xref: /linux/fs/dcache.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include "internal.h"
35 
36 
37 int sysctl_vfs_cache_pressure __read_mostly = 100;
38 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
39 
40  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
41 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
42 
43 EXPORT_SYMBOL(dcache_lock);
44 
45 static struct kmem_cache *dentry_cache __read_mostly;
46 
47 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
48 
49 /*
50  * This is the single most critical data structure when it comes
51  * to the dcache: the hashtable for lookups. Somebody should try
52  * to make this good - I've just made it work.
53  *
54  * This hash-function tries to avoid losing too many bits of hash
55  * information, yet avoid using a prime hash-size or similar.
56  */
57 #define D_HASHBITS     d_hash_shift
58 #define D_HASHMASK     d_hash_mask
59 
60 static unsigned int d_hash_mask __read_mostly;
61 static unsigned int d_hash_shift __read_mostly;
62 static struct hlist_head *dentry_hashtable __read_mostly;
63 static LIST_HEAD(dentry_unused);
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static void __d_free(struct dentry *dentry)
71 {
72 	if (dname_external(dentry))
73 		kfree(dentry->d_name.name);
74 	kmem_cache_free(dentry_cache, dentry);
75 }
76 
77 static void d_callback(struct rcu_head *head)
78 {
79 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
80 	__d_free(dentry);
81 }
82 
83 /*
84  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
85  * inside dcache_lock.
86  */
87 static void d_free(struct dentry *dentry)
88 {
89 	if (dentry->d_op && dentry->d_op->d_release)
90 		dentry->d_op->d_release(dentry);
91 	/* if dentry was never inserted into hash, immediate free is OK */
92 	if (hlist_unhashed(&dentry->d_hash))
93 		__d_free(dentry);
94 	else
95 		call_rcu(&dentry->d_u.d_rcu, d_callback);
96 }
97 
98 /*
99  * Release the dentry's inode, using the filesystem
100  * d_iput() operation if defined.
101  * Called with dcache_lock and per dentry lock held, drops both.
102  */
103 static void dentry_iput(struct dentry * dentry)
104 {
105 	struct inode *inode = dentry->d_inode;
106 	if (inode) {
107 		dentry->d_inode = NULL;
108 		list_del_init(&dentry->d_alias);
109 		spin_unlock(&dentry->d_lock);
110 		spin_unlock(&dcache_lock);
111 		if (!inode->i_nlink)
112 			fsnotify_inoderemove(inode);
113 		if (dentry->d_op && dentry->d_op->d_iput)
114 			dentry->d_op->d_iput(dentry, inode);
115 		else
116 			iput(inode);
117 	} else {
118 		spin_unlock(&dentry->d_lock);
119 		spin_unlock(&dcache_lock);
120 	}
121 }
122 
123 /**
124  * d_kill - kill dentry and return parent
125  * @dentry: dentry to kill
126  *
127  * Called with dcache_lock and d_lock, releases both.  The dentry must
128  * already be unhashed and removed from the LRU.
129  *
130  * If this is the root of the dentry tree, return NULL.
131  */
132 static struct dentry *d_kill(struct dentry *dentry)
133 {
134 	struct dentry *parent;
135 
136 	list_del(&dentry->d_u.d_child);
137 	dentry_stat.nr_dentry--;	/* For d_free, below */
138 	/*drops the locks, at that point nobody can reach this dentry */
139 	dentry_iput(dentry);
140 	parent = dentry->d_parent;
141 	d_free(dentry);
142 	return dentry == parent ? NULL : parent;
143 }
144 
145 /*
146  * This is dput
147  *
148  * This is complicated by the fact that we do not want to put
149  * dentries that are no longer on any hash chain on the unused
150  * list: we'd much rather just get rid of them immediately.
151  *
152  * However, that implies that we have to traverse the dentry
153  * tree upwards to the parents which might _also_ now be
154  * scheduled for deletion (it may have been only waiting for
155  * its last child to go away).
156  *
157  * This tail recursion is done by hand as we don't want to depend
158  * on the compiler to always get this right (gcc generally doesn't).
159  * Real recursion would eat up our stack space.
160  */
161 
162 /*
163  * dput - release a dentry
164  * @dentry: dentry to release
165  *
166  * Release a dentry. This will drop the usage count and if appropriate
167  * call the dentry unlink method as well as removing it from the queues and
168  * releasing its resources. If the parent dentries were scheduled for release
169  * they too may now get deleted.
170  *
171  * no dcache lock, please.
172  */
173 
174 void dput(struct dentry *dentry)
175 {
176 	if (!dentry)
177 		return;
178 
179 repeat:
180 	if (atomic_read(&dentry->d_count) == 1)
181 		might_sleep();
182 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
183 		return;
184 
185 	spin_lock(&dentry->d_lock);
186 	if (atomic_read(&dentry->d_count)) {
187 		spin_unlock(&dentry->d_lock);
188 		spin_unlock(&dcache_lock);
189 		return;
190 	}
191 
192 	/*
193 	 * AV: ->d_delete() is _NOT_ allowed to block now.
194 	 */
195 	if (dentry->d_op && dentry->d_op->d_delete) {
196 		if (dentry->d_op->d_delete(dentry))
197 			goto unhash_it;
198 	}
199 	/* Unreachable? Get rid of it */
200  	if (d_unhashed(dentry))
201 		goto kill_it;
202   	if (list_empty(&dentry->d_lru)) {
203   		dentry->d_flags |= DCACHE_REFERENCED;
204   		list_add(&dentry->d_lru, &dentry_unused);
205   		dentry_stat.nr_unused++;
206   	}
207  	spin_unlock(&dentry->d_lock);
208 	spin_unlock(&dcache_lock);
209 	return;
210 
211 unhash_it:
212 	__d_drop(dentry);
213 kill_it:
214 	/* If dentry was on d_lru list
215 	 * delete it from there
216 	 */
217 	if (!list_empty(&dentry->d_lru)) {
218 		list_del(&dentry->d_lru);
219 		dentry_stat.nr_unused--;
220 	}
221 	dentry = d_kill(dentry);
222 	if (dentry)
223 		goto repeat;
224 }
225 
226 /**
227  * d_invalidate - invalidate a dentry
228  * @dentry: dentry to invalidate
229  *
230  * Try to invalidate the dentry if it turns out to be
231  * possible. If there are other dentries that can be
232  * reached through this one we can't delete it and we
233  * return -EBUSY. On success we return 0.
234  *
235  * no dcache lock.
236  */
237 
238 int d_invalidate(struct dentry * dentry)
239 {
240 	/*
241 	 * If it's already been dropped, return OK.
242 	 */
243 	spin_lock(&dcache_lock);
244 	if (d_unhashed(dentry)) {
245 		spin_unlock(&dcache_lock);
246 		return 0;
247 	}
248 	/*
249 	 * Check whether to do a partial shrink_dcache
250 	 * to get rid of unused child entries.
251 	 */
252 	if (!list_empty(&dentry->d_subdirs)) {
253 		spin_unlock(&dcache_lock);
254 		shrink_dcache_parent(dentry);
255 		spin_lock(&dcache_lock);
256 	}
257 
258 	/*
259 	 * Somebody else still using it?
260 	 *
261 	 * If it's a directory, we can't drop it
262 	 * for fear of somebody re-populating it
263 	 * with children (even though dropping it
264 	 * would make it unreachable from the root,
265 	 * we might still populate it if it was a
266 	 * working directory or similar).
267 	 */
268 	spin_lock(&dentry->d_lock);
269 	if (atomic_read(&dentry->d_count) > 1) {
270 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
271 			spin_unlock(&dentry->d_lock);
272 			spin_unlock(&dcache_lock);
273 			return -EBUSY;
274 		}
275 	}
276 
277 	__d_drop(dentry);
278 	spin_unlock(&dentry->d_lock);
279 	spin_unlock(&dcache_lock);
280 	return 0;
281 }
282 
283 /* This should be called _only_ with dcache_lock held */
284 
285 static inline struct dentry * __dget_locked(struct dentry *dentry)
286 {
287 	atomic_inc(&dentry->d_count);
288 	if (!list_empty(&dentry->d_lru)) {
289 		dentry_stat.nr_unused--;
290 		list_del_init(&dentry->d_lru);
291 	}
292 	return dentry;
293 }
294 
295 struct dentry * dget_locked(struct dentry *dentry)
296 {
297 	return __dget_locked(dentry);
298 }
299 
300 /**
301  * d_find_alias - grab a hashed alias of inode
302  * @inode: inode in question
303  * @want_discon:  flag, used by d_splice_alias, to request
304  *          that only a DISCONNECTED alias be returned.
305  *
306  * If inode has a hashed alias, or is a directory and has any alias,
307  * acquire the reference to alias and return it. Otherwise return NULL.
308  * Notice that if inode is a directory there can be only one alias and
309  * it can be unhashed only if it has no children, or if it is the root
310  * of a filesystem.
311  *
312  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
313  * any other hashed alias over that one unless @want_discon is set,
314  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
315  */
316 
317 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
318 {
319 	struct list_head *head, *next, *tmp;
320 	struct dentry *alias, *discon_alias=NULL;
321 
322 	head = &inode->i_dentry;
323 	next = inode->i_dentry.next;
324 	while (next != head) {
325 		tmp = next;
326 		next = tmp->next;
327 		prefetch(next);
328 		alias = list_entry(tmp, struct dentry, d_alias);
329  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
330 			if (IS_ROOT(alias) &&
331 			    (alias->d_flags & DCACHE_DISCONNECTED))
332 				discon_alias = alias;
333 			else if (!want_discon) {
334 				__dget_locked(alias);
335 				return alias;
336 			}
337 		}
338 	}
339 	if (discon_alias)
340 		__dget_locked(discon_alias);
341 	return discon_alias;
342 }
343 
344 struct dentry * d_find_alias(struct inode *inode)
345 {
346 	struct dentry *de = NULL;
347 
348 	if (!list_empty(&inode->i_dentry)) {
349 		spin_lock(&dcache_lock);
350 		de = __d_find_alias(inode, 0);
351 		spin_unlock(&dcache_lock);
352 	}
353 	return de;
354 }
355 
356 /*
357  *	Try to kill dentries associated with this inode.
358  * WARNING: you must own a reference to inode.
359  */
360 void d_prune_aliases(struct inode *inode)
361 {
362 	struct dentry *dentry;
363 restart:
364 	spin_lock(&dcache_lock);
365 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
366 		spin_lock(&dentry->d_lock);
367 		if (!atomic_read(&dentry->d_count)) {
368 			__dget_locked(dentry);
369 			__d_drop(dentry);
370 			spin_unlock(&dentry->d_lock);
371 			spin_unlock(&dcache_lock);
372 			dput(dentry);
373 			goto restart;
374 		}
375 		spin_unlock(&dentry->d_lock);
376 	}
377 	spin_unlock(&dcache_lock);
378 }
379 
380 /*
381  * Throw away a dentry - free the inode, dput the parent.  This requires that
382  * the LRU list has already been removed.
383  *
384  * Try to prune ancestors as well.  This is necessary to prevent
385  * quadratic behavior of shrink_dcache_parent(), but is also expected
386  * to be beneficial in reducing dentry cache fragmentation.
387  *
388  * Called with dcache_lock, drops it and then regains.
389  * Called with dentry->d_lock held, drops it.
390  */
391 static void prune_one_dentry(struct dentry * dentry)
392 {
393 	__d_drop(dentry);
394 	dentry = d_kill(dentry);
395 
396 	/*
397 	 * Prune ancestors.  Locking is simpler than in dput(),
398 	 * because dcache_lock needs to be taken anyway.
399 	 */
400 	spin_lock(&dcache_lock);
401 	while (dentry) {
402 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
403 			return;
404 
405 		if (dentry->d_op && dentry->d_op->d_delete)
406 			dentry->d_op->d_delete(dentry);
407 		if (!list_empty(&dentry->d_lru)) {
408 			list_del(&dentry->d_lru);
409 			dentry_stat.nr_unused--;
410 		}
411 		__d_drop(dentry);
412 		dentry = d_kill(dentry);
413 		spin_lock(&dcache_lock);
414 	}
415 }
416 
417 /**
418  * prune_dcache - shrink the dcache
419  * @count: number of entries to try and free
420  * @sb: if given, ignore dentries for other superblocks
421  *         which are being unmounted.
422  *
423  * Shrink the dcache. This is done when we need
424  * more memory, or simply when we need to unmount
425  * something (at which point we need to unuse
426  * all dentries).
427  *
428  * This function may fail to free any resources if
429  * all the dentries are in use.
430  */
431 
432 static void prune_dcache(int count, struct super_block *sb)
433 {
434 	spin_lock(&dcache_lock);
435 	for (; count ; count--) {
436 		struct dentry *dentry;
437 		struct list_head *tmp;
438 		struct rw_semaphore *s_umount;
439 
440 		cond_resched_lock(&dcache_lock);
441 
442 		tmp = dentry_unused.prev;
443 		if (sb) {
444 			/* Try to find a dentry for this sb, but don't try
445 			 * too hard, if they aren't near the tail they will
446 			 * be moved down again soon
447 			 */
448 			int skip = count;
449 			while (skip && tmp != &dentry_unused &&
450 			    list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
451 				skip--;
452 				tmp = tmp->prev;
453 			}
454 		}
455 		if (tmp == &dentry_unused)
456 			break;
457 		list_del_init(tmp);
458 		prefetch(dentry_unused.prev);
459  		dentry_stat.nr_unused--;
460 		dentry = list_entry(tmp, struct dentry, d_lru);
461 
462  		spin_lock(&dentry->d_lock);
463 		/*
464 		 * We found an inuse dentry which was not removed from
465 		 * dentry_unused because of laziness during lookup.  Do not free
466 		 * it - just keep it off the dentry_unused list.
467 		 */
468  		if (atomic_read(&dentry->d_count)) {
469  			spin_unlock(&dentry->d_lock);
470 			continue;
471 		}
472 		/* If the dentry was recently referenced, don't free it. */
473 		if (dentry->d_flags & DCACHE_REFERENCED) {
474 			dentry->d_flags &= ~DCACHE_REFERENCED;
475  			list_add(&dentry->d_lru, &dentry_unused);
476  			dentry_stat.nr_unused++;
477  			spin_unlock(&dentry->d_lock);
478 			continue;
479 		}
480 		/*
481 		 * If the dentry is not DCACHED_REFERENCED, it is time
482 		 * to remove it from the dcache, provided the super block is
483 		 * NULL (which means we are trying to reclaim memory)
484 		 * or this dentry belongs to the same super block that
485 		 * we want to shrink.
486 		 */
487 		/*
488 		 * If this dentry is for "my" filesystem, then I can prune it
489 		 * without taking the s_umount lock (I already hold it).
490 		 */
491 		if (sb && dentry->d_sb == sb) {
492 			prune_one_dentry(dentry);
493 			continue;
494 		}
495 		/*
496 		 * ...otherwise we need to be sure this filesystem isn't being
497 		 * unmounted, otherwise we could race with
498 		 * generic_shutdown_super(), and end up holding a reference to
499 		 * an inode while the filesystem is unmounted.
500 		 * So we try to get s_umount, and make sure s_root isn't NULL.
501 		 * (Take a local copy of s_umount to avoid a use-after-free of
502 		 * `dentry').
503 		 */
504 		s_umount = &dentry->d_sb->s_umount;
505 		if (down_read_trylock(s_umount)) {
506 			if (dentry->d_sb->s_root != NULL) {
507 				prune_one_dentry(dentry);
508 				up_read(s_umount);
509 				continue;
510 			}
511 			up_read(s_umount);
512 		}
513 		spin_unlock(&dentry->d_lock);
514 		/*
515 		 * Insert dentry at the head of the list as inserting at the
516 		 * tail leads to a cycle.
517 		 */
518  		list_add(&dentry->d_lru, &dentry_unused);
519 		dentry_stat.nr_unused++;
520 	}
521 	spin_unlock(&dcache_lock);
522 }
523 
524 /*
525  * Shrink the dcache for the specified super block.
526  * This allows us to unmount a device without disturbing
527  * the dcache for the other devices.
528  *
529  * This implementation makes just two traversals of the
530  * unused list.  On the first pass we move the selected
531  * dentries to the most recent end, and on the second
532  * pass we free them.  The second pass must restart after
533  * each dput(), but since the target dentries are all at
534  * the end, it's really just a single traversal.
535  */
536 
537 /**
538  * shrink_dcache_sb - shrink dcache for a superblock
539  * @sb: superblock
540  *
541  * Shrink the dcache for the specified super block. This
542  * is used to free the dcache before unmounting a file
543  * system
544  */
545 
546 void shrink_dcache_sb(struct super_block * sb)
547 {
548 	struct list_head *tmp, *next;
549 	struct dentry *dentry;
550 
551 	/*
552 	 * Pass one ... move the dentries for the specified
553 	 * superblock to the most recent end of the unused list.
554 	 */
555 	spin_lock(&dcache_lock);
556 	list_for_each_prev_safe(tmp, next, &dentry_unused) {
557 		dentry = list_entry(tmp, struct dentry, d_lru);
558 		if (dentry->d_sb != sb)
559 			continue;
560 		list_move_tail(tmp, &dentry_unused);
561 	}
562 
563 	/*
564 	 * Pass two ... free the dentries for this superblock.
565 	 */
566 repeat:
567 	list_for_each_prev_safe(tmp, next, &dentry_unused) {
568 		dentry = list_entry(tmp, struct dentry, d_lru);
569 		if (dentry->d_sb != sb)
570 			continue;
571 		dentry_stat.nr_unused--;
572 		list_del_init(tmp);
573 		spin_lock(&dentry->d_lock);
574 		if (atomic_read(&dentry->d_count)) {
575 			spin_unlock(&dentry->d_lock);
576 			continue;
577 		}
578 		prune_one_dentry(dentry);
579 		cond_resched_lock(&dcache_lock);
580 		goto repeat;
581 	}
582 	spin_unlock(&dcache_lock);
583 }
584 
585 /*
586  * destroy a single subtree of dentries for unmount
587  * - see the comments on shrink_dcache_for_umount() for a description of the
588  *   locking
589  */
590 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
591 {
592 	struct dentry *parent;
593 	unsigned detached = 0;
594 
595 	BUG_ON(!IS_ROOT(dentry));
596 
597 	/* detach this root from the system */
598 	spin_lock(&dcache_lock);
599 	if (!list_empty(&dentry->d_lru)) {
600 		dentry_stat.nr_unused--;
601 		list_del_init(&dentry->d_lru);
602 	}
603 	__d_drop(dentry);
604 	spin_unlock(&dcache_lock);
605 
606 	for (;;) {
607 		/* descend to the first leaf in the current subtree */
608 		while (!list_empty(&dentry->d_subdirs)) {
609 			struct dentry *loop;
610 
611 			/* this is a branch with children - detach all of them
612 			 * from the system in one go */
613 			spin_lock(&dcache_lock);
614 			list_for_each_entry(loop, &dentry->d_subdirs,
615 					    d_u.d_child) {
616 				if (!list_empty(&loop->d_lru)) {
617 					dentry_stat.nr_unused--;
618 					list_del_init(&loop->d_lru);
619 				}
620 
621 				__d_drop(loop);
622 				cond_resched_lock(&dcache_lock);
623 			}
624 			spin_unlock(&dcache_lock);
625 
626 			/* move to the first child */
627 			dentry = list_entry(dentry->d_subdirs.next,
628 					    struct dentry, d_u.d_child);
629 		}
630 
631 		/* consume the dentries from this leaf up through its parents
632 		 * until we find one with children or run out altogether */
633 		do {
634 			struct inode *inode;
635 
636 			if (atomic_read(&dentry->d_count) != 0) {
637 				printk(KERN_ERR
638 				       "BUG: Dentry %p{i=%lx,n=%s}"
639 				       " still in use (%d)"
640 				       " [unmount of %s %s]\n",
641 				       dentry,
642 				       dentry->d_inode ?
643 				       dentry->d_inode->i_ino : 0UL,
644 				       dentry->d_name.name,
645 				       atomic_read(&dentry->d_count),
646 				       dentry->d_sb->s_type->name,
647 				       dentry->d_sb->s_id);
648 				BUG();
649 			}
650 
651 			parent = dentry->d_parent;
652 			if (parent == dentry)
653 				parent = NULL;
654 			else
655 				atomic_dec(&parent->d_count);
656 
657 			list_del(&dentry->d_u.d_child);
658 			detached++;
659 
660 			inode = dentry->d_inode;
661 			if (inode) {
662 				dentry->d_inode = NULL;
663 				list_del_init(&dentry->d_alias);
664 				if (dentry->d_op && dentry->d_op->d_iput)
665 					dentry->d_op->d_iput(dentry, inode);
666 				else
667 					iput(inode);
668 			}
669 
670 			d_free(dentry);
671 
672 			/* finished when we fall off the top of the tree,
673 			 * otherwise we ascend to the parent and move to the
674 			 * next sibling if there is one */
675 			if (!parent)
676 				goto out;
677 
678 			dentry = parent;
679 
680 		} while (list_empty(&dentry->d_subdirs));
681 
682 		dentry = list_entry(dentry->d_subdirs.next,
683 				    struct dentry, d_u.d_child);
684 	}
685 out:
686 	/* several dentries were freed, need to correct nr_dentry */
687 	spin_lock(&dcache_lock);
688 	dentry_stat.nr_dentry -= detached;
689 	spin_unlock(&dcache_lock);
690 }
691 
692 /*
693  * destroy the dentries attached to a superblock on unmounting
694  * - we don't need to use dentry->d_lock, and only need dcache_lock when
695  *   removing the dentry from the system lists and hashes because:
696  *   - the superblock is detached from all mountings and open files, so the
697  *     dentry trees will not be rearranged by the VFS
698  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
699  *     any dentries belonging to this superblock that it comes across
700  *   - the filesystem itself is no longer permitted to rearrange the dentries
701  *     in this superblock
702  */
703 void shrink_dcache_for_umount(struct super_block *sb)
704 {
705 	struct dentry *dentry;
706 
707 	if (down_read_trylock(&sb->s_umount))
708 		BUG();
709 
710 	dentry = sb->s_root;
711 	sb->s_root = NULL;
712 	atomic_dec(&dentry->d_count);
713 	shrink_dcache_for_umount_subtree(dentry);
714 
715 	while (!hlist_empty(&sb->s_anon)) {
716 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
717 		shrink_dcache_for_umount_subtree(dentry);
718 	}
719 }
720 
721 /*
722  * Search for at least 1 mount point in the dentry's subdirs.
723  * We descend to the next level whenever the d_subdirs
724  * list is non-empty and continue searching.
725  */
726 
727 /**
728  * have_submounts - check for mounts over a dentry
729  * @parent: dentry to check.
730  *
731  * Return true if the parent or its subdirectories contain
732  * a mount point
733  */
734 
735 int have_submounts(struct dentry *parent)
736 {
737 	struct dentry *this_parent = parent;
738 	struct list_head *next;
739 
740 	spin_lock(&dcache_lock);
741 	if (d_mountpoint(parent))
742 		goto positive;
743 repeat:
744 	next = this_parent->d_subdirs.next;
745 resume:
746 	while (next != &this_parent->d_subdirs) {
747 		struct list_head *tmp = next;
748 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
749 		next = tmp->next;
750 		/* Have we found a mount point ? */
751 		if (d_mountpoint(dentry))
752 			goto positive;
753 		if (!list_empty(&dentry->d_subdirs)) {
754 			this_parent = dentry;
755 			goto repeat;
756 		}
757 	}
758 	/*
759 	 * All done at this level ... ascend and resume the search.
760 	 */
761 	if (this_parent != parent) {
762 		next = this_parent->d_u.d_child.next;
763 		this_parent = this_parent->d_parent;
764 		goto resume;
765 	}
766 	spin_unlock(&dcache_lock);
767 	return 0; /* No mount points found in tree */
768 positive:
769 	spin_unlock(&dcache_lock);
770 	return 1;
771 }
772 
773 /*
774  * Search the dentry child list for the specified parent,
775  * and move any unused dentries to the end of the unused
776  * list for prune_dcache(). We descend to the next level
777  * whenever the d_subdirs list is non-empty and continue
778  * searching.
779  *
780  * It returns zero iff there are no unused children,
781  * otherwise  it returns the number of children moved to
782  * the end of the unused list. This may not be the total
783  * number of unused children, because select_parent can
784  * drop the lock and return early due to latency
785  * constraints.
786  */
787 static int select_parent(struct dentry * parent)
788 {
789 	struct dentry *this_parent = parent;
790 	struct list_head *next;
791 	int found = 0;
792 
793 	spin_lock(&dcache_lock);
794 repeat:
795 	next = this_parent->d_subdirs.next;
796 resume:
797 	while (next != &this_parent->d_subdirs) {
798 		struct list_head *tmp = next;
799 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
800 		next = tmp->next;
801 
802 		if (!list_empty(&dentry->d_lru)) {
803 			dentry_stat.nr_unused--;
804 			list_del_init(&dentry->d_lru);
805 		}
806 		/*
807 		 * move only zero ref count dentries to the end
808 		 * of the unused list for prune_dcache
809 		 */
810 		if (!atomic_read(&dentry->d_count)) {
811 			list_add_tail(&dentry->d_lru, &dentry_unused);
812 			dentry_stat.nr_unused++;
813 			found++;
814 		}
815 
816 		/*
817 		 * We can return to the caller if we have found some (this
818 		 * ensures forward progress). We'll be coming back to find
819 		 * the rest.
820 		 */
821 		if (found && need_resched())
822 			goto out;
823 
824 		/*
825 		 * Descend a level if the d_subdirs list is non-empty.
826 		 */
827 		if (!list_empty(&dentry->d_subdirs)) {
828 			this_parent = dentry;
829 			goto repeat;
830 		}
831 	}
832 	/*
833 	 * All done at this level ... ascend and resume the search.
834 	 */
835 	if (this_parent != parent) {
836 		next = this_parent->d_u.d_child.next;
837 		this_parent = this_parent->d_parent;
838 		goto resume;
839 	}
840 out:
841 	spin_unlock(&dcache_lock);
842 	return found;
843 }
844 
845 /**
846  * shrink_dcache_parent - prune dcache
847  * @parent: parent of entries to prune
848  *
849  * Prune the dcache to remove unused children of the parent dentry.
850  */
851 
852 void shrink_dcache_parent(struct dentry * parent)
853 {
854 	int found;
855 
856 	while ((found = select_parent(parent)) != 0)
857 		prune_dcache(found, parent->d_sb);
858 }
859 
860 /*
861  * Scan `nr' dentries and return the number which remain.
862  *
863  * We need to avoid reentering the filesystem if the caller is performing a
864  * GFP_NOFS allocation attempt.  One example deadlock is:
865  *
866  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
867  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
868  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
869  *
870  * In this case we return -1 to tell the caller that we baled.
871  */
872 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
873 {
874 	if (nr) {
875 		if (!(gfp_mask & __GFP_FS))
876 			return -1;
877 		prune_dcache(nr, NULL);
878 	}
879 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
880 }
881 
882 static struct shrinker dcache_shrinker = {
883 	.shrink = shrink_dcache_memory,
884 	.seeks = DEFAULT_SEEKS,
885 };
886 
887 /**
888  * d_alloc	-	allocate a dcache entry
889  * @parent: parent of entry to allocate
890  * @name: qstr of the name
891  *
892  * Allocates a dentry. It returns %NULL if there is insufficient memory
893  * available. On a success the dentry is returned. The name passed in is
894  * copied and the copy passed in may be reused after this call.
895  */
896 
897 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
898 {
899 	struct dentry *dentry;
900 	char *dname;
901 
902 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
903 	if (!dentry)
904 		return NULL;
905 
906 	if (name->len > DNAME_INLINE_LEN-1) {
907 		dname = kmalloc(name->len + 1, GFP_KERNEL);
908 		if (!dname) {
909 			kmem_cache_free(dentry_cache, dentry);
910 			return NULL;
911 		}
912 	} else  {
913 		dname = dentry->d_iname;
914 	}
915 	dentry->d_name.name = dname;
916 
917 	dentry->d_name.len = name->len;
918 	dentry->d_name.hash = name->hash;
919 	memcpy(dname, name->name, name->len);
920 	dname[name->len] = 0;
921 
922 	atomic_set(&dentry->d_count, 1);
923 	dentry->d_flags = DCACHE_UNHASHED;
924 	spin_lock_init(&dentry->d_lock);
925 	dentry->d_inode = NULL;
926 	dentry->d_parent = NULL;
927 	dentry->d_sb = NULL;
928 	dentry->d_op = NULL;
929 	dentry->d_fsdata = NULL;
930 	dentry->d_mounted = 0;
931 #ifdef CONFIG_PROFILING
932 	dentry->d_cookie = NULL;
933 #endif
934 	INIT_HLIST_NODE(&dentry->d_hash);
935 	INIT_LIST_HEAD(&dentry->d_lru);
936 	INIT_LIST_HEAD(&dentry->d_subdirs);
937 	INIT_LIST_HEAD(&dentry->d_alias);
938 
939 	if (parent) {
940 		dentry->d_parent = dget(parent);
941 		dentry->d_sb = parent->d_sb;
942 	} else {
943 		INIT_LIST_HEAD(&dentry->d_u.d_child);
944 	}
945 
946 	spin_lock(&dcache_lock);
947 	if (parent)
948 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
949 	dentry_stat.nr_dentry++;
950 	spin_unlock(&dcache_lock);
951 
952 	return dentry;
953 }
954 
955 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
956 {
957 	struct qstr q;
958 
959 	q.name = name;
960 	q.len = strlen(name);
961 	q.hash = full_name_hash(q.name, q.len);
962 	return d_alloc(parent, &q);
963 }
964 
965 /**
966  * d_instantiate - fill in inode information for a dentry
967  * @entry: dentry to complete
968  * @inode: inode to attach to this dentry
969  *
970  * Fill in inode information in the entry.
971  *
972  * This turns negative dentries into productive full members
973  * of society.
974  *
975  * NOTE! This assumes that the inode count has been incremented
976  * (or otherwise set) by the caller to indicate that it is now
977  * in use by the dcache.
978  */
979 
980 void d_instantiate(struct dentry *entry, struct inode * inode)
981 {
982 	BUG_ON(!list_empty(&entry->d_alias));
983 	spin_lock(&dcache_lock);
984 	if (inode)
985 		list_add(&entry->d_alias, &inode->i_dentry);
986 	entry->d_inode = inode;
987 	fsnotify_d_instantiate(entry, inode);
988 	spin_unlock(&dcache_lock);
989 	security_d_instantiate(entry, inode);
990 }
991 
992 /**
993  * d_instantiate_unique - instantiate a non-aliased dentry
994  * @entry: dentry to instantiate
995  * @inode: inode to attach to this dentry
996  *
997  * Fill in inode information in the entry. On success, it returns NULL.
998  * If an unhashed alias of "entry" already exists, then we return the
999  * aliased dentry instead and drop one reference to inode.
1000  *
1001  * Note that in order to avoid conflicts with rename() etc, the caller
1002  * had better be holding the parent directory semaphore.
1003  *
1004  * This also assumes that the inode count has been incremented
1005  * (or otherwise set) by the caller to indicate that it is now
1006  * in use by the dcache.
1007  */
1008 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1009 					     struct inode *inode)
1010 {
1011 	struct dentry *alias;
1012 	int len = entry->d_name.len;
1013 	const char *name = entry->d_name.name;
1014 	unsigned int hash = entry->d_name.hash;
1015 
1016 	if (!inode) {
1017 		entry->d_inode = NULL;
1018 		return NULL;
1019 	}
1020 
1021 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1022 		struct qstr *qstr = &alias->d_name;
1023 
1024 		if (qstr->hash != hash)
1025 			continue;
1026 		if (alias->d_parent != entry->d_parent)
1027 			continue;
1028 		if (qstr->len != len)
1029 			continue;
1030 		if (memcmp(qstr->name, name, len))
1031 			continue;
1032 		dget_locked(alias);
1033 		return alias;
1034 	}
1035 
1036 	list_add(&entry->d_alias, &inode->i_dentry);
1037 	entry->d_inode = inode;
1038 	fsnotify_d_instantiate(entry, inode);
1039 	return NULL;
1040 }
1041 
1042 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1043 {
1044 	struct dentry *result;
1045 
1046 	BUG_ON(!list_empty(&entry->d_alias));
1047 
1048 	spin_lock(&dcache_lock);
1049 	result = __d_instantiate_unique(entry, inode);
1050 	spin_unlock(&dcache_lock);
1051 
1052 	if (!result) {
1053 		security_d_instantiate(entry, inode);
1054 		return NULL;
1055 	}
1056 
1057 	BUG_ON(!d_unhashed(result));
1058 	iput(inode);
1059 	return result;
1060 }
1061 
1062 EXPORT_SYMBOL(d_instantiate_unique);
1063 
1064 /**
1065  * d_alloc_root - allocate root dentry
1066  * @root_inode: inode to allocate the root for
1067  *
1068  * Allocate a root ("/") dentry for the inode given. The inode is
1069  * instantiated and returned. %NULL is returned if there is insufficient
1070  * memory or the inode passed is %NULL.
1071  */
1072 
1073 struct dentry * d_alloc_root(struct inode * root_inode)
1074 {
1075 	struct dentry *res = NULL;
1076 
1077 	if (root_inode) {
1078 		static const struct qstr name = { .name = "/", .len = 1 };
1079 
1080 		res = d_alloc(NULL, &name);
1081 		if (res) {
1082 			res->d_sb = root_inode->i_sb;
1083 			res->d_parent = res;
1084 			d_instantiate(res, root_inode);
1085 		}
1086 	}
1087 	return res;
1088 }
1089 
1090 static inline struct hlist_head *d_hash(struct dentry *parent,
1091 					unsigned long hash)
1092 {
1093 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1094 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1095 	return dentry_hashtable + (hash & D_HASHMASK);
1096 }
1097 
1098 /**
1099  * d_alloc_anon - allocate an anonymous dentry
1100  * @inode: inode to allocate the dentry for
1101  *
1102  * This is similar to d_alloc_root.  It is used by filesystems when
1103  * creating a dentry for a given inode, often in the process of
1104  * mapping a filehandle to a dentry.  The returned dentry may be
1105  * anonymous, or may have a full name (if the inode was already
1106  * in the cache).  The file system may need to make further
1107  * efforts to connect this dentry into the dcache properly.
1108  *
1109  * When called on a directory inode, we must ensure that
1110  * the inode only ever has one dentry.  If a dentry is
1111  * found, that is returned instead of allocating a new one.
1112  *
1113  * On successful return, the reference to the inode has been transferred
1114  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
1115  * the reference on the inode has not been released.
1116  */
1117 
1118 struct dentry * d_alloc_anon(struct inode *inode)
1119 {
1120 	static const struct qstr anonstring = { .name = "" };
1121 	struct dentry *tmp;
1122 	struct dentry *res;
1123 
1124 	if ((res = d_find_alias(inode))) {
1125 		iput(inode);
1126 		return res;
1127 	}
1128 
1129 	tmp = d_alloc(NULL, &anonstring);
1130 	if (!tmp)
1131 		return NULL;
1132 
1133 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1134 
1135 	spin_lock(&dcache_lock);
1136 	res = __d_find_alias(inode, 0);
1137 	if (!res) {
1138 		/* attach a disconnected dentry */
1139 		res = tmp;
1140 		tmp = NULL;
1141 		spin_lock(&res->d_lock);
1142 		res->d_sb = inode->i_sb;
1143 		res->d_parent = res;
1144 		res->d_inode = inode;
1145 		res->d_flags |= DCACHE_DISCONNECTED;
1146 		res->d_flags &= ~DCACHE_UNHASHED;
1147 		list_add(&res->d_alias, &inode->i_dentry);
1148 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1149 		spin_unlock(&res->d_lock);
1150 
1151 		inode = NULL; /* don't drop reference */
1152 	}
1153 	spin_unlock(&dcache_lock);
1154 
1155 	if (inode)
1156 		iput(inode);
1157 	if (tmp)
1158 		dput(tmp);
1159 	return res;
1160 }
1161 
1162 
1163 /**
1164  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1165  * @inode:  the inode which may have a disconnected dentry
1166  * @dentry: a negative dentry which we want to point to the inode.
1167  *
1168  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1169  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1170  * and return it, else simply d_add the inode to the dentry and return NULL.
1171  *
1172  * This is needed in the lookup routine of any filesystem that is exportable
1173  * (via knfsd) so that we can build dcache paths to directories effectively.
1174  *
1175  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1176  * is returned.  This matches the expected return value of ->lookup.
1177  *
1178  */
1179 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1180 {
1181 	struct dentry *new = NULL;
1182 
1183 	if (inode && S_ISDIR(inode->i_mode)) {
1184 		spin_lock(&dcache_lock);
1185 		new = __d_find_alias(inode, 1);
1186 		if (new) {
1187 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1188 			fsnotify_d_instantiate(new, inode);
1189 			spin_unlock(&dcache_lock);
1190 			security_d_instantiate(new, inode);
1191 			d_rehash(dentry);
1192 			d_move(new, dentry);
1193 			iput(inode);
1194 		} else {
1195 			/* d_instantiate takes dcache_lock, so we do it by hand */
1196 			list_add(&dentry->d_alias, &inode->i_dentry);
1197 			dentry->d_inode = inode;
1198 			fsnotify_d_instantiate(dentry, inode);
1199 			spin_unlock(&dcache_lock);
1200 			security_d_instantiate(dentry, inode);
1201 			d_rehash(dentry);
1202 		}
1203 	} else
1204 		d_add(dentry, inode);
1205 	return new;
1206 }
1207 
1208 
1209 /**
1210  * d_lookup - search for a dentry
1211  * @parent: parent dentry
1212  * @name: qstr of name we wish to find
1213  *
1214  * Searches the children of the parent dentry for the name in question. If
1215  * the dentry is found its reference count is incremented and the dentry
1216  * is returned. The caller must use d_put to free the entry when it has
1217  * finished using it. %NULL is returned on failure.
1218  *
1219  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1220  * Memory barriers are used while updating and doing lockless traversal.
1221  * To avoid races with d_move while rename is happening, d_lock is used.
1222  *
1223  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1224  * and name pointer in one structure pointed by d_qstr.
1225  *
1226  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1227  * lookup is going on.
1228  *
1229  * dentry_unused list is not updated even if lookup finds the required dentry
1230  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1231  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1232  * acquisition.
1233  *
1234  * d_lookup() is protected against the concurrent renames in some unrelated
1235  * directory using the seqlockt_t rename_lock.
1236  */
1237 
1238 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1239 {
1240 	struct dentry * dentry = NULL;
1241 	unsigned long seq;
1242 
1243         do {
1244                 seq = read_seqbegin(&rename_lock);
1245                 dentry = __d_lookup(parent, name);
1246                 if (dentry)
1247 			break;
1248 	} while (read_seqretry(&rename_lock, seq));
1249 	return dentry;
1250 }
1251 
1252 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1253 {
1254 	unsigned int len = name->len;
1255 	unsigned int hash = name->hash;
1256 	const unsigned char *str = name->name;
1257 	struct hlist_head *head = d_hash(parent,hash);
1258 	struct dentry *found = NULL;
1259 	struct hlist_node *node;
1260 	struct dentry *dentry;
1261 
1262 	rcu_read_lock();
1263 
1264 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1265 		struct qstr *qstr;
1266 
1267 		if (dentry->d_name.hash != hash)
1268 			continue;
1269 		if (dentry->d_parent != parent)
1270 			continue;
1271 
1272 		spin_lock(&dentry->d_lock);
1273 
1274 		/*
1275 		 * Recheck the dentry after taking the lock - d_move may have
1276 		 * changed things.  Don't bother checking the hash because we're
1277 		 * about to compare the whole name anyway.
1278 		 */
1279 		if (dentry->d_parent != parent)
1280 			goto next;
1281 
1282 		/*
1283 		 * It is safe to compare names since d_move() cannot
1284 		 * change the qstr (protected by d_lock).
1285 		 */
1286 		qstr = &dentry->d_name;
1287 		if (parent->d_op && parent->d_op->d_compare) {
1288 			if (parent->d_op->d_compare(parent, qstr, name))
1289 				goto next;
1290 		} else {
1291 			if (qstr->len != len)
1292 				goto next;
1293 			if (memcmp(qstr->name, str, len))
1294 				goto next;
1295 		}
1296 
1297 		if (!d_unhashed(dentry)) {
1298 			atomic_inc(&dentry->d_count);
1299 			found = dentry;
1300 		}
1301 		spin_unlock(&dentry->d_lock);
1302 		break;
1303 next:
1304 		spin_unlock(&dentry->d_lock);
1305  	}
1306  	rcu_read_unlock();
1307 
1308  	return found;
1309 }
1310 
1311 /**
1312  * d_hash_and_lookup - hash the qstr then search for a dentry
1313  * @dir: Directory to search in
1314  * @name: qstr of name we wish to find
1315  *
1316  * On hash failure or on lookup failure NULL is returned.
1317  */
1318 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1319 {
1320 	struct dentry *dentry = NULL;
1321 
1322 	/*
1323 	 * Check for a fs-specific hash function. Note that we must
1324 	 * calculate the standard hash first, as the d_op->d_hash()
1325 	 * routine may choose to leave the hash value unchanged.
1326 	 */
1327 	name->hash = full_name_hash(name->name, name->len);
1328 	if (dir->d_op && dir->d_op->d_hash) {
1329 		if (dir->d_op->d_hash(dir, name) < 0)
1330 			goto out;
1331 	}
1332 	dentry = d_lookup(dir, name);
1333 out:
1334 	return dentry;
1335 }
1336 
1337 /**
1338  * d_validate - verify dentry provided from insecure source
1339  * @dentry: The dentry alleged to be valid child of @dparent
1340  * @dparent: The parent dentry (known to be valid)
1341  * @hash: Hash of the dentry
1342  * @len: Length of the name
1343  *
1344  * An insecure source has sent us a dentry, here we verify it and dget() it.
1345  * This is used by ncpfs in its readdir implementation.
1346  * Zero is returned in the dentry is invalid.
1347  */
1348 
1349 int d_validate(struct dentry *dentry, struct dentry *dparent)
1350 {
1351 	struct hlist_head *base;
1352 	struct hlist_node *lhp;
1353 
1354 	/* Check whether the ptr might be valid at all.. */
1355 	if (!kmem_ptr_validate(dentry_cache, dentry))
1356 		goto out;
1357 
1358 	if (dentry->d_parent != dparent)
1359 		goto out;
1360 
1361 	spin_lock(&dcache_lock);
1362 	base = d_hash(dparent, dentry->d_name.hash);
1363 	hlist_for_each(lhp,base) {
1364 		/* hlist_for_each_entry_rcu() not required for d_hash list
1365 		 * as it is parsed under dcache_lock
1366 		 */
1367 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1368 			__dget_locked(dentry);
1369 			spin_unlock(&dcache_lock);
1370 			return 1;
1371 		}
1372 	}
1373 	spin_unlock(&dcache_lock);
1374 out:
1375 	return 0;
1376 }
1377 
1378 /*
1379  * When a file is deleted, we have two options:
1380  * - turn this dentry into a negative dentry
1381  * - unhash this dentry and free it.
1382  *
1383  * Usually, we want to just turn this into
1384  * a negative dentry, but if anybody else is
1385  * currently using the dentry or the inode
1386  * we can't do that and we fall back on removing
1387  * it from the hash queues and waiting for
1388  * it to be deleted later when it has no users
1389  */
1390 
1391 /**
1392  * d_delete - delete a dentry
1393  * @dentry: The dentry to delete
1394  *
1395  * Turn the dentry into a negative dentry if possible, otherwise
1396  * remove it from the hash queues so it can be deleted later
1397  */
1398 
1399 void d_delete(struct dentry * dentry)
1400 {
1401 	int isdir = 0;
1402 	/*
1403 	 * Are we the only user?
1404 	 */
1405 	spin_lock(&dcache_lock);
1406 	spin_lock(&dentry->d_lock);
1407 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1408 	if (atomic_read(&dentry->d_count) == 1) {
1409 		dentry_iput(dentry);
1410 		fsnotify_nameremove(dentry, isdir);
1411 		return;
1412 	}
1413 
1414 	if (!d_unhashed(dentry))
1415 		__d_drop(dentry);
1416 
1417 	spin_unlock(&dentry->d_lock);
1418 	spin_unlock(&dcache_lock);
1419 
1420 	fsnotify_nameremove(dentry, isdir);
1421 }
1422 
1423 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1424 {
1425 
1426  	entry->d_flags &= ~DCACHE_UNHASHED;
1427  	hlist_add_head_rcu(&entry->d_hash, list);
1428 }
1429 
1430 static void _d_rehash(struct dentry * entry)
1431 {
1432 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1433 }
1434 
1435 /**
1436  * d_rehash	- add an entry back to the hash
1437  * @entry: dentry to add to the hash
1438  *
1439  * Adds a dentry to the hash according to its name.
1440  */
1441 
1442 void d_rehash(struct dentry * entry)
1443 {
1444 	spin_lock(&dcache_lock);
1445 	spin_lock(&entry->d_lock);
1446 	_d_rehash(entry);
1447 	spin_unlock(&entry->d_lock);
1448 	spin_unlock(&dcache_lock);
1449 }
1450 
1451 #define do_switch(x,y) do { \
1452 	__typeof__ (x) __tmp = x; \
1453 	x = y; y = __tmp; } while (0)
1454 
1455 /*
1456  * When switching names, the actual string doesn't strictly have to
1457  * be preserved in the target - because we're dropping the target
1458  * anyway. As such, we can just do a simple memcpy() to copy over
1459  * the new name before we switch.
1460  *
1461  * Note that we have to be a lot more careful about getting the hash
1462  * switched - we have to switch the hash value properly even if it
1463  * then no longer matches the actual (corrupted) string of the target.
1464  * The hash value has to match the hash queue that the dentry is on..
1465  */
1466 static void switch_names(struct dentry *dentry, struct dentry *target)
1467 {
1468 	if (dname_external(target)) {
1469 		if (dname_external(dentry)) {
1470 			/*
1471 			 * Both external: swap the pointers
1472 			 */
1473 			do_switch(target->d_name.name, dentry->d_name.name);
1474 		} else {
1475 			/*
1476 			 * dentry:internal, target:external.  Steal target's
1477 			 * storage and make target internal.
1478 			 */
1479 			memcpy(target->d_iname, dentry->d_name.name,
1480 					dentry->d_name.len + 1);
1481 			dentry->d_name.name = target->d_name.name;
1482 			target->d_name.name = target->d_iname;
1483 		}
1484 	} else {
1485 		if (dname_external(dentry)) {
1486 			/*
1487 			 * dentry:external, target:internal.  Give dentry's
1488 			 * storage to target and make dentry internal
1489 			 */
1490 			memcpy(dentry->d_iname, target->d_name.name,
1491 					target->d_name.len + 1);
1492 			target->d_name.name = dentry->d_name.name;
1493 			dentry->d_name.name = dentry->d_iname;
1494 		} else {
1495 			/*
1496 			 * Both are internal.  Just copy target to dentry
1497 			 */
1498 			memcpy(dentry->d_iname, target->d_name.name,
1499 					target->d_name.len + 1);
1500 		}
1501 	}
1502 }
1503 
1504 /*
1505  * We cannibalize "target" when moving dentry on top of it,
1506  * because it's going to be thrown away anyway. We could be more
1507  * polite about it, though.
1508  *
1509  * This forceful removal will result in ugly /proc output if
1510  * somebody holds a file open that got deleted due to a rename.
1511  * We could be nicer about the deleted file, and let it show
1512  * up under the name it had before it was deleted rather than
1513  * under the original name of the file that was moved on top of it.
1514  */
1515 
1516 /*
1517  * d_move_locked - move a dentry
1518  * @dentry: entry to move
1519  * @target: new dentry
1520  *
1521  * Update the dcache to reflect the move of a file name. Negative
1522  * dcache entries should not be moved in this way.
1523  */
1524 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1525 {
1526 	struct hlist_head *list;
1527 
1528 	if (!dentry->d_inode)
1529 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1530 
1531 	write_seqlock(&rename_lock);
1532 	/*
1533 	 * XXXX: do we really need to take target->d_lock?
1534 	 */
1535 	if (target < dentry) {
1536 		spin_lock(&target->d_lock);
1537 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1538 	} else {
1539 		spin_lock(&dentry->d_lock);
1540 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1541 	}
1542 
1543 	/* Move the dentry to the target hash queue, if on different bucket */
1544 	if (d_unhashed(dentry))
1545 		goto already_unhashed;
1546 
1547 	hlist_del_rcu(&dentry->d_hash);
1548 
1549 already_unhashed:
1550 	list = d_hash(target->d_parent, target->d_name.hash);
1551 	__d_rehash(dentry, list);
1552 
1553 	/* Unhash the target: dput() will then get rid of it */
1554 	__d_drop(target);
1555 
1556 	list_del(&dentry->d_u.d_child);
1557 	list_del(&target->d_u.d_child);
1558 
1559 	/* Switch the names.. */
1560 	switch_names(dentry, target);
1561 	do_switch(dentry->d_name.len, target->d_name.len);
1562 	do_switch(dentry->d_name.hash, target->d_name.hash);
1563 
1564 	/* ... and switch the parents */
1565 	if (IS_ROOT(dentry)) {
1566 		dentry->d_parent = target->d_parent;
1567 		target->d_parent = target;
1568 		INIT_LIST_HEAD(&target->d_u.d_child);
1569 	} else {
1570 		do_switch(dentry->d_parent, target->d_parent);
1571 
1572 		/* And add them back to the (new) parent lists */
1573 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1574 	}
1575 
1576 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1577 	spin_unlock(&target->d_lock);
1578 	fsnotify_d_move(dentry);
1579 	spin_unlock(&dentry->d_lock);
1580 	write_sequnlock(&rename_lock);
1581 }
1582 
1583 /**
1584  * d_move - move a dentry
1585  * @dentry: entry to move
1586  * @target: new dentry
1587  *
1588  * Update the dcache to reflect the move of a file name. Negative
1589  * dcache entries should not be moved in this way.
1590  */
1591 
1592 void d_move(struct dentry * dentry, struct dentry * target)
1593 {
1594 	spin_lock(&dcache_lock);
1595 	d_move_locked(dentry, target);
1596 	spin_unlock(&dcache_lock);
1597 }
1598 
1599 /*
1600  * Helper that returns 1 if p1 is a parent of p2, else 0
1601  */
1602 static int d_isparent(struct dentry *p1, struct dentry *p2)
1603 {
1604 	struct dentry *p;
1605 
1606 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1607 		if (p->d_parent == p1)
1608 			return 1;
1609 	}
1610 	return 0;
1611 }
1612 
1613 /*
1614  * This helper attempts to cope with remotely renamed directories
1615  *
1616  * It assumes that the caller is already holding
1617  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1618  *
1619  * Note: If ever the locking in lock_rename() changes, then please
1620  * remember to update this too...
1621  *
1622  * On return, dcache_lock will have been unlocked.
1623  */
1624 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1625 {
1626 	struct mutex *m1 = NULL, *m2 = NULL;
1627 	struct dentry *ret;
1628 
1629 	/* If alias and dentry share a parent, then no extra locks required */
1630 	if (alias->d_parent == dentry->d_parent)
1631 		goto out_unalias;
1632 
1633 	/* Check for loops */
1634 	ret = ERR_PTR(-ELOOP);
1635 	if (d_isparent(alias, dentry))
1636 		goto out_err;
1637 
1638 	/* See lock_rename() */
1639 	ret = ERR_PTR(-EBUSY);
1640 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1641 		goto out_err;
1642 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1643 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1644 		goto out_err;
1645 	m2 = &alias->d_parent->d_inode->i_mutex;
1646 out_unalias:
1647 	d_move_locked(alias, dentry);
1648 	ret = alias;
1649 out_err:
1650 	spin_unlock(&dcache_lock);
1651 	if (m2)
1652 		mutex_unlock(m2);
1653 	if (m1)
1654 		mutex_unlock(m1);
1655 	return ret;
1656 }
1657 
1658 /*
1659  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1660  * named dentry in place of the dentry to be replaced.
1661  */
1662 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1663 {
1664 	struct dentry *dparent, *aparent;
1665 
1666 	switch_names(dentry, anon);
1667 	do_switch(dentry->d_name.len, anon->d_name.len);
1668 	do_switch(dentry->d_name.hash, anon->d_name.hash);
1669 
1670 	dparent = dentry->d_parent;
1671 	aparent = anon->d_parent;
1672 
1673 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1674 	list_del(&dentry->d_u.d_child);
1675 	if (!IS_ROOT(dentry))
1676 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1677 	else
1678 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1679 
1680 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1681 	list_del(&anon->d_u.d_child);
1682 	if (!IS_ROOT(anon))
1683 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1684 	else
1685 		INIT_LIST_HEAD(&anon->d_u.d_child);
1686 
1687 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1688 }
1689 
1690 /**
1691  * d_materialise_unique - introduce an inode into the tree
1692  * @dentry: candidate dentry
1693  * @inode: inode to bind to the dentry, to which aliases may be attached
1694  *
1695  * Introduces an dentry into the tree, substituting an extant disconnected
1696  * root directory alias in its place if there is one
1697  */
1698 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1699 {
1700 	struct dentry *actual;
1701 
1702 	BUG_ON(!d_unhashed(dentry));
1703 
1704 	spin_lock(&dcache_lock);
1705 
1706 	if (!inode) {
1707 		actual = dentry;
1708 		dentry->d_inode = NULL;
1709 		goto found_lock;
1710 	}
1711 
1712 	if (S_ISDIR(inode->i_mode)) {
1713 		struct dentry *alias;
1714 
1715 		/* Does an aliased dentry already exist? */
1716 		alias = __d_find_alias(inode, 0);
1717 		if (alias) {
1718 			actual = alias;
1719 			/* Is this an anonymous mountpoint that we could splice
1720 			 * into our tree? */
1721 			if (IS_ROOT(alias)) {
1722 				spin_lock(&alias->d_lock);
1723 				__d_materialise_dentry(dentry, alias);
1724 				__d_drop(alias);
1725 				goto found;
1726 			}
1727 			/* Nope, but we must(!) avoid directory aliasing */
1728 			actual = __d_unalias(dentry, alias);
1729 			if (IS_ERR(actual))
1730 				dput(alias);
1731 			goto out_nolock;
1732 		}
1733 	}
1734 
1735 	/* Add a unique reference */
1736 	actual = __d_instantiate_unique(dentry, inode);
1737 	if (!actual)
1738 		actual = dentry;
1739 	else if (unlikely(!d_unhashed(actual)))
1740 		goto shouldnt_be_hashed;
1741 
1742 found_lock:
1743 	spin_lock(&actual->d_lock);
1744 found:
1745 	_d_rehash(actual);
1746 	spin_unlock(&actual->d_lock);
1747 	spin_unlock(&dcache_lock);
1748 out_nolock:
1749 	if (actual == dentry) {
1750 		security_d_instantiate(dentry, inode);
1751 		return NULL;
1752 	}
1753 
1754 	iput(inode);
1755 	return actual;
1756 
1757 shouldnt_be_hashed:
1758 	spin_unlock(&dcache_lock);
1759 	BUG();
1760 	goto shouldnt_be_hashed;
1761 }
1762 
1763 /**
1764  * d_path - return the path of a dentry
1765  * @dentry: dentry to report
1766  * @vfsmnt: vfsmnt to which the dentry belongs
1767  * @root: root dentry
1768  * @rootmnt: vfsmnt to which the root dentry belongs
1769  * @buffer: buffer to return value in
1770  * @buflen: buffer length
1771  *
1772  * Convert a dentry into an ASCII path name. If the entry has been deleted
1773  * the string " (deleted)" is appended. Note that this is ambiguous.
1774  *
1775  * Returns the buffer or an error code if the path was too long.
1776  *
1777  * "buflen" should be positive. Caller holds the dcache_lock.
1778  */
1779 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1780 			struct dentry *root, struct vfsmount *rootmnt,
1781 			char *buffer, int buflen)
1782 {
1783 	char * end = buffer+buflen;
1784 	char * retval;
1785 	int namelen;
1786 
1787 	*--end = '\0';
1788 	buflen--;
1789 	if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1790 		buflen -= 10;
1791 		end -= 10;
1792 		if (buflen < 0)
1793 			goto Elong;
1794 		memcpy(end, " (deleted)", 10);
1795 	}
1796 
1797 	if (buflen < 1)
1798 		goto Elong;
1799 	/* Get '/' right */
1800 	retval = end-1;
1801 	*retval = '/';
1802 
1803 	for (;;) {
1804 		struct dentry * parent;
1805 
1806 		if (dentry == root && vfsmnt == rootmnt)
1807 			break;
1808 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1809 			/* Global root? */
1810 			spin_lock(&vfsmount_lock);
1811 			if (vfsmnt->mnt_parent == vfsmnt) {
1812 				spin_unlock(&vfsmount_lock);
1813 				goto global_root;
1814 			}
1815 			dentry = vfsmnt->mnt_mountpoint;
1816 			vfsmnt = vfsmnt->mnt_parent;
1817 			spin_unlock(&vfsmount_lock);
1818 			continue;
1819 		}
1820 		parent = dentry->d_parent;
1821 		prefetch(parent);
1822 		namelen = dentry->d_name.len;
1823 		buflen -= namelen + 1;
1824 		if (buflen < 0)
1825 			goto Elong;
1826 		end -= namelen;
1827 		memcpy(end, dentry->d_name.name, namelen);
1828 		*--end = '/';
1829 		retval = end;
1830 		dentry = parent;
1831 	}
1832 
1833 	return retval;
1834 
1835 global_root:
1836 	namelen = dentry->d_name.len;
1837 	buflen -= namelen;
1838 	if (buflen < 0)
1839 		goto Elong;
1840 	retval -= namelen-1;	/* hit the slash */
1841 	memcpy(retval, dentry->d_name.name, namelen);
1842 	return retval;
1843 Elong:
1844 	return ERR_PTR(-ENAMETOOLONG);
1845 }
1846 
1847 /* write full pathname into buffer and return start of pathname */
1848 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1849 				char *buf, int buflen)
1850 {
1851 	char *res;
1852 	struct vfsmount *rootmnt;
1853 	struct dentry *root;
1854 
1855 	/*
1856 	 * We have various synthetic filesystems that never get mounted.  On
1857 	 * these filesystems dentries are never used for lookup purposes, and
1858 	 * thus don't need to be hashed.  They also don't need a name until a
1859 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
1860 	 * below allows us to generate a name for these objects on demand:
1861 	 */
1862 	if (dentry->d_op && dentry->d_op->d_dname)
1863 		return dentry->d_op->d_dname(dentry, buf, buflen);
1864 
1865 	read_lock(&current->fs->lock);
1866 	rootmnt = mntget(current->fs->rootmnt);
1867 	root = dget(current->fs->root);
1868 	read_unlock(&current->fs->lock);
1869 	spin_lock(&dcache_lock);
1870 	res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1871 	spin_unlock(&dcache_lock);
1872 	dput(root);
1873 	mntput(rootmnt);
1874 	return res;
1875 }
1876 
1877 /*
1878  * Helper function for dentry_operations.d_dname() members
1879  */
1880 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
1881 			const char *fmt, ...)
1882 {
1883 	va_list args;
1884 	char temp[64];
1885 	int sz;
1886 
1887 	va_start(args, fmt);
1888 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
1889 	va_end(args);
1890 
1891 	if (sz > sizeof(temp) || sz > buflen)
1892 		return ERR_PTR(-ENAMETOOLONG);
1893 
1894 	buffer += buflen - sz;
1895 	return memcpy(buffer, temp, sz);
1896 }
1897 
1898 /*
1899  * NOTE! The user-level library version returns a
1900  * character pointer. The kernel system call just
1901  * returns the length of the buffer filled (which
1902  * includes the ending '\0' character), or a negative
1903  * error value. So libc would do something like
1904  *
1905  *	char *getcwd(char * buf, size_t size)
1906  *	{
1907  *		int retval;
1908  *
1909  *		retval = sys_getcwd(buf, size);
1910  *		if (retval >= 0)
1911  *			return buf;
1912  *		errno = -retval;
1913  *		return NULL;
1914  *	}
1915  */
1916 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1917 {
1918 	int error;
1919 	struct vfsmount *pwdmnt, *rootmnt;
1920 	struct dentry *pwd, *root;
1921 	char *page = (char *) __get_free_page(GFP_USER);
1922 
1923 	if (!page)
1924 		return -ENOMEM;
1925 
1926 	read_lock(&current->fs->lock);
1927 	pwdmnt = mntget(current->fs->pwdmnt);
1928 	pwd = dget(current->fs->pwd);
1929 	rootmnt = mntget(current->fs->rootmnt);
1930 	root = dget(current->fs->root);
1931 	read_unlock(&current->fs->lock);
1932 
1933 	error = -ENOENT;
1934 	/* Has the current directory has been unlinked? */
1935 	spin_lock(&dcache_lock);
1936 	if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1937 		unsigned long len;
1938 		char * cwd;
1939 
1940 		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1941 		spin_unlock(&dcache_lock);
1942 
1943 		error = PTR_ERR(cwd);
1944 		if (IS_ERR(cwd))
1945 			goto out;
1946 
1947 		error = -ERANGE;
1948 		len = PAGE_SIZE + page - cwd;
1949 		if (len <= size) {
1950 			error = len;
1951 			if (copy_to_user(buf, cwd, len))
1952 				error = -EFAULT;
1953 		}
1954 	} else
1955 		spin_unlock(&dcache_lock);
1956 
1957 out:
1958 	dput(pwd);
1959 	mntput(pwdmnt);
1960 	dput(root);
1961 	mntput(rootmnt);
1962 	free_page((unsigned long) page);
1963 	return error;
1964 }
1965 
1966 /*
1967  * Test whether new_dentry is a subdirectory of old_dentry.
1968  *
1969  * Trivially implemented using the dcache structure
1970  */
1971 
1972 /**
1973  * is_subdir - is new dentry a subdirectory of old_dentry
1974  * @new_dentry: new dentry
1975  * @old_dentry: old dentry
1976  *
1977  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1978  * Returns 0 otherwise.
1979  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1980  */
1981 
1982 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1983 {
1984 	int result;
1985 	struct dentry * saved = new_dentry;
1986 	unsigned long seq;
1987 
1988 	/* need rcu_readlock to protect against the d_parent trashing due to
1989 	 * d_move
1990 	 */
1991 	rcu_read_lock();
1992         do {
1993 		/* for restarting inner loop in case of seq retry */
1994 		new_dentry = saved;
1995 		result = 0;
1996 		seq = read_seqbegin(&rename_lock);
1997 		for (;;) {
1998 			if (new_dentry != old_dentry) {
1999 				struct dentry * parent = new_dentry->d_parent;
2000 				if (parent == new_dentry)
2001 					break;
2002 				new_dentry = parent;
2003 				continue;
2004 			}
2005 			result = 1;
2006 			break;
2007 		}
2008 	} while (read_seqretry(&rename_lock, seq));
2009 	rcu_read_unlock();
2010 
2011 	return result;
2012 }
2013 
2014 void d_genocide(struct dentry *root)
2015 {
2016 	struct dentry *this_parent = root;
2017 	struct list_head *next;
2018 
2019 	spin_lock(&dcache_lock);
2020 repeat:
2021 	next = this_parent->d_subdirs.next;
2022 resume:
2023 	while (next != &this_parent->d_subdirs) {
2024 		struct list_head *tmp = next;
2025 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2026 		next = tmp->next;
2027 		if (d_unhashed(dentry)||!dentry->d_inode)
2028 			continue;
2029 		if (!list_empty(&dentry->d_subdirs)) {
2030 			this_parent = dentry;
2031 			goto repeat;
2032 		}
2033 		atomic_dec(&dentry->d_count);
2034 	}
2035 	if (this_parent != root) {
2036 		next = this_parent->d_u.d_child.next;
2037 		atomic_dec(&this_parent->d_count);
2038 		this_parent = this_parent->d_parent;
2039 		goto resume;
2040 	}
2041 	spin_unlock(&dcache_lock);
2042 }
2043 
2044 /**
2045  * find_inode_number - check for dentry with name
2046  * @dir: directory to check
2047  * @name: Name to find.
2048  *
2049  * Check whether a dentry already exists for the given name,
2050  * and return the inode number if it has an inode. Otherwise
2051  * 0 is returned.
2052  *
2053  * This routine is used to post-process directory listings for
2054  * filesystems using synthetic inode numbers, and is necessary
2055  * to keep getcwd() working.
2056  */
2057 
2058 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2059 {
2060 	struct dentry * dentry;
2061 	ino_t ino = 0;
2062 
2063 	dentry = d_hash_and_lookup(dir, name);
2064 	if (dentry) {
2065 		if (dentry->d_inode)
2066 			ino = dentry->d_inode->i_ino;
2067 		dput(dentry);
2068 	}
2069 	return ino;
2070 }
2071 
2072 static __initdata unsigned long dhash_entries;
2073 static int __init set_dhash_entries(char *str)
2074 {
2075 	if (!str)
2076 		return 0;
2077 	dhash_entries = simple_strtoul(str, &str, 0);
2078 	return 1;
2079 }
2080 __setup("dhash_entries=", set_dhash_entries);
2081 
2082 static void __init dcache_init_early(void)
2083 {
2084 	int loop;
2085 
2086 	/* If hashes are distributed across NUMA nodes, defer
2087 	 * hash allocation until vmalloc space is available.
2088 	 */
2089 	if (hashdist)
2090 		return;
2091 
2092 	dentry_hashtable =
2093 		alloc_large_system_hash("Dentry cache",
2094 					sizeof(struct hlist_head),
2095 					dhash_entries,
2096 					13,
2097 					HASH_EARLY,
2098 					&d_hash_shift,
2099 					&d_hash_mask,
2100 					0);
2101 
2102 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2103 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2104 }
2105 
2106 static void __init dcache_init(void)
2107 {
2108 	int loop;
2109 
2110 	/*
2111 	 * A constructor could be added for stable state like the lists,
2112 	 * but it is probably not worth it because of the cache nature
2113 	 * of the dcache.
2114 	 */
2115 	dentry_cache = KMEM_CACHE(dentry,
2116 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2117 
2118 	register_shrinker(&dcache_shrinker);
2119 
2120 	/* Hash may have been set up in dcache_init_early */
2121 	if (!hashdist)
2122 		return;
2123 
2124 	dentry_hashtable =
2125 		alloc_large_system_hash("Dentry cache",
2126 					sizeof(struct hlist_head),
2127 					dhash_entries,
2128 					13,
2129 					0,
2130 					&d_hash_shift,
2131 					&d_hash_mask,
2132 					0);
2133 
2134 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2135 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2136 }
2137 
2138 /* SLAB cache for __getname() consumers */
2139 struct kmem_cache *names_cachep __read_mostly;
2140 
2141 /* SLAB cache for file structures */
2142 struct kmem_cache *filp_cachep __read_mostly;
2143 
2144 EXPORT_SYMBOL(d_genocide);
2145 
2146 void __init vfs_caches_init_early(void)
2147 {
2148 	dcache_init_early();
2149 	inode_init_early();
2150 }
2151 
2152 void __init vfs_caches_init(unsigned long mempages)
2153 {
2154 	unsigned long reserve;
2155 
2156 	/* Base hash sizes on available memory, with a reserve equal to
2157            150% of current kernel size */
2158 
2159 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2160 	mempages -= reserve;
2161 
2162 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2163 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2164 
2165 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2166 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2167 
2168 	dcache_init();
2169 	inode_init();
2170 	files_init(mempages);
2171 	mnt_init();
2172 	bdev_cache_init();
2173 	chrdev_init();
2174 }
2175 
2176 EXPORT_SYMBOL(d_alloc);
2177 EXPORT_SYMBOL(d_alloc_anon);
2178 EXPORT_SYMBOL(d_alloc_root);
2179 EXPORT_SYMBOL(d_delete);
2180 EXPORT_SYMBOL(d_find_alias);
2181 EXPORT_SYMBOL(d_instantiate);
2182 EXPORT_SYMBOL(d_invalidate);
2183 EXPORT_SYMBOL(d_lookup);
2184 EXPORT_SYMBOL(d_move);
2185 EXPORT_SYMBOL_GPL(d_materialise_unique);
2186 EXPORT_SYMBOL(d_path);
2187 EXPORT_SYMBOL(d_prune_aliases);
2188 EXPORT_SYMBOL(d_rehash);
2189 EXPORT_SYMBOL(d_splice_alias);
2190 EXPORT_SYMBOL(d_validate);
2191 EXPORT_SYMBOL(dget_locked);
2192 EXPORT_SYMBOL(dput);
2193 EXPORT_SYMBOL(find_inode_number);
2194 EXPORT_SYMBOL(have_submounts);
2195 EXPORT_SYMBOL(names_cachep);
2196 EXPORT_SYMBOL(shrink_dcache_parent);
2197 EXPORT_SYMBOL(shrink_dcache_sb);
2198