1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(unsigned int hash) 108 { 109 return dentry_hashtable + (hash >> (32 - d_hash_shift)); 110 } 111 112 #define IN_LOOKUP_SHIFT 10 113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 114 115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 116 unsigned int hash) 117 { 118 hash += (unsigned long) parent / L1_CACHE_BYTES; 119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 120 } 121 122 123 /* Statistics gathering. */ 124 struct dentry_stat_t dentry_stat = { 125 .age_limit = 45, 126 }; 127 128 static DEFINE_PER_CPU(long, nr_dentry); 129 static DEFINE_PER_CPU(long, nr_dentry_unused); 130 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 132 133 /* 134 * Here we resort to our own counters instead of using generic per-cpu counters 135 * for consistency with what the vfs inode code does. We are expected to harvest 136 * better code and performance by having our own specialized counters. 137 * 138 * Please note that the loop is done over all possible CPUs, not over all online 139 * CPUs. The reason for this is that we don't want to play games with CPUs going 140 * on and off. If one of them goes off, we will just keep their counters. 141 * 142 * glommer: See cffbc8a for details, and if you ever intend to change this, 143 * please update all vfs counters to match. 144 */ 145 static long get_nr_dentry(void) 146 { 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry, i); 151 return sum < 0 ? 0 : sum; 152 } 153 154 static long get_nr_dentry_unused(void) 155 { 156 int i; 157 long sum = 0; 158 for_each_possible_cpu(i) 159 sum += per_cpu(nr_dentry_unused, i); 160 return sum < 0 ? 0 : sum; 161 } 162 163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 164 size_t *lenp, loff_t *ppos) 165 { 166 dentry_stat.nr_dentry = get_nr_dentry(); 167 dentry_stat.nr_unused = get_nr_dentry_unused(); 168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 169 } 170 #endif 171 172 /* 173 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 174 * The strings are both count bytes long, and count is non-zero. 175 */ 176 #ifdef CONFIG_DCACHE_WORD_ACCESS 177 178 #include <asm/word-at-a-time.h> 179 /* 180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 181 * aligned allocation for this particular component. We don't 182 * strictly need the load_unaligned_zeropad() safety, but it 183 * doesn't hurt either. 184 * 185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 186 * need the careful unaligned handling. 187 */ 188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 189 { 190 unsigned long a,b,mask; 191 192 for (;;) { 193 a = *(unsigned long *)cs; 194 b = load_unaligned_zeropad(ct); 195 if (tcount < sizeof(unsigned long)) 196 break; 197 if (unlikely(a != b)) 198 return 1; 199 cs += sizeof(unsigned long); 200 ct += sizeof(unsigned long); 201 tcount -= sizeof(unsigned long); 202 if (!tcount) 203 return 0; 204 } 205 mask = bytemask_from_count(tcount); 206 return unlikely(!!((a ^ b) & mask)); 207 } 208 209 #else 210 211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 212 { 213 do { 214 if (*cs != *ct) 215 return 1; 216 cs++; 217 ct++; 218 tcount--; 219 } while (tcount); 220 return 0; 221 } 222 223 #endif 224 225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 226 { 227 /* 228 * Be careful about RCU walk racing with rename: 229 * use 'lockless_dereference' to fetch the name pointer. 230 * 231 * NOTE! Even if a rename will mean that the length 232 * was not loaded atomically, we don't care. The 233 * RCU walk will check the sequence count eventually, 234 * and catch it. And we won't overrun the buffer, 235 * because we're reading the name pointer atomically, 236 * and a dentry name is guaranteed to be properly 237 * terminated with a NUL byte. 238 * 239 * End result: even if 'len' is wrong, we'll exit 240 * early because the data cannot match (there can 241 * be no NUL in the ct/tcount data) 242 */ 243 const unsigned char *cs = lockless_dereference(dentry->d_name.name); 244 245 return dentry_string_cmp(cs, ct, tcount); 246 } 247 248 struct external_name { 249 union { 250 atomic_t count; 251 struct rcu_head head; 252 } u; 253 unsigned char name[]; 254 }; 255 256 static inline struct external_name *external_name(struct dentry *dentry) 257 { 258 return container_of(dentry->d_name.name, struct external_name, name[0]); 259 } 260 261 static void __d_free(struct rcu_head *head) 262 { 263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 264 265 kmem_cache_free(dentry_cache, dentry); 266 } 267 268 static void __d_free_external(struct rcu_head *head) 269 { 270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 271 kfree(external_name(dentry)); 272 kmem_cache_free(dentry_cache, dentry); 273 } 274 275 static inline int dname_external(const struct dentry *dentry) 276 { 277 return dentry->d_name.name != dentry->d_iname; 278 } 279 280 static inline void __d_set_inode_and_type(struct dentry *dentry, 281 struct inode *inode, 282 unsigned type_flags) 283 { 284 unsigned flags; 285 286 dentry->d_inode = inode; 287 flags = READ_ONCE(dentry->d_flags); 288 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 289 flags |= type_flags; 290 WRITE_ONCE(dentry->d_flags, flags); 291 } 292 293 static inline void __d_clear_type_and_inode(struct dentry *dentry) 294 { 295 unsigned flags = READ_ONCE(dentry->d_flags); 296 297 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 298 WRITE_ONCE(dentry->d_flags, flags); 299 dentry->d_inode = NULL; 300 } 301 302 static void dentry_free(struct dentry *dentry) 303 { 304 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 305 if (unlikely(dname_external(dentry))) { 306 struct external_name *p = external_name(dentry); 307 if (likely(atomic_dec_and_test(&p->u.count))) { 308 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 309 return; 310 } 311 } 312 /* if dentry was never visible to RCU, immediate free is OK */ 313 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 314 __d_free(&dentry->d_u.d_rcu); 315 else 316 call_rcu(&dentry->d_u.d_rcu, __d_free); 317 } 318 319 /* 320 * Release the dentry's inode, using the filesystem 321 * d_iput() operation if defined. 322 */ 323 static void dentry_unlink_inode(struct dentry * dentry) 324 __releases(dentry->d_lock) 325 __releases(dentry->d_inode->i_lock) 326 { 327 struct inode *inode = dentry->d_inode; 328 bool hashed = !d_unhashed(dentry); 329 330 if (hashed) 331 raw_write_seqcount_begin(&dentry->d_seq); 332 __d_clear_type_and_inode(dentry); 333 hlist_del_init(&dentry->d_u.d_alias); 334 if (hashed) 335 raw_write_seqcount_end(&dentry->d_seq); 336 spin_unlock(&dentry->d_lock); 337 spin_unlock(&inode->i_lock); 338 if (!inode->i_nlink) 339 fsnotify_inoderemove(inode); 340 if (dentry->d_op && dentry->d_op->d_iput) 341 dentry->d_op->d_iput(dentry, inode); 342 else 343 iput(inode); 344 } 345 346 /* 347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 348 * is in use - which includes both the "real" per-superblock 349 * LRU list _and_ the DCACHE_SHRINK_LIST use. 350 * 351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 352 * on the shrink list (ie not on the superblock LRU list). 353 * 354 * The per-cpu "nr_dentry_unused" counters are updated with 355 * the DCACHE_LRU_LIST bit. 356 * 357 * These helper functions make sure we always follow the 358 * rules. d_lock must be held by the caller. 359 */ 360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 361 static void d_lru_add(struct dentry *dentry) 362 { 363 D_FLAG_VERIFY(dentry, 0); 364 dentry->d_flags |= DCACHE_LRU_LIST; 365 this_cpu_inc(nr_dentry_unused); 366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 367 } 368 369 static void d_lru_del(struct dentry *dentry) 370 { 371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 372 dentry->d_flags &= ~DCACHE_LRU_LIST; 373 this_cpu_dec(nr_dentry_unused); 374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 375 } 376 377 static void d_shrink_del(struct dentry *dentry) 378 { 379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 380 list_del_init(&dentry->d_lru); 381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 382 this_cpu_dec(nr_dentry_unused); 383 } 384 385 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 386 { 387 D_FLAG_VERIFY(dentry, 0); 388 list_add(&dentry->d_lru, list); 389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 390 this_cpu_inc(nr_dentry_unused); 391 } 392 393 /* 394 * These can only be called under the global LRU lock, ie during the 395 * callback for freeing the LRU list. "isolate" removes it from the 396 * LRU lists entirely, while shrink_move moves it to the indicated 397 * private list. 398 */ 399 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 400 { 401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 402 dentry->d_flags &= ~DCACHE_LRU_LIST; 403 this_cpu_dec(nr_dentry_unused); 404 list_lru_isolate(lru, &dentry->d_lru); 405 } 406 407 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 408 struct list_head *list) 409 { 410 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 411 dentry->d_flags |= DCACHE_SHRINK_LIST; 412 list_lru_isolate_move(lru, &dentry->d_lru, list); 413 } 414 415 /* 416 * dentry_lru_(add|del)_list) must be called with d_lock held. 417 */ 418 static void dentry_lru_add(struct dentry *dentry) 419 { 420 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 421 d_lru_add(dentry); 422 } 423 424 /** 425 * d_drop - drop a dentry 426 * @dentry: dentry to drop 427 * 428 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 429 * be found through a VFS lookup any more. Note that this is different from 430 * deleting the dentry - d_delete will try to mark the dentry negative if 431 * possible, giving a successful _negative_ lookup, while d_drop will 432 * just make the cache lookup fail. 433 * 434 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 435 * reason (NFS timeouts or autofs deletes). 436 * 437 * __d_drop requires dentry->d_lock. 438 */ 439 void __d_drop(struct dentry *dentry) 440 { 441 if (!d_unhashed(dentry)) { 442 struct hlist_bl_head *b; 443 /* 444 * Hashed dentries are normally on the dentry hashtable, 445 * with the exception of those newly allocated by 446 * d_obtain_alias, which are always IS_ROOT: 447 */ 448 if (unlikely(IS_ROOT(dentry))) 449 b = &dentry->d_sb->s_anon; 450 else 451 b = d_hash(dentry->d_name.hash); 452 453 hlist_bl_lock(b); 454 __hlist_bl_del(&dentry->d_hash); 455 dentry->d_hash.pprev = NULL; 456 hlist_bl_unlock(b); 457 /* After this call, in-progress rcu-walk path lookup will fail. */ 458 write_seqcount_invalidate(&dentry->d_seq); 459 } 460 } 461 EXPORT_SYMBOL(__d_drop); 462 463 void d_drop(struct dentry *dentry) 464 { 465 spin_lock(&dentry->d_lock); 466 __d_drop(dentry); 467 spin_unlock(&dentry->d_lock); 468 } 469 EXPORT_SYMBOL(d_drop); 470 471 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 472 { 473 struct dentry *next; 474 /* 475 * Inform d_walk() and shrink_dentry_list() that we are no longer 476 * attached to the dentry tree 477 */ 478 dentry->d_flags |= DCACHE_DENTRY_KILLED; 479 if (unlikely(list_empty(&dentry->d_child))) 480 return; 481 __list_del_entry(&dentry->d_child); 482 /* 483 * Cursors can move around the list of children. While we'd been 484 * a normal list member, it didn't matter - ->d_child.next would've 485 * been updated. However, from now on it won't be and for the 486 * things like d_walk() it might end up with a nasty surprise. 487 * Normally d_walk() doesn't care about cursors moving around - 488 * ->d_lock on parent prevents that and since a cursor has no children 489 * of its own, we get through it without ever unlocking the parent. 490 * There is one exception, though - if we ascend from a child that 491 * gets killed as soon as we unlock it, the next sibling is found 492 * using the value left in its ->d_child.next. And if _that_ 493 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 494 * before d_walk() regains parent->d_lock, we'll end up skipping 495 * everything the cursor had been moved past. 496 * 497 * Solution: make sure that the pointer left behind in ->d_child.next 498 * points to something that won't be moving around. I.e. skip the 499 * cursors. 500 */ 501 while (dentry->d_child.next != &parent->d_subdirs) { 502 next = list_entry(dentry->d_child.next, struct dentry, d_child); 503 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 504 break; 505 dentry->d_child.next = next->d_child.next; 506 } 507 } 508 509 static void __dentry_kill(struct dentry *dentry) 510 { 511 struct dentry *parent = NULL; 512 bool can_free = true; 513 if (!IS_ROOT(dentry)) 514 parent = dentry->d_parent; 515 516 /* 517 * The dentry is now unrecoverably dead to the world. 518 */ 519 lockref_mark_dead(&dentry->d_lockref); 520 521 /* 522 * inform the fs via d_prune that this dentry is about to be 523 * unhashed and destroyed. 524 */ 525 if (dentry->d_flags & DCACHE_OP_PRUNE) 526 dentry->d_op->d_prune(dentry); 527 528 if (dentry->d_flags & DCACHE_LRU_LIST) { 529 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 530 d_lru_del(dentry); 531 } 532 /* if it was on the hash then remove it */ 533 __d_drop(dentry); 534 dentry_unlist(dentry, parent); 535 if (parent) 536 spin_unlock(&parent->d_lock); 537 if (dentry->d_inode) 538 dentry_unlink_inode(dentry); 539 else 540 spin_unlock(&dentry->d_lock); 541 this_cpu_dec(nr_dentry); 542 if (dentry->d_op && dentry->d_op->d_release) 543 dentry->d_op->d_release(dentry); 544 545 spin_lock(&dentry->d_lock); 546 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 547 dentry->d_flags |= DCACHE_MAY_FREE; 548 can_free = false; 549 } 550 spin_unlock(&dentry->d_lock); 551 if (likely(can_free)) 552 dentry_free(dentry); 553 } 554 555 /* 556 * Finish off a dentry we've decided to kill. 557 * dentry->d_lock must be held, returns with it unlocked. 558 * If ref is non-zero, then decrement the refcount too. 559 * Returns dentry requiring refcount drop, or NULL if we're done. 560 */ 561 static struct dentry *dentry_kill(struct dentry *dentry) 562 __releases(dentry->d_lock) 563 { 564 struct inode *inode = dentry->d_inode; 565 struct dentry *parent = NULL; 566 567 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 568 goto failed; 569 570 if (!IS_ROOT(dentry)) { 571 parent = dentry->d_parent; 572 if (unlikely(!spin_trylock(&parent->d_lock))) { 573 if (inode) 574 spin_unlock(&inode->i_lock); 575 goto failed; 576 } 577 } 578 579 __dentry_kill(dentry); 580 return parent; 581 582 failed: 583 spin_unlock(&dentry->d_lock); 584 return dentry; /* try again with same dentry */ 585 } 586 587 static inline struct dentry *lock_parent(struct dentry *dentry) 588 { 589 struct dentry *parent = dentry->d_parent; 590 if (IS_ROOT(dentry)) 591 return NULL; 592 if (unlikely(dentry->d_lockref.count < 0)) 593 return NULL; 594 if (likely(spin_trylock(&parent->d_lock))) 595 return parent; 596 rcu_read_lock(); 597 spin_unlock(&dentry->d_lock); 598 again: 599 parent = ACCESS_ONCE(dentry->d_parent); 600 spin_lock(&parent->d_lock); 601 /* 602 * We can't blindly lock dentry until we are sure 603 * that we won't violate the locking order. 604 * Any changes of dentry->d_parent must have 605 * been done with parent->d_lock held, so 606 * spin_lock() above is enough of a barrier 607 * for checking if it's still our child. 608 */ 609 if (unlikely(parent != dentry->d_parent)) { 610 spin_unlock(&parent->d_lock); 611 goto again; 612 } 613 rcu_read_unlock(); 614 if (parent != dentry) 615 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 616 else 617 parent = NULL; 618 return parent; 619 } 620 621 /* 622 * Try to do a lockless dput(), and return whether that was successful. 623 * 624 * If unsuccessful, we return false, having already taken the dentry lock. 625 * 626 * The caller needs to hold the RCU read lock, so that the dentry is 627 * guaranteed to stay around even if the refcount goes down to zero! 628 */ 629 static inline bool fast_dput(struct dentry *dentry) 630 { 631 int ret; 632 unsigned int d_flags; 633 634 /* 635 * If we have a d_op->d_delete() operation, we sould not 636 * let the dentry count go to zero, so use "put_or_lock". 637 */ 638 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 639 return lockref_put_or_lock(&dentry->d_lockref); 640 641 /* 642 * .. otherwise, we can try to just decrement the 643 * lockref optimistically. 644 */ 645 ret = lockref_put_return(&dentry->d_lockref); 646 647 /* 648 * If the lockref_put_return() failed due to the lock being held 649 * by somebody else, the fast path has failed. We will need to 650 * get the lock, and then check the count again. 651 */ 652 if (unlikely(ret < 0)) { 653 spin_lock(&dentry->d_lock); 654 if (dentry->d_lockref.count > 1) { 655 dentry->d_lockref.count--; 656 spin_unlock(&dentry->d_lock); 657 return 1; 658 } 659 return 0; 660 } 661 662 /* 663 * If we weren't the last ref, we're done. 664 */ 665 if (ret) 666 return 1; 667 668 /* 669 * Careful, careful. The reference count went down 670 * to zero, but we don't hold the dentry lock, so 671 * somebody else could get it again, and do another 672 * dput(), and we need to not race with that. 673 * 674 * However, there is a very special and common case 675 * where we don't care, because there is nothing to 676 * do: the dentry is still hashed, it does not have 677 * a 'delete' op, and it's referenced and already on 678 * the LRU list. 679 * 680 * NOTE! Since we aren't locked, these values are 681 * not "stable". However, it is sufficient that at 682 * some point after we dropped the reference the 683 * dentry was hashed and the flags had the proper 684 * value. Other dentry users may have re-gotten 685 * a reference to the dentry and change that, but 686 * our work is done - we can leave the dentry 687 * around with a zero refcount. 688 */ 689 smp_rmb(); 690 d_flags = ACCESS_ONCE(dentry->d_flags); 691 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 692 693 /* Nothing to do? Dropping the reference was all we needed? */ 694 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 695 return 1; 696 697 /* 698 * Not the fast normal case? Get the lock. We've already decremented 699 * the refcount, but we'll need to re-check the situation after 700 * getting the lock. 701 */ 702 spin_lock(&dentry->d_lock); 703 704 /* 705 * Did somebody else grab a reference to it in the meantime, and 706 * we're no longer the last user after all? Alternatively, somebody 707 * else could have killed it and marked it dead. Either way, we 708 * don't need to do anything else. 709 */ 710 if (dentry->d_lockref.count) { 711 spin_unlock(&dentry->d_lock); 712 return 1; 713 } 714 715 /* 716 * Re-get the reference we optimistically dropped. We hold the 717 * lock, and we just tested that it was zero, so we can just 718 * set it to 1. 719 */ 720 dentry->d_lockref.count = 1; 721 return 0; 722 } 723 724 725 /* 726 * This is dput 727 * 728 * This is complicated by the fact that we do not want to put 729 * dentries that are no longer on any hash chain on the unused 730 * list: we'd much rather just get rid of them immediately. 731 * 732 * However, that implies that we have to traverse the dentry 733 * tree upwards to the parents which might _also_ now be 734 * scheduled for deletion (it may have been only waiting for 735 * its last child to go away). 736 * 737 * This tail recursion is done by hand as we don't want to depend 738 * on the compiler to always get this right (gcc generally doesn't). 739 * Real recursion would eat up our stack space. 740 */ 741 742 /* 743 * dput - release a dentry 744 * @dentry: dentry to release 745 * 746 * Release a dentry. This will drop the usage count and if appropriate 747 * call the dentry unlink method as well as removing it from the queues and 748 * releasing its resources. If the parent dentries were scheduled for release 749 * they too may now get deleted. 750 */ 751 void dput(struct dentry *dentry) 752 { 753 if (unlikely(!dentry)) 754 return; 755 756 repeat: 757 might_sleep(); 758 759 rcu_read_lock(); 760 if (likely(fast_dput(dentry))) { 761 rcu_read_unlock(); 762 return; 763 } 764 765 /* Slow case: now with the dentry lock held */ 766 rcu_read_unlock(); 767 768 WARN_ON(d_in_lookup(dentry)); 769 770 /* Unreachable? Get rid of it */ 771 if (unlikely(d_unhashed(dentry))) 772 goto kill_it; 773 774 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 775 goto kill_it; 776 777 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 778 if (dentry->d_op->d_delete(dentry)) 779 goto kill_it; 780 } 781 782 if (!(dentry->d_flags & DCACHE_REFERENCED)) 783 dentry->d_flags |= DCACHE_REFERENCED; 784 dentry_lru_add(dentry); 785 786 dentry->d_lockref.count--; 787 spin_unlock(&dentry->d_lock); 788 return; 789 790 kill_it: 791 dentry = dentry_kill(dentry); 792 if (dentry) { 793 cond_resched(); 794 goto repeat; 795 } 796 } 797 EXPORT_SYMBOL(dput); 798 799 800 /* This must be called with d_lock held */ 801 static inline void __dget_dlock(struct dentry *dentry) 802 { 803 dentry->d_lockref.count++; 804 } 805 806 static inline void __dget(struct dentry *dentry) 807 { 808 lockref_get(&dentry->d_lockref); 809 } 810 811 struct dentry *dget_parent(struct dentry *dentry) 812 { 813 int gotref; 814 struct dentry *ret; 815 816 /* 817 * Do optimistic parent lookup without any 818 * locking. 819 */ 820 rcu_read_lock(); 821 ret = ACCESS_ONCE(dentry->d_parent); 822 gotref = lockref_get_not_zero(&ret->d_lockref); 823 rcu_read_unlock(); 824 if (likely(gotref)) { 825 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 826 return ret; 827 dput(ret); 828 } 829 830 repeat: 831 /* 832 * Don't need rcu_dereference because we re-check it was correct under 833 * the lock. 834 */ 835 rcu_read_lock(); 836 ret = dentry->d_parent; 837 spin_lock(&ret->d_lock); 838 if (unlikely(ret != dentry->d_parent)) { 839 spin_unlock(&ret->d_lock); 840 rcu_read_unlock(); 841 goto repeat; 842 } 843 rcu_read_unlock(); 844 BUG_ON(!ret->d_lockref.count); 845 ret->d_lockref.count++; 846 spin_unlock(&ret->d_lock); 847 return ret; 848 } 849 EXPORT_SYMBOL(dget_parent); 850 851 /** 852 * d_find_alias - grab a hashed alias of inode 853 * @inode: inode in question 854 * 855 * If inode has a hashed alias, or is a directory and has any alias, 856 * acquire the reference to alias and return it. Otherwise return NULL. 857 * Notice that if inode is a directory there can be only one alias and 858 * it can be unhashed only if it has no children, or if it is the root 859 * of a filesystem, or if the directory was renamed and d_revalidate 860 * was the first vfs operation to notice. 861 * 862 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 863 * any other hashed alias over that one. 864 */ 865 static struct dentry *__d_find_alias(struct inode *inode) 866 { 867 struct dentry *alias, *discon_alias; 868 869 again: 870 discon_alias = NULL; 871 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 872 spin_lock(&alias->d_lock); 873 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 874 if (IS_ROOT(alias) && 875 (alias->d_flags & DCACHE_DISCONNECTED)) { 876 discon_alias = alias; 877 } else { 878 __dget_dlock(alias); 879 spin_unlock(&alias->d_lock); 880 return alias; 881 } 882 } 883 spin_unlock(&alias->d_lock); 884 } 885 if (discon_alias) { 886 alias = discon_alias; 887 spin_lock(&alias->d_lock); 888 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 889 __dget_dlock(alias); 890 spin_unlock(&alias->d_lock); 891 return alias; 892 } 893 spin_unlock(&alias->d_lock); 894 goto again; 895 } 896 return NULL; 897 } 898 899 struct dentry *d_find_alias(struct inode *inode) 900 { 901 struct dentry *de = NULL; 902 903 if (!hlist_empty(&inode->i_dentry)) { 904 spin_lock(&inode->i_lock); 905 de = __d_find_alias(inode); 906 spin_unlock(&inode->i_lock); 907 } 908 return de; 909 } 910 EXPORT_SYMBOL(d_find_alias); 911 912 /* 913 * Try to kill dentries associated with this inode. 914 * WARNING: you must own a reference to inode. 915 */ 916 void d_prune_aliases(struct inode *inode) 917 { 918 struct dentry *dentry; 919 restart: 920 spin_lock(&inode->i_lock); 921 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 922 spin_lock(&dentry->d_lock); 923 if (!dentry->d_lockref.count) { 924 struct dentry *parent = lock_parent(dentry); 925 if (likely(!dentry->d_lockref.count)) { 926 __dentry_kill(dentry); 927 dput(parent); 928 goto restart; 929 } 930 if (parent) 931 spin_unlock(&parent->d_lock); 932 } 933 spin_unlock(&dentry->d_lock); 934 } 935 spin_unlock(&inode->i_lock); 936 } 937 EXPORT_SYMBOL(d_prune_aliases); 938 939 static void shrink_dentry_list(struct list_head *list) 940 { 941 struct dentry *dentry, *parent; 942 943 while (!list_empty(list)) { 944 struct inode *inode; 945 dentry = list_entry(list->prev, struct dentry, d_lru); 946 spin_lock(&dentry->d_lock); 947 parent = lock_parent(dentry); 948 949 /* 950 * The dispose list is isolated and dentries are not accounted 951 * to the LRU here, so we can simply remove it from the list 952 * here regardless of whether it is referenced or not. 953 */ 954 d_shrink_del(dentry); 955 956 /* 957 * We found an inuse dentry which was not removed from 958 * the LRU because of laziness during lookup. Do not free it. 959 */ 960 if (dentry->d_lockref.count > 0) { 961 spin_unlock(&dentry->d_lock); 962 if (parent) 963 spin_unlock(&parent->d_lock); 964 continue; 965 } 966 967 968 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 969 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 970 spin_unlock(&dentry->d_lock); 971 if (parent) 972 spin_unlock(&parent->d_lock); 973 if (can_free) 974 dentry_free(dentry); 975 continue; 976 } 977 978 inode = dentry->d_inode; 979 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 980 d_shrink_add(dentry, list); 981 spin_unlock(&dentry->d_lock); 982 if (parent) 983 spin_unlock(&parent->d_lock); 984 continue; 985 } 986 987 __dentry_kill(dentry); 988 989 /* 990 * We need to prune ancestors too. This is necessary to prevent 991 * quadratic behavior of shrink_dcache_parent(), but is also 992 * expected to be beneficial in reducing dentry cache 993 * fragmentation. 994 */ 995 dentry = parent; 996 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 997 parent = lock_parent(dentry); 998 if (dentry->d_lockref.count != 1) { 999 dentry->d_lockref.count--; 1000 spin_unlock(&dentry->d_lock); 1001 if (parent) 1002 spin_unlock(&parent->d_lock); 1003 break; 1004 } 1005 inode = dentry->d_inode; /* can't be NULL */ 1006 if (unlikely(!spin_trylock(&inode->i_lock))) { 1007 spin_unlock(&dentry->d_lock); 1008 if (parent) 1009 spin_unlock(&parent->d_lock); 1010 cpu_relax(); 1011 continue; 1012 } 1013 __dentry_kill(dentry); 1014 dentry = parent; 1015 } 1016 } 1017 } 1018 1019 static enum lru_status dentry_lru_isolate(struct list_head *item, 1020 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1021 { 1022 struct list_head *freeable = arg; 1023 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1024 1025 1026 /* 1027 * we are inverting the lru lock/dentry->d_lock here, 1028 * so use a trylock. If we fail to get the lock, just skip 1029 * it 1030 */ 1031 if (!spin_trylock(&dentry->d_lock)) 1032 return LRU_SKIP; 1033 1034 /* 1035 * Referenced dentries are still in use. If they have active 1036 * counts, just remove them from the LRU. Otherwise give them 1037 * another pass through the LRU. 1038 */ 1039 if (dentry->d_lockref.count) { 1040 d_lru_isolate(lru, dentry); 1041 spin_unlock(&dentry->d_lock); 1042 return LRU_REMOVED; 1043 } 1044 1045 if (dentry->d_flags & DCACHE_REFERENCED) { 1046 dentry->d_flags &= ~DCACHE_REFERENCED; 1047 spin_unlock(&dentry->d_lock); 1048 1049 /* 1050 * The list move itself will be made by the common LRU code. At 1051 * this point, we've dropped the dentry->d_lock but keep the 1052 * lru lock. This is safe to do, since every list movement is 1053 * protected by the lru lock even if both locks are held. 1054 * 1055 * This is guaranteed by the fact that all LRU management 1056 * functions are intermediated by the LRU API calls like 1057 * list_lru_add and list_lru_del. List movement in this file 1058 * only ever occur through this functions or through callbacks 1059 * like this one, that are called from the LRU API. 1060 * 1061 * The only exceptions to this are functions like 1062 * shrink_dentry_list, and code that first checks for the 1063 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1064 * operating only with stack provided lists after they are 1065 * properly isolated from the main list. It is thus, always a 1066 * local access. 1067 */ 1068 return LRU_ROTATE; 1069 } 1070 1071 d_lru_shrink_move(lru, dentry, freeable); 1072 spin_unlock(&dentry->d_lock); 1073 1074 return LRU_REMOVED; 1075 } 1076 1077 /** 1078 * prune_dcache_sb - shrink the dcache 1079 * @sb: superblock 1080 * @sc: shrink control, passed to list_lru_shrink_walk() 1081 * 1082 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1083 * is done when we need more memory and called from the superblock shrinker 1084 * function. 1085 * 1086 * This function may fail to free any resources if all the dentries are in 1087 * use. 1088 */ 1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1090 { 1091 LIST_HEAD(dispose); 1092 long freed; 1093 1094 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1095 dentry_lru_isolate, &dispose); 1096 shrink_dentry_list(&dispose); 1097 return freed; 1098 } 1099 1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1101 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1102 { 1103 struct list_head *freeable = arg; 1104 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1105 1106 /* 1107 * we are inverting the lru lock/dentry->d_lock here, 1108 * so use a trylock. If we fail to get the lock, just skip 1109 * it 1110 */ 1111 if (!spin_trylock(&dentry->d_lock)) 1112 return LRU_SKIP; 1113 1114 d_lru_shrink_move(lru, dentry, freeable); 1115 spin_unlock(&dentry->d_lock); 1116 1117 return LRU_REMOVED; 1118 } 1119 1120 1121 /** 1122 * shrink_dcache_sb - shrink dcache for a superblock 1123 * @sb: superblock 1124 * 1125 * Shrink the dcache for the specified super block. This is used to free 1126 * the dcache before unmounting a file system. 1127 */ 1128 void shrink_dcache_sb(struct super_block *sb) 1129 { 1130 long freed; 1131 1132 do { 1133 LIST_HEAD(dispose); 1134 1135 freed = list_lru_walk(&sb->s_dentry_lru, 1136 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1137 1138 this_cpu_sub(nr_dentry_unused, freed); 1139 shrink_dentry_list(&dispose); 1140 } while (freed > 0); 1141 } 1142 EXPORT_SYMBOL(shrink_dcache_sb); 1143 1144 /** 1145 * enum d_walk_ret - action to talke during tree walk 1146 * @D_WALK_CONTINUE: contrinue walk 1147 * @D_WALK_QUIT: quit walk 1148 * @D_WALK_NORETRY: quit when retry is needed 1149 * @D_WALK_SKIP: skip this dentry and its children 1150 */ 1151 enum d_walk_ret { 1152 D_WALK_CONTINUE, 1153 D_WALK_QUIT, 1154 D_WALK_NORETRY, 1155 D_WALK_SKIP, 1156 }; 1157 1158 /** 1159 * d_walk - walk the dentry tree 1160 * @parent: start of walk 1161 * @data: data passed to @enter() and @finish() 1162 * @enter: callback when first entering the dentry 1163 * @finish: callback when successfully finished the walk 1164 * 1165 * The @enter() and @finish() callbacks are called with d_lock held. 1166 */ 1167 static void d_walk(struct dentry *parent, void *data, 1168 enum d_walk_ret (*enter)(void *, struct dentry *), 1169 void (*finish)(void *)) 1170 { 1171 struct dentry *this_parent; 1172 struct list_head *next; 1173 unsigned seq = 0; 1174 enum d_walk_ret ret; 1175 bool retry = true; 1176 1177 again: 1178 read_seqbegin_or_lock(&rename_lock, &seq); 1179 this_parent = parent; 1180 spin_lock(&this_parent->d_lock); 1181 1182 ret = enter(data, this_parent); 1183 switch (ret) { 1184 case D_WALK_CONTINUE: 1185 break; 1186 case D_WALK_QUIT: 1187 case D_WALK_SKIP: 1188 goto out_unlock; 1189 case D_WALK_NORETRY: 1190 retry = false; 1191 break; 1192 } 1193 repeat: 1194 next = this_parent->d_subdirs.next; 1195 resume: 1196 while (next != &this_parent->d_subdirs) { 1197 struct list_head *tmp = next; 1198 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1199 next = tmp->next; 1200 1201 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1202 continue; 1203 1204 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1205 1206 ret = enter(data, dentry); 1207 switch (ret) { 1208 case D_WALK_CONTINUE: 1209 break; 1210 case D_WALK_QUIT: 1211 spin_unlock(&dentry->d_lock); 1212 goto out_unlock; 1213 case D_WALK_NORETRY: 1214 retry = false; 1215 break; 1216 case D_WALK_SKIP: 1217 spin_unlock(&dentry->d_lock); 1218 continue; 1219 } 1220 1221 if (!list_empty(&dentry->d_subdirs)) { 1222 spin_unlock(&this_parent->d_lock); 1223 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1224 this_parent = dentry; 1225 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1226 goto repeat; 1227 } 1228 spin_unlock(&dentry->d_lock); 1229 } 1230 /* 1231 * All done at this level ... ascend and resume the search. 1232 */ 1233 rcu_read_lock(); 1234 ascend: 1235 if (this_parent != parent) { 1236 struct dentry *child = this_parent; 1237 this_parent = child->d_parent; 1238 1239 spin_unlock(&child->d_lock); 1240 spin_lock(&this_parent->d_lock); 1241 1242 /* might go back up the wrong parent if we have had a rename. */ 1243 if (need_seqretry(&rename_lock, seq)) 1244 goto rename_retry; 1245 /* go into the first sibling still alive */ 1246 do { 1247 next = child->d_child.next; 1248 if (next == &this_parent->d_subdirs) 1249 goto ascend; 1250 child = list_entry(next, struct dentry, d_child); 1251 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1252 rcu_read_unlock(); 1253 goto resume; 1254 } 1255 if (need_seqretry(&rename_lock, seq)) 1256 goto rename_retry; 1257 rcu_read_unlock(); 1258 if (finish) 1259 finish(data); 1260 1261 out_unlock: 1262 spin_unlock(&this_parent->d_lock); 1263 done_seqretry(&rename_lock, seq); 1264 return; 1265 1266 rename_retry: 1267 spin_unlock(&this_parent->d_lock); 1268 rcu_read_unlock(); 1269 BUG_ON(seq & 1); 1270 if (!retry) 1271 return; 1272 seq = 1; 1273 goto again; 1274 } 1275 1276 /* 1277 * Search for at least 1 mount point in the dentry's subdirs. 1278 * We descend to the next level whenever the d_subdirs 1279 * list is non-empty and continue searching. 1280 */ 1281 1282 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1283 { 1284 int *ret = data; 1285 if (d_mountpoint(dentry)) { 1286 *ret = 1; 1287 return D_WALK_QUIT; 1288 } 1289 return D_WALK_CONTINUE; 1290 } 1291 1292 /** 1293 * have_submounts - check for mounts over a dentry 1294 * @parent: dentry to check. 1295 * 1296 * Return true if the parent or its subdirectories contain 1297 * a mount point 1298 */ 1299 int have_submounts(struct dentry *parent) 1300 { 1301 int ret = 0; 1302 1303 d_walk(parent, &ret, check_mount, NULL); 1304 1305 return ret; 1306 } 1307 EXPORT_SYMBOL(have_submounts); 1308 1309 /* 1310 * Called by mount code to set a mountpoint and check if the mountpoint is 1311 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1312 * subtree can become unreachable). 1313 * 1314 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1315 * this reason take rename_lock and d_lock on dentry and ancestors. 1316 */ 1317 int d_set_mounted(struct dentry *dentry) 1318 { 1319 struct dentry *p; 1320 int ret = -ENOENT; 1321 write_seqlock(&rename_lock); 1322 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1323 /* Need exclusion wrt. d_invalidate() */ 1324 spin_lock(&p->d_lock); 1325 if (unlikely(d_unhashed(p))) { 1326 spin_unlock(&p->d_lock); 1327 goto out; 1328 } 1329 spin_unlock(&p->d_lock); 1330 } 1331 spin_lock(&dentry->d_lock); 1332 if (!d_unlinked(dentry)) { 1333 dentry->d_flags |= DCACHE_MOUNTED; 1334 ret = 0; 1335 } 1336 spin_unlock(&dentry->d_lock); 1337 out: 1338 write_sequnlock(&rename_lock); 1339 return ret; 1340 } 1341 1342 /* 1343 * Search the dentry child list of the specified parent, 1344 * and move any unused dentries to the end of the unused 1345 * list for prune_dcache(). We descend to the next level 1346 * whenever the d_subdirs list is non-empty and continue 1347 * searching. 1348 * 1349 * It returns zero iff there are no unused children, 1350 * otherwise it returns the number of children moved to 1351 * the end of the unused list. This may not be the total 1352 * number of unused children, because select_parent can 1353 * drop the lock and return early due to latency 1354 * constraints. 1355 */ 1356 1357 struct select_data { 1358 struct dentry *start; 1359 struct list_head dispose; 1360 int found; 1361 }; 1362 1363 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1364 { 1365 struct select_data *data = _data; 1366 enum d_walk_ret ret = D_WALK_CONTINUE; 1367 1368 if (data->start == dentry) 1369 goto out; 1370 1371 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1372 data->found++; 1373 } else { 1374 if (dentry->d_flags & DCACHE_LRU_LIST) 1375 d_lru_del(dentry); 1376 if (!dentry->d_lockref.count) { 1377 d_shrink_add(dentry, &data->dispose); 1378 data->found++; 1379 } 1380 } 1381 /* 1382 * We can return to the caller if we have found some (this 1383 * ensures forward progress). We'll be coming back to find 1384 * the rest. 1385 */ 1386 if (!list_empty(&data->dispose)) 1387 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1388 out: 1389 return ret; 1390 } 1391 1392 /** 1393 * shrink_dcache_parent - prune dcache 1394 * @parent: parent of entries to prune 1395 * 1396 * Prune the dcache to remove unused children of the parent dentry. 1397 */ 1398 void shrink_dcache_parent(struct dentry *parent) 1399 { 1400 for (;;) { 1401 struct select_data data; 1402 1403 INIT_LIST_HEAD(&data.dispose); 1404 data.start = parent; 1405 data.found = 0; 1406 1407 d_walk(parent, &data, select_collect, NULL); 1408 if (!data.found) 1409 break; 1410 1411 shrink_dentry_list(&data.dispose); 1412 cond_resched(); 1413 } 1414 } 1415 EXPORT_SYMBOL(shrink_dcache_parent); 1416 1417 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1418 { 1419 /* it has busy descendents; complain about those instead */ 1420 if (!list_empty(&dentry->d_subdirs)) 1421 return D_WALK_CONTINUE; 1422 1423 /* root with refcount 1 is fine */ 1424 if (dentry == _data && dentry->d_lockref.count == 1) 1425 return D_WALK_CONTINUE; 1426 1427 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1428 " still in use (%d) [unmount of %s %s]\n", 1429 dentry, 1430 dentry->d_inode ? 1431 dentry->d_inode->i_ino : 0UL, 1432 dentry, 1433 dentry->d_lockref.count, 1434 dentry->d_sb->s_type->name, 1435 dentry->d_sb->s_id); 1436 WARN_ON(1); 1437 return D_WALK_CONTINUE; 1438 } 1439 1440 static void do_one_tree(struct dentry *dentry) 1441 { 1442 shrink_dcache_parent(dentry); 1443 d_walk(dentry, dentry, umount_check, NULL); 1444 d_drop(dentry); 1445 dput(dentry); 1446 } 1447 1448 /* 1449 * destroy the dentries attached to a superblock on unmounting 1450 */ 1451 void shrink_dcache_for_umount(struct super_block *sb) 1452 { 1453 struct dentry *dentry; 1454 1455 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1456 1457 dentry = sb->s_root; 1458 sb->s_root = NULL; 1459 do_one_tree(dentry); 1460 1461 while (!hlist_bl_empty(&sb->s_anon)) { 1462 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1463 do_one_tree(dentry); 1464 } 1465 } 1466 1467 struct detach_data { 1468 struct select_data select; 1469 struct dentry *mountpoint; 1470 }; 1471 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1472 { 1473 struct detach_data *data = _data; 1474 1475 if (d_mountpoint(dentry)) { 1476 __dget_dlock(dentry); 1477 data->mountpoint = dentry; 1478 return D_WALK_QUIT; 1479 } 1480 1481 return select_collect(&data->select, dentry); 1482 } 1483 1484 static void check_and_drop(void *_data) 1485 { 1486 struct detach_data *data = _data; 1487 1488 if (!data->mountpoint && !data->select.found) 1489 __d_drop(data->select.start); 1490 } 1491 1492 /** 1493 * d_invalidate - detach submounts, prune dcache, and drop 1494 * @dentry: dentry to invalidate (aka detach, prune and drop) 1495 * 1496 * no dcache lock. 1497 * 1498 * The final d_drop is done as an atomic operation relative to 1499 * rename_lock ensuring there are no races with d_set_mounted. This 1500 * ensures there are no unhashed dentries on the path to a mountpoint. 1501 */ 1502 void d_invalidate(struct dentry *dentry) 1503 { 1504 /* 1505 * If it's already been dropped, return OK. 1506 */ 1507 spin_lock(&dentry->d_lock); 1508 if (d_unhashed(dentry)) { 1509 spin_unlock(&dentry->d_lock); 1510 return; 1511 } 1512 spin_unlock(&dentry->d_lock); 1513 1514 /* Negative dentries can be dropped without further checks */ 1515 if (!dentry->d_inode) { 1516 d_drop(dentry); 1517 return; 1518 } 1519 1520 for (;;) { 1521 struct detach_data data; 1522 1523 data.mountpoint = NULL; 1524 INIT_LIST_HEAD(&data.select.dispose); 1525 data.select.start = dentry; 1526 data.select.found = 0; 1527 1528 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1529 1530 if (data.select.found) 1531 shrink_dentry_list(&data.select.dispose); 1532 1533 if (data.mountpoint) { 1534 detach_mounts(data.mountpoint); 1535 dput(data.mountpoint); 1536 } 1537 1538 if (!data.mountpoint && !data.select.found) 1539 break; 1540 1541 cond_resched(); 1542 } 1543 } 1544 EXPORT_SYMBOL(d_invalidate); 1545 1546 /** 1547 * __d_alloc - allocate a dcache entry 1548 * @sb: filesystem it will belong to 1549 * @name: qstr of the name 1550 * 1551 * Allocates a dentry. It returns %NULL if there is insufficient memory 1552 * available. On a success the dentry is returned. The name passed in is 1553 * copied and the copy passed in may be reused after this call. 1554 */ 1555 1556 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1557 { 1558 struct dentry *dentry; 1559 char *dname; 1560 int err; 1561 1562 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1563 if (!dentry) 1564 return NULL; 1565 1566 /* 1567 * We guarantee that the inline name is always NUL-terminated. 1568 * This way the memcpy() done by the name switching in rename 1569 * will still always have a NUL at the end, even if we might 1570 * be overwriting an internal NUL character 1571 */ 1572 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1573 if (unlikely(!name)) { 1574 static const struct qstr anon = QSTR_INIT("/", 1); 1575 name = &anon; 1576 dname = dentry->d_iname; 1577 } else if (name->len > DNAME_INLINE_LEN-1) { 1578 size_t size = offsetof(struct external_name, name[1]); 1579 struct external_name *p = kmalloc(size + name->len, 1580 GFP_KERNEL_ACCOUNT); 1581 if (!p) { 1582 kmem_cache_free(dentry_cache, dentry); 1583 return NULL; 1584 } 1585 atomic_set(&p->u.count, 1); 1586 dname = p->name; 1587 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1588 kasan_unpoison_shadow(dname, 1589 round_up(name->len + 1, sizeof(unsigned long))); 1590 } else { 1591 dname = dentry->d_iname; 1592 } 1593 1594 dentry->d_name.len = name->len; 1595 dentry->d_name.hash = name->hash; 1596 memcpy(dname, name->name, name->len); 1597 dname[name->len] = 0; 1598 1599 /* Make sure we always see the terminating NUL character */ 1600 smp_wmb(); 1601 dentry->d_name.name = dname; 1602 1603 dentry->d_lockref.count = 1; 1604 dentry->d_flags = 0; 1605 spin_lock_init(&dentry->d_lock); 1606 seqcount_init(&dentry->d_seq); 1607 dentry->d_inode = NULL; 1608 dentry->d_parent = dentry; 1609 dentry->d_sb = sb; 1610 dentry->d_op = NULL; 1611 dentry->d_fsdata = NULL; 1612 INIT_HLIST_BL_NODE(&dentry->d_hash); 1613 INIT_LIST_HEAD(&dentry->d_lru); 1614 INIT_LIST_HEAD(&dentry->d_subdirs); 1615 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1616 INIT_LIST_HEAD(&dentry->d_child); 1617 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1618 1619 if (dentry->d_op && dentry->d_op->d_init) { 1620 err = dentry->d_op->d_init(dentry); 1621 if (err) { 1622 if (dname_external(dentry)) 1623 kfree(external_name(dentry)); 1624 kmem_cache_free(dentry_cache, dentry); 1625 return NULL; 1626 } 1627 } 1628 1629 this_cpu_inc(nr_dentry); 1630 1631 return dentry; 1632 } 1633 1634 /** 1635 * d_alloc - allocate a dcache entry 1636 * @parent: parent of entry to allocate 1637 * @name: qstr of the name 1638 * 1639 * Allocates a dentry. It returns %NULL if there is insufficient memory 1640 * available. On a success the dentry is returned. The name passed in is 1641 * copied and the copy passed in may be reused after this call. 1642 */ 1643 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1644 { 1645 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1646 if (!dentry) 1647 return NULL; 1648 dentry->d_flags |= DCACHE_RCUACCESS; 1649 spin_lock(&parent->d_lock); 1650 /* 1651 * don't need child lock because it is not subject 1652 * to concurrency here 1653 */ 1654 __dget_dlock(parent); 1655 dentry->d_parent = parent; 1656 list_add(&dentry->d_child, &parent->d_subdirs); 1657 spin_unlock(&parent->d_lock); 1658 1659 return dentry; 1660 } 1661 EXPORT_SYMBOL(d_alloc); 1662 1663 struct dentry *d_alloc_cursor(struct dentry * parent) 1664 { 1665 struct dentry *dentry = __d_alloc(parent->d_sb, NULL); 1666 if (dentry) { 1667 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1668 dentry->d_parent = dget(parent); 1669 } 1670 return dentry; 1671 } 1672 1673 /** 1674 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1675 * @sb: the superblock 1676 * @name: qstr of the name 1677 * 1678 * For a filesystem that just pins its dentries in memory and never 1679 * performs lookups at all, return an unhashed IS_ROOT dentry. 1680 */ 1681 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1682 { 1683 return __d_alloc(sb, name); 1684 } 1685 EXPORT_SYMBOL(d_alloc_pseudo); 1686 1687 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1688 { 1689 struct qstr q; 1690 1691 q.name = name; 1692 q.hash_len = hashlen_string(parent, name); 1693 return d_alloc(parent, &q); 1694 } 1695 EXPORT_SYMBOL(d_alloc_name); 1696 1697 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1698 { 1699 WARN_ON_ONCE(dentry->d_op); 1700 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1701 DCACHE_OP_COMPARE | 1702 DCACHE_OP_REVALIDATE | 1703 DCACHE_OP_WEAK_REVALIDATE | 1704 DCACHE_OP_DELETE | 1705 DCACHE_OP_REAL)); 1706 dentry->d_op = op; 1707 if (!op) 1708 return; 1709 if (op->d_hash) 1710 dentry->d_flags |= DCACHE_OP_HASH; 1711 if (op->d_compare) 1712 dentry->d_flags |= DCACHE_OP_COMPARE; 1713 if (op->d_revalidate) 1714 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1715 if (op->d_weak_revalidate) 1716 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1717 if (op->d_delete) 1718 dentry->d_flags |= DCACHE_OP_DELETE; 1719 if (op->d_prune) 1720 dentry->d_flags |= DCACHE_OP_PRUNE; 1721 if (op->d_real) 1722 dentry->d_flags |= DCACHE_OP_REAL; 1723 1724 } 1725 EXPORT_SYMBOL(d_set_d_op); 1726 1727 1728 /* 1729 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1730 * @dentry - The dentry to mark 1731 * 1732 * Mark a dentry as falling through to the lower layer (as set with 1733 * d_pin_lower()). This flag may be recorded on the medium. 1734 */ 1735 void d_set_fallthru(struct dentry *dentry) 1736 { 1737 spin_lock(&dentry->d_lock); 1738 dentry->d_flags |= DCACHE_FALLTHRU; 1739 spin_unlock(&dentry->d_lock); 1740 } 1741 EXPORT_SYMBOL(d_set_fallthru); 1742 1743 static unsigned d_flags_for_inode(struct inode *inode) 1744 { 1745 unsigned add_flags = DCACHE_REGULAR_TYPE; 1746 1747 if (!inode) 1748 return DCACHE_MISS_TYPE; 1749 1750 if (S_ISDIR(inode->i_mode)) { 1751 add_flags = DCACHE_DIRECTORY_TYPE; 1752 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1753 if (unlikely(!inode->i_op->lookup)) 1754 add_flags = DCACHE_AUTODIR_TYPE; 1755 else 1756 inode->i_opflags |= IOP_LOOKUP; 1757 } 1758 goto type_determined; 1759 } 1760 1761 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1762 if (unlikely(inode->i_op->get_link)) { 1763 add_flags = DCACHE_SYMLINK_TYPE; 1764 goto type_determined; 1765 } 1766 inode->i_opflags |= IOP_NOFOLLOW; 1767 } 1768 1769 if (unlikely(!S_ISREG(inode->i_mode))) 1770 add_flags = DCACHE_SPECIAL_TYPE; 1771 1772 type_determined: 1773 if (unlikely(IS_AUTOMOUNT(inode))) 1774 add_flags |= DCACHE_NEED_AUTOMOUNT; 1775 return add_flags; 1776 } 1777 1778 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1779 { 1780 unsigned add_flags = d_flags_for_inode(inode); 1781 WARN_ON(d_in_lookup(dentry)); 1782 1783 spin_lock(&dentry->d_lock); 1784 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1785 raw_write_seqcount_begin(&dentry->d_seq); 1786 __d_set_inode_and_type(dentry, inode, add_flags); 1787 raw_write_seqcount_end(&dentry->d_seq); 1788 fsnotify_update_flags(dentry); 1789 spin_unlock(&dentry->d_lock); 1790 } 1791 1792 /** 1793 * d_instantiate - fill in inode information for a dentry 1794 * @entry: dentry to complete 1795 * @inode: inode to attach to this dentry 1796 * 1797 * Fill in inode information in the entry. 1798 * 1799 * This turns negative dentries into productive full members 1800 * of society. 1801 * 1802 * NOTE! This assumes that the inode count has been incremented 1803 * (or otherwise set) by the caller to indicate that it is now 1804 * in use by the dcache. 1805 */ 1806 1807 void d_instantiate(struct dentry *entry, struct inode * inode) 1808 { 1809 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1810 if (inode) { 1811 security_d_instantiate(entry, inode); 1812 spin_lock(&inode->i_lock); 1813 __d_instantiate(entry, inode); 1814 spin_unlock(&inode->i_lock); 1815 } 1816 } 1817 EXPORT_SYMBOL(d_instantiate); 1818 1819 /** 1820 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1821 * @entry: dentry to complete 1822 * @inode: inode to attach to this dentry 1823 * 1824 * Fill in inode information in the entry. If a directory alias is found, then 1825 * return an error (and drop inode). Together with d_materialise_unique() this 1826 * guarantees that a directory inode may never have more than one alias. 1827 */ 1828 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1829 { 1830 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1831 1832 security_d_instantiate(entry, inode); 1833 spin_lock(&inode->i_lock); 1834 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1835 spin_unlock(&inode->i_lock); 1836 iput(inode); 1837 return -EBUSY; 1838 } 1839 __d_instantiate(entry, inode); 1840 spin_unlock(&inode->i_lock); 1841 1842 return 0; 1843 } 1844 EXPORT_SYMBOL(d_instantiate_no_diralias); 1845 1846 struct dentry *d_make_root(struct inode *root_inode) 1847 { 1848 struct dentry *res = NULL; 1849 1850 if (root_inode) { 1851 res = __d_alloc(root_inode->i_sb, NULL); 1852 if (res) 1853 d_instantiate(res, root_inode); 1854 else 1855 iput(root_inode); 1856 } 1857 return res; 1858 } 1859 EXPORT_SYMBOL(d_make_root); 1860 1861 static struct dentry * __d_find_any_alias(struct inode *inode) 1862 { 1863 struct dentry *alias; 1864 1865 if (hlist_empty(&inode->i_dentry)) 1866 return NULL; 1867 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1868 __dget(alias); 1869 return alias; 1870 } 1871 1872 /** 1873 * d_find_any_alias - find any alias for a given inode 1874 * @inode: inode to find an alias for 1875 * 1876 * If any aliases exist for the given inode, take and return a 1877 * reference for one of them. If no aliases exist, return %NULL. 1878 */ 1879 struct dentry *d_find_any_alias(struct inode *inode) 1880 { 1881 struct dentry *de; 1882 1883 spin_lock(&inode->i_lock); 1884 de = __d_find_any_alias(inode); 1885 spin_unlock(&inode->i_lock); 1886 return de; 1887 } 1888 EXPORT_SYMBOL(d_find_any_alias); 1889 1890 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1891 { 1892 struct dentry *tmp; 1893 struct dentry *res; 1894 unsigned add_flags; 1895 1896 if (!inode) 1897 return ERR_PTR(-ESTALE); 1898 if (IS_ERR(inode)) 1899 return ERR_CAST(inode); 1900 1901 res = d_find_any_alias(inode); 1902 if (res) 1903 goto out_iput; 1904 1905 tmp = __d_alloc(inode->i_sb, NULL); 1906 if (!tmp) { 1907 res = ERR_PTR(-ENOMEM); 1908 goto out_iput; 1909 } 1910 1911 security_d_instantiate(tmp, inode); 1912 spin_lock(&inode->i_lock); 1913 res = __d_find_any_alias(inode); 1914 if (res) { 1915 spin_unlock(&inode->i_lock); 1916 dput(tmp); 1917 goto out_iput; 1918 } 1919 1920 /* attach a disconnected dentry */ 1921 add_flags = d_flags_for_inode(inode); 1922 1923 if (disconnected) 1924 add_flags |= DCACHE_DISCONNECTED; 1925 1926 spin_lock(&tmp->d_lock); 1927 __d_set_inode_and_type(tmp, inode, add_flags); 1928 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1929 hlist_bl_lock(&tmp->d_sb->s_anon); 1930 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1931 hlist_bl_unlock(&tmp->d_sb->s_anon); 1932 spin_unlock(&tmp->d_lock); 1933 spin_unlock(&inode->i_lock); 1934 1935 return tmp; 1936 1937 out_iput: 1938 iput(inode); 1939 return res; 1940 } 1941 1942 /** 1943 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1944 * @inode: inode to allocate the dentry for 1945 * 1946 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1947 * similar open by handle operations. The returned dentry may be anonymous, 1948 * or may have a full name (if the inode was already in the cache). 1949 * 1950 * When called on a directory inode, we must ensure that the inode only ever 1951 * has one dentry. If a dentry is found, that is returned instead of 1952 * allocating a new one. 1953 * 1954 * On successful return, the reference to the inode has been transferred 1955 * to the dentry. In case of an error the reference on the inode is released. 1956 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1957 * be passed in and the error will be propagated to the return value, 1958 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1959 */ 1960 struct dentry *d_obtain_alias(struct inode *inode) 1961 { 1962 return __d_obtain_alias(inode, 1); 1963 } 1964 EXPORT_SYMBOL(d_obtain_alias); 1965 1966 /** 1967 * d_obtain_root - find or allocate a dentry for a given inode 1968 * @inode: inode to allocate the dentry for 1969 * 1970 * Obtain an IS_ROOT dentry for the root of a filesystem. 1971 * 1972 * We must ensure that directory inodes only ever have one dentry. If a 1973 * dentry is found, that is returned instead of allocating a new one. 1974 * 1975 * On successful return, the reference to the inode has been transferred 1976 * to the dentry. In case of an error the reference on the inode is 1977 * released. A %NULL or IS_ERR inode may be passed in and will be the 1978 * error will be propagate to the return value, with a %NULL @inode 1979 * replaced by ERR_PTR(-ESTALE). 1980 */ 1981 struct dentry *d_obtain_root(struct inode *inode) 1982 { 1983 return __d_obtain_alias(inode, 0); 1984 } 1985 EXPORT_SYMBOL(d_obtain_root); 1986 1987 /** 1988 * d_add_ci - lookup or allocate new dentry with case-exact name 1989 * @inode: the inode case-insensitive lookup has found 1990 * @dentry: the negative dentry that was passed to the parent's lookup func 1991 * @name: the case-exact name to be associated with the returned dentry 1992 * 1993 * This is to avoid filling the dcache with case-insensitive names to the 1994 * same inode, only the actual correct case is stored in the dcache for 1995 * case-insensitive filesystems. 1996 * 1997 * For a case-insensitive lookup match and if the the case-exact dentry 1998 * already exists in in the dcache, use it and return it. 1999 * 2000 * If no entry exists with the exact case name, allocate new dentry with 2001 * the exact case, and return the spliced entry. 2002 */ 2003 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2004 struct qstr *name) 2005 { 2006 struct dentry *found, *res; 2007 2008 /* 2009 * First check if a dentry matching the name already exists, 2010 * if not go ahead and create it now. 2011 */ 2012 found = d_hash_and_lookup(dentry->d_parent, name); 2013 if (found) { 2014 iput(inode); 2015 return found; 2016 } 2017 if (d_in_lookup(dentry)) { 2018 found = d_alloc_parallel(dentry->d_parent, name, 2019 dentry->d_wait); 2020 if (IS_ERR(found) || !d_in_lookup(found)) { 2021 iput(inode); 2022 return found; 2023 } 2024 } else { 2025 found = d_alloc(dentry->d_parent, name); 2026 if (!found) { 2027 iput(inode); 2028 return ERR_PTR(-ENOMEM); 2029 } 2030 } 2031 res = d_splice_alias(inode, found); 2032 if (res) { 2033 dput(found); 2034 return res; 2035 } 2036 return found; 2037 } 2038 EXPORT_SYMBOL(d_add_ci); 2039 2040 2041 static inline bool d_same_name(const struct dentry *dentry, 2042 const struct dentry *parent, 2043 const struct qstr *name) 2044 { 2045 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2046 if (dentry->d_name.len != name->len) 2047 return false; 2048 return dentry_cmp(dentry, name->name, name->len) == 0; 2049 } 2050 return parent->d_op->d_compare(dentry, 2051 dentry->d_name.len, dentry->d_name.name, 2052 name) == 0; 2053 } 2054 2055 /** 2056 * __d_lookup_rcu - search for a dentry (racy, store-free) 2057 * @parent: parent dentry 2058 * @name: qstr of name we wish to find 2059 * @seqp: returns d_seq value at the point where the dentry was found 2060 * Returns: dentry, or NULL 2061 * 2062 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2063 * resolution (store-free path walking) design described in 2064 * Documentation/filesystems/path-lookup.txt. 2065 * 2066 * This is not to be used outside core vfs. 2067 * 2068 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2069 * held, and rcu_read_lock held. The returned dentry must not be stored into 2070 * without taking d_lock and checking d_seq sequence count against @seq 2071 * returned here. 2072 * 2073 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2074 * function. 2075 * 2076 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2077 * the returned dentry, so long as its parent's seqlock is checked after the 2078 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2079 * is formed, giving integrity down the path walk. 2080 * 2081 * NOTE! The caller *has* to check the resulting dentry against the sequence 2082 * number we've returned before using any of the resulting dentry state! 2083 */ 2084 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2085 const struct qstr *name, 2086 unsigned *seqp) 2087 { 2088 u64 hashlen = name->hash_len; 2089 const unsigned char *str = name->name; 2090 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2091 struct hlist_bl_node *node; 2092 struct dentry *dentry; 2093 2094 /* 2095 * Note: There is significant duplication with __d_lookup_rcu which is 2096 * required to prevent single threaded performance regressions 2097 * especially on architectures where smp_rmb (in seqcounts) are costly. 2098 * Keep the two functions in sync. 2099 */ 2100 2101 /* 2102 * The hash list is protected using RCU. 2103 * 2104 * Carefully use d_seq when comparing a candidate dentry, to avoid 2105 * races with d_move(). 2106 * 2107 * It is possible that concurrent renames can mess up our list 2108 * walk here and result in missing our dentry, resulting in the 2109 * false-negative result. d_lookup() protects against concurrent 2110 * renames using rename_lock seqlock. 2111 * 2112 * See Documentation/filesystems/path-lookup.txt for more details. 2113 */ 2114 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2115 unsigned seq; 2116 2117 seqretry: 2118 /* 2119 * The dentry sequence count protects us from concurrent 2120 * renames, and thus protects parent and name fields. 2121 * 2122 * The caller must perform a seqcount check in order 2123 * to do anything useful with the returned dentry. 2124 * 2125 * NOTE! We do a "raw" seqcount_begin here. That means that 2126 * we don't wait for the sequence count to stabilize if it 2127 * is in the middle of a sequence change. If we do the slow 2128 * dentry compare, we will do seqretries until it is stable, 2129 * and if we end up with a successful lookup, we actually 2130 * want to exit RCU lookup anyway. 2131 * 2132 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2133 * we are still guaranteed NUL-termination of ->d_name.name. 2134 */ 2135 seq = raw_seqcount_begin(&dentry->d_seq); 2136 if (dentry->d_parent != parent) 2137 continue; 2138 if (d_unhashed(dentry)) 2139 continue; 2140 2141 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2142 int tlen; 2143 const char *tname; 2144 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2145 continue; 2146 tlen = dentry->d_name.len; 2147 tname = dentry->d_name.name; 2148 /* we want a consistent (name,len) pair */ 2149 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2150 cpu_relax(); 2151 goto seqretry; 2152 } 2153 if (parent->d_op->d_compare(dentry, 2154 tlen, tname, name) != 0) 2155 continue; 2156 } else { 2157 if (dentry->d_name.hash_len != hashlen) 2158 continue; 2159 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2160 continue; 2161 } 2162 *seqp = seq; 2163 return dentry; 2164 } 2165 return NULL; 2166 } 2167 2168 /** 2169 * d_lookup - search for a dentry 2170 * @parent: parent dentry 2171 * @name: qstr of name we wish to find 2172 * Returns: dentry, or NULL 2173 * 2174 * d_lookup searches the children of the parent dentry for the name in 2175 * question. If the dentry is found its reference count is incremented and the 2176 * dentry is returned. The caller must use dput to free the entry when it has 2177 * finished using it. %NULL is returned if the dentry does not exist. 2178 */ 2179 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2180 { 2181 struct dentry *dentry; 2182 unsigned seq; 2183 2184 do { 2185 seq = read_seqbegin(&rename_lock); 2186 dentry = __d_lookup(parent, name); 2187 if (dentry) 2188 break; 2189 } while (read_seqretry(&rename_lock, seq)); 2190 return dentry; 2191 } 2192 EXPORT_SYMBOL(d_lookup); 2193 2194 /** 2195 * __d_lookup - search for a dentry (racy) 2196 * @parent: parent dentry 2197 * @name: qstr of name we wish to find 2198 * Returns: dentry, or NULL 2199 * 2200 * __d_lookup is like d_lookup, however it may (rarely) return a 2201 * false-negative result due to unrelated rename activity. 2202 * 2203 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2204 * however it must be used carefully, eg. with a following d_lookup in 2205 * the case of failure. 2206 * 2207 * __d_lookup callers must be commented. 2208 */ 2209 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2210 { 2211 unsigned int hash = name->hash; 2212 struct hlist_bl_head *b = d_hash(hash); 2213 struct hlist_bl_node *node; 2214 struct dentry *found = NULL; 2215 struct dentry *dentry; 2216 2217 /* 2218 * Note: There is significant duplication with __d_lookup_rcu which is 2219 * required to prevent single threaded performance regressions 2220 * especially on architectures where smp_rmb (in seqcounts) are costly. 2221 * Keep the two functions in sync. 2222 */ 2223 2224 /* 2225 * The hash list is protected using RCU. 2226 * 2227 * Take d_lock when comparing a candidate dentry, to avoid races 2228 * with d_move(). 2229 * 2230 * It is possible that concurrent renames can mess up our list 2231 * walk here and result in missing our dentry, resulting in the 2232 * false-negative result. d_lookup() protects against concurrent 2233 * renames using rename_lock seqlock. 2234 * 2235 * See Documentation/filesystems/path-lookup.txt for more details. 2236 */ 2237 rcu_read_lock(); 2238 2239 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2240 2241 if (dentry->d_name.hash != hash) 2242 continue; 2243 2244 spin_lock(&dentry->d_lock); 2245 if (dentry->d_parent != parent) 2246 goto next; 2247 if (d_unhashed(dentry)) 2248 goto next; 2249 2250 if (!d_same_name(dentry, parent, name)) 2251 goto next; 2252 2253 dentry->d_lockref.count++; 2254 found = dentry; 2255 spin_unlock(&dentry->d_lock); 2256 break; 2257 next: 2258 spin_unlock(&dentry->d_lock); 2259 } 2260 rcu_read_unlock(); 2261 2262 return found; 2263 } 2264 2265 /** 2266 * d_hash_and_lookup - hash the qstr then search for a dentry 2267 * @dir: Directory to search in 2268 * @name: qstr of name we wish to find 2269 * 2270 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2271 */ 2272 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2273 { 2274 /* 2275 * Check for a fs-specific hash function. Note that we must 2276 * calculate the standard hash first, as the d_op->d_hash() 2277 * routine may choose to leave the hash value unchanged. 2278 */ 2279 name->hash = full_name_hash(dir, name->name, name->len); 2280 if (dir->d_flags & DCACHE_OP_HASH) { 2281 int err = dir->d_op->d_hash(dir, name); 2282 if (unlikely(err < 0)) 2283 return ERR_PTR(err); 2284 } 2285 return d_lookup(dir, name); 2286 } 2287 EXPORT_SYMBOL(d_hash_and_lookup); 2288 2289 /* 2290 * When a file is deleted, we have two options: 2291 * - turn this dentry into a negative dentry 2292 * - unhash this dentry and free it. 2293 * 2294 * Usually, we want to just turn this into 2295 * a negative dentry, but if anybody else is 2296 * currently using the dentry or the inode 2297 * we can't do that and we fall back on removing 2298 * it from the hash queues and waiting for 2299 * it to be deleted later when it has no users 2300 */ 2301 2302 /** 2303 * d_delete - delete a dentry 2304 * @dentry: The dentry to delete 2305 * 2306 * Turn the dentry into a negative dentry if possible, otherwise 2307 * remove it from the hash queues so it can be deleted later 2308 */ 2309 2310 void d_delete(struct dentry * dentry) 2311 { 2312 struct inode *inode; 2313 int isdir = 0; 2314 /* 2315 * Are we the only user? 2316 */ 2317 again: 2318 spin_lock(&dentry->d_lock); 2319 inode = dentry->d_inode; 2320 isdir = S_ISDIR(inode->i_mode); 2321 if (dentry->d_lockref.count == 1) { 2322 if (!spin_trylock(&inode->i_lock)) { 2323 spin_unlock(&dentry->d_lock); 2324 cpu_relax(); 2325 goto again; 2326 } 2327 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2328 dentry_unlink_inode(dentry); 2329 fsnotify_nameremove(dentry, isdir); 2330 return; 2331 } 2332 2333 if (!d_unhashed(dentry)) 2334 __d_drop(dentry); 2335 2336 spin_unlock(&dentry->d_lock); 2337 2338 fsnotify_nameremove(dentry, isdir); 2339 } 2340 EXPORT_SYMBOL(d_delete); 2341 2342 static void __d_rehash(struct dentry *entry) 2343 { 2344 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2345 BUG_ON(!d_unhashed(entry)); 2346 hlist_bl_lock(b); 2347 hlist_bl_add_head_rcu(&entry->d_hash, b); 2348 hlist_bl_unlock(b); 2349 } 2350 2351 /** 2352 * d_rehash - add an entry back to the hash 2353 * @entry: dentry to add to the hash 2354 * 2355 * Adds a dentry to the hash according to its name. 2356 */ 2357 2358 void d_rehash(struct dentry * entry) 2359 { 2360 spin_lock(&entry->d_lock); 2361 __d_rehash(entry); 2362 spin_unlock(&entry->d_lock); 2363 } 2364 EXPORT_SYMBOL(d_rehash); 2365 2366 static inline unsigned start_dir_add(struct inode *dir) 2367 { 2368 2369 for (;;) { 2370 unsigned n = dir->i_dir_seq; 2371 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2372 return n; 2373 cpu_relax(); 2374 } 2375 } 2376 2377 static inline void end_dir_add(struct inode *dir, unsigned n) 2378 { 2379 smp_store_release(&dir->i_dir_seq, n + 2); 2380 } 2381 2382 static void d_wait_lookup(struct dentry *dentry) 2383 { 2384 if (d_in_lookup(dentry)) { 2385 DECLARE_WAITQUEUE(wait, current); 2386 add_wait_queue(dentry->d_wait, &wait); 2387 do { 2388 set_current_state(TASK_UNINTERRUPTIBLE); 2389 spin_unlock(&dentry->d_lock); 2390 schedule(); 2391 spin_lock(&dentry->d_lock); 2392 } while (d_in_lookup(dentry)); 2393 } 2394 } 2395 2396 struct dentry *d_alloc_parallel(struct dentry *parent, 2397 const struct qstr *name, 2398 wait_queue_head_t *wq) 2399 { 2400 unsigned int hash = name->hash; 2401 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2402 struct hlist_bl_node *node; 2403 struct dentry *new = d_alloc(parent, name); 2404 struct dentry *dentry; 2405 unsigned seq, r_seq, d_seq; 2406 2407 if (unlikely(!new)) 2408 return ERR_PTR(-ENOMEM); 2409 2410 retry: 2411 rcu_read_lock(); 2412 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2413 r_seq = read_seqbegin(&rename_lock); 2414 dentry = __d_lookup_rcu(parent, name, &d_seq); 2415 if (unlikely(dentry)) { 2416 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2417 rcu_read_unlock(); 2418 goto retry; 2419 } 2420 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2421 rcu_read_unlock(); 2422 dput(dentry); 2423 goto retry; 2424 } 2425 rcu_read_unlock(); 2426 dput(new); 2427 return dentry; 2428 } 2429 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2430 rcu_read_unlock(); 2431 goto retry; 2432 } 2433 hlist_bl_lock(b); 2434 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2435 hlist_bl_unlock(b); 2436 rcu_read_unlock(); 2437 goto retry; 2438 } 2439 /* 2440 * No changes for the parent since the beginning of d_lookup(). 2441 * Since all removals from the chain happen with hlist_bl_lock(), 2442 * any potential in-lookup matches are going to stay here until 2443 * we unlock the chain. All fields are stable in everything 2444 * we encounter. 2445 */ 2446 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2447 if (dentry->d_name.hash != hash) 2448 continue; 2449 if (dentry->d_parent != parent) 2450 continue; 2451 if (!d_same_name(dentry, parent, name)) 2452 continue; 2453 hlist_bl_unlock(b); 2454 /* now we can try to grab a reference */ 2455 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2456 rcu_read_unlock(); 2457 goto retry; 2458 } 2459 2460 rcu_read_unlock(); 2461 /* 2462 * somebody is likely to be still doing lookup for it; 2463 * wait for them to finish 2464 */ 2465 spin_lock(&dentry->d_lock); 2466 d_wait_lookup(dentry); 2467 /* 2468 * it's not in-lookup anymore; in principle we should repeat 2469 * everything from dcache lookup, but it's likely to be what 2470 * d_lookup() would've found anyway. If it is, just return it; 2471 * otherwise we really have to repeat the whole thing. 2472 */ 2473 if (unlikely(dentry->d_name.hash != hash)) 2474 goto mismatch; 2475 if (unlikely(dentry->d_parent != parent)) 2476 goto mismatch; 2477 if (unlikely(d_unhashed(dentry))) 2478 goto mismatch; 2479 if (unlikely(!d_same_name(dentry, parent, name))) 2480 goto mismatch; 2481 /* OK, it *is* a hashed match; return it */ 2482 spin_unlock(&dentry->d_lock); 2483 dput(new); 2484 return dentry; 2485 } 2486 rcu_read_unlock(); 2487 /* we can't take ->d_lock here; it's OK, though. */ 2488 new->d_flags |= DCACHE_PAR_LOOKUP; 2489 new->d_wait = wq; 2490 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2491 hlist_bl_unlock(b); 2492 return new; 2493 mismatch: 2494 spin_unlock(&dentry->d_lock); 2495 dput(dentry); 2496 goto retry; 2497 } 2498 EXPORT_SYMBOL(d_alloc_parallel); 2499 2500 void __d_lookup_done(struct dentry *dentry) 2501 { 2502 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2503 dentry->d_name.hash); 2504 hlist_bl_lock(b); 2505 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2506 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2507 wake_up_all(dentry->d_wait); 2508 dentry->d_wait = NULL; 2509 hlist_bl_unlock(b); 2510 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2511 INIT_LIST_HEAD(&dentry->d_lru); 2512 } 2513 EXPORT_SYMBOL(__d_lookup_done); 2514 2515 /* inode->i_lock held if inode is non-NULL */ 2516 2517 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2518 { 2519 struct inode *dir = NULL; 2520 unsigned n; 2521 spin_lock(&dentry->d_lock); 2522 if (unlikely(d_in_lookup(dentry))) { 2523 dir = dentry->d_parent->d_inode; 2524 n = start_dir_add(dir); 2525 __d_lookup_done(dentry); 2526 } 2527 if (inode) { 2528 unsigned add_flags = d_flags_for_inode(inode); 2529 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2530 raw_write_seqcount_begin(&dentry->d_seq); 2531 __d_set_inode_and_type(dentry, inode, add_flags); 2532 raw_write_seqcount_end(&dentry->d_seq); 2533 fsnotify_update_flags(dentry); 2534 } 2535 __d_rehash(dentry); 2536 if (dir) 2537 end_dir_add(dir, n); 2538 spin_unlock(&dentry->d_lock); 2539 if (inode) 2540 spin_unlock(&inode->i_lock); 2541 } 2542 2543 /** 2544 * d_add - add dentry to hash queues 2545 * @entry: dentry to add 2546 * @inode: The inode to attach to this dentry 2547 * 2548 * This adds the entry to the hash queues and initializes @inode. 2549 * The entry was actually filled in earlier during d_alloc(). 2550 */ 2551 2552 void d_add(struct dentry *entry, struct inode *inode) 2553 { 2554 if (inode) { 2555 security_d_instantiate(entry, inode); 2556 spin_lock(&inode->i_lock); 2557 } 2558 __d_add(entry, inode); 2559 } 2560 EXPORT_SYMBOL(d_add); 2561 2562 /** 2563 * d_exact_alias - find and hash an exact unhashed alias 2564 * @entry: dentry to add 2565 * @inode: The inode to go with this dentry 2566 * 2567 * If an unhashed dentry with the same name/parent and desired 2568 * inode already exists, hash and return it. Otherwise, return 2569 * NULL. 2570 * 2571 * Parent directory should be locked. 2572 */ 2573 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2574 { 2575 struct dentry *alias; 2576 unsigned int hash = entry->d_name.hash; 2577 2578 spin_lock(&inode->i_lock); 2579 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2580 /* 2581 * Don't need alias->d_lock here, because aliases with 2582 * d_parent == entry->d_parent are not subject to name or 2583 * parent changes, because the parent inode i_mutex is held. 2584 */ 2585 if (alias->d_name.hash != hash) 2586 continue; 2587 if (alias->d_parent != entry->d_parent) 2588 continue; 2589 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2590 continue; 2591 spin_lock(&alias->d_lock); 2592 if (!d_unhashed(alias)) { 2593 spin_unlock(&alias->d_lock); 2594 alias = NULL; 2595 } else { 2596 __dget_dlock(alias); 2597 __d_rehash(alias); 2598 spin_unlock(&alias->d_lock); 2599 } 2600 spin_unlock(&inode->i_lock); 2601 return alias; 2602 } 2603 spin_unlock(&inode->i_lock); 2604 return NULL; 2605 } 2606 EXPORT_SYMBOL(d_exact_alias); 2607 2608 /** 2609 * dentry_update_name_case - update case insensitive dentry with a new name 2610 * @dentry: dentry to be updated 2611 * @name: new name 2612 * 2613 * Update a case insensitive dentry with new case of name. 2614 * 2615 * dentry must have been returned by d_lookup with name @name. Old and new 2616 * name lengths must match (ie. no d_compare which allows mismatched name 2617 * lengths). 2618 * 2619 * Parent inode i_mutex must be held over d_lookup and into this call (to 2620 * keep renames and concurrent inserts, and readdir(2) away). 2621 */ 2622 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2623 { 2624 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2625 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2626 2627 spin_lock(&dentry->d_lock); 2628 write_seqcount_begin(&dentry->d_seq); 2629 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2630 write_seqcount_end(&dentry->d_seq); 2631 spin_unlock(&dentry->d_lock); 2632 } 2633 EXPORT_SYMBOL(dentry_update_name_case); 2634 2635 static void swap_names(struct dentry *dentry, struct dentry *target) 2636 { 2637 if (unlikely(dname_external(target))) { 2638 if (unlikely(dname_external(dentry))) { 2639 /* 2640 * Both external: swap the pointers 2641 */ 2642 swap(target->d_name.name, dentry->d_name.name); 2643 } else { 2644 /* 2645 * dentry:internal, target:external. Steal target's 2646 * storage and make target internal. 2647 */ 2648 memcpy(target->d_iname, dentry->d_name.name, 2649 dentry->d_name.len + 1); 2650 dentry->d_name.name = target->d_name.name; 2651 target->d_name.name = target->d_iname; 2652 } 2653 } else { 2654 if (unlikely(dname_external(dentry))) { 2655 /* 2656 * dentry:external, target:internal. Give dentry's 2657 * storage to target and make dentry internal 2658 */ 2659 memcpy(dentry->d_iname, target->d_name.name, 2660 target->d_name.len + 1); 2661 target->d_name.name = dentry->d_name.name; 2662 dentry->d_name.name = dentry->d_iname; 2663 } else { 2664 /* 2665 * Both are internal. 2666 */ 2667 unsigned int i; 2668 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2669 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2670 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2671 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2672 swap(((long *) &dentry->d_iname)[i], 2673 ((long *) &target->d_iname)[i]); 2674 } 2675 } 2676 } 2677 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2678 } 2679 2680 static void copy_name(struct dentry *dentry, struct dentry *target) 2681 { 2682 struct external_name *old_name = NULL; 2683 if (unlikely(dname_external(dentry))) 2684 old_name = external_name(dentry); 2685 if (unlikely(dname_external(target))) { 2686 atomic_inc(&external_name(target)->u.count); 2687 dentry->d_name = target->d_name; 2688 } else { 2689 memcpy(dentry->d_iname, target->d_name.name, 2690 target->d_name.len + 1); 2691 dentry->d_name.name = dentry->d_iname; 2692 dentry->d_name.hash_len = target->d_name.hash_len; 2693 } 2694 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2695 kfree_rcu(old_name, u.head); 2696 } 2697 2698 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2699 { 2700 /* 2701 * XXXX: do we really need to take target->d_lock? 2702 */ 2703 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2704 spin_lock(&target->d_parent->d_lock); 2705 else { 2706 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2707 spin_lock(&dentry->d_parent->d_lock); 2708 spin_lock_nested(&target->d_parent->d_lock, 2709 DENTRY_D_LOCK_NESTED); 2710 } else { 2711 spin_lock(&target->d_parent->d_lock); 2712 spin_lock_nested(&dentry->d_parent->d_lock, 2713 DENTRY_D_LOCK_NESTED); 2714 } 2715 } 2716 if (target < dentry) { 2717 spin_lock_nested(&target->d_lock, 2); 2718 spin_lock_nested(&dentry->d_lock, 3); 2719 } else { 2720 spin_lock_nested(&dentry->d_lock, 2); 2721 spin_lock_nested(&target->d_lock, 3); 2722 } 2723 } 2724 2725 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2726 { 2727 if (target->d_parent != dentry->d_parent) 2728 spin_unlock(&dentry->d_parent->d_lock); 2729 if (target->d_parent != target) 2730 spin_unlock(&target->d_parent->d_lock); 2731 spin_unlock(&target->d_lock); 2732 spin_unlock(&dentry->d_lock); 2733 } 2734 2735 /* 2736 * When switching names, the actual string doesn't strictly have to 2737 * be preserved in the target - because we're dropping the target 2738 * anyway. As such, we can just do a simple memcpy() to copy over 2739 * the new name before we switch, unless we are going to rehash 2740 * it. Note that if we *do* unhash the target, we are not allowed 2741 * to rehash it without giving it a new name/hash key - whether 2742 * we swap or overwrite the names here, resulting name won't match 2743 * the reality in filesystem; it's only there for d_path() purposes. 2744 * Note that all of this is happening under rename_lock, so the 2745 * any hash lookup seeing it in the middle of manipulations will 2746 * be discarded anyway. So we do not care what happens to the hash 2747 * key in that case. 2748 */ 2749 /* 2750 * __d_move - move a dentry 2751 * @dentry: entry to move 2752 * @target: new dentry 2753 * @exchange: exchange the two dentries 2754 * 2755 * Update the dcache to reflect the move of a file name. Negative 2756 * dcache entries should not be moved in this way. Caller must hold 2757 * rename_lock, the i_mutex of the source and target directories, 2758 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2759 */ 2760 static void __d_move(struct dentry *dentry, struct dentry *target, 2761 bool exchange) 2762 { 2763 struct inode *dir = NULL; 2764 unsigned n; 2765 if (!dentry->d_inode) 2766 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2767 2768 BUG_ON(d_ancestor(dentry, target)); 2769 BUG_ON(d_ancestor(target, dentry)); 2770 2771 dentry_lock_for_move(dentry, target); 2772 if (unlikely(d_in_lookup(target))) { 2773 dir = target->d_parent->d_inode; 2774 n = start_dir_add(dir); 2775 __d_lookup_done(target); 2776 } 2777 2778 write_seqcount_begin(&dentry->d_seq); 2779 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2780 2781 /* unhash both */ 2782 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2783 __d_drop(dentry); 2784 __d_drop(target); 2785 2786 /* Switch the names.. */ 2787 if (exchange) 2788 swap_names(dentry, target); 2789 else 2790 copy_name(dentry, target); 2791 2792 /* rehash in new place(s) */ 2793 __d_rehash(dentry); 2794 if (exchange) 2795 __d_rehash(target); 2796 2797 /* ... and switch them in the tree */ 2798 if (IS_ROOT(dentry)) { 2799 /* splicing a tree */ 2800 dentry->d_flags |= DCACHE_RCUACCESS; 2801 dentry->d_parent = target->d_parent; 2802 target->d_parent = target; 2803 list_del_init(&target->d_child); 2804 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2805 } else { 2806 /* swapping two dentries */ 2807 swap(dentry->d_parent, target->d_parent); 2808 list_move(&target->d_child, &target->d_parent->d_subdirs); 2809 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2810 if (exchange) 2811 fsnotify_update_flags(target); 2812 fsnotify_update_flags(dentry); 2813 } 2814 2815 write_seqcount_end(&target->d_seq); 2816 write_seqcount_end(&dentry->d_seq); 2817 2818 if (dir) 2819 end_dir_add(dir, n); 2820 dentry_unlock_for_move(dentry, target); 2821 } 2822 2823 /* 2824 * d_move - move a dentry 2825 * @dentry: entry to move 2826 * @target: new dentry 2827 * 2828 * Update the dcache to reflect the move of a file name. Negative 2829 * dcache entries should not be moved in this way. See the locking 2830 * requirements for __d_move. 2831 */ 2832 void d_move(struct dentry *dentry, struct dentry *target) 2833 { 2834 write_seqlock(&rename_lock); 2835 __d_move(dentry, target, false); 2836 write_sequnlock(&rename_lock); 2837 } 2838 EXPORT_SYMBOL(d_move); 2839 2840 /* 2841 * d_exchange - exchange two dentries 2842 * @dentry1: first dentry 2843 * @dentry2: second dentry 2844 */ 2845 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2846 { 2847 write_seqlock(&rename_lock); 2848 2849 WARN_ON(!dentry1->d_inode); 2850 WARN_ON(!dentry2->d_inode); 2851 WARN_ON(IS_ROOT(dentry1)); 2852 WARN_ON(IS_ROOT(dentry2)); 2853 2854 __d_move(dentry1, dentry2, true); 2855 2856 write_sequnlock(&rename_lock); 2857 } 2858 2859 /** 2860 * d_ancestor - search for an ancestor 2861 * @p1: ancestor dentry 2862 * @p2: child dentry 2863 * 2864 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2865 * an ancestor of p2, else NULL. 2866 */ 2867 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2868 { 2869 struct dentry *p; 2870 2871 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2872 if (p->d_parent == p1) 2873 return p; 2874 } 2875 return NULL; 2876 } 2877 2878 /* 2879 * This helper attempts to cope with remotely renamed directories 2880 * 2881 * It assumes that the caller is already holding 2882 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2883 * 2884 * Note: If ever the locking in lock_rename() changes, then please 2885 * remember to update this too... 2886 */ 2887 static int __d_unalias(struct inode *inode, 2888 struct dentry *dentry, struct dentry *alias) 2889 { 2890 struct mutex *m1 = NULL; 2891 struct rw_semaphore *m2 = NULL; 2892 int ret = -ESTALE; 2893 2894 /* If alias and dentry share a parent, then no extra locks required */ 2895 if (alias->d_parent == dentry->d_parent) 2896 goto out_unalias; 2897 2898 /* See lock_rename() */ 2899 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2900 goto out_err; 2901 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2902 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2903 goto out_err; 2904 m2 = &alias->d_parent->d_inode->i_rwsem; 2905 out_unalias: 2906 __d_move(alias, dentry, false); 2907 ret = 0; 2908 out_err: 2909 if (m2) 2910 up_read(m2); 2911 if (m1) 2912 mutex_unlock(m1); 2913 return ret; 2914 } 2915 2916 /** 2917 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2918 * @inode: the inode which may have a disconnected dentry 2919 * @dentry: a negative dentry which we want to point to the inode. 2920 * 2921 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2922 * place of the given dentry and return it, else simply d_add the inode 2923 * to the dentry and return NULL. 2924 * 2925 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2926 * we should error out: directories can't have multiple aliases. 2927 * 2928 * This is needed in the lookup routine of any filesystem that is exportable 2929 * (via knfsd) so that we can build dcache paths to directories effectively. 2930 * 2931 * If a dentry was found and moved, then it is returned. Otherwise NULL 2932 * is returned. This matches the expected return value of ->lookup. 2933 * 2934 * Cluster filesystems may call this function with a negative, hashed dentry. 2935 * In that case, we know that the inode will be a regular file, and also this 2936 * will only occur during atomic_open. So we need to check for the dentry 2937 * being already hashed only in the final case. 2938 */ 2939 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2940 { 2941 if (IS_ERR(inode)) 2942 return ERR_CAST(inode); 2943 2944 BUG_ON(!d_unhashed(dentry)); 2945 2946 if (!inode) 2947 goto out; 2948 2949 security_d_instantiate(dentry, inode); 2950 spin_lock(&inode->i_lock); 2951 if (S_ISDIR(inode->i_mode)) { 2952 struct dentry *new = __d_find_any_alias(inode); 2953 if (unlikely(new)) { 2954 /* The reference to new ensures it remains an alias */ 2955 spin_unlock(&inode->i_lock); 2956 write_seqlock(&rename_lock); 2957 if (unlikely(d_ancestor(new, dentry))) { 2958 write_sequnlock(&rename_lock); 2959 dput(new); 2960 new = ERR_PTR(-ELOOP); 2961 pr_warn_ratelimited( 2962 "VFS: Lookup of '%s' in %s %s" 2963 " would have caused loop\n", 2964 dentry->d_name.name, 2965 inode->i_sb->s_type->name, 2966 inode->i_sb->s_id); 2967 } else if (!IS_ROOT(new)) { 2968 int err = __d_unalias(inode, dentry, new); 2969 write_sequnlock(&rename_lock); 2970 if (err) { 2971 dput(new); 2972 new = ERR_PTR(err); 2973 } 2974 } else { 2975 __d_move(new, dentry, false); 2976 write_sequnlock(&rename_lock); 2977 } 2978 iput(inode); 2979 return new; 2980 } 2981 } 2982 out: 2983 __d_add(dentry, inode); 2984 return NULL; 2985 } 2986 EXPORT_SYMBOL(d_splice_alias); 2987 2988 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2989 { 2990 *buflen -= namelen; 2991 if (*buflen < 0) 2992 return -ENAMETOOLONG; 2993 *buffer -= namelen; 2994 memcpy(*buffer, str, namelen); 2995 return 0; 2996 } 2997 2998 /** 2999 * prepend_name - prepend a pathname in front of current buffer pointer 3000 * @buffer: buffer pointer 3001 * @buflen: allocated length of the buffer 3002 * @name: name string and length qstr structure 3003 * 3004 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 3005 * make sure that either the old or the new name pointer and length are 3006 * fetched. However, there may be mismatch between length and pointer. 3007 * The length cannot be trusted, we need to copy it byte-by-byte until 3008 * the length is reached or a null byte is found. It also prepends "/" at 3009 * the beginning of the name. The sequence number check at the caller will 3010 * retry it again when a d_move() does happen. So any garbage in the buffer 3011 * due to mismatched pointer and length will be discarded. 3012 * 3013 * Data dependency barrier is needed to make sure that we see that terminating 3014 * NUL. Alpha strikes again, film at 11... 3015 */ 3016 static int prepend_name(char **buffer, int *buflen, const struct qstr *name) 3017 { 3018 const char *dname = ACCESS_ONCE(name->name); 3019 u32 dlen = ACCESS_ONCE(name->len); 3020 char *p; 3021 3022 smp_read_barrier_depends(); 3023 3024 *buflen -= dlen + 1; 3025 if (*buflen < 0) 3026 return -ENAMETOOLONG; 3027 p = *buffer -= dlen + 1; 3028 *p++ = '/'; 3029 while (dlen--) { 3030 char c = *dname++; 3031 if (!c) 3032 break; 3033 *p++ = c; 3034 } 3035 return 0; 3036 } 3037 3038 /** 3039 * prepend_path - Prepend path string to a buffer 3040 * @path: the dentry/vfsmount to report 3041 * @root: root vfsmnt/dentry 3042 * @buffer: pointer to the end of the buffer 3043 * @buflen: pointer to buffer length 3044 * 3045 * The function will first try to write out the pathname without taking any 3046 * lock other than the RCU read lock to make sure that dentries won't go away. 3047 * It only checks the sequence number of the global rename_lock as any change 3048 * in the dentry's d_seq will be preceded by changes in the rename_lock 3049 * sequence number. If the sequence number had been changed, it will restart 3050 * the whole pathname back-tracing sequence again by taking the rename_lock. 3051 * In this case, there is no need to take the RCU read lock as the recursive 3052 * parent pointer references will keep the dentry chain alive as long as no 3053 * rename operation is performed. 3054 */ 3055 static int prepend_path(const struct path *path, 3056 const struct path *root, 3057 char **buffer, int *buflen) 3058 { 3059 struct dentry *dentry; 3060 struct vfsmount *vfsmnt; 3061 struct mount *mnt; 3062 int error = 0; 3063 unsigned seq, m_seq = 0; 3064 char *bptr; 3065 int blen; 3066 3067 rcu_read_lock(); 3068 restart_mnt: 3069 read_seqbegin_or_lock(&mount_lock, &m_seq); 3070 seq = 0; 3071 rcu_read_lock(); 3072 restart: 3073 bptr = *buffer; 3074 blen = *buflen; 3075 error = 0; 3076 dentry = path->dentry; 3077 vfsmnt = path->mnt; 3078 mnt = real_mount(vfsmnt); 3079 read_seqbegin_or_lock(&rename_lock, &seq); 3080 while (dentry != root->dentry || vfsmnt != root->mnt) { 3081 struct dentry * parent; 3082 3083 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3084 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 3085 /* Escaped? */ 3086 if (dentry != vfsmnt->mnt_root) { 3087 bptr = *buffer; 3088 blen = *buflen; 3089 error = 3; 3090 break; 3091 } 3092 /* Global root? */ 3093 if (mnt != parent) { 3094 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 3095 mnt = parent; 3096 vfsmnt = &mnt->mnt; 3097 continue; 3098 } 3099 if (!error) 3100 error = is_mounted(vfsmnt) ? 1 : 2; 3101 break; 3102 } 3103 parent = dentry->d_parent; 3104 prefetch(parent); 3105 error = prepend_name(&bptr, &blen, &dentry->d_name); 3106 if (error) 3107 break; 3108 3109 dentry = parent; 3110 } 3111 if (!(seq & 1)) 3112 rcu_read_unlock(); 3113 if (need_seqretry(&rename_lock, seq)) { 3114 seq = 1; 3115 goto restart; 3116 } 3117 done_seqretry(&rename_lock, seq); 3118 3119 if (!(m_seq & 1)) 3120 rcu_read_unlock(); 3121 if (need_seqretry(&mount_lock, m_seq)) { 3122 m_seq = 1; 3123 goto restart_mnt; 3124 } 3125 done_seqretry(&mount_lock, m_seq); 3126 3127 if (error >= 0 && bptr == *buffer) { 3128 if (--blen < 0) 3129 error = -ENAMETOOLONG; 3130 else 3131 *--bptr = '/'; 3132 } 3133 *buffer = bptr; 3134 *buflen = blen; 3135 return error; 3136 } 3137 3138 /** 3139 * __d_path - return the path of a dentry 3140 * @path: the dentry/vfsmount to report 3141 * @root: root vfsmnt/dentry 3142 * @buf: buffer to return value in 3143 * @buflen: buffer length 3144 * 3145 * Convert a dentry into an ASCII path name. 3146 * 3147 * Returns a pointer into the buffer or an error code if the 3148 * path was too long. 3149 * 3150 * "buflen" should be positive. 3151 * 3152 * If the path is not reachable from the supplied root, return %NULL. 3153 */ 3154 char *__d_path(const struct path *path, 3155 const struct path *root, 3156 char *buf, int buflen) 3157 { 3158 char *res = buf + buflen; 3159 int error; 3160 3161 prepend(&res, &buflen, "\0", 1); 3162 error = prepend_path(path, root, &res, &buflen); 3163 3164 if (error < 0) 3165 return ERR_PTR(error); 3166 if (error > 0) 3167 return NULL; 3168 return res; 3169 } 3170 3171 char *d_absolute_path(const struct path *path, 3172 char *buf, int buflen) 3173 { 3174 struct path root = {}; 3175 char *res = buf + buflen; 3176 int error; 3177 3178 prepend(&res, &buflen, "\0", 1); 3179 error = prepend_path(path, &root, &res, &buflen); 3180 3181 if (error > 1) 3182 error = -EINVAL; 3183 if (error < 0) 3184 return ERR_PTR(error); 3185 return res; 3186 } 3187 3188 /* 3189 * same as __d_path but appends "(deleted)" for unlinked files. 3190 */ 3191 static int path_with_deleted(const struct path *path, 3192 const struct path *root, 3193 char **buf, int *buflen) 3194 { 3195 prepend(buf, buflen, "\0", 1); 3196 if (d_unlinked(path->dentry)) { 3197 int error = prepend(buf, buflen, " (deleted)", 10); 3198 if (error) 3199 return error; 3200 } 3201 3202 return prepend_path(path, root, buf, buflen); 3203 } 3204 3205 static int prepend_unreachable(char **buffer, int *buflen) 3206 { 3207 return prepend(buffer, buflen, "(unreachable)", 13); 3208 } 3209 3210 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3211 { 3212 unsigned seq; 3213 3214 do { 3215 seq = read_seqcount_begin(&fs->seq); 3216 *root = fs->root; 3217 } while (read_seqcount_retry(&fs->seq, seq)); 3218 } 3219 3220 /** 3221 * d_path - return the path of a dentry 3222 * @path: path to report 3223 * @buf: buffer to return value in 3224 * @buflen: buffer length 3225 * 3226 * Convert a dentry into an ASCII path name. If the entry has been deleted 3227 * the string " (deleted)" is appended. Note that this is ambiguous. 3228 * 3229 * Returns a pointer into the buffer or an error code if the path was 3230 * too long. Note: Callers should use the returned pointer, not the passed 3231 * in buffer, to use the name! The implementation often starts at an offset 3232 * into the buffer, and may leave 0 bytes at the start. 3233 * 3234 * "buflen" should be positive. 3235 */ 3236 char *d_path(const struct path *path, char *buf, int buflen) 3237 { 3238 char *res = buf + buflen; 3239 struct path root; 3240 int error; 3241 3242 /* 3243 * We have various synthetic filesystems that never get mounted. On 3244 * these filesystems dentries are never used for lookup purposes, and 3245 * thus don't need to be hashed. They also don't need a name until a 3246 * user wants to identify the object in /proc/pid/fd/. The little hack 3247 * below allows us to generate a name for these objects on demand: 3248 * 3249 * Some pseudo inodes are mountable. When they are mounted 3250 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3251 * and instead have d_path return the mounted path. 3252 */ 3253 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3254 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3255 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3256 3257 rcu_read_lock(); 3258 get_fs_root_rcu(current->fs, &root); 3259 error = path_with_deleted(path, &root, &res, &buflen); 3260 rcu_read_unlock(); 3261 3262 if (error < 0) 3263 res = ERR_PTR(error); 3264 return res; 3265 } 3266 EXPORT_SYMBOL(d_path); 3267 3268 /* 3269 * Helper function for dentry_operations.d_dname() members 3270 */ 3271 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3272 const char *fmt, ...) 3273 { 3274 va_list args; 3275 char temp[64]; 3276 int sz; 3277 3278 va_start(args, fmt); 3279 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3280 va_end(args); 3281 3282 if (sz > sizeof(temp) || sz > buflen) 3283 return ERR_PTR(-ENAMETOOLONG); 3284 3285 buffer += buflen - sz; 3286 return memcpy(buffer, temp, sz); 3287 } 3288 3289 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3290 { 3291 char *end = buffer + buflen; 3292 /* these dentries are never renamed, so d_lock is not needed */ 3293 if (prepend(&end, &buflen, " (deleted)", 11) || 3294 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3295 prepend(&end, &buflen, "/", 1)) 3296 end = ERR_PTR(-ENAMETOOLONG); 3297 return end; 3298 } 3299 EXPORT_SYMBOL(simple_dname); 3300 3301 /* 3302 * Write full pathname from the root of the filesystem into the buffer. 3303 */ 3304 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3305 { 3306 struct dentry *dentry; 3307 char *end, *retval; 3308 int len, seq = 0; 3309 int error = 0; 3310 3311 if (buflen < 2) 3312 goto Elong; 3313 3314 rcu_read_lock(); 3315 restart: 3316 dentry = d; 3317 end = buf + buflen; 3318 len = buflen; 3319 prepend(&end, &len, "\0", 1); 3320 /* Get '/' right */ 3321 retval = end-1; 3322 *retval = '/'; 3323 read_seqbegin_or_lock(&rename_lock, &seq); 3324 while (!IS_ROOT(dentry)) { 3325 struct dentry *parent = dentry->d_parent; 3326 3327 prefetch(parent); 3328 error = prepend_name(&end, &len, &dentry->d_name); 3329 if (error) 3330 break; 3331 3332 retval = end; 3333 dentry = parent; 3334 } 3335 if (!(seq & 1)) 3336 rcu_read_unlock(); 3337 if (need_seqretry(&rename_lock, seq)) { 3338 seq = 1; 3339 goto restart; 3340 } 3341 done_seqretry(&rename_lock, seq); 3342 if (error) 3343 goto Elong; 3344 return retval; 3345 Elong: 3346 return ERR_PTR(-ENAMETOOLONG); 3347 } 3348 3349 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3350 { 3351 return __dentry_path(dentry, buf, buflen); 3352 } 3353 EXPORT_SYMBOL(dentry_path_raw); 3354 3355 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3356 { 3357 char *p = NULL; 3358 char *retval; 3359 3360 if (d_unlinked(dentry)) { 3361 p = buf + buflen; 3362 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3363 goto Elong; 3364 buflen++; 3365 } 3366 retval = __dentry_path(dentry, buf, buflen); 3367 if (!IS_ERR(retval) && p) 3368 *p = '/'; /* restore '/' overriden with '\0' */ 3369 return retval; 3370 Elong: 3371 return ERR_PTR(-ENAMETOOLONG); 3372 } 3373 3374 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3375 struct path *pwd) 3376 { 3377 unsigned seq; 3378 3379 do { 3380 seq = read_seqcount_begin(&fs->seq); 3381 *root = fs->root; 3382 *pwd = fs->pwd; 3383 } while (read_seqcount_retry(&fs->seq, seq)); 3384 } 3385 3386 /* 3387 * NOTE! The user-level library version returns a 3388 * character pointer. The kernel system call just 3389 * returns the length of the buffer filled (which 3390 * includes the ending '\0' character), or a negative 3391 * error value. So libc would do something like 3392 * 3393 * char *getcwd(char * buf, size_t size) 3394 * { 3395 * int retval; 3396 * 3397 * retval = sys_getcwd(buf, size); 3398 * if (retval >= 0) 3399 * return buf; 3400 * errno = -retval; 3401 * return NULL; 3402 * } 3403 */ 3404 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3405 { 3406 int error; 3407 struct path pwd, root; 3408 char *page = __getname(); 3409 3410 if (!page) 3411 return -ENOMEM; 3412 3413 rcu_read_lock(); 3414 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3415 3416 error = -ENOENT; 3417 if (!d_unlinked(pwd.dentry)) { 3418 unsigned long len; 3419 char *cwd = page + PATH_MAX; 3420 int buflen = PATH_MAX; 3421 3422 prepend(&cwd, &buflen, "\0", 1); 3423 error = prepend_path(&pwd, &root, &cwd, &buflen); 3424 rcu_read_unlock(); 3425 3426 if (error < 0) 3427 goto out; 3428 3429 /* Unreachable from current root */ 3430 if (error > 0) { 3431 error = prepend_unreachable(&cwd, &buflen); 3432 if (error) 3433 goto out; 3434 } 3435 3436 error = -ERANGE; 3437 len = PATH_MAX + page - cwd; 3438 if (len <= size) { 3439 error = len; 3440 if (copy_to_user(buf, cwd, len)) 3441 error = -EFAULT; 3442 } 3443 } else { 3444 rcu_read_unlock(); 3445 } 3446 3447 out: 3448 __putname(page); 3449 return error; 3450 } 3451 3452 /* 3453 * Test whether new_dentry is a subdirectory of old_dentry. 3454 * 3455 * Trivially implemented using the dcache structure 3456 */ 3457 3458 /** 3459 * is_subdir - is new dentry a subdirectory of old_dentry 3460 * @new_dentry: new dentry 3461 * @old_dentry: old dentry 3462 * 3463 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3464 * Returns false otherwise. 3465 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3466 */ 3467 3468 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3469 { 3470 bool result; 3471 unsigned seq; 3472 3473 if (new_dentry == old_dentry) 3474 return true; 3475 3476 do { 3477 /* for restarting inner loop in case of seq retry */ 3478 seq = read_seqbegin(&rename_lock); 3479 /* 3480 * Need rcu_readlock to protect against the d_parent trashing 3481 * due to d_move 3482 */ 3483 rcu_read_lock(); 3484 if (d_ancestor(old_dentry, new_dentry)) 3485 result = true; 3486 else 3487 result = false; 3488 rcu_read_unlock(); 3489 } while (read_seqretry(&rename_lock, seq)); 3490 3491 return result; 3492 } 3493 3494 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3495 { 3496 struct dentry *root = data; 3497 if (dentry != root) { 3498 if (d_unhashed(dentry) || !dentry->d_inode) 3499 return D_WALK_SKIP; 3500 3501 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3502 dentry->d_flags |= DCACHE_GENOCIDE; 3503 dentry->d_lockref.count--; 3504 } 3505 } 3506 return D_WALK_CONTINUE; 3507 } 3508 3509 void d_genocide(struct dentry *parent) 3510 { 3511 d_walk(parent, parent, d_genocide_kill, NULL); 3512 } 3513 3514 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3515 { 3516 inode_dec_link_count(inode); 3517 BUG_ON(dentry->d_name.name != dentry->d_iname || 3518 !hlist_unhashed(&dentry->d_u.d_alias) || 3519 !d_unlinked(dentry)); 3520 spin_lock(&dentry->d_parent->d_lock); 3521 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3522 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3523 (unsigned long long)inode->i_ino); 3524 spin_unlock(&dentry->d_lock); 3525 spin_unlock(&dentry->d_parent->d_lock); 3526 d_instantiate(dentry, inode); 3527 } 3528 EXPORT_SYMBOL(d_tmpfile); 3529 3530 static __initdata unsigned long dhash_entries; 3531 static int __init set_dhash_entries(char *str) 3532 { 3533 if (!str) 3534 return 0; 3535 dhash_entries = simple_strtoul(str, &str, 0); 3536 return 1; 3537 } 3538 __setup("dhash_entries=", set_dhash_entries); 3539 3540 static void __init dcache_init_early(void) 3541 { 3542 unsigned int loop; 3543 3544 /* If hashes are distributed across NUMA nodes, defer 3545 * hash allocation until vmalloc space is available. 3546 */ 3547 if (hashdist) 3548 return; 3549 3550 dentry_hashtable = 3551 alloc_large_system_hash("Dentry cache", 3552 sizeof(struct hlist_bl_head), 3553 dhash_entries, 3554 13, 3555 HASH_EARLY, 3556 &d_hash_shift, 3557 &d_hash_mask, 3558 0, 3559 0); 3560 3561 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3562 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3563 } 3564 3565 static void __init dcache_init(void) 3566 { 3567 unsigned int loop; 3568 3569 /* 3570 * A constructor could be added for stable state like the lists, 3571 * but it is probably not worth it because of the cache nature 3572 * of the dcache. 3573 */ 3574 dentry_cache = KMEM_CACHE(dentry, 3575 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3576 3577 /* Hash may have been set up in dcache_init_early */ 3578 if (!hashdist) 3579 return; 3580 3581 dentry_hashtable = 3582 alloc_large_system_hash("Dentry cache", 3583 sizeof(struct hlist_bl_head), 3584 dhash_entries, 3585 13, 3586 0, 3587 &d_hash_shift, 3588 &d_hash_mask, 3589 0, 3590 0); 3591 3592 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3593 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3594 } 3595 3596 /* SLAB cache for __getname() consumers */ 3597 struct kmem_cache *names_cachep __read_mostly; 3598 EXPORT_SYMBOL(names_cachep); 3599 3600 EXPORT_SYMBOL(d_genocide); 3601 3602 void __init vfs_caches_init_early(void) 3603 { 3604 dcache_init_early(); 3605 inode_init_early(); 3606 } 3607 3608 void __init vfs_caches_init(void) 3609 { 3610 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3611 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3612 3613 dcache_init(); 3614 inode_init(); 3615 files_init(); 3616 files_maxfiles_init(); 3617 mnt_init(); 3618 bdev_cache_init(); 3619 chrdev_init(); 3620 } 3621