
1323 		case D_WALK_CONTINUE:
1324 			break;
1325 		case D_WALK_QUIT:
1326 			spin_unlock(&dentry->d_lock);
1327 			goto out_unlock;
1328 		case D_WALK_NORETRY:
1329 			retry = false;
1330 			break;
1331 		case D_WALK_SKIP:
1332 			spin_unlock(&dentry->d_lock);
1333 			continue;
1334 		}
1335 
1336 		if (!hlist_empty(&dentry->d_children)) {
1337 			spin_unlock(&this_parent->d_lock);
1338 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1339 			this_parent = dentry;
1340 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1341 			goto repeat;
1342 		}
1343 		spin_unlock(&dentry->d_lock);
1344 	}
1345 	/*
1346 	 * All done at this level ... ascend and resume the search.
1347 	 */
1348 	rcu_read_lock();
1349 ascend:
1350 	if (this_parent != parent) {
1351 		dentry = this_parent;
1352 		this_parent = dentry->d_parent;
1353 
1354 		spin_unlock(&dentry->d_lock);
1355 		spin_lock(&this_parent->d_lock);
1356 
1357 		/* might go back up the wrong parent if we have had a rename. */
1358 		if (need_seqretry(&rename_lock, seq))
1359 			goto rename_retry;
1360 		/* go into the first sibling still alive */
1361 		hlist_for_each_entry_continue(dentry, d_sib) {
1362 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1363 				rcu_read_unlock();
1364 				goto resume;
1365 			}
1366 		}
1367 		goto ascend;
1368 	}
1369 	if (need_seqretry(&rename_lock, seq))
1370 		goto rename_retry;
1371 	rcu_read_unlock();
1372 
1373 out_unlock:
1374 	spin_unlock(&this_parent->d_lock);
1375 	done_seqretry(&rename_lock, seq);
1376 	return;
1377 
1378 rename_retry:
1379 	spin_unlock(&this_parent->d_lock);
1380 	rcu_read_unlock();
1381 	BUG_ON(seq & 1);
1382 	if (!retry)
1383 		return;
1384 	seq = 1;
1385 	goto again;
1386 }
1387 
1388 struct check_mount {
1389 	struct vfsmount *mnt;
1390 	unsigned int mounted;
1391 };
1392 
1393 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1394 {
1395 	struct check_mount *info = data;
1396 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1397 
1398 	if (likely(!d_mountpoint(dentry)))
1399 		return D_WALK_CONTINUE;
1400 	if (__path_is_mountpoint(&path)) {
1401 		info->mounted = 1;
1402 		return D_WALK_QUIT;
1403 	}
1404 	return D_WALK_CONTINUE;
1405 }
1406 
1407 /**
1408  * path_has_submounts - check for mounts over a dentry in the
1409  *                      current namespace.
1410  * @parent: path to check.
1411  *
1412  * Return true if the parent or its subdirectories contain
1413  * a mount point in the current namespace.
1414  */
1415 int path_has_submounts(const struct path *parent)
1416 {
1417 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1418 
1419 	read_seqlock_excl(&mount_lock);
1420 	d_walk(parent->dentry, &data, path_check_mount);
1421 	read_sequnlock_excl(&mount_lock);
1422 
1423 	return data.mounted;
1424 }
1425 EXPORT_SYMBOL(path_has_submounts);
1426 
1427 /*
1428  * Called by mount code to set a mountpoint and check if the mountpoint is
1429  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1430  * subtree can become unreachable).
1431  *
1432  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1433  * this reason take rename_lock and d_lock on dentry and ancestors.
1434  */
1435 int d_set_mounted(struct dentry *dentry)
1436 {
1437 	struct dentry *p;
1438 	int ret = -ENOENT;
1439 	write_seqlock(&rename_lock);
1440 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1441 		/* Need exclusion wrt. d_invalidate() */
1442 		spin_lock(&p->d_lock);
1443 		if (unlikely(d_unhashed(p))) {
1444 			spin_unlock(&p->d_lock);
1445 			goto out;
1446 		}
1447 		spin_unlock(&p->d_lock);
1448 	}
1449 	spin_lock(&dentry->d_lock);
1450 	if (!d_unlinked(dentry)) {
1451 		ret = -EBUSY;
1452 		if (!d_mountpoint(dentry)) {
1453 			dentry->d_flags |= DCACHE_MOUNTED;
1454 			ret = 0;
1455 		}
1456 	}
1457  	spin_unlock(&dentry->d_lock);
1458 out:
1459 	write_sequnlock(&rename_lock);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * Search the dentry child list of the specified parent,
1465  * and move any unused dentries to the end of the unused
1466  * list for prune_dcache(). We descend to the next level
1467  * whenever the d_children list is non-empty and continue
1468  * searching.
1469  *
1470  * It returns zero iff there are no unused children,
1471  * otherwise  it returns the number of children moved to
1472  * the end of the unused list. This may not be the total
1473  * number of unused children, because select_parent can
1474  * drop the lock and return early due to latency
1475  * constraints.
1476  */
1477 
1478 struct select_data {
1479 	struct dentry *start;
1480 	union {
1481 		long found;
1482 		struct dentry *victim;
1483 	};
1484 	struct list_head dispose;
1485 };
1486 
1487 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1488 {
1489 	struct select_data *data = _data;
1490 	enum d_walk_ret ret = D_WALK_CONTINUE;
1491 
1492 	if (data->start == dentry)
1493 		goto out;
1494 
1495 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1496 		data->found++;
1497 	} else if (!dentry->d_lockref.count) {
1498 		to_shrink_list(dentry, &data->dispose);
1499 		data->found++;
1500 	} else if (dentry->d_lockref.count < 0) {
1501 		data->found++;
1502 	}
1503 	/*
1504 	 * We can return to the caller if we have found some (this
1505 	 * ensures forward progress). We'll be coming back to find
1506 	 * the rest.
1507 	 */
1508 	if (!list_empty(&data->dispose))
1509 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1510 out:
1511 	return ret;
1512 }
1513 
1514 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1515 {
1516 	struct select_data *data = _data;
1517 	enum d_walk_ret ret = D_WALK_CONTINUE;
1518 
1519 	if (data->start == dentry)
1520 		goto out;
1521 
1522 	if (!dentry->d_lockref.count) {
1523 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1524 			rcu_read_lock();
1525 			data->victim = dentry;
1526 			return D_WALK_QUIT;
1527 		}
1528 		to_shrink_list(dentry, &data->dispose);
1529 	}
1530 	/*
1531 	 * We can return to the caller if we have found some (this
1532 	 * ensures forward progress). We'll be coming back to find
1533 	 * the rest.
1534 	 */
1535 	if (!list_empty(&data->dispose))
1536 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1537 out:
1538 	return ret;
1539 }
1540 
1541 /**
1542  * shrink_dcache_parent - prune dcache
1543  * @parent: parent of entries to prune
1544  *
1545  * Prune the dcache to remove unused children of the parent dentry.
1546  */
1547 void shrink_dcache_parent(struct dentry *parent)
1548 {
1549 	for (;;) {
1550 		struct select_data data = {.start = parent};
1551 
1552 		INIT_LIST_HEAD(&data.dispose);
1553 		d_walk(parent, &data, select_collect);
1554 
1555 		if (!list_empty(&data.dispose)) {
1556 			shrink_dentry_list(&data.dispose);
1557 			continue;
1558 		}
1559 
1560 		cond_resched();
1561 		if (!data.found)
1562 			break;
1563 		data.victim = NULL;
1564 		d_walk(parent, &data, select_collect2);
1565 		if (data.victim) {
1566 			spin_lock(&data.victim->d_lock);
1567 			if (!lock_for_kill(data.victim)) {
1568 				spin_unlock(&data.victim->d_lock);
1569 				rcu_read_unlock();
1570 			} else {
1571 				shrink_kill(data.victim);
1572 			}
1573 		}
1574 		if (!list_empty(&data.dispose))
1575 			shrink_dentry_list(&data.dispose);
1576 	}
1577 }
1578 EXPORT_SYMBOL(shrink_dcache_parent);
1579 
1580 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1581 {
1582 	/* it has busy descendents; complain about those instead */
1583 	if (!hlist_empty(&dentry->d_children))
1584 		return D_WALK_CONTINUE;
1585 
1586 	/* root with refcount 1 is fine */
1587 	if (dentry == _data && dentry->d_lockref.count == 1)
1588 		return D_WALK_CONTINUE;
1589 
1590 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1591 			" still in use (%d) [unmount of %s %s]\n",
1592 		       dentry,
1593 		       dentry->d_inode ?
1594 		       dentry->d_inode->i_ino : 0UL,
1595 		       dentry,
1596 		       dentry->d_lockref.count,
1597 		       dentry->d_sb->s_type->name,
1598 		       dentry->d_sb->s_id);
1599 	return D_WALK_CONTINUE;
1600 }
1601 
1602 static void do_one_tree(struct dentry *dentry)
1603 {
1604 	shrink_dcache_parent(dentry);
1605 	d_walk(dentry, dentry, umount_check);
1606 	d_drop(dentry);
1607 	dput(dentry);
1608 }
1609 
1610 /*
1611  * destroy the dentries attached to a superblock on unmounting
1612  */
1613 void shrink_dcache_for_umount(struct super_block *sb)
1614 {
1615 	struct dentry *dentry;
1616 
1617 	rwsem_assert_held_write(&sb->s_umount);
1618 
1619 	dentry = sb->s_root;
1620 	sb->s_root = NULL;
1621 	do_one_tree(dentry);
1622 
1623 	while (!hlist_bl_empty(&sb->s_roots)) {
1624 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1625 		do_one_tree(dentry);
1626 	}
1627 }
1628 
1629 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1630 {
1631 	struct dentry **victim = _data;
1632 	if (d_mountpoint(dentry)) {
1633 		*victim = dget_dlock(dentry);
1634 		return D_WALK_QUIT;
1635 	}
1636 	return D_WALK_CONTINUE;
1637 }
1638 
1639 /**
1640  * d_invalidate - detach submounts, prune dcache, and drop
1641  * @dentry: dentry to invalidate (aka detach, prune and drop)
1642  */
1643 void d_invalidate(struct dentry *dentry)
1644 {
1645 	bool had_submounts = false;
1646 	spin_lock(&dentry->d_lock);
1647 	if (d_unhashed(dentry)) {
1648 		spin_unlock(&dentry->d_lock);
1649 		return;
1650 	}
1651 	__d_drop(dentry);
1652 	spin_unlock(&dentry->d_lock);
1653 
1654 	/* Negative dentries can be dropped without further checks */
1655 	if (!dentry->d_inode)
1656 		return;
1657 
1658 	shrink_dcache_parent(dentry);
1659 	for (;;) {
1660 		struct dentry *victim = NULL;
1661 		d_walk(dentry, &victim, find_submount);
1662 		if (!victim) {
1663 			if (had_submounts)
1664 				shrink_dcache_parent(dentry);
1665 			return;
1666 		}
1667 		had_submounts = true;
1668 		detach_mounts(victim);
1669 		dput(victim);
1670 	}
1671 }
1672 EXPORT_SYMBOL(d_invalidate);
1673 
1674 /**
1675  * __d_alloc	-	allocate a dcache entry
1676  * @sb: filesystem it will belong to
1677  * @name: qstr of the name
1678  *
1679  * Allocates a dentry. It returns %NULL if there is insufficient memory
1680  * available. On a success the dentry is returned. The name passed in is
1681  * copied and the copy passed in may be reused after this call.
1682  */
1683 
1684 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1685 {
1686 	struct dentry *dentry;
1687 	char *dname;
1688 	int err;
1689 
1690 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1691 				      GFP_KERNEL);
1692 	if (!dentry)
1693 		return NULL;
1694 
1695 	/*
1696 	 * We guarantee that the inline name is always NUL-terminated.
1697 	 * This way the memcpy() done by the name switching in rename
1698 	 * will still always have a NUL at the end, even if we might
1699 	 * be overwriting an internal NUL character
1700 	 */
1701 	dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1702 	if (unlikely(!name)) {
1703 		name = &slash_name;
1704 		dname = dentry->d_shortname.string;
1705 	} else if (name->len > DNAME_INLINE_LEN-1) {
1706 		size_t size = offsetof(struct external_name, name[1]);
1707 		struct external_name *p = kmalloc(size + name->len,
1708 						  GFP_KERNEL_ACCOUNT |
1709 						  __GFP_RECLAIMABLE);
1710 		if (!p) {
1711 			kmem_cache_free(dentry_cache, dentry);
1712 			return NULL;
1713 		}
1714 		atomic_set(&p->count, 1);
1715 		dname = p->name;
1716 	} else  {
1717 		dname = dentry->d_shortname.string;
1718 	}
1719 
1720 	dentry->d_name.len = name->len;
1721 	dentry->d_name.hash = name->hash;
1722 	memcpy(dname, name->name, name->len);
1723 	dname[name->len] = 0;
1724 
1725 	/* Make sure we always see the terminating NUL character */
1726 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1727 
1728 	dentry->d_flags = 0;
1729 	lockref_init(&dentry->d_lockref);
1730 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1731 	dentry->d_inode = NULL;
1732 	dentry->d_parent = dentry;
1733 	dentry->d_sb = sb;
1734 	dentry->d_op = NULL;
1735 	dentry->d_fsdata = NULL;
1736 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1737 	INIT_LIST_HEAD(&dentry->d_lru);
1738 	INIT_HLIST_HEAD(&dentry->d_children);
1739 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1740 	INIT_HLIST_NODE(&dentry->d_sib);
1741 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1742 
1743 	if (dentry->d_op && dentry->d_op->d_init) {
1744 		err = dentry->d_op->d_init(dentry);
1745 		if (err) {
1746 			if (dname_external(dentry))
1747 				kfree(external_name(dentry));
1748 			kmem_cache_free(dentry_cache, dentry);
1749 			return NULL;
1750 		}
1751 	}
1752 
1753 	this_cpu_inc(nr_dentry);
1754 
1755 	return dentry;
1756 }
1757 
1758 /**
1759  * d_alloc	-	allocate a dcache entry
1760  * @parent: parent of entry to allocate
1761  * @name: qstr of the name
1762  *
1763  * Allocates a dentry. It returns %NULL if there is insufficient memory
1764  * available. On a success the dentry is returned. The name passed in is
1765  * copied and the copy passed in may be reused after this call.
1766  */
1767 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1768 {
1769 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1770 	if (!dentry)
1771 		return NULL;
1772 	spin_lock(&parent->d_lock);
1773 	/*
1774 	 * don't need child lock because it is not subject
1775 	 * to concurrency here
1776 	 */
1777 	dentry->d_parent = dget_dlock(parent);
1778 	hlist_add_head(&dentry->d_sib, &parent->d_children);
1779 	spin_unlock(&parent->d_lock);
1780 
1781 	return dentry;
1782 }
1783 EXPORT_SYMBOL(d_alloc);
1784 
1785 struct dentry *d_alloc_anon(struct super_block *sb)
1786 {
1787 	return __d_alloc(sb, NULL);
1788 }
1789 EXPORT_SYMBOL(d_alloc_anon);
1790 
1791 struct dentry *d_alloc_cursor(struct dentry * parent)
1792 {
1793 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1794 	if (dentry) {
1795 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1796 		dentry->d_parent = dget(parent);
1797 	}
1798 	return dentry;
1799 }
1800 
1801 /**
1802  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1803  * @sb: the superblock
1804  * @name: qstr of the name
1805  *
1806  * For a filesystem that just pins its dentries in memory and never
1807  * performs lookups at all, return an unhashed IS_ROOT dentry.
1808  * This is used for pipes, sockets et.al. - the stuff that should
1809  * never be anyone's children or parents.  Unlike all other
1810  * dentries, these will not have RCU delay between dropping the
1811  * last reference and freeing them.
1812  *
1813  * The only user is alloc_file_pseudo() and that's what should
1814  * be considered a public interface.  Don't use directly.
1815  */
1816 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1817 {
1818 	static const struct dentry_operations anon_ops = {
1819 		.d_dname = simple_dname
1820 	};
1821 	struct dentry *dentry = __d_alloc(sb, name);
1822 	if (likely(dentry)) {
1823 		dentry->d_flags |= DCACHE_NORCU;
1824 		if (!sb->s_d_op)
1825 			d_set_d_op(dentry, &anon_ops);
1826 	}
1827 	return dentry;
1828 }
1829 
1830 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1831 {
1832 	struct qstr q;
1833 
1834 	q.name = name;
1835 	q.hash_len = hashlen_string(parent, name);
1836 	return d_alloc(parent, &q);
1837 }
1838 EXPORT_SYMBOL(d_alloc_name);
1839 
1840 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1841 {
1842 	WARN_ON_ONCE(dentry->d_op);
1843 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1844 				DCACHE_OP_COMPARE	|
1845 				DCACHE_OP_REVALIDATE	|
1846 				DCACHE_OP_WEAK_REVALIDATE	|
1847 				DCACHE_OP_DELETE	|
1848 				DCACHE_OP_REAL));
1849 	dentry->d_op = op;
1850 	if (!op)
1851 		return;
1852 	if (op->d_hash)
1853 		dentry->d_flags |= DCACHE_OP_HASH;
1854 	if (op->d_compare)
1855 		dentry->d_flags |= DCACHE_OP_COMPARE;
1856 	if (op->d_revalidate)
1857 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1858 	if (op->d_weak_revalidate)
1859 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1860 	if (op->d_delete)
1861 		dentry->d_flags |= DCACHE_OP_DELETE;
1862 	if (op->d_prune)
1863 		dentry->d_flags |= DCACHE_OP_PRUNE;
1864 	if (op->d_real)
1865 		dentry->d_flags |= DCACHE_OP_REAL;
1866 
1867 }
1868 EXPORT_SYMBOL(d_set_d_op);
1869 
1870 static unsigned d_flags_for_inode(struct inode *inode)
1871 {
1872 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1873 
1874 	if (!inode)
1875 		return DCACHE_MISS_TYPE;
1876 
1877 	if (S_ISDIR(inode->i_mode)) {
1878 		add_flags = DCACHE_DIRECTORY_TYPE;
1879 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1880 			if (unlikely(!inode->i_op->lookup))
1881 				add_flags = DCACHE_AUTODIR_TYPE;
1882 			else
1883 				inode->i_opflags |= IOP_LOOKUP;
1884 		}
1885 		goto type_determined;
1886 	}
1887 
1888 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1889 		if (unlikely(inode->i_op->get_link)) {
1890 			add_flags = DCACHE_SYMLINK_TYPE;
1891 			goto type_determined;
1892 		}
1893 		inode->i_opflags |= IOP_NOFOLLOW;
1894 	}
1895 
1896 	if (unlikely(!S_ISREG(inode->i_mode)))
1897 		add_flags = DCACHE_SPECIAL_TYPE;
1898 
1899 type_determined:
1900 	if (unlikely(IS_AUTOMOUNT(inode)))
1901 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1902 	return add_flags;
1903 }
1904 
1905 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1906 {
1907 	unsigned add_flags = d_flags_for_inode(inode);
1908 	WARN_ON(d_in_lookup(dentry));
1909 
1910 	spin_lock(&dentry->d_lock);
1911 	/*
1912 	 * The negative counter only tracks dentries on the LRU. Don't dec if
1913 	 * d_lru is on another list.
1914 	 */
1915 	if ((dentry->d_flags &
1916 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1917 		this_cpu_dec(nr_dentry_negative);
1918 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1919 	raw_write_seqcount_begin(&dentry->d_seq);
1920 	__d_set_inode_and_type(dentry, inode, add_flags);
1921 	raw_write_seqcount_end(&dentry->d_seq);
1922 	fsnotify_update_flags(dentry);
1923 	spin_unlock(&dentry->d_lock);
1924 }
1925 
1926 /**
1927  * d_instantiate - fill in inode information for a dentry
1928  * @entry: dentry to complete
1929  * @inode: inode to attach to this dentry
1930  *
1931  * Fill in inode information in the entry.
1932  *
1933  * This turns negative dentries into productive full members
1934  * of society.
1935  *
1936  * NOTE! This assumes that the inode count has been incremented
1937  * (or otherwise set) by the caller to indicate that it is now
1938  * in use by the dcache.
1939  */
1940 
1941 void d_instantiate(struct dentry *entry, struct inode * inode)
1942 {
1943 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1944 	if (inode) {
1945 		security_d_instantiate(entry, inode);
1946 		spin_lock(&inode->i_lock);
1947 		__d_instantiate(entry, inode);
1948 		spin_unlock(&inode->i_lock);
1949 	}
1950 }
1951 EXPORT_SYMBOL(d_instantiate);
1952 
1953 /*
1954  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1955  * with lockdep-related part of unlock_new_inode() done before
1956  * anything else.  Use that instead of open-coding d_instantiate()/
1957  * unlock_new_inode() combinations.
1958  */
1959 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1960 {
1961 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1962 	BUG_ON(!inode);
1963 	lockdep_annotate_inode_mutex_key(inode);
1964 	security_d_instantiate(entry, inode);
1965 	spin_lock(&inode->i_lock);
1966 	__d_instantiate(entry, inode);
1967 	WARN_ON(!(inode->i_state & I_NEW));
1968 	inode->i_state &= ~I_NEW & ~I_CREATING;
1969 	/*
1970 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1971 	 * ___wait_var_event() either sees the bit cleared or
1972 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1973 	 */
1974 	smp_mb();
1975 	inode_wake_up_bit(inode, __I_NEW);
1976 	spin_unlock(&inode->i_lock);
1977 }
1978 EXPORT_SYMBOL(d_instantiate_new);
1979 
1980 struct dentry *d_make_root(struct inode *root_inode)
1981 {
1982 	struct dentry *res = NULL;
1983 
1984 	if (root_inode) {
1985 		res = d_alloc_anon(root_inode->i_sb);
1986 		if (res)
1987 			d_instantiate(res, root_inode);
1988 		else
1989 			iput(root_inode);
1990 	}
1991 	return res;
1992 }
1993 EXPORT_SYMBOL(d_make_root);
1994 
1995 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1996 {
1997 	struct super_block *sb;
1998 	struct dentry *new, *res;
1999 
2000 	if (!inode)
2001 		return ERR_PTR(-ESTALE);
2002 	if (IS_ERR(inode))
2003 		return ERR_CAST(inode);
2004 
2005 	sb = inode->i_sb;
2006 
2007 	res = d_find_any_alias(inode); /* existing alias? */
2008 	if (res)
2009 		goto out;
2010 
2011 	new = d_alloc_anon(sb);
2012 	if (!new) {
2013 		res = ERR_PTR(-ENOMEM);
2014 		goto out;
2015 	}
2016 
2017 	security_d_instantiate(new, inode);
2018 	spin_lock(&inode->i_lock);
2019 	res = __d_find_any_alias(inode); /* recheck under lock */
2020 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2021 		unsigned add_flags = d_flags_for_inode(inode);
2022 
2023 		if (disconnected)
2024 			add_flags |= DCACHE_DISCONNECTED;
2025 
2026 		spin_lock(&new->d_lock);
2027 		__d_set_inode_and_type(new, inode, add_flags);
2028 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2029 		if (!disconnected) {
2030 			hlist_bl_lock(&sb->s_roots);
2031 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2032 			hlist_bl_unlock(&sb->s_roots);
2033 		}
2034 		spin_unlock(&new->d_lock);
2035 		spin_unlock(&inode->i_lock);
2036 		inode = NULL; /* consumed by new->d_inode */
2037 		res = new;
2038 	} else {
2039 		spin_unlock(&inode->i_lock);
2040 		dput(new);
2041 	}
2042 
2043  out:
2044 	iput(inode);
2045 	return res;
2046 }
2047 
2048 /**
2049  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2050  * @inode: inode to allocate the dentry for
2051  *
2052  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2053  * similar open by handle operations.  The returned dentry may be anonymous,
2054  * or may have a full name (if the inode was already in the cache).
2055  *
2056  * When called on a directory inode, we must ensure that the inode only ever
2057  * has one dentry.  If a dentry is found, that is returned instead of
2058  * allocating a new one.
2059  *
2060  * On successful return, the reference to the inode has been transferred
2061  * to the dentry.  In case of an error the reference on the inode is released.
2062  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2063  * be passed in and the error will be propagated to the return value,
2064  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2065  */
2066 struct dentry *d_obtain_alias(struct inode *inode)
2067 {
2068 	return __d_obtain_alias(inode, true);
2069 }
2070 EXPORT_SYMBOL(d_obtain_alias);
2071 
2072 /**
2073  * d_obtain_root - find or allocate a dentry for a given inode
2074  * @inode: inode to allocate the dentry for
2075  *
2076  * Obtain an IS_ROOT dentry for the root of a filesystem.
2077  *
2078  * We must ensure that directory inodes only ever have one dentry.  If a
2079  * dentry is found, that is returned instead of allocating a new one.
2080  *
2081  * On successful return, the reference to the inode has been transferred
2082  * to the dentry.  In case of an error the reference on the inode is
2083  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2084  * error will be propagate to the return value, with a %NULL @inode
2085  * replaced by ERR_PTR(-ESTALE).
2086  */
2087 struct dentry *d_obtain_root(struct inode *inode)
2088 {
2089 	return __d_obtain_alias(inode, false);
2090 }
2091 EXPORT_SYMBOL(d_obtain_root);
2092 
2093 /**
2094  * d_add_ci - lookup or allocate new dentry with case-exact name
2095  * @dentry: the negative dentry that was passed to the parent's lookup func
2096  * @inode:  the inode case-insensitive lookup has found
2097  * @name:   the case-exact name to be associated with the returned dentry
2098  *
2099  * This is to avoid filling the dcache with case-insensitive names to the
2100  * same inode, only the actual correct case is stored in the dcache for
2101  * case-insensitive filesystems.
2102  *
2103  * For a case-insensitive lookup match and if the case-exact dentry
2104  * already exists in the dcache, use it and return it.
2105  *
2106  * If no entry exists with the exact case name, allocate new dentry with
2107  * the exact case, and return the spliced entry.
2108  */
2109 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2110 			struct qstr *name)
2111 {
2112 	struct dentry *found, *res;
2113 
2114 	/*
2115 	 * First check if a dentry matching the name already exists,
2116 	 * if not go ahead and create it now.
2117 	 */
2118 	found = d_hash_and_lookup(dentry->d_parent, name);
2119 	if (found) {
2120 		iput(inode);
2121 		return found;
2122 	}
2123 	if (d_in_lookup(dentry)) {
2124 		found = d_alloc_parallel(dentry->d_parent, name,
2125 					dentry->d_wait);
2126 		if (IS_ERR(found) || !d_in_lookup(found)) {
2127 			iput(inode);
2128 			return found;
2129 		}
2130 	} else {
2131 		found = d_alloc(dentry->d_parent, name);
2132 		if (!found) {
2133 			iput(inode);
2134 			return ERR_PTR(-ENOMEM);
2135 		}
2136 	}
2137 	res = d_splice_alias(inode, found);
2138 	if (res) {
2139 		d_lookup_done(found);
2140 		dput(found);
2141 		return res;
2142 	}
2143 	return found;
2144 }
2145 EXPORT_SYMBOL(d_add_ci);
2146 
2147 /**
2148  * d_same_name - compare dentry name with case-exact name
2149  * @dentry: the negative dentry that was passed to the parent's lookup func
2150  * @parent: parent dentry
2151  * @name:   the case-exact name to be associated with the returned dentry
2152  *
2153  * Return: true if names are same, or false
2154  */
2155 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2156 		 const struct qstr *name)
2157 {
2158 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2159 		if (dentry->d_name.len != name->len)
2160 			return false;
2161 		return dentry_cmp(dentry, name->name, name->len) == 0;
2162 	}
2163 	return parent->d_op->d_compare(dentry,
2164 				       dentry->d_name.len, dentry->d_name.name,
2165 				       name) == 0;
2166 }
2167 EXPORT_SYMBOL_GPL(d_same_name);
2168 
2169 /*
2170  * This is __d_lookup_rcu() when the parent dentry has
2171  * DCACHE_OP_COMPARE, which makes things much nastier.
2172  */
2173 static noinline struct dentry *__d_lookup_rcu_op_compare(
2174 	const struct dentry *parent,
2175 	const struct qstr *name,
2176 	unsigned *seqp)
2177 {
2178 	u64 hashlen = name->hash_len;
2179 	struct hlist_bl_head *b = d_hash(hashlen);
2180 	struct hlist_bl_node *node;
2181 	struct dentry *dentry;
2182 
2183 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2184 		int tlen;
2185 		const char *tname;
2186 		unsigned seq;
2187 
2188 seqretry:
2189 		seq = raw_seqcount_begin(&dentry->d_seq);
2190 		if (dentry->d_parent != parent)
2191 			continue;
2192 		if (d_unhashed(dentry))
2193 			continue;
2194 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2195 			continue;
2196 		tlen = dentry->d_name.len;
2197 		tname = dentry->d_name.name;
2198 		/* we want a consistent (name,len) pair */
2199 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2200 			cpu_relax();
2201 			goto seqretry;
2202 		}
2203 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2204 			continue;
2205 		*seqp = seq;
2206 		return dentry;
2207 	}
2208 	return NULL;
2209 }
2210 
2211 /**
2212  * __d_lookup_rcu - search for a dentry (racy, store-free)
2213  * @parent: parent dentry
2214  * @name: qstr of name we wish to find
2215  * @seqp: returns d_seq value at the point where the dentry was found
2216  * Returns: dentry, or NULL
2217  *
2218  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2219  * resolution (store-free path walking) design described in
2220  * Documentation/filesystems/path-lookup.txt.
2221  *
2222  * This is not to be used outside core vfs.
2223  *
2224  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2225  * held, and rcu_read_lock held. The returned dentry must not be stored into
2226  * without taking d_lock and checking d_seq sequence count against @seq
2227  * returned here.
2228  *
2229  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2230  * the returned dentry, so long as its parent's seqlock is checked after the
2231  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2232  * is formed, giving integrity down the path walk.
2233  *
2234  * NOTE! The caller *has* to check the resulting dentry against the sequence
2235  * number we've returned before using any of the resulting dentry state!
2236  */
2237 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2238 				const struct qstr *name,
2239 				unsigned *seqp)
2240 {
2241 	u64 hashlen = name->hash_len;
2242 	const unsigned char *str = name->name;
2243 	struct hlist_bl_head *b = d_hash(hashlen);
2244 	struct hlist_bl_node *node;
2245 	struct dentry *dentry;
2246 
2247 	/*
2248 	 * Note: There is significant duplication with __d_lookup_rcu which is
2249 	 * required to prevent single threaded performance regressions
2250 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2251 	 * Keep the two functions in sync.
2252 	 */
2253 
2254 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2255 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2256 
2257 	/*
2258 	 * The hash list is protected using RCU.
2259 	 *
2260 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2261 	 * races with d_move().
2262 	 *
2263 	 * It is possible that concurrent renames can mess up our list
2264 	 * walk here and result in missing our dentry, resulting in the
2265 	 * false-negative result. d_lookup() protects against concurrent
2266 	 * renames using rename_lock seqlock.
2267 	 *
2268 	 * See Documentation/filesystems/path-lookup.txt for more details.
2269 	 */
2270 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2271 		unsigned seq;
2272 
2273 		/*
2274 		 * The dentry sequence count protects us from concurrent
2275 		 * renames, and thus protects parent and name fields.
2276 		 *
2277 		 * The caller must perform a seqcount check in order
2278 		 * to do anything useful with the returned dentry.
2279 		 *
2280 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2281 		 * we don't wait for the sequence count to stabilize if it
2282 		 * is in the middle of a sequence change. If we do the slow
2283 		 * dentry compare, we will do seqretries until it is stable,
2284 		 * and if we end up with a successful lookup, we actually
2285 		 * want to exit RCU lookup anyway.
2286 		 *
2287 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2288 		 * we are still guaranteed NUL-termination of ->d_name.name.
2289 		 */
2290 		seq = raw_seqcount_begin(&dentry->d_seq);
2291 		if (dentry->d_parent != parent)
2292 			continue;
2293 		if (d_unhashed(dentry))
2294 			continue;
2295 		if (dentry->d_name.hash_len != hashlen)
2296 			continue;
2297 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2298 			continue;
2299 		*seqp = seq;
2300 		return dentry;
2301 	}
2302 	return NULL;
2303 }
2304 
2305 /**
2306  * d_lookup - search for a dentry
2307  * @parent: parent dentry
2308  * @name: qstr of name we wish to find
2309  * Returns: dentry, or NULL
2310  *
2311  * d_lookup searches the children of the parent dentry for the name in
2312  * question. If the dentry is found its reference count is incremented and the
2313  * dentry is returned. The caller must use dput to free the entry when it has
2314  * finished using it. %NULL is returned if the dentry does not exist.
2315  */
2316 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2317 {
2318 	struct dentry *dentry;
2319 	unsigned seq;
2320 
2321 	do {
2322 		seq = read_seqbegin(&rename_lock);
2323 		dentry = __d_lookup(parent, name);
2324 		if (dentry)
2325 			break;
2326 	} while (read_seqretry(&rename_lock, seq));
2327 	return dentry;
2328 }
2329 EXPORT_SYMBOL(d_lookup);
2330 
2331 /**
2332  * __d_lookup - search for a dentry (racy)
2333  * @parent: parent dentry
2334  * @name: qstr of name we wish to find
2335  * Returns: dentry, or NULL
2336  *
2337  * __d_lookup is like d_lookup, however it may (rarely) return a
2338  * false-negative result due to unrelated rename activity.
2339  *
2340  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2341  * however it must be used carefully, eg. with a following d_lookup in
2342  * the case of failure.
2343  *
2344  * __d_lookup callers must be commented.
2345  */
2346 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2347 {
2348 	unsigned int hash = name->hash;
2349 	struct hlist_bl_head *b = d_hash(hash);
2350 	struct hlist_bl_node *node;
2351 	struct dentry *found = NULL;
2352 	struct dentry *dentry;
2353 
2354 	/*
2355 	 * Note: There is significant duplication with __d_lookup_rcu which is
2356 	 * required to prevent single threaded performance regressions
2357 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2358 	 * Keep the two functions in sync.
2359 	 */
2360 
2361 	/*
2362 	 * The hash list is protected using RCU.
2363 	 *
2364 	 * Take d_lock when comparing a candidate dentry, to avoid races
2365 	 * with d_move().
2366 	 *
2367 	 * It is possible that concurrent renames can mess up our list
2368 	 * walk here and result in missing our dentry, resulting in the
2369 	 * false-negative result. d_lookup() protects against concurrent
2370 	 * renames using rename_lock seqlock.
2371 	 *
2372 	 * See Documentation/filesystems/path-lookup.txt for more details.
2373 	 */
2374 	rcu_read_lock();
2375 
2376 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2377 
2378 		if (dentry->d_name.hash != hash)
2379 			continue;
2380 
2381 		spin_lock(&dentry->d_lock);
2382 		if (dentry->d_parent != parent)
2383 			goto next;
2384 		if (d_unhashed(dentry))
2385 			goto next;
2386 
2387 		if (!d_same_name(dentry, parent, name))
2388 			goto next;
2389 
2390 		dentry->d_lockref.count++;
2391 		found = dentry;
2392 		spin_unlock(&dentry->d_lock);
2393 		break;
2394 next:
2395 		spin_unlock(&dentry->d_lock);
2396  	}
2397  	rcu_read_unlock();
2398 
2399  	return found;
2400 }
2401 
2402 /**
2403  * d_hash_and_lookup - hash the qstr then search for a dentry
2404  * @dir: Directory to search in
2405  * @name: qstr of name we wish to find
2406  *
2407  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2408  */
2409 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2410 {
2411 	/*
2412 	 * Check for a fs-specific hash function. Note that we must
2413 	 * calculate the standard hash first, as the d_op->d_hash()
2414 	 * routine may choose to leave the hash value unchanged.
2415 	 */
2416 	name->hash = full_name_hash(dir, name->name, name->len);
2417 	if (dir->d_flags & DCACHE_OP_HASH) {
2418 		int err = dir->d_op->d_hash(dir, name);
2419 		if (unlikely(err < 0))
2420 			return ERR_PTR(err);
2421 	}
2422 	return d_lookup(dir, name);
2423 }
2424 
2425 /*
2426  * When a file is deleted, we have two options:
2427  * - turn this dentry into a negative dentry
2428  * - unhash this dentry and free it.
2429  *
2430  * Usually, we want to just turn this into
2431  * a negative dentry, but if anybody else is
2432  * currently using the dentry or the inode
2433  * we can't do that and we fall back on removing
2434  * it from the hash queues and waiting for
2435  * it to be deleted later when it has no users
2436  */
2437 
2438 /**
2439  * d_delete - delete a dentry
2440  * @dentry: The dentry to delete
2441  *
2442  * Turn the dentry into a negative dentry if possible, otherwise
2443  * remove it from the hash queues so it can be deleted later
2444  */
2445 
2446 void d_delete(struct dentry * dentry)
2447 {
2448 	struct inode *inode = dentry->d_inode;
2449 
2450 	spin_lock(&inode->i_lock);
2451 	spin_lock(&dentry->d_lock);
2452 	/*
2453 	 * Are we the only user?
2454 	 */
2455 	if (dentry->d_lockref.count == 1) {
2456 		if (dentry_negative_policy)
2457 			__d_drop(dentry);
2458 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2459 		dentry_unlink_inode(dentry);
2460 	} else {
2461 		__d_drop(dentry);
2462 		spin_unlock(&dentry->d_lock);
2463 		spin_unlock(&inode->i_lock);
2464 	}
2465 }
2466 EXPORT_SYMBOL(d_delete);
2467 
2468 static void __d_rehash(struct dentry *entry)
2469 {
2470 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2471 
2472 	hlist_bl_lock(b);
2473 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2474 	hlist_bl_unlock(b);
2475 }
2476 
2477 /**
2478  * d_rehash	- add an entry back to the hash
2479  * @entry: dentry to add to the hash
2480  *
2481  * Adds a dentry to the hash according to its name.
2482  */
2483 
2484 void d_rehash(struct dentry * entry)
2485 {
2486 	spin_lock(&entry->d_lock);
2487 	__d_rehash(entry);
2488 	spin_unlock(&entry->d_lock);
2489 }
2490 EXPORT_SYMBOL(d_rehash);
2491 
2492 static inline unsigned start_dir_add(struct inode *dir)
2493 {
2494 	preempt_disable_nested();
2495 	for (;;) {
2496 		unsigned n = dir->i_dir_seq;
2497 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2498 			return n;
2499 		cpu_relax();
2500 	}
2501 }
2502 
2503 static inline void end_dir_add(struct inode *dir, unsigned int n,
2504 			       wait_queue_head_t *d_wait)
2505 {
2506 	smp_store_release(&dir->i_dir_seq, n + 2);
2507 	preempt_enable_nested();
2508 	if (wq_has_sleeper(d_wait))
2509 		wake_up_all(d_wait);
2510 }
2511 
2512 static void d_wait_lookup(struct dentry *dentry)
2513 {
2514 	if (d_in_lookup(dentry)) {
2515 		DECLARE_WAITQUEUE(wait, current);
2516 		add_wait_queue(dentry->d_wait, &wait);
2517 		do {
2518 			set_current_state(TASK_UNINTERRUPTIBLE);
2519 			spin_unlock(&dentry->d_lock);
2520 			schedule();
2521 			spin_lock(&dentry->d_lock);
2522 		} while (d_in_lookup(dentry));
2523 	}
2524 }
2525 
2526 struct dentry *d_alloc_parallel(struct dentry *parent,
2527 				const struct qstr *name,
2528 				wait_queue_head_t *wq)
2529 {
2530 	unsigned int hash = name->hash;
2531 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2532 	struct hlist_bl_node *node;
2533 	struct dentry *new = d_alloc(parent, name);
2534 	struct dentry *dentry;
2535 	unsigned seq, r_seq, d_seq;
2536 
2537 	if (unlikely(!new))
2538 		return ERR_PTR(-ENOMEM);
2539 
2540 retry:
2541 	rcu_read_lock();
2542 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2543 	r_seq = read_seqbegin(&rename_lock);
2544 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2545 	if (unlikely(dentry)) {
2546 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2547 			rcu_read_unlock();
2548 			goto retry;
2549 		}
2550 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2551 			rcu_read_unlock();
2552 			dput(dentry);
2553 			goto retry;
2554 		}
2555 		rcu_read_unlock();
2556 		dput(new);
2557 		return dentry;
2558 	}
2559 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2560 		rcu_read_unlock();
2561 		goto retry;
2562 	}
2563 
2564 	if (unlikely(seq & 1)) {
2565 		rcu_read_unlock();
2566 		goto retry;
2567 	}
2568 
2569 	hlist_bl_lock(b);
2570 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2571 		hlist_bl_unlock(b);
2572 		rcu_read_unlock();
2573 		goto retry;
2574 	}
2575 	/*
2576 	 * No changes for the parent since the beginning of d_lookup().
2577 	 * Since all removals from the chain happen with hlist_bl_lock(),
2578 	 * any potential in-lookup matches are going to stay here until
2579 	 * we unlock the chain.  All fields are stable in everything
2580 	 * we encounter.
2581 	 */
2582 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2583 		if (dentry->d_name.hash != hash)
2584 			continue;
2585 		if (dentry->d_parent != parent)
2586 			continue;
2587 		if (!d_same_name(dentry, parent, name))
2588 			continue;
2589 		hlist_bl_unlock(b);
2590 		/* now we can try to grab a reference */
2591 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2592 			rcu_read_unlock();
2593 			goto retry;
2594 		}
2595 
2596 		rcu_read_unlock();
2597 		/*
2598 		 * somebody is likely to be still doing lookup for it;
2599 		 * wait for them to finish
2600 		 */
2601 		spin_lock(&dentry->d_lock);
2602 		d_wait_lookup(dentry);
2603 		/*
2604 		 * it's not in-lookup anymore; in principle we should repeat
2605 		 * everything from dcache lookup, but it's likely to be what
2606 		 * d_lookup() would've found anyway.  If it is, just return it;
2607 		 * otherwise we really have to repeat the whole thing.
2608 		 */
2609 		if (unlikely(dentry->d_name.hash != hash))
2610 			goto mismatch;
2611 		if (unlikely(dentry->d_parent != parent))
2612 			goto mismatch;
2613 		if (unlikely(d_unhashed(dentry)))
2614 			goto mismatch;
2615 		if (unlikely(!d_same_name(dentry, parent, name)))
2616 			goto mismatch;
2617 		/* OK, it *is* a hashed match; return it */
2618 		spin_unlock(&dentry->d_lock);
2619 		dput(new);
2620 		return dentry;
2621 	}
2622 	rcu_read_unlock();
2623 	/* we can't take ->d_lock here; it's OK, though. */
2624 	new->d_flags |= DCACHE_PAR_LOOKUP;
2625 	new->d_wait = wq;
2626 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2627 	hlist_bl_unlock(b);
2628 	return new;
2629 mismatch:
2630 	spin_unlock(&dentry->d_lock);
2631 	dput(dentry);
2632 	goto retry;
2633 }
2634 EXPORT_SYMBOL(d_alloc_parallel);
2635 
2636 /*
2637  * - Unhash the dentry
2638  * - Retrieve and clear the waitqueue head in dentry
2639  * - Return the waitqueue head
2640  */
2641 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2642 {
2643 	wait_queue_head_t *d_wait;
2644 	struct hlist_bl_head *b;
2645 
2646 	lockdep_assert_held(&dentry->d_lock);
2647 
2648 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2649 	hlist_bl_lock(b);
2650 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2651 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2652 	d_wait = dentry->d_wait;
2653 	dentry->d_wait = NULL;
2654 	hlist_bl_unlock(b);
2655 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2656 	INIT_LIST_HEAD(&dentry->d_lru);
2657 	return d_wait;
2658 }
2659 
2660 void __d_lookup_unhash_wake(struct dentry *dentry)
2661 {
2662 	spin_lock(&dentry->d_lock);
2663 	wake_up_all(__d_lookup_unhash(dentry));
2664 	spin_unlock(&dentry->d_lock);
2665 }
2666 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2667 
2668 /* inode->i_lock held if inode is non-NULL */
2669 
2670 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2671 {
2672 	wait_queue_head_t *d_wait;
2673 	struct inode *dir = NULL;
2674 	unsigned n;
2675 	spin_lock(&dentry->d_lock);
2676 	if (unlikely(d_in_lookup(dentry))) {
2677 		dir = dentry->d_parent->d_inode;
2678 		n = start_dir_add(dir);
2679 		d_wait = __d_lookup_unhash(dentry);
2680 	}
2681 	if (inode) {
2682 		unsigned add_flags = d_flags_for_inode(inode);
2683 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2684 		raw_write_seqcount_begin(&dentry->d_seq);
2685 		__d_set_inode_and_type(dentry, inode, add_flags);
2686 		raw_write_seqcount_end(&dentry->d_seq);
2687 		fsnotify_update_flags(dentry);
2688 	}
2689 	__d_rehash(dentry);
2690 	if (dir)
2691 		end_dir_add(dir, n, d_wait);
2692 	spin_unlock(&dentry->d_lock);
2693 	if (inode)
2694 		spin_unlock(&inode->i_lock);
2695 }
2696 
2697 /**
2698  * d_add - add dentry to hash queues
2699  * @entry: dentry to add
2700  * @inode: The inode to attach to this dentry
2701  *
2702  * This adds the entry to the hash queues and initializes @inode.
2703  * The entry was actually filled in earlier during d_alloc().
2704  */
2705 
2706 void d_add(struct dentry *entry, struct inode *inode)
2707 {
2708 	if (inode) {
2709 		security_d_instantiate(entry, inode);
2710 		spin_lock(&inode->i_lock);
2711 	}
2712 	__d_add(entry, inode);
2713 }
2714 EXPORT_SYMBOL(d_add);
2715 
2716 static void swap_names(struct dentry *dentry, struct dentry *target)
2717 {
2718 	if (unlikely(dname_external(target))) {
2719 		if (unlikely(dname_external(dentry))) {
2720 			/*
2721 			 * Both external: swap the pointers
2722 			 */
2723 			swap(target->d_name.name, dentry->d_name.name);
2724 		} else {
2725 			/*
2726 			 * dentry:internal, target:external.  Steal target's
2727 			 * storage and make target internal.
2728 			 */
2729 			dentry->d_name.name = target->d_name.name;
2730 			target->d_shortname = dentry->d_shortname;
2731 			target->d_name.name = target->d_shortname.string;
2732 		}
2733 	} else {
2734 		if (unlikely(dname_external(dentry))) {
2735 			/*
2736 			 * dentry:external, target:internal.  Give dentry's
2737 			 * storage to target and make dentry internal
2738 			 */
2739 			target->d_name.name = dentry->d_name.name;
2740 			dentry->d_shortname = target->d_shortname;
2741 			dentry->d_name.name = dentry->d_shortname.string;
2742 		} else {
2743 			/*
2744 			 * Both are internal.
2745 			 */
2746 			for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2747 				swap(dentry->d_shortname.words[i],
2748 				     target->d_shortname.words[i]);
2749 		}
2750 	}
2751 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2752 }
2753 
2754 static void copy_name(struct dentry *dentry, struct dentry *target)
2755 {
2756 	struct external_name *old_name = NULL;
2757 	if (unlikely(dname_external(dentry)))
2758 		old_name = external_name(dentry);
2759 	if (unlikely(dname_external(target))) {
2760 		atomic_inc(&external_name(target)->count);
2761 		dentry->d_name = target->d_name;
2762 	} else {
2763 		dentry->d_shortname = target->d_shortname;
2764 		dentry->d_name.name = dentry->d_shortname.string;
2765 		dentry->d_name.hash_len = target->d_name.hash_len;
2766 	}
2767 	if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2768 		kfree_rcu(old_name, head);
2769 }
2770 
2771 /*
2772  * __d_move - move a dentry
2773  * @dentry: entry to move
2774  * @target: new dentry
2775  * @exchange: exchange the two dentries
2776  *
2777  * Update the dcache to reflect the move of a file name. Negative
2778  * dcache entries should not be moved in this way. Caller must hold
2779  * rename_lock, the i_mutex of the source and target directories,
2780  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2781  */
2782 static void __d_move(struct dentry *dentry, struct dentry *target,
2783 		     bool exchange)
2784 {
2785 	struct dentry *old_parent, *p;
2786 	wait_queue_head_t *d_wait;
2787 	struct inode *dir = NULL;
2788 	unsigned n;
2789 
2790 	WARN_ON(!dentry->d_inode);
2791 	if (WARN_ON(dentry == target))
2792 		return;
2793 
2794 	BUG_ON(d_ancestor(target, dentry));
2795 	old_parent = dentry->d_parent;
2796 	p = d_ancestor(old_parent, target);
2797 	if (IS_ROOT(dentry)) {
2798 		BUG_ON(p);
2799 		spin_lock(&target->d_parent->d_lock);
2800 	} else if (!p) {
2801 		/* target is not a descendent of dentry->d_parent */
2802 		spin_lock(&target->d_parent->d_lock);
2803 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2804 	} else {
2805 		BUG_ON(p == dentry);
2806 		spin_lock(&old_parent->d_lock);
2807 		if (p != target)
2808 			spin_lock_nested(&target->d_parent->d_lock,
2809 					DENTRY_D_LOCK_NESTED);
2810 	}
2811 	spin_lock_nested(&dentry->d_lock, 2);
2812 	spin_lock_nested(&target->d_lock, 3);
2813 
2814 	if (unlikely(d_in_lookup(target))) {
2815 		dir = target->d_parent->d_inode;
2816 		n = start_dir_add(dir);
2817 		d_wait = __d_lookup_unhash(target);
2818 	}
2819 
2820 	write_seqcount_begin(&dentry->d_seq);
2821 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2822 
2823 	/* unhash both */
2824 	if (!d_unhashed(dentry))
2825 		___d_drop(dentry);
2826 	if (!d_unhashed(target))
2827 		___d_drop(target);
2828 
2829 	/* ... and switch them in the tree */
2830 	dentry->d_parent = target->d_parent;
2831 	if (!exchange) {
2832 		copy_name(dentry, target);
2833 		target->d_hash.pprev = NULL;
2834 		dentry->d_parent->d_lockref.count++;
2835 		if (dentry != old_parent) /* wasn't IS_ROOT */
2836 			WARN_ON(!--old_parent->d_lockref.count);
2837 	} else {
2838 		target->d_parent = old_parent;
2839 		swap_names(dentry, target);
2840 		if (!hlist_unhashed(&target->d_sib))
2841 			__hlist_del(&target->d_sib);
2842 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2843 		__d_rehash(target);
2844 		fsnotify_update_flags(target);
2845 	}
2846 	if (!hlist_unhashed(&dentry->d_sib))
2847 		__hlist_del(&dentry->d_sib);
2848 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2849 	__d_rehash(dentry);
2850 	fsnotify_update_flags(dentry);
2851 	fscrypt_handle_d_move(dentry);
2852 
2853 	write_seqcount_end(&target->d_seq);
2854 	write_seqcount_end(&dentry->d_seq);
2855 
2856 	if (dir)
2857 		end_dir_add(dir, n, d_wait);
2858 
2859 	if (dentry->d_parent != old_parent)
2860 		spin_unlock(&dentry->d_parent->d_lock);
2861 	if (dentry != old_parent)
2862 		spin_unlock(&old_parent->d_lock);
2863 	spin_unlock(&target->d_lock);
2864 	spin_unlock(&dentry->d_lock);
2865 }
2866 
2867 /*
2868  * d_move - move a dentry
2869  * @dentry: entry to move
2870  * @target: new dentry
2871  *
2872  * Update the dcache to reflect the move of a file name. Negative
2873  * dcache entries should not be moved in this way. See the locking
2874  * requirements for __d_move.
2875  */
2876 void d_move(struct dentry *dentry, struct dentry *target)
2877 {
2878 	write_seqlock(&rename_lock);
2879 	__d_move(dentry, target, false);
2880 	write_sequnlock(&rename_lock);
2881 }
2882 EXPORT_SYMBOL(d_move);
2883 
2884 /*
2885  * d_exchange - exchange two dentries
2886  * @dentry1: first dentry
2887  * @dentry2: second dentry
2888  */
2889 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2890 {
2891 	write_seqlock(&rename_lock);
2892 
2893 	WARN_ON(!dentry1->d_inode);
2894 	WARN_ON(!dentry2->d_inode);
2895 	WARN_ON(IS_ROOT(dentry1));
2896 	WARN_ON(IS_ROOT(dentry2));
2897 
2898 	__d_move(dentry1, dentry2, true);
2899 
2900 	write_sequnlock(&rename_lock);
2901 }
2902 
2903 /**
2904  * d_ancestor - search for an ancestor
2905  * @p1: ancestor dentry
2906  * @p2: child dentry
2907  *
2908  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2909  * an ancestor of p2, else NULL.
2910  */
2911 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2912 {
2913 	struct dentry *p;
2914 
2915 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2916 		if (p->d_parent == p1)
2917 			return p;
2918 	}
2919 	return NULL;
2920 }
2921 
2922 /*
2923  * This helper attempts to cope with remotely renamed directories
2924  *
2925  * It assumes that the caller is already holding
2926  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2927  *
2928  * Note: If ever the locking in lock_rename() changes, then please
2929  * remember to update this too...
2930  */
2931 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2932 {
2933 	struct mutex *m1 = NULL;
2934 	struct rw_semaphore *m2 = NULL;
2935 	int ret = -ESTALE;
2936 
2937 	/* If alias and dentry share a parent, then no extra locks required */
2938 	if (alias->d_parent == dentry->d_parent)
2939 		goto out_unalias;
2940 
2941 	/* See lock_rename() */
2942 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2943 		goto out_err;
2944 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2945 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2946 		goto out_err;
2947 	m2 = &alias->d_parent->d_inode->i_rwsem;
2948 out_unalias:
2949 	if (alias->d_op && alias->d_op->d_unalias_trylock &&
2950 	    !alias->d_op->d_unalias_trylock(alias))
2951 		goto out_err;
2952 	__d_move(alias, dentry, false);
2953 	if (alias->d_op && alias->d_op->d_unalias_unlock)
2954 		alias->d_op->d_unalias_unlock(alias);
2955 	ret = 0;
2956 out_err:
2957 	if (m2)
2958 		up_read(m2);
2959 	if (m1)
2960 		mutex_unlock(m1);
2961 	return ret;
2962 }
2963 
2964 /**
2965  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2966  * @inode:  the inode which may have a disconnected dentry
2967  * @dentry: a negative dentry which we want to point to the inode.
2968  *
2969  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2970  * place of the given dentry and return it, else simply d_add the inode
2971  * to the dentry and return NULL.
2972  *
2973  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2974  * we should error out: directories can't have multiple aliases.
2975  *
2976  * This is needed in the lookup routine of any filesystem that is exportable
2977  * (via knfsd) so that we can build dcache paths to directories effectively.
2978  *
2979  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2980  * is returned.  This matches the expected return value of ->lookup.
2981  *
2982  * Cluster filesystems may call this function with a negative, hashed dentry.
2983  * In that case, we know that the inode will be a regular file, and also this
2984  * will only occur during atomic_open. So we need to check for the dentry
2985  * being already hashed only in the final case.
2986  */
2987 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2988 {
2989 	if (IS_ERR(inode))
2990 		return ERR_CAST(inode);
2991 
2992 	BUG_ON(!d_unhashed(dentry));
2993 
2994 	if (!inode)
2995 		goto out;
2996 
2997 	security_d_instantiate(dentry, inode);
2998 	spin_lock(&inode->i_lock);
2999 	if (S_ISDIR(inode->i_mode)) {
3000 		struct dentry *new = __d_find_any_alias(inode);
3001 		if (unlikely(new)) {
3002 			/* The reference to new ensures it remains an alias */
3003 			spin_unlock(&inode->i_lock);
3004 			write_seqlock(&rename_lock);
3005 			if (unlikely(d_ancestor(new, dentry))) {
3006 				write_sequnlock(&rename_lock);
3007 				dput(new);
3008 				new = ERR_PTR(-ELOOP);
3009 				pr_warn_ratelimited(
3010 					"VFS: Lookup of '%s' in %s %s"
3011 					" would have caused loop\n",
3012 					dentry->d_name.name,
3013 					inode->i_sb->s_type->name,
3014 					inode->i_sb->s_id);
3015 			} else if (!IS_ROOT(new)) {
3016 				struct dentry *old_parent = dget(new->d_parent);
3017 				int err = __d_unalias(dentry, new);
3018 				write_sequnlock(&rename_lock);
3019 				if (err) {
3020 					dput(new);
3021 					new = ERR_PTR(err);
3022 				}
3023 				dput(old_parent);
3024 			} else {
3025 				__d_move(new, dentry, false);
3026 				write_sequnlock(&rename_lock);
3027 			}
3028 			iput(inode);
3029 			return new;
3030 		}
3031 	}
3032 out:
3033 	__d_add(dentry, inode);
3034 	return NULL;
3035 }
3036 EXPORT_SYMBOL(d_splice_alias);
3037 
3038 /*
3039  * Test whether new_dentry is a subdirectory of old_dentry.
3040  *
3041  * Trivially implemented using the dcache structure
3042  */
3043 
3044 /**
3045  * is_subdir - is new dentry a subdirectory of old_dentry
3046  * @new_dentry: new dentry
3047  * @old_dentry: old dentry
3048  *
3049  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3050  * Returns false otherwise.
3051  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3052  */
3053 
3054 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3055 {
3056 	bool subdir;
3057 	unsigned seq;
3058 
3059 	if (new_dentry == old_dentry)
3060 		return true;
3061 
3062 	/* Access d_parent under rcu as d_move() may change it. */
3063 	rcu_read_lock();
3064 	seq = read_seqbegin(&rename_lock);
3065 	subdir = d_ancestor(old_dentry, new_dentry);
3066 	 /* Try lockless once... */
3067 	if (read_seqretry(&rename_lock, seq)) {
3068 		/* ...else acquire lock for progress even on deep chains. */
3069 		read_seqlock_excl(&rename_lock);
3070 		subdir = d_ancestor(old_dentry, new_dentry);
3071 		read_sequnlock_excl(&rename_lock);
3072 	}
3073 	rcu_read_unlock();
3074 	return subdir;
3075 }
3076 EXPORT_SYMBOL(is_subdir);
3077 
3078 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3079 {
3080 	struct dentry *root = data;
3081 	if (dentry != root) {
3082 		if (d_unhashed(dentry) || !dentry->d_inode)
3083 			return D_WALK_SKIP;
3084 
3085 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3086 			dentry->d_flags |= DCACHE_GENOCIDE;
3087 			dentry->d_lockref.count--;
3088 		}
3089 	}
3090 	return D_WALK_CONTINUE;
3091 }
3092 
3093 void d_genocide(struct dentry *parent)
3094 {
3095 	d_walk(parent, parent, d_genocide_kill);
3096 }
3097 
3098 void d_mark_tmpfile(struct file *file, struct inode *inode)
3099 {
3100 	struct dentry *dentry = file->f_path.dentry;
3101 
3102 	BUG_ON(dname_external(dentry) ||
3103 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3104 		!d_unlinked(dentry));
3105 	spin_lock(&dentry->d_parent->d_lock);
3106 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3107 	dentry->d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3108 				(unsigned long long)inode->i_ino);
3109 	spin_unlock(&dentry->d_lock);
3110 	spin_unlock(&dentry->d_parent->d_lock);
3111 }
3112 EXPORT_SYMBOL(d_mark_tmpfile);
3113 
3114 void d_tmpfile(struct file *file, struct inode *inode)
3115 {
3116 	struct dentry *dentry = file->f_path.dentry;
3117 
3118 	inode_dec_link_count(inode);
3119 	d_mark_tmpfile(file, inode);
3120 	d_instantiate(dentry, inode);
3121 }
3122 EXPORT_SYMBOL(d_tmpfile);
3123 
3124 /*
3125  * Obtain inode number of the parent dentry.
3126  */
3127 ino_t d_parent_ino(struct dentry *dentry)
3128 {
3129 	struct dentry *parent;
3130 	struct inode *iparent;
3131 	unsigned seq;
3132 	ino_t ret;
3133 
3134 	scoped_guard(rcu) {
3135 		seq = raw_seqcount_begin(&dentry->d_seq);
3136 		parent = READ_ONCE(dentry->d_parent);
3137 		iparent = d_inode_rcu(parent);
3138 		if (likely(iparent)) {
3139 			ret = iparent->i_ino;
3140 			if (!read_seqcount_retry(&dentry->d_seq, seq))
3141 				return ret;
3142 		}
3143 	}
3144 
3145 	spin_lock(&dentry->d_lock);
3146 	ret = dentry->d_parent->d_inode->i_ino;
3147 	spin_unlock(&dentry->d_lock);
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL(d_parent_ino);
3151 
3152 static __initdata unsigned long dhash_entries;
3153 static int __init set_dhash_entries(char *str)
3154 {
3155 	if (!str)
3156 		return 0;
3157 	dhash_entries = simple_strtoul(str, &str, 0);
3158 	return 1;
3159 }
3160 __setup("dhash_entries=", set_dhash_entries);
3161 
3162 static void __init dcache_init_early(void)
3163 {
3164 	/* If hashes are distributed across NUMA nodes, defer
3165 	 * hash allocation until vmalloc space is available.
3166 	 */
3167 	if (hashdist)
3168 		return;
3169 
3170 	dentry_hashtable =
3171 		alloc_large_system_hash("Dentry cache",
3172 					sizeof(struct hlist_bl_head),
3173 					dhash_entries,
3174 					13,
3175 					HASH_EARLY | HASH_ZERO,
3176 					&d_hash_shift,
3177 					NULL,
3178 					0,
3179 					0);
3180 	d_hash_shift = 32 - d_hash_shift;
3181 
3182 	runtime_const_init(shift, d_hash_shift);
3183 	runtime_const_init(ptr, dentry_hashtable);
3184 }
3185 
3186 static void __init dcache_init(void)
3187 {
3188 	/*
3189 	 * A constructor could be added for stable state like the lists,
3190 	 * but it is probably not worth it because of the cache nature
3191 	 * of the dcache.
3192 	 */
3193 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3194 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3195 		d_shortname.string);
3196 
3197 	/* Hash may have been set up in dcache_init_early */
3198 	if (!hashdist)
3199 		return;
3200 
3201 	dentry_hashtable =
3202 		alloc_large_system_hash("Dentry cache",
3203 					sizeof(struct hlist_bl_head),
3204 					dhash_entries,
3205 					13,
3206 					HASH_ZERO,
3207 					&d_hash_shift,
3208 					NULL,
3209 					0,
3210 					0);
3211 	d_hash_shift = 32 - d_hash_shift;
3212 
3213 	runtime_const_init(shift, d_hash_shift);
3214 	runtime_const_init(ptr, dentry_hashtable);
3215 }
3216 
3217 /* SLAB cache for __getname() consumers */
3218 struct kmem_cache *names_cachep __ro_after_init;
3219 EXPORT_SYMBOL(names_cachep);
3220 
3221 void __init vfs_caches_init_early(void)
3222 {
3223 	int i;
3224 
3225 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3226 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3227 
3228 	dcache_init_early();
3229 	inode_init_early();
3230 }
3231 
3232 void __init vfs_caches_init(void)
3233 {
3234 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3235 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3236 
3237 	dcache_init();
3238 	inode_init();
3239 	files_init();
3240 	files_maxfiles_init();
3241 	mnt_init();
3242 	bdev_cache_init();
3243 	chrdev_init();
3244 }
3245