1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/config.h> 18 #include <linux/syscalls.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fsnotify.h> 23 #include <linux/slab.h> 24 #include <linux/init.h> 25 #include <linux/smp_lock.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/module.h> 29 #include <linux/mount.h> 30 #include <linux/file.h> 31 #include <asm/uaccess.h> 32 #include <linux/security.h> 33 #include <linux/seqlock.h> 34 #include <linux/swap.h> 35 #include <linux/bootmem.h> 36 37 38 int sysctl_vfs_cache_pressure __read_mostly = 100; 39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 40 41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock); 42 static seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED; 43 44 EXPORT_SYMBOL(dcache_lock); 45 46 static kmem_cache_t *dentry_cache __read_mostly; 47 48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname)) 49 50 /* 51 * This is the single most critical data structure when it comes 52 * to the dcache: the hashtable for lookups. Somebody should try 53 * to make this good - I've just made it work. 54 * 55 * This hash-function tries to avoid losing too many bits of hash 56 * information, yet avoid using a prime hash-size or similar. 57 */ 58 #define D_HASHBITS d_hash_shift 59 #define D_HASHMASK d_hash_mask 60 61 static unsigned int d_hash_mask __read_mostly; 62 static unsigned int d_hash_shift __read_mostly; 63 static struct hlist_head *dentry_hashtable __read_mostly; 64 static LIST_HEAD(dentry_unused); 65 66 /* Statistics gathering. */ 67 struct dentry_stat_t dentry_stat = { 68 .age_limit = 45, 69 }; 70 71 static void d_callback(struct rcu_head *head) 72 { 73 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu); 74 75 if (dname_external(dentry)) 76 kfree(dentry->d_name.name); 77 kmem_cache_free(dentry_cache, dentry); 78 } 79 80 /* 81 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry 82 * inside dcache_lock. 83 */ 84 static void d_free(struct dentry *dentry) 85 { 86 if (dentry->d_op && dentry->d_op->d_release) 87 dentry->d_op->d_release(dentry); 88 call_rcu(&dentry->d_u.d_rcu, d_callback); 89 } 90 91 /* 92 * Release the dentry's inode, using the filesystem 93 * d_iput() operation if defined. 94 * Called with dcache_lock and per dentry lock held, drops both. 95 */ 96 static void dentry_iput(struct dentry * dentry) 97 { 98 struct inode *inode = dentry->d_inode; 99 if (inode) { 100 dentry->d_inode = NULL; 101 list_del_init(&dentry->d_alias); 102 spin_unlock(&dentry->d_lock); 103 spin_unlock(&dcache_lock); 104 if (!inode->i_nlink) 105 fsnotify_inoderemove(inode); 106 if (dentry->d_op && dentry->d_op->d_iput) 107 dentry->d_op->d_iput(dentry, inode); 108 else 109 iput(inode); 110 } else { 111 spin_unlock(&dentry->d_lock); 112 spin_unlock(&dcache_lock); 113 } 114 } 115 116 /* 117 * This is dput 118 * 119 * This is complicated by the fact that we do not want to put 120 * dentries that are no longer on any hash chain on the unused 121 * list: we'd much rather just get rid of them immediately. 122 * 123 * However, that implies that we have to traverse the dentry 124 * tree upwards to the parents which might _also_ now be 125 * scheduled for deletion (it may have been only waiting for 126 * its last child to go away). 127 * 128 * This tail recursion is done by hand as we don't want to depend 129 * on the compiler to always get this right (gcc generally doesn't). 130 * Real recursion would eat up our stack space. 131 */ 132 133 /* 134 * dput - release a dentry 135 * @dentry: dentry to release 136 * 137 * Release a dentry. This will drop the usage count and if appropriate 138 * call the dentry unlink method as well as removing it from the queues and 139 * releasing its resources. If the parent dentries were scheduled for release 140 * they too may now get deleted. 141 * 142 * no dcache lock, please. 143 */ 144 145 void dput(struct dentry *dentry) 146 { 147 if (!dentry) 148 return; 149 150 repeat: 151 if (atomic_read(&dentry->d_count) == 1) 152 might_sleep(); 153 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock)) 154 return; 155 156 spin_lock(&dentry->d_lock); 157 if (atomic_read(&dentry->d_count)) { 158 spin_unlock(&dentry->d_lock); 159 spin_unlock(&dcache_lock); 160 return; 161 } 162 163 /* 164 * AV: ->d_delete() is _NOT_ allowed to block now. 165 */ 166 if (dentry->d_op && dentry->d_op->d_delete) { 167 if (dentry->d_op->d_delete(dentry)) 168 goto unhash_it; 169 } 170 /* Unreachable? Get rid of it */ 171 if (d_unhashed(dentry)) 172 goto kill_it; 173 if (list_empty(&dentry->d_lru)) { 174 dentry->d_flags |= DCACHE_REFERENCED; 175 list_add(&dentry->d_lru, &dentry_unused); 176 dentry_stat.nr_unused++; 177 } 178 spin_unlock(&dentry->d_lock); 179 spin_unlock(&dcache_lock); 180 return; 181 182 unhash_it: 183 __d_drop(dentry); 184 185 kill_it: { 186 struct dentry *parent; 187 188 /* If dentry was on d_lru list 189 * delete it from there 190 */ 191 if (!list_empty(&dentry->d_lru)) { 192 list_del(&dentry->d_lru); 193 dentry_stat.nr_unused--; 194 } 195 list_del(&dentry->d_u.d_child); 196 dentry_stat.nr_dentry--; /* For d_free, below */ 197 /*drops the locks, at that point nobody can reach this dentry */ 198 dentry_iput(dentry); 199 parent = dentry->d_parent; 200 d_free(dentry); 201 if (dentry == parent) 202 return; 203 dentry = parent; 204 goto repeat; 205 } 206 } 207 208 /** 209 * d_invalidate - invalidate a dentry 210 * @dentry: dentry to invalidate 211 * 212 * Try to invalidate the dentry if it turns out to be 213 * possible. If there are other dentries that can be 214 * reached through this one we can't delete it and we 215 * return -EBUSY. On success we return 0. 216 * 217 * no dcache lock. 218 */ 219 220 int d_invalidate(struct dentry * dentry) 221 { 222 /* 223 * If it's already been dropped, return OK. 224 */ 225 spin_lock(&dcache_lock); 226 if (d_unhashed(dentry)) { 227 spin_unlock(&dcache_lock); 228 return 0; 229 } 230 /* 231 * Check whether to do a partial shrink_dcache 232 * to get rid of unused child entries. 233 */ 234 if (!list_empty(&dentry->d_subdirs)) { 235 spin_unlock(&dcache_lock); 236 shrink_dcache_parent(dentry); 237 spin_lock(&dcache_lock); 238 } 239 240 /* 241 * Somebody else still using it? 242 * 243 * If it's a directory, we can't drop it 244 * for fear of somebody re-populating it 245 * with children (even though dropping it 246 * would make it unreachable from the root, 247 * we might still populate it if it was a 248 * working directory or similar). 249 */ 250 spin_lock(&dentry->d_lock); 251 if (atomic_read(&dentry->d_count) > 1) { 252 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { 253 spin_unlock(&dentry->d_lock); 254 spin_unlock(&dcache_lock); 255 return -EBUSY; 256 } 257 } 258 259 __d_drop(dentry); 260 spin_unlock(&dentry->d_lock); 261 spin_unlock(&dcache_lock); 262 return 0; 263 } 264 265 /* This should be called _only_ with dcache_lock held */ 266 267 static inline struct dentry * __dget_locked(struct dentry *dentry) 268 { 269 atomic_inc(&dentry->d_count); 270 if (!list_empty(&dentry->d_lru)) { 271 dentry_stat.nr_unused--; 272 list_del_init(&dentry->d_lru); 273 } 274 return dentry; 275 } 276 277 struct dentry * dget_locked(struct dentry *dentry) 278 { 279 return __dget_locked(dentry); 280 } 281 282 /** 283 * d_find_alias - grab a hashed alias of inode 284 * @inode: inode in question 285 * @want_discon: flag, used by d_splice_alias, to request 286 * that only a DISCONNECTED alias be returned. 287 * 288 * If inode has a hashed alias, or is a directory and has any alias, 289 * acquire the reference to alias and return it. Otherwise return NULL. 290 * Notice that if inode is a directory there can be only one alias and 291 * it can be unhashed only if it has no children, or if it is the root 292 * of a filesystem. 293 * 294 * If the inode has a DCACHE_DISCONNECTED alias, then prefer 295 * any other hashed alias over that one unless @want_discon is set, 296 * in which case only return a DCACHE_DISCONNECTED alias. 297 */ 298 299 static struct dentry * __d_find_alias(struct inode *inode, int want_discon) 300 { 301 struct list_head *head, *next, *tmp; 302 struct dentry *alias, *discon_alias=NULL; 303 304 head = &inode->i_dentry; 305 next = inode->i_dentry.next; 306 while (next != head) { 307 tmp = next; 308 next = tmp->next; 309 prefetch(next); 310 alias = list_entry(tmp, struct dentry, d_alias); 311 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 312 if (alias->d_flags & DCACHE_DISCONNECTED) 313 discon_alias = alias; 314 else if (!want_discon) { 315 __dget_locked(alias); 316 return alias; 317 } 318 } 319 } 320 if (discon_alias) 321 __dget_locked(discon_alias); 322 return discon_alias; 323 } 324 325 struct dentry * d_find_alias(struct inode *inode) 326 { 327 struct dentry *de = NULL; 328 329 if (!list_empty(&inode->i_dentry)) { 330 spin_lock(&dcache_lock); 331 de = __d_find_alias(inode, 0); 332 spin_unlock(&dcache_lock); 333 } 334 return de; 335 } 336 337 /* 338 * Try to kill dentries associated with this inode. 339 * WARNING: you must own a reference to inode. 340 */ 341 void d_prune_aliases(struct inode *inode) 342 { 343 struct dentry *dentry; 344 restart: 345 spin_lock(&dcache_lock); 346 list_for_each_entry(dentry, &inode->i_dentry, d_alias) { 347 spin_lock(&dentry->d_lock); 348 if (!atomic_read(&dentry->d_count)) { 349 __dget_locked(dentry); 350 __d_drop(dentry); 351 spin_unlock(&dentry->d_lock); 352 spin_unlock(&dcache_lock); 353 dput(dentry); 354 goto restart; 355 } 356 spin_unlock(&dentry->d_lock); 357 } 358 spin_unlock(&dcache_lock); 359 } 360 361 /* 362 * Throw away a dentry - free the inode, dput the parent. 363 * This requires that the LRU list has already been 364 * removed. 365 * Called with dcache_lock, drops it and then regains. 366 */ 367 static inline void prune_one_dentry(struct dentry * dentry) 368 { 369 struct dentry * parent; 370 371 __d_drop(dentry); 372 list_del(&dentry->d_u.d_child); 373 dentry_stat.nr_dentry--; /* For d_free, below */ 374 dentry_iput(dentry); 375 parent = dentry->d_parent; 376 d_free(dentry); 377 if (parent != dentry) 378 dput(parent); 379 spin_lock(&dcache_lock); 380 } 381 382 /** 383 * prune_dcache - shrink the dcache 384 * @count: number of entries to try and free 385 * 386 * Shrink the dcache. This is done when we need 387 * more memory, or simply when we need to unmount 388 * something (at which point we need to unuse 389 * all dentries). 390 * 391 * This function may fail to free any resources if 392 * all the dentries are in use. 393 */ 394 395 static void prune_dcache(int count) 396 { 397 spin_lock(&dcache_lock); 398 for (; count ; count--) { 399 struct dentry *dentry; 400 struct list_head *tmp; 401 402 cond_resched_lock(&dcache_lock); 403 404 tmp = dentry_unused.prev; 405 if (tmp == &dentry_unused) 406 break; 407 list_del_init(tmp); 408 prefetch(dentry_unused.prev); 409 dentry_stat.nr_unused--; 410 dentry = list_entry(tmp, struct dentry, d_lru); 411 412 spin_lock(&dentry->d_lock); 413 /* 414 * We found an inuse dentry which was not removed from 415 * dentry_unused because of laziness during lookup. Do not free 416 * it - just keep it off the dentry_unused list. 417 */ 418 if (atomic_read(&dentry->d_count)) { 419 spin_unlock(&dentry->d_lock); 420 continue; 421 } 422 /* If the dentry was recently referenced, don't free it. */ 423 if (dentry->d_flags & DCACHE_REFERENCED) { 424 dentry->d_flags &= ~DCACHE_REFERENCED; 425 list_add(&dentry->d_lru, &dentry_unused); 426 dentry_stat.nr_unused++; 427 spin_unlock(&dentry->d_lock); 428 continue; 429 } 430 prune_one_dentry(dentry); 431 } 432 spin_unlock(&dcache_lock); 433 } 434 435 /* 436 * Shrink the dcache for the specified super block. 437 * This allows us to unmount a device without disturbing 438 * the dcache for the other devices. 439 * 440 * This implementation makes just two traversals of the 441 * unused list. On the first pass we move the selected 442 * dentries to the most recent end, and on the second 443 * pass we free them. The second pass must restart after 444 * each dput(), but since the target dentries are all at 445 * the end, it's really just a single traversal. 446 */ 447 448 /** 449 * shrink_dcache_sb - shrink dcache for a superblock 450 * @sb: superblock 451 * 452 * Shrink the dcache for the specified super block. This 453 * is used to free the dcache before unmounting a file 454 * system 455 */ 456 457 void shrink_dcache_sb(struct super_block * sb) 458 { 459 struct list_head *tmp, *next; 460 struct dentry *dentry; 461 462 /* 463 * Pass one ... move the dentries for the specified 464 * superblock to the most recent end of the unused list. 465 */ 466 spin_lock(&dcache_lock); 467 list_for_each_safe(tmp, next, &dentry_unused) { 468 dentry = list_entry(tmp, struct dentry, d_lru); 469 if (dentry->d_sb != sb) 470 continue; 471 list_del(tmp); 472 list_add(tmp, &dentry_unused); 473 } 474 475 /* 476 * Pass two ... free the dentries for this superblock. 477 */ 478 repeat: 479 list_for_each_safe(tmp, next, &dentry_unused) { 480 dentry = list_entry(tmp, struct dentry, d_lru); 481 if (dentry->d_sb != sb) 482 continue; 483 dentry_stat.nr_unused--; 484 list_del_init(tmp); 485 spin_lock(&dentry->d_lock); 486 if (atomic_read(&dentry->d_count)) { 487 spin_unlock(&dentry->d_lock); 488 continue; 489 } 490 prune_one_dentry(dentry); 491 cond_resched_lock(&dcache_lock); 492 goto repeat; 493 } 494 spin_unlock(&dcache_lock); 495 } 496 497 /* 498 * Search for at least 1 mount point in the dentry's subdirs. 499 * We descend to the next level whenever the d_subdirs 500 * list is non-empty and continue searching. 501 */ 502 503 /** 504 * have_submounts - check for mounts over a dentry 505 * @parent: dentry to check. 506 * 507 * Return true if the parent or its subdirectories contain 508 * a mount point 509 */ 510 511 int have_submounts(struct dentry *parent) 512 { 513 struct dentry *this_parent = parent; 514 struct list_head *next; 515 516 spin_lock(&dcache_lock); 517 if (d_mountpoint(parent)) 518 goto positive; 519 repeat: 520 next = this_parent->d_subdirs.next; 521 resume: 522 while (next != &this_parent->d_subdirs) { 523 struct list_head *tmp = next; 524 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 525 next = tmp->next; 526 /* Have we found a mount point ? */ 527 if (d_mountpoint(dentry)) 528 goto positive; 529 if (!list_empty(&dentry->d_subdirs)) { 530 this_parent = dentry; 531 goto repeat; 532 } 533 } 534 /* 535 * All done at this level ... ascend and resume the search. 536 */ 537 if (this_parent != parent) { 538 next = this_parent->d_u.d_child.next; 539 this_parent = this_parent->d_parent; 540 goto resume; 541 } 542 spin_unlock(&dcache_lock); 543 return 0; /* No mount points found in tree */ 544 positive: 545 spin_unlock(&dcache_lock); 546 return 1; 547 } 548 549 /* 550 * Search the dentry child list for the specified parent, 551 * and move any unused dentries to the end of the unused 552 * list for prune_dcache(). We descend to the next level 553 * whenever the d_subdirs list is non-empty and continue 554 * searching. 555 * 556 * It returns zero iff there are no unused children, 557 * otherwise it returns the number of children moved to 558 * the end of the unused list. This may not be the total 559 * number of unused children, because select_parent can 560 * drop the lock and return early due to latency 561 * constraints. 562 */ 563 static int select_parent(struct dentry * parent) 564 { 565 struct dentry *this_parent = parent; 566 struct list_head *next; 567 int found = 0; 568 569 spin_lock(&dcache_lock); 570 repeat: 571 next = this_parent->d_subdirs.next; 572 resume: 573 while (next != &this_parent->d_subdirs) { 574 struct list_head *tmp = next; 575 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 576 next = tmp->next; 577 578 if (!list_empty(&dentry->d_lru)) { 579 dentry_stat.nr_unused--; 580 list_del_init(&dentry->d_lru); 581 } 582 /* 583 * move only zero ref count dentries to the end 584 * of the unused list for prune_dcache 585 */ 586 if (!atomic_read(&dentry->d_count)) { 587 list_add(&dentry->d_lru, dentry_unused.prev); 588 dentry_stat.nr_unused++; 589 found++; 590 } 591 592 /* 593 * We can return to the caller if we have found some (this 594 * ensures forward progress). We'll be coming back to find 595 * the rest. 596 */ 597 if (found && need_resched()) 598 goto out; 599 600 /* 601 * Descend a level if the d_subdirs list is non-empty. 602 */ 603 if (!list_empty(&dentry->d_subdirs)) { 604 this_parent = dentry; 605 goto repeat; 606 } 607 } 608 /* 609 * All done at this level ... ascend and resume the search. 610 */ 611 if (this_parent != parent) { 612 next = this_parent->d_u.d_child.next; 613 this_parent = this_parent->d_parent; 614 goto resume; 615 } 616 out: 617 spin_unlock(&dcache_lock); 618 return found; 619 } 620 621 /** 622 * shrink_dcache_parent - prune dcache 623 * @parent: parent of entries to prune 624 * 625 * Prune the dcache to remove unused children of the parent dentry. 626 */ 627 628 void shrink_dcache_parent(struct dentry * parent) 629 { 630 int found; 631 632 while ((found = select_parent(parent)) != 0) 633 prune_dcache(found); 634 } 635 636 /** 637 * shrink_dcache_anon - further prune the cache 638 * @head: head of d_hash list of dentries to prune 639 * 640 * Prune the dentries that are anonymous 641 * 642 * parsing d_hash list does not hlist_for_each_entry_rcu() as it 643 * done under dcache_lock. 644 * 645 */ 646 void shrink_dcache_anon(struct hlist_head *head) 647 { 648 struct hlist_node *lp; 649 int found; 650 do { 651 found = 0; 652 spin_lock(&dcache_lock); 653 hlist_for_each(lp, head) { 654 struct dentry *this = hlist_entry(lp, struct dentry, d_hash); 655 if (!list_empty(&this->d_lru)) { 656 dentry_stat.nr_unused--; 657 list_del_init(&this->d_lru); 658 } 659 660 /* 661 * move only zero ref count dentries to the end 662 * of the unused list for prune_dcache 663 */ 664 if (!atomic_read(&this->d_count)) { 665 list_add_tail(&this->d_lru, &dentry_unused); 666 dentry_stat.nr_unused++; 667 found++; 668 } 669 } 670 spin_unlock(&dcache_lock); 671 prune_dcache(found); 672 } while(found); 673 } 674 675 /* 676 * Scan `nr' dentries and return the number which remain. 677 * 678 * We need to avoid reentering the filesystem if the caller is performing a 679 * GFP_NOFS allocation attempt. One example deadlock is: 680 * 681 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> 682 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode-> 683 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK. 684 * 685 * In this case we return -1 to tell the caller that we baled. 686 */ 687 static int shrink_dcache_memory(int nr, gfp_t gfp_mask) 688 { 689 if (nr) { 690 if (!(gfp_mask & __GFP_FS)) 691 return -1; 692 prune_dcache(nr); 693 } 694 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 695 } 696 697 /** 698 * d_alloc - allocate a dcache entry 699 * @parent: parent of entry to allocate 700 * @name: qstr of the name 701 * 702 * Allocates a dentry. It returns %NULL if there is insufficient memory 703 * available. On a success the dentry is returned. The name passed in is 704 * copied and the copy passed in may be reused after this call. 705 */ 706 707 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 708 { 709 struct dentry *dentry; 710 char *dname; 711 712 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 713 if (!dentry) 714 return NULL; 715 716 if (name->len > DNAME_INLINE_LEN-1) { 717 dname = kmalloc(name->len + 1, GFP_KERNEL); 718 if (!dname) { 719 kmem_cache_free(dentry_cache, dentry); 720 return NULL; 721 } 722 } else { 723 dname = dentry->d_iname; 724 } 725 dentry->d_name.name = dname; 726 727 dentry->d_name.len = name->len; 728 dentry->d_name.hash = name->hash; 729 memcpy(dname, name->name, name->len); 730 dname[name->len] = 0; 731 732 atomic_set(&dentry->d_count, 1); 733 dentry->d_flags = DCACHE_UNHASHED; 734 spin_lock_init(&dentry->d_lock); 735 dentry->d_inode = NULL; 736 dentry->d_parent = NULL; 737 dentry->d_sb = NULL; 738 dentry->d_op = NULL; 739 dentry->d_fsdata = NULL; 740 dentry->d_mounted = 0; 741 #ifdef CONFIG_PROFILING 742 dentry->d_cookie = NULL; 743 #endif 744 INIT_HLIST_NODE(&dentry->d_hash); 745 INIT_LIST_HEAD(&dentry->d_lru); 746 INIT_LIST_HEAD(&dentry->d_subdirs); 747 INIT_LIST_HEAD(&dentry->d_alias); 748 749 if (parent) { 750 dentry->d_parent = dget(parent); 751 dentry->d_sb = parent->d_sb; 752 } else { 753 INIT_LIST_HEAD(&dentry->d_u.d_child); 754 } 755 756 spin_lock(&dcache_lock); 757 if (parent) 758 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 759 dentry_stat.nr_dentry++; 760 spin_unlock(&dcache_lock); 761 762 return dentry; 763 } 764 765 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 766 { 767 struct qstr q; 768 769 q.name = name; 770 q.len = strlen(name); 771 q.hash = full_name_hash(q.name, q.len); 772 return d_alloc(parent, &q); 773 } 774 775 /** 776 * d_instantiate - fill in inode information for a dentry 777 * @entry: dentry to complete 778 * @inode: inode to attach to this dentry 779 * 780 * Fill in inode information in the entry. 781 * 782 * This turns negative dentries into productive full members 783 * of society. 784 * 785 * NOTE! This assumes that the inode count has been incremented 786 * (or otherwise set) by the caller to indicate that it is now 787 * in use by the dcache. 788 */ 789 790 void d_instantiate(struct dentry *entry, struct inode * inode) 791 { 792 BUG_ON(!list_empty(&entry->d_alias)); 793 spin_lock(&dcache_lock); 794 if (inode) 795 list_add(&entry->d_alias, &inode->i_dentry); 796 entry->d_inode = inode; 797 fsnotify_d_instantiate(entry, inode); 798 spin_unlock(&dcache_lock); 799 security_d_instantiate(entry, inode); 800 } 801 802 /** 803 * d_instantiate_unique - instantiate a non-aliased dentry 804 * @entry: dentry to instantiate 805 * @inode: inode to attach to this dentry 806 * 807 * Fill in inode information in the entry. On success, it returns NULL. 808 * If an unhashed alias of "entry" already exists, then we return the 809 * aliased dentry instead and drop one reference to inode. 810 * 811 * Note that in order to avoid conflicts with rename() etc, the caller 812 * had better be holding the parent directory semaphore. 813 * 814 * This also assumes that the inode count has been incremented 815 * (or otherwise set) by the caller to indicate that it is now 816 * in use by the dcache. 817 */ 818 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 819 { 820 struct dentry *alias; 821 int len = entry->d_name.len; 822 const char *name = entry->d_name.name; 823 unsigned int hash = entry->d_name.hash; 824 825 BUG_ON(!list_empty(&entry->d_alias)); 826 spin_lock(&dcache_lock); 827 if (!inode) 828 goto do_negative; 829 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 830 struct qstr *qstr = &alias->d_name; 831 832 if (qstr->hash != hash) 833 continue; 834 if (alias->d_parent != entry->d_parent) 835 continue; 836 if (qstr->len != len) 837 continue; 838 if (memcmp(qstr->name, name, len)) 839 continue; 840 dget_locked(alias); 841 spin_unlock(&dcache_lock); 842 BUG_ON(!d_unhashed(alias)); 843 iput(inode); 844 return alias; 845 } 846 list_add(&entry->d_alias, &inode->i_dentry); 847 do_negative: 848 entry->d_inode = inode; 849 fsnotify_d_instantiate(entry, inode); 850 spin_unlock(&dcache_lock); 851 security_d_instantiate(entry, inode); 852 return NULL; 853 } 854 EXPORT_SYMBOL(d_instantiate_unique); 855 856 /** 857 * d_alloc_root - allocate root dentry 858 * @root_inode: inode to allocate the root for 859 * 860 * Allocate a root ("/") dentry for the inode given. The inode is 861 * instantiated and returned. %NULL is returned if there is insufficient 862 * memory or the inode passed is %NULL. 863 */ 864 865 struct dentry * d_alloc_root(struct inode * root_inode) 866 { 867 struct dentry *res = NULL; 868 869 if (root_inode) { 870 static const struct qstr name = { .name = "/", .len = 1 }; 871 872 res = d_alloc(NULL, &name); 873 if (res) { 874 res->d_sb = root_inode->i_sb; 875 res->d_parent = res; 876 d_instantiate(res, root_inode); 877 } 878 } 879 return res; 880 } 881 882 static inline struct hlist_head *d_hash(struct dentry *parent, 883 unsigned long hash) 884 { 885 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES; 886 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS); 887 return dentry_hashtable + (hash & D_HASHMASK); 888 } 889 890 /** 891 * d_alloc_anon - allocate an anonymous dentry 892 * @inode: inode to allocate the dentry for 893 * 894 * This is similar to d_alloc_root. It is used by filesystems when 895 * creating a dentry for a given inode, often in the process of 896 * mapping a filehandle to a dentry. The returned dentry may be 897 * anonymous, or may have a full name (if the inode was already 898 * in the cache). The file system may need to make further 899 * efforts to connect this dentry into the dcache properly. 900 * 901 * When called on a directory inode, we must ensure that 902 * the inode only ever has one dentry. If a dentry is 903 * found, that is returned instead of allocating a new one. 904 * 905 * On successful return, the reference to the inode has been transferred 906 * to the dentry. If %NULL is returned (indicating kmalloc failure), 907 * the reference on the inode has not been released. 908 */ 909 910 struct dentry * d_alloc_anon(struct inode *inode) 911 { 912 static const struct qstr anonstring = { .name = "" }; 913 struct dentry *tmp; 914 struct dentry *res; 915 916 if ((res = d_find_alias(inode))) { 917 iput(inode); 918 return res; 919 } 920 921 tmp = d_alloc(NULL, &anonstring); 922 if (!tmp) 923 return NULL; 924 925 tmp->d_parent = tmp; /* make sure dput doesn't croak */ 926 927 spin_lock(&dcache_lock); 928 res = __d_find_alias(inode, 0); 929 if (!res) { 930 /* attach a disconnected dentry */ 931 res = tmp; 932 tmp = NULL; 933 spin_lock(&res->d_lock); 934 res->d_sb = inode->i_sb; 935 res->d_parent = res; 936 res->d_inode = inode; 937 res->d_flags |= DCACHE_DISCONNECTED; 938 res->d_flags &= ~DCACHE_UNHASHED; 939 list_add(&res->d_alias, &inode->i_dentry); 940 hlist_add_head(&res->d_hash, &inode->i_sb->s_anon); 941 spin_unlock(&res->d_lock); 942 943 inode = NULL; /* don't drop reference */ 944 } 945 spin_unlock(&dcache_lock); 946 947 if (inode) 948 iput(inode); 949 if (tmp) 950 dput(tmp); 951 return res; 952 } 953 954 955 /** 956 * d_splice_alias - splice a disconnected dentry into the tree if one exists 957 * @inode: the inode which may have a disconnected dentry 958 * @dentry: a negative dentry which we want to point to the inode. 959 * 960 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 961 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 962 * and return it, else simply d_add the inode to the dentry and return NULL. 963 * 964 * This is needed in the lookup routine of any filesystem that is exportable 965 * (via knfsd) so that we can build dcache paths to directories effectively. 966 * 967 * If a dentry was found and moved, then it is returned. Otherwise NULL 968 * is returned. This matches the expected return value of ->lookup. 969 * 970 */ 971 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 972 { 973 struct dentry *new = NULL; 974 975 if (inode) { 976 spin_lock(&dcache_lock); 977 new = __d_find_alias(inode, 1); 978 if (new) { 979 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 980 fsnotify_d_instantiate(new, inode); 981 spin_unlock(&dcache_lock); 982 security_d_instantiate(new, inode); 983 d_rehash(dentry); 984 d_move(new, dentry); 985 iput(inode); 986 } else { 987 /* d_instantiate takes dcache_lock, so we do it by hand */ 988 list_add(&dentry->d_alias, &inode->i_dentry); 989 dentry->d_inode = inode; 990 fsnotify_d_instantiate(dentry, inode); 991 spin_unlock(&dcache_lock); 992 security_d_instantiate(dentry, inode); 993 d_rehash(dentry); 994 } 995 } else 996 d_add(dentry, inode); 997 return new; 998 } 999 1000 1001 /** 1002 * d_lookup - search for a dentry 1003 * @parent: parent dentry 1004 * @name: qstr of name we wish to find 1005 * 1006 * Searches the children of the parent dentry for the name in question. If 1007 * the dentry is found its reference count is incremented and the dentry 1008 * is returned. The caller must use d_put to free the entry when it has 1009 * finished using it. %NULL is returned on failure. 1010 * 1011 * __d_lookup is dcache_lock free. The hash list is protected using RCU. 1012 * Memory barriers are used while updating and doing lockless traversal. 1013 * To avoid races with d_move while rename is happening, d_lock is used. 1014 * 1015 * Overflows in memcmp(), while d_move, are avoided by keeping the length 1016 * and name pointer in one structure pointed by d_qstr. 1017 * 1018 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while 1019 * lookup is going on. 1020 * 1021 * dentry_unused list is not updated even if lookup finds the required dentry 1022 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb, 1023 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock 1024 * acquisition. 1025 * 1026 * d_lookup() is protected against the concurrent renames in some unrelated 1027 * directory using the seqlockt_t rename_lock. 1028 */ 1029 1030 struct dentry * d_lookup(struct dentry * parent, struct qstr * name) 1031 { 1032 struct dentry * dentry = NULL; 1033 unsigned long seq; 1034 1035 do { 1036 seq = read_seqbegin(&rename_lock); 1037 dentry = __d_lookup(parent, name); 1038 if (dentry) 1039 break; 1040 } while (read_seqretry(&rename_lock, seq)); 1041 return dentry; 1042 } 1043 1044 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name) 1045 { 1046 unsigned int len = name->len; 1047 unsigned int hash = name->hash; 1048 const unsigned char *str = name->name; 1049 struct hlist_head *head = d_hash(parent,hash); 1050 struct dentry *found = NULL; 1051 struct hlist_node *node; 1052 struct dentry *dentry; 1053 1054 rcu_read_lock(); 1055 1056 hlist_for_each_entry_rcu(dentry, node, head, d_hash) { 1057 struct qstr *qstr; 1058 1059 if (dentry->d_name.hash != hash) 1060 continue; 1061 if (dentry->d_parent != parent) 1062 continue; 1063 1064 spin_lock(&dentry->d_lock); 1065 1066 /* 1067 * Recheck the dentry after taking the lock - d_move may have 1068 * changed things. Don't bother checking the hash because we're 1069 * about to compare the whole name anyway. 1070 */ 1071 if (dentry->d_parent != parent) 1072 goto next; 1073 1074 /* 1075 * It is safe to compare names since d_move() cannot 1076 * change the qstr (protected by d_lock). 1077 */ 1078 qstr = &dentry->d_name; 1079 if (parent->d_op && parent->d_op->d_compare) { 1080 if (parent->d_op->d_compare(parent, qstr, name)) 1081 goto next; 1082 } else { 1083 if (qstr->len != len) 1084 goto next; 1085 if (memcmp(qstr->name, str, len)) 1086 goto next; 1087 } 1088 1089 if (!d_unhashed(dentry)) { 1090 atomic_inc(&dentry->d_count); 1091 found = dentry; 1092 } 1093 spin_unlock(&dentry->d_lock); 1094 break; 1095 next: 1096 spin_unlock(&dentry->d_lock); 1097 } 1098 rcu_read_unlock(); 1099 1100 return found; 1101 } 1102 1103 /** 1104 * d_hash_and_lookup - hash the qstr then search for a dentry 1105 * @dir: Directory to search in 1106 * @name: qstr of name we wish to find 1107 * 1108 * On hash failure or on lookup failure NULL is returned. 1109 */ 1110 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 1111 { 1112 struct dentry *dentry = NULL; 1113 1114 /* 1115 * Check for a fs-specific hash function. Note that we must 1116 * calculate the standard hash first, as the d_op->d_hash() 1117 * routine may choose to leave the hash value unchanged. 1118 */ 1119 name->hash = full_name_hash(name->name, name->len); 1120 if (dir->d_op && dir->d_op->d_hash) { 1121 if (dir->d_op->d_hash(dir, name) < 0) 1122 goto out; 1123 } 1124 dentry = d_lookup(dir, name); 1125 out: 1126 return dentry; 1127 } 1128 1129 /** 1130 * d_validate - verify dentry provided from insecure source 1131 * @dentry: The dentry alleged to be valid child of @dparent 1132 * @dparent: The parent dentry (known to be valid) 1133 * @hash: Hash of the dentry 1134 * @len: Length of the name 1135 * 1136 * An insecure source has sent us a dentry, here we verify it and dget() it. 1137 * This is used by ncpfs in its readdir implementation. 1138 * Zero is returned in the dentry is invalid. 1139 */ 1140 1141 int d_validate(struct dentry *dentry, struct dentry *dparent) 1142 { 1143 struct hlist_head *base; 1144 struct hlist_node *lhp; 1145 1146 /* Check whether the ptr might be valid at all.. */ 1147 if (!kmem_ptr_validate(dentry_cache, dentry)) 1148 goto out; 1149 1150 if (dentry->d_parent != dparent) 1151 goto out; 1152 1153 spin_lock(&dcache_lock); 1154 base = d_hash(dparent, dentry->d_name.hash); 1155 hlist_for_each(lhp,base) { 1156 /* hlist_for_each_entry_rcu() not required for d_hash list 1157 * as it is parsed under dcache_lock 1158 */ 1159 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) { 1160 __dget_locked(dentry); 1161 spin_unlock(&dcache_lock); 1162 return 1; 1163 } 1164 } 1165 spin_unlock(&dcache_lock); 1166 out: 1167 return 0; 1168 } 1169 1170 /* 1171 * When a file is deleted, we have two options: 1172 * - turn this dentry into a negative dentry 1173 * - unhash this dentry and free it. 1174 * 1175 * Usually, we want to just turn this into 1176 * a negative dentry, but if anybody else is 1177 * currently using the dentry or the inode 1178 * we can't do that and we fall back on removing 1179 * it from the hash queues and waiting for 1180 * it to be deleted later when it has no users 1181 */ 1182 1183 /** 1184 * d_delete - delete a dentry 1185 * @dentry: The dentry to delete 1186 * 1187 * Turn the dentry into a negative dentry if possible, otherwise 1188 * remove it from the hash queues so it can be deleted later 1189 */ 1190 1191 void d_delete(struct dentry * dentry) 1192 { 1193 int isdir = 0; 1194 /* 1195 * Are we the only user? 1196 */ 1197 spin_lock(&dcache_lock); 1198 spin_lock(&dentry->d_lock); 1199 isdir = S_ISDIR(dentry->d_inode->i_mode); 1200 if (atomic_read(&dentry->d_count) == 1) { 1201 dentry_iput(dentry); 1202 fsnotify_nameremove(dentry, isdir); 1203 1204 /* remove this and other inotify debug checks after 2.6.18 */ 1205 dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED; 1206 return; 1207 } 1208 1209 if (!d_unhashed(dentry)) 1210 __d_drop(dentry); 1211 1212 spin_unlock(&dentry->d_lock); 1213 spin_unlock(&dcache_lock); 1214 1215 fsnotify_nameremove(dentry, isdir); 1216 } 1217 1218 static void __d_rehash(struct dentry * entry, struct hlist_head *list) 1219 { 1220 1221 entry->d_flags &= ~DCACHE_UNHASHED; 1222 hlist_add_head_rcu(&entry->d_hash, list); 1223 } 1224 1225 /** 1226 * d_rehash - add an entry back to the hash 1227 * @entry: dentry to add to the hash 1228 * 1229 * Adds a dentry to the hash according to its name. 1230 */ 1231 1232 void d_rehash(struct dentry * entry) 1233 { 1234 struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash); 1235 1236 spin_lock(&dcache_lock); 1237 spin_lock(&entry->d_lock); 1238 __d_rehash(entry, list); 1239 spin_unlock(&entry->d_lock); 1240 spin_unlock(&dcache_lock); 1241 } 1242 1243 #define do_switch(x,y) do { \ 1244 __typeof__ (x) __tmp = x; \ 1245 x = y; y = __tmp; } while (0) 1246 1247 /* 1248 * When switching names, the actual string doesn't strictly have to 1249 * be preserved in the target - because we're dropping the target 1250 * anyway. As such, we can just do a simple memcpy() to copy over 1251 * the new name before we switch. 1252 * 1253 * Note that we have to be a lot more careful about getting the hash 1254 * switched - we have to switch the hash value properly even if it 1255 * then no longer matches the actual (corrupted) string of the target. 1256 * The hash value has to match the hash queue that the dentry is on.. 1257 */ 1258 static void switch_names(struct dentry *dentry, struct dentry *target) 1259 { 1260 if (dname_external(target)) { 1261 if (dname_external(dentry)) { 1262 /* 1263 * Both external: swap the pointers 1264 */ 1265 do_switch(target->d_name.name, dentry->d_name.name); 1266 } else { 1267 /* 1268 * dentry:internal, target:external. Steal target's 1269 * storage and make target internal. 1270 */ 1271 dentry->d_name.name = target->d_name.name; 1272 target->d_name.name = target->d_iname; 1273 } 1274 } else { 1275 if (dname_external(dentry)) { 1276 /* 1277 * dentry:external, target:internal. Give dentry's 1278 * storage to target and make dentry internal 1279 */ 1280 memcpy(dentry->d_iname, target->d_name.name, 1281 target->d_name.len + 1); 1282 target->d_name.name = dentry->d_name.name; 1283 dentry->d_name.name = dentry->d_iname; 1284 } else { 1285 /* 1286 * Both are internal. Just copy target to dentry 1287 */ 1288 memcpy(dentry->d_iname, target->d_name.name, 1289 target->d_name.len + 1); 1290 } 1291 } 1292 } 1293 1294 /* 1295 * We cannibalize "target" when moving dentry on top of it, 1296 * because it's going to be thrown away anyway. We could be more 1297 * polite about it, though. 1298 * 1299 * This forceful removal will result in ugly /proc output if 1300 * somebody holds a file open that got deleted due to a rename. 1301 * We could be nicer about the deleted file, and let it show 1302 * up under the name it got deleted rather than the name that 1303 * deleted it. 1304 */ 1305 1306 /** 1307 * d_move - move a dentry 1308 * @dentry: entry to move 1309 * @target: new dentry 1310 * 1311 * Update the dcache to reflect the move of a file name. Negative 1312 * dcache entries should not be moved in this way. 1313 */ 1314 1315 void d_move(struct dentry * dentry, struct dentry * target) 1316 { 1317 struct hlist_head *list; 1318 1319 if (!dentry->d_inode) 1320 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 1321 1322 spin_lock(&dcache_lock); 1323 write_seqlock(&rename_lock); 1324 /* 1325 * XXXX: do we really need to take target->d_lock? 1326 */ 1327 if (target < dentry) { 1328 spin_lock(&target->d_lock); 1329 spin_lock(&dentry->d_lock); 1330 } else { 1331 spin_lock(&dentry->d_lock); 1332 spin_lock(&target->d_lock); 1333 } 1334 1335 /* Move the dentry to the target hash queue, if on different bucket */ 1336 if (dentry->d_flags & DCACHE_UNHASHED) 1337 goto already_unhashed; 1338 1339 hlist_del_rcu(&dentry->d_hash); 1340 1341 already_unhashed: 1342 list = d_hash(target->d_parent, target->d_name.hash); 1343 __d_rehash(dentry, list); 1344 1345 /* Unhash the target: dput() will then get rid of it */ 1346 __d_drop(target); 1347 1348 list_del(&dentry->d_u.d_child); 1349 list_del(&target->d_u.d_child); 1350 1351 /* Switch the names.. */ 1352 switch_names(dentry, target); 1353 do_switch(dentry->d_name.len, target->d_name.len); 1354 do_switch(dentry->d_name.hash, target->d_name.hash); 1355 1356 /* ... and switch the parents */ 1357 if (IS_ROOT(dentry)) { 1358 dentry->d_parent = target->d_parent; 1359 target->d_parent = target; 1360 INIT_LIST_HEAD(&target->d_u.d_child); 1361 } else { 1362 do_switch(dentry->d_parent, target->d_parent); 1363 1364 /* And add them back to the (new) parent lists */ 1365 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 1366 } 1367 1368 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 1369 spin_unlock(&target->d_lock); 1370 fsnotify_d_move(dentry); 1371 spin_unlock(&dentry->d_lock); 1372 write_sequnlock(&rename_lock); 1373 spin_unlock(&dcache_lock); 1374 } 1375 1376 /** 1377 * d_path - return the path of a dentry 1378 * @dentry: dentry to report 1379 * @vfsmnt: vfsmnt to which the dentry belongs 1380 * @root: root dentry 1381 * @rootmnt: vfsmnt to which the root dentry belongs 1382 * @buffer: buffer to return value in 1383 * @buflen: buffer length 1384 * 1385 * Convert a dentry into an ASCII path name. If the entry has been deleted 1386 * the string " (deleted)" is appended. Note that this is ambiguous. 1387 * 1388 * Returns the buffer or an error code if the path was too long. 1389 * 1390 * "buflen" should be positive. Caller holds the dcache_lock. 1391 */ 1392 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt, 1393 struct dentry *root, struct vfsmount *rootmnt, 1394 char *buffer, int buflen) 1395 { 1396 char * end = buffer+buflen; 1397 char * retval; 1398 int namelen; 1399 1400 *--end = '\0'; 1401 buflen--; 1402 if (!IS_ROOT(dentry) && d_unhashed(dentry)) { 1403 buflen -= 10; 1404 end -= 10; 1405 if (buflen < 0) 1406 goto Elong; 1407 memcpy(end, " (deleted)", 10); 1408 } 1409 1410 if (buflen < 1) 1411 goto Elong; 1412 /* Get '/' right */ 1413 retval = end-1; 1414 *retval = '/'; 1415 1416 for (;;) { 1417 struct dentry * parent; 1418 1419 if (dentry == root && vfsmnt == rootmnt) 1420 break; 1421 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 1422 /* Global root? */ 1423 spin_lock(&vfsmount_lock); 1424 if (vfsmnt->mnt_parent == vfsmnt) { 1425 spin_unlock(&vfsmount_lock); 1426 goto global_root; 1427 } 1428 dentry = vfsmnt->mnt_mountpoint; 1429 vfsmnt = vfsmnt->mnt_parent; 1430 spin_unlock(&vfsmount_lock); 1431 continue; 1432 } 1433 parent = dentry->d_parent; 1434 prefetch(parent); 1435 namelen = dentry->d_name.len; 1436 buflen -= namelen + 1; 1437 if (buflen < 0) 1438 goto Elong; 1439 end -= namelen; 1440 memcpy(end, dentry->d_name.name, namelen); 1441 *--end = '/'; 1442 retval = end; 1443 dentry = parent; 1444 } 1445 1446 return retval; 1447 1448 global_root: 1449 namelen = dentry->d_name.len; 1450 buflen -= namelen; 1451 if (buflen < 0) 1452 goto Elong; 1453 retval -= namelen-1; /* hit the slash */ 1454 memcpy(retval, dentry->d_name.name, namelen); 1455 return retval; 1456 Elong: 1457 return ERR_PTR(-ENAMETOOLONG); 1458 } 1459 1460 /* write full pathname into buffer and return start of pathname */ 1461 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt, 1462 char *buf, int buflen) 1463 { 1464 char *res; 1465 struct vfsmount *rootmnt; 1466 struct dentry *root; 1467 1468 read_lock(¤t->fs->lock); 1469 rootmnt = mntget(current->fs->rootmnt); 1470 root = dget(current->fs->root); 1471 read_unlock(¤t->fs->lock); 1472 spin_lock(&dcache_lock); 1473 res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen); 1474 spin_unlock(&dcache_lock); 1475 dput(root); 1476 mntput(rootmnt); 1477 return res; 1478 } 1479 1480 /* 1481 * NOTE! The user-level library version returns a 1482 * character pointer. The kernel system call just 1483 * returns the length of the buffer filled (which 1484 * includes the ending '\0' character), or a negative 1485 * error value. So libc would do something like 1486 * 1487 * char *getcwd(char * buf, size_t size) 1488 * { 1489 * int retval; 1490 * 1491 * retval = sys_getcwd(buf, size); 1492 * if (retval >= 0) 1493 * return buf; 1494 * errno = -retval; 1495 * return NULL; 1496 * } 1497 */ 1498 asmlinkage long sys_getcwd(char __user *buf, unsigned long size) 1499 { 1500 int error; 1501 struct vfsmount *pwdmnt, *rootmnt; 1502 struct dentry *pwd, *root; 1503 char *page = (char *) __get_free_page(GFP_USER); 1504 1505 if (!page) 1506 return -ENOMEM; 1507 1508 read_lock(¤t->fs->lock); 1509 pwdmnt = mntget(current->fs->pwdmnt); 1510 pwd = dget(current->fs->pwd); 1511 rootmnt = mntget(current->fs->rootmnt); 1512 root = dget(current->fs->root); 1513 read_unlock(¤t->fs->lock); 1514 1515 error = -ENOENT; 1516 /* Has the current directory has been unlinked? */ 1517 spin_lock(&dcache_lock); 1518 if (pwd->d_parent == pwd || !d_unhashed(pwd)) { 1519 unsigned long len; 1520 char * cwd; 1521 1522 cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE); 1523 spin_unlock(&dcache_lock); 1524 1525 error = PTR_ERR(cwd); 1526 if (IS_ERR(cwd)) 1527 goto out; 1528 1529 error = -ERANGE; 1530 len = PAGE_SIZE + page - cwd; 1531 if (len <= size) { 1532 error = len; 1533 if (copy_to_user(buf, cwd, len)) 1534 error = -EFAULT; 1535 } 1536 } else 1537 spin_unlock(&dcache_lock); 1538 1539 out: 1540 dput(pwd); 1541 mntput(pwdmnt); 1542 dput(root); 1543 mntput(rootmnt); 1544 free_page((unsigned long) page); 1545 return error; 1546 } 1547 1548 /* 1549 * Test whether new_dentry is a subdirectory of old_dentry. 1550 * 1551 * Trivially implemented using the dcache structure 1552 */ 1553 1554 /** 1555 * is_subdir - is new dentry a subdirectory of old_dentry 1556 * @new_dentry: new dentry 1557 * @old_dentry: old dentry 1558 * 1559 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 1560 * Returns 0 otherwise. 1561 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 1562 */ 1563 1564 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry) 1565 { 1566 int result; 1567 struct dentry * saved = new_dentry; 1568 unsigned long seq; 1569 1570 /* need rcu_readlock to protect against the d_parent trashing due to 1571 * d_move 1572 */ 1573 rcu_read_lock(); 1574 do { 1575 /* for restarting inner loop in case of seq retry */ 1576 new_dentry = saved; 1577 result = 0; 1578 seq = read_seqbegin(&rename_lock); 1579 for (;;) { 1580 if (new_dentry != old_dentry) { 1581 struct dentry * parent = new_dentry->d_parent; 1582 if (parent == new_dentry) 1583 break; 1584 new_dentry = parent; 1585 continue; 1586 } 1587 result = 1; 1588 break; 1589 } 1590 } while (read_seqretry(&rename_lock, seq)); 1591 rcu_read_unlock(); 1592 1593 return result; 1594 } 1595 1596 void d_genocide(struct dentry *root) 1597 { 1598 struct dentry *this_parent = root; 1599 struct list_head *next; 1600 1601 spin_lock(&dcache_lock); 1602 repeat: 1603 next = this_parent->d_subdirs.next; 1604 resume: 1605 while (next != &this_parent->d_subdirs) { 1606 struct list_head *tmp = next; 1607 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1608 next = tmp->next; 1609 if (d_unhashed(dentry)||!dentry->d_inode) 1610 continue; 1611 if (!list_empty(&dentry->d_subdirs)) { 1612 this_parent = dentry; 1613 goto repeat; 1614 } 1615 atomic_dec(&dentry->d_count); 1616 } 1617 if (this_parent != root) { 1618 next = this_parent->d_u.d_child.next; 1619 atomic_dec(&this_parent->d_count); 1620 this_parent = this_parent->d_parent; 1621 goto resume; 1622 } 1623 spin_unlock(&dcache_lock); 1624 } 1625 1626 /** 1627 * find_inode_number - check for dentry with name 1628 * @dir: directory to check 1629 * @name: Name to find. 1630 * 1631 * Check whether a dentry already exists for the given name, 1632 * and return the inode number if it has an inode. Otherwise 1633 * 0 is returned. 1634 * 1635 * This routine is used to post-process directory listings for 1636 * filesystems using synthetic inode numbers, and is necessary 1637 * to keep getcwd() working. 1638 */ 1639 1640 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 1641 { 1642 struct dentry * dentry; 1643 ino_t ino = 0; 1644 1645 dentry = d_hash_and_lookup(dir, name); 1646 if (dentry) { 1647 if (dentry->d_inode) 1648 ino = dentry->d_inode->i_ino; 1649 dput(dentry); 1650 } 1651 return ino; 1652 } 1653 1654 static __initdata unsigned long dhash_entries; 1655 static int __init set_dhash_entries(char *str) 1656 { 1657 if (!str) 1658 return 0; 1659 dhash_entries = simple_strtoul(str, &str, 0); 1660 return 1; 1661 } 1662 __setup("dhash_entries=", set_dhash_entries); 1663 1664 static void __init dcache_init_early(void) 1665 { 1666 int loop; 1667 1668 /* If hashes are distributed across NUMA nodes, defer 1669 * hash allocation until vmalloc space is available. 1670 */ 1671 if (hashdist) 1672 return; 1673 1674 dentry_hashtable = 1675 alloc_large_system_hash("Dentry cache", 1676 sizeof(struct hlist_head), 1677 dhash_entries, 1678 13, 1679 HASH_EARLY, 1680 &d_hash_shift, 1681 &d_hash_mask, 1682 0); 1683 1684 for (loop = 0; loop < (1 << d_hash_shift); loop++) 1685 INIT_HLIST_HEAD(&dentry_hashtable[loop]); 1686 } 1687 1688 static void __init dcache_init(unsigned long mempages) 1689 { 1690 int loop; 1691 1692 /* 1693 * A constructor could be added for stable state like the lists, 1694 * but it is probably not worth it because of the cache nature 1695 * of the dcache. 1696 */ 1697 dentry_cache = kmem_cache_create("dentry_cache", 1698 sizeof(struct dentry), 1699 0, 1700 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1701 SLAB_MEM_SPREAD), 1702 NULL, NULL); 1703 1704 set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory); 1705 1706 /* Hash may have been set up in dcache_init_early */ 1707 if (!hashdist) 1708 return; 1709 1710 dentry_hashtable = 1711 alloc_large_system_hash("Dentry cache", 1712 sizeof(struct hlist_head), 1713 dhash_entries, 1714 13, 1715 0, 1716 &d_hash_shift, 1717 &d_hash_mask, 1718 0); 1719 1720 for (loop = 0; loop < (1 << d_hash_shift); loop++) 1721 INIT_HLIST_HEAD(&dentry_hashtable[loop]); 1722 } 1723 1724 /* SLAB cache for __getname() consumers */ 1725 kmem_cache_t *names_cachep __read_mostly; 1726 1727 /* SLAB cache for file structures */ 1728 kmem_cache_t *filp_cachep __read_mostly; 1729 1730 EXPORT_SYMBOL(d_genocide); 1731 1732 extern void bdev_cache_init(void); 1733 extern void chrdev_init(void); 1734 1735 void __init vfs_caches_init_early(void) 1736 { 1737 dcache_init_early(); 1738 inode_init_early(); 1739 } 1740 1741 void __init vfs_caches_init(unsigned long mempages) 1742 { 1743 unsigned long reserve; 1744 1745 /* Base hash sizes on available memory, with a reserve equal to 1746 150% of current kernel size */ 1747 1748 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 1749 mempages -= reserve; 1750 1751 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 1752 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 1753 1754 filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, 1755 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 1756 1757 dcache_init(mempages); 1758 inode_init(mempages); 1759 files_init(mempages); 1760 mnt_init(mempages); 1761 bdev_cache_init(); 1762 chrdev_init(); 1763 } 1764 1765 EXPORT_SYMBOL(d_alloc); 1766 EXPORT_SYMBOL(d_alloc_anon); 1767 EXPORT_SYMBOL(d_alloc_root); 1768 EXPORT_SYMBOL(d_delete); 1769 EXPORT_SYMBOL(d_find_alias); 1770 EXPORT_SYMBOL(d_instantiate); 1771 EXPORT_SYMBOL(d_invalidate); 1772 EXPORT_SYMBOL(d_lookup); 1773 EXPORT_SYMBOL(d_move); 1774 EXPORT_SYMBOL(d_path); 1775 EXPORT_SYMBOL(d_prune_aliases); 1776 EXPORT_SYMBOL(d_rehash); 1777 EXPORT_SYMBOL(d_splice_alias); 1778 EXPORT_SYMBOL(d_validate); 1779 EXPORT_SYMBOL(dget_locked); 1780 EXPORT_SYMBOL(dput); 1781 EXPORT_SYMBOL(find_inode_number); 1782 EXPORT_SYMBOL(have_submounts); 1783 EXPORT_SYMBOL(names_cachep); 1784 EXPORT_SYMBOL(shrink_dcache_parent); 1785 EXPORT_SYMBOL(shrink_dcache_sb); 1786