xref: /linux/fs/dcache.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	smp_store_release(&dentry->d_flags, flags);
323 }
324 
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478 	struct hlist_bl_head *b;
479 	/*
480 	 * Hashed dentries are normally on the dentry hashtable,
481 	 * with the exception of those newly allocated by
482 	 * d_obtain_root, which are always IS_ROOT:
483 	 */
484 	if (unlikely(IS_ROOT(dentry)))
485 		b = &dentry->d_sb->s_roots;
486 	else
487 		b = d_hash(dentry->d_name.hash);
488 
489 	hlist_bl_lock(b);
490 	__hlist_bl_del(&dentry->d_hash);
491 	hlist_bl_unlock(b);
492 }
493 
494 void __d_drop(struct dentry *dentry)
495 {
496 	if (!d_unhashed(dentry)) {
497 		___d_drop(dentry);
498 		dentry->d_hash.pprev = NULL;
499 		write_seqcount_invalidate(&dentry->d_seq);
500 	}
501 }
502 EXPORT_SYMBOL(__d_drop);
503 
504 void d_drop(struct dentry *dentry)
505 {
506 	spin_lock(&dentry->d_lock);
507 	__d_drop(dentry);
508 	spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511 
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 	struct dentry *next;
515 	/*
516 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 	 * attached to the dentry tree
518 	 */
519 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 	if (unlikely(list_empty(&dentry->d_child)))
521 		return;
522 	__list_del_entry(&dentry->d_child);
523 	/*
524 	 * Cursors can move around the list of children.  While we'd been
525 	 * a normal list member, it didn't matter - ->d_child.next would've
526 	 * been updated.  However, from now on it won't be and for the
527 	 * things like d_walk() it might end up with a nasty surprise.
528 	 * Normally d_walk() doesn't care about cursors moving around -
529 	 * ->d_lock on parent prevents that and since a cursor has no children
530 	 * of its own, we get through it without ever unlocking the parent.
531 	 * There is one exception, though - if we ascend from a child that
532 	 * gets killed as soon as we unlock it, the next sibling is found
533 	 * using the value left in its ->d_child.next.  And if _that_
534 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 	 * before d_walk() regains parent->d_lock, we'll end up skipping
536 	 * everything the cursor had been moved past.
537 	 *
538 	 * Solution: make sure that the pointer left behind in ->d_child.next
539 	 * points to something that won't be moving around.  I.e. skip the
540 	 * cursors.
541 	 */
542 	while (dentry->d_child.next != &parent->d_subdirs) {
543 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 			break;
546 		dentry->d_child.next = next->d_child.next;
547 	}
548 }
549 
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 	struct dentry *parent = NULL;
553 	bool can_free = true;
554 	if (!IS_ROOT(dentry))
555 		parent = dentry->d_parent;
556 
557 	/*
558 	 * The dentry is now unrecoverably dead to the world.
559 	 */
560 	lockref_mark_dead(&dentry->d_lockref);
561 
562 	/*
563 	 * inform the fs via d_prune that this dentry is about to be
564 	 * unhashed and destroyed.
565 	 */
566 	if (dentry->d_flags & DCACHE_OP_PRUNE)
567 		dentry->d_op->d_prune(dentry);
568 
569 	if (dentry->d_flags & DCACHE_LRU_LIST) {
570 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 			d_lru_del(dentry);
572 	}
573 	/* if it was on the hash then remove it */
574 	__d_drop(dentry);
575 	dentry_unlist(dentry, parent);
576 	if (parent)
577 		spin_unlock(&parent->d_lock);
578 	if (dentry->d_inode)
579 		dentry_unlink_inode(dentry);
580 	else
581 		spin_unlock(&dentry->d_lock);
582 	this_cpu_dec(nr_dentry);
583 	if (dentry->d_op && dentry->d_op->d_release)
584 		dentry->d_op->d_release(dentry);
585 
586 	spin_lock(&dentry->d_lock);
587 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 		dentry->d_flags |= DCACHE_MAY_FREE;
589 		can_free = false;
590 	}
591 	spin_unlock(&dentry->d_lock);
592 	if (likely(can_free))
593 		dentry_free(dentry);
594 	cond_resched();
595 }
596 
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 	struct dentry *parent;
600 	rcu_read_lock();
601 	spin_unlock(&dentry->d_lock);
602 again:
603 	parent = READ_ONCE(dentry->d_parent);
604 	spin_lock(&parent->d_lock);
605 	/*
606 	 * We can't blindly lock dentry until we are sure
607 	 * that we won't violate the locking order.
608 	 * Any changes of dentry->d_parent must have
609 	 * been done with parent->d_lock held, so
610 	 * spin_lock() above is enough of a barrier
611 	 * for checking if it's still our child.
612 	 */
613 	if (unlikely(parent != dentry->d_parent)) {
614 		spin_unlock(&parent->d_lock);
615 		goto again;
616 	}
617 	rcu_read_unlock();
618 	if (parent != dentry)
619 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 	else
621 		parent = NULL;
622 	return parent;
623 }
624 
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent = dentry->d_parent;
628 	if (IS_ROOT(dentry))
629 		return NULL;
630 	if (likely(spin_trylock(&parent->d_lock)))
631 		return parent;
632 	return __lock_parent(dentry);
633 }
634 
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 	WARN_ON(d_in_lookup(dentry));
638 
639 	/* Unreachable? Get rid of it */
640 	if (unlikely(d_unhashed(dentry)))
641 		return false;
642 
643 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 		return false;
645 
646 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 		if (dentry->d_op->d_delete(dentry))
648 			return false;
649 	}
650 
651 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
652 		return false;
653 
654 	/* retain; LRU fodder */
655 	dentry->d_lockref.count--;
656 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
657 		d_lru_add(dentry);
658 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
659 		dentry->d_flags |= DCACHE_REFERENCED;
660 	return true;
661 }
662 
663 void d_mark_dontcache(struct inode *inode)
664 {
665 	struct dentry *de;
666 
667 	spin_lock(&inode->i_lock);
668 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
669 		spin_lock(&de->d_lock);
670 		de->d_flags |= DCACHE_DONTCACHE;
671 		spin_unlock(&de->d_lock);
672 	}
673 	inode->i_state |= I_DONTCACHE;
674 	spin_unlock(&inode->i_lock);
675 }
676 EXPORT_SYMBOL(d_mark_dontcache);
677 
678 /*
679  * Finish off a dentry we've decided to kill.
680  * dentry->d_lock must be held, returns with it unlocked.
681  * Returns dentry requiring refcount drop, or NULL if we're done.
682  */
683 static struct dentry *dentry_kill(struct dentry *dentry)
684 	__releases(dentry->d_lock)
685 {
686 	struct inode *inode = dentry->d_inode;
687 	struct dentry *parent = NULL;
688 
689 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
690 		goto slow_positive;
691 
692 	if (!IS_ROOT(dentry)) {
693 		parent = dentry->d_parent;
694 		if (unlikely(!spin_trylock(&parent->d_lock))) {
695 			parent = __lock_parent(dentry);
696 			if (likely(inode || !dentry->d_inode))
697 				goto got_locks;
698 			/* negative that became positive */
699 			if (parent)
700 				spin_unlock(&parent->d_lock);
701 			inode = dentry->d_inode;
702 			goto slow_positive;
703 		}
704 	}
705 	__dentry_kill(dentry);
706 	return parent;
707 
708 slow_positive:
709 	spin_unlock(&dentry->d_lock);
710 	spin_lock(&inode->i_lock);
711 	spin_lock(&dentry->d_lock);
712 	parent = lock_parent(dentry);
713 got_locks:
714 	if (unlikely(dentry->d_lockref.count != 1)) {
715 		dentry->d_lockref.count--;
716 	} else if (likely(!retain_dentry(dentry))) {
717 		__dentry_kill(dentry);
718 		return parent;
719 	}
720 	/* we are keeping it, after all */
721 	if (inode)
722 		spin_unlock(&inode->i_lock);
723 	if (parent)
724 		spin_unlock(&parent->d_lock);
725 	spin_unlock(&dentry->d_lock);
726 	return NULL;
727 }
728 
729 /*
730  * Try to do a lockless dput(), and return whether that was successful.
731  *
732  * If unsuccessful, we return false, having already taken the dentry lock.
733  *
734  * The caller needs to hold the RCU read lock, so that the dentry is
735  * guaranteed to stay around even if the refcount goes down to zero!
736  */
737 static inline bool fast_dput(struct dentry *dentry)
738 {
739 	int ret;
740 	unsigned int d_flags;
741 
742 	/*
743 	 * If we have a d_op->d_delete() operation, we sould not
744 	 * let the dentry count go to zero, so use "put_or_lock".
745 	 */
746 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
747 		return lockref_put_or_lock(&dentry->d_lockref);
748 
749 	/*
750 	 * .. otherwise, we can try to just decrement the
751 	 * lockref optimistically.
752 	 */
753 	ret = lockref_put_return(&dentry->d_lockref);
754 
755 	/*
756 	 * If the lockref_put_return() failed due to the lock being held
757 	 * by somebody else, the fast path has failed. We will need to
758 	 * get the lock, and then check the count again.
759 	 */
760 	if (unlikely(ret < 0)) {
761 		spin_lock(&dentry->d_lock);
762 		if (dentry->d_lockref.count > 1) {
763 			dentry->d_lockref.count--;
764 			spin_unlock(&dentry->d_lock);
765 			return true;
766 		}
767 		return false;
768 	}
769 
770 	/*
771 	 * If we weren't the last ref, we're done.
772 	 */
773 	if (ret)
774 		return true;
775 
776 	/*
777 	 * Careful, careful. The reference count went down
778 	 * to zero, but we don't hold the dentry lock, so
779 	 * somebody else could get it again, and do another
780 	 * dput(), and we need to not race with that.
781 	 *
782 	 * However, there is a very special and common case
783 	 * where we don't care, because there is nothing to
784 	 * do: the dentry is still hashed, it does not have
785 	 * a 'delete' op, and it's referenced and already on
786 	 * the LRU list.
787 	 *
788 	 * NOTE! Since we aren't locked, these values are
789 	 * not "stable". However, it is sufficient that at
790 	 * some point after we dropped the reference the
791 	 * dentry was hashed and the flags had the proper
792 	 * value. Other dentry users may have re-gotten
793 	 * a reference to the dentry and change that, but
794 	 * our work is done - we can leave the dentry
795 	 * around with a zero refcount.
796 	 *
797 	 * Nevertheless, there are two cases that we should kill
798 	 * the dentry anyway.
799 	 * 1. free disconnected dentries as soon as their refcount
800 	 *    reached zero.
801 	 * 2. free dentries if they should not be cached.
802 	 */
803 	smp_rmb();
804 	d_flags = READ_ONCE(dentry->d_flags);
805 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
806 			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
807 
808 	/* Nothing to do? Dropping the reference was all we needed? */
809 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
810 		return true;
811 
812 	/*
813 	 * Not the fast normal case? Get the lock. We've already decremented
814 	 * the refcount, but we'll need to re-check the situation after
815 	 * getting the lock.
816 	 */
817 	spin_lock(&dentry->d_lock);
818 
819 	/*
820 	 * Did somebody else grab a reference to it in the meantime, and
821 	 * we're no longer the last user after all? Alternatively, somebody
822 	 * else could have killed it and marked it dead. Either way, we
823 	 * don't need to do anything else.
824 	 */
825 	if (dentry->d_lockref.count) {
826 		spin_unlock(&dentry->d_lock);
827 		return true;
828 	}
829 
830 	/*
831 	 * Re-get the reference we optimistically dropped. We hold the
832 	 * lock, and we just tested that it was zero, so we can just
833 	 * set it to 1.
834 	 */
835 	dentry->d_lockref.count = 1;
836 	return false;
837 }
838 
839 
840 /*
841  * This is dput
842  *
843  * This is complicated by the fact that we do not want to put
844  * dentries that are no longer on any hash chain on the unused
845  * list: we'd much rather just get rid of them immediately.
846  *
847  * However, that implies that we have to traverse the dentry
848  * tree upwards to the parents which might _also_ now be
849  * scheduled for deletion (it may have been only waiting for
850  * its last child to go away).
851  *
852  * This tail recursion is done by hand as we don't want to depend
853  * on the compiler to always get this right (gcc generally doesn't).
854  * Real recursion would eat up our stack space.
855  */
856 
857 /*
858  * dput - release a dentry
859  * @dentry: dentry to release
860  *
861  * Release a dentry. This will drop the usage count and if appropriate
862  * call the dentry unlink method as well as removing it from the queues and
863  * releasing its resources. If the parent dentries were scheduled for release
864  * they too may now get deleted.
865  */
866 void dput(struct dentry *dentry)
867 {
868 	while (dentry) {
869 		might_sleep();
870 
871 		rcu_read_lock();
872 		if (likely(fast_dput(dentry))) {
873 			rcu_read_unlock();
874 			return;
875 		}
876 
877 		/* Slow case: now with the dentry lock held */
878 		rcu_read_unlock();
879 
880 		if (likely(retain_dentry(dentry))) {
881 			spin_unlock(&dentry->d_lock);
882 			return;
883 		}
884 
885 		dentry = dentry_kill(dentry);
886 	}
887 }
888 EXPORT_SYMBOL(dput);
889 
890 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
891 __must_hold(&dentry->d_lock)
892 {
893 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
894 		/* let the owner of the list it's on deal with it */
895 		--dentry->d_lockref.count;
896 	} else {
897 		if (dentry->d_flags & DCACHE_LRU_LIST)
898 			d_lru_del(dentry);
899 		if (!--dentry->d_lockref.count)
900 			d_shrink_add(dentry, list);
901 	}
902 }
903 
904 void dput_to_list(struct dentry *dentry, struct list_head *list)
905 {
906 	rcu_read_lock();
907 	if (likely(fast_dput(dentry))) {
908 		rcu_read_unlock();
909 		return;
910 	}
911 	rcu_read_unlock();
912 	if (!retain_dentry(dentry))
913 		__dput_to_list(dentry, list);
914 	spin_unlock(&dentry->d_lock);
915 }
916 
917 /* This must be called with d_lock held */
918 static inline void __dget_dlock(struct dentry *dentry)
919 {
920 	dentry->d_lockref.count++;
921 }
922 
923 static inline void __dget(struct dentry *dentry)
924 {
925 	lockref_get(&dentry->d_lockref);
926 }
927 
928 struct dentry *dget_parent(struct dentry *dentry)
929 {
930 	int gotref;
931 	struct dentry *ret;
932 	unsigned seq;
933 
934 	/*
935 	 * Do optimistic parent lookup without any
936 	 * locking.
937 	 */
938 	rcu_read_lock();
939 	seq = raw_seqcount_begin(&dentry->d_seq);
940 	ret = READ_ONCE(dentry->d_parent);
941 	gotref = lockref_get_not_zero(&ret->d_lockref);
942 	rcu_read_unlock();
943 	if (likely(gotref)) {
944 		if (!read_seqcount_retry(&dentry->d_seq, seq))
945 			return ret;
946 		dput(ret);
947 	}
948 
949 repeat:
950 	/*
951 	 * Don't need rcu_dereference because we re-check it was correct under
952 	 * the lock.
953 	 */
954 	rcu_read_lock();
955 	ret = dentry->d_parent;
956 	spin_lock(&ret->d_lock);
957 	if (unlikely(ret != dentry->d_parent)) {
958 		spin_unlock(&ret->d_lock);
959 		rcu_read_unlock();
960 		goto repeat;
961 	}
962 	rcu_read_unlock();
963 	BUG_ON(!ret->d_lockref.count);
964 	ret->d_lockref.count++;
965 	spin_unlock(&ret->d_lock);
966 	return ret;
967 }
968 EXPORT_SYMBOL(dget_parent);
969 
970 static struct dentry * __d_find_any_alias(struct inode *inode)
971 {
972 	struct dentry *alias;
973 
974 	if (hlist_empty(&inode->i_dentry))
975 		return NULL;
976 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
977 	__dget(alias);
978 	return alias;
979 }
980 
981 /**
982  * d_find_any_alias - find any alias for a given inode
983  * @inode: inode to find an alias for
984  *
985  * If any aliases exist for the given inode, take and return a
986  * reference for one of them.  If no aliases exist, return %NULL.
987  */
988 struct dentry *d_find_any_alias(struct inode *inode)
989 {
990 	struct dentry *de;
991 
992 	spin_lock(&inode->i_lock);
993 	de = __d_find_any_alias(inode);
994 	spin_unlock(&inode->i_lock);
995 	return de;
996 }
997 EXPORT_SYMBOL(d_find_any_alias);
998 
999 /**
1000  * d_find_alias - grab a hashed alias of inode
1001  * @inode: inode in question
1002  *
1003  * If inode has a hashed alias, or is a directory and has any alias,
1004  * acquire the reference to alias and return it. Otherwise return NULL.
1005  * Notice that if inode is a directory there can be only one alias and
1006  * it can be unhashed only if it has no children, or if it is the root
1007  * of a filesystem, or if the directory was renamed and d_revalidate
1008  * was the first vfs operation to notice.
1009  *
1010  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1011  * any other hashed alias over that one.
1012  */
1013 static struct dentry *__d_find_alias(struct inode *inode)
1014 {
1015 	struct dentry *alias;
1016 
1017 	if (S_ISDIR(inode->i_mode))
1018 		return __d_find_any_alias(inode);
1019 
1020 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1021 		spin_lock(&alias->d_lock);
1022  		if (!d_unhashed(alias)) {
1023 			__dget_dlock(alias);
1024 			spin_unlock(&alias->d_lock);
1025 			return alias;
1026 		}
1027 		spin_unlock(&alias->d_lock);
1028 	}
1029 	return NULL;
1030 }
1031 
1032 struct dentry *d_find_alias(struct inode *inode)
1033 {
1034 	struct dentry *de = NULL;
1035 
1036 	if (!hlist_empty(&inode->i_dentry)) {
1037 		spin_lock(&inode->i_lock);
1038 		de = __d_find_alias(inode);
1039 		spin_unlock(&inode->i_lock);
1040 	}
1041 	return de;
1042 }
1043 EXPORT_SYMBOL(d_find_alias);
1044 
1045 /*
1046  *	Try to kill dentries associated with this inode.
1047  * WARNING: you must own a reference to inode.
1048  */
1049 void d_prune_aliases(struct inode *inode)
1050 {
1051 	struct dentry *dentry;
1052 restart:
1053 	spin_lock(&inode->i_lock);
1054 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1055 		spin_lock(&dentry->d_lock);
1056 		if (!dentry->d_lockref.count) {
1057 			struct dentry *parent = lock_parent(dentry);
1058 			if (likely(!dentry->d_lockref.count)) {
1059 				__dentry_kill(dentry);
1060 				dput(parent);
1061 				goto restart;
1062 			}
1063 			if (parent)
1064 				spin_unlock(&parent->d_lock);
1065 		}
1066 		spin_unlock(&dentry->d_lock);
1067 	}
1068 	spin_unlock(&inode->i_lock);
1069 }
1070 EXPORT_SYMBOL(d_prune_aliases);
1071 
1072 /*
1073  * Lock a dentry from shrink list.
1074  * Called under rcu_read_lock() and dentry->d_lock; the former
1075  * guarantees that nothing we access will be freed under us.
1076  * Note that dentry is *not* protected from concurrent dentry_kill(),
1077  * d_delete(), etc.
1078  *
1079  * Return false if dentry has been disrupted or grabbed, leaving
1080  * the caller to kick it off-list.  Otherwise, return true and have
1081  * that dentry's inode and parent both locked.
1082  */
1083 static bool shrink_lock_dentry(struct dentry *dentry)
1084 {
1085 	struct inode *inode;
1086 	struct dentry *parent;
1087 
1088 	if (dentry->d_lockref.count)
1089 		return false;
1090 
1091 	inode = dentry->d_inode;
1092 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1093 		spin_unlock(&dentry->d_lock);
1094 		spin_lock(&inode->i_lock);
1095 		spin_lock(&dentry->d_lock);
1096 		if (unlikely(dentry->d_lockref.count))
1097 			goto out;
1098 		/* changed inode means that somebody had grabbed it */
1099 		if (unlikely(inode != dentry->d_inode))
1100 			goto out;
1101 	}
1102 
1103 	parent = dentry->d_parent;
1104 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1105 		return true;
1106 
1107 	spin_unlock(&dentry->d_lock);
1108 	spin_lock(&parent->d_lock);
1109 	if (unlikely(parent != dentry->d_parent)) {
1110 		spin_unlock(&parent->d_lock);
1111 		spin_lock(&dentry->d_lock);
1112 		goto out;
1113 	}
1114 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1115 	if (likely(!dentry->d_lockref.count))
1116 		return true;
1117 	spin_unlock(&parent->d_lock);
1118 out:
1119 	if (inode)
1120 		spin_unlock(&inode->i_lock);
1121 	return false;
1122 }
1123 
1124 void shrink_dentry_list(struct list_head *list)
1125 {
1126 	while (!list_empty(list)) {
1127 		struct dentry *dentry, *parent;
1128 
1129 		dentry = list_entry(list->prev, struct dentry, d_lru);
1130 		spin_lock(&dentry->d_lock);
1131 		rcu_read_lock();
1132 		if (!shrink_lock_dentry(dentry)) {
1133 			bool can_free = false;
1134 			rcu_read_unlock();
1135 			d_shrink_del(dentry);
1136 			if (dentry->d_lockref.count < 0)
1137 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1138 			spin_unlock(&dentry->d_lock);
1139 			if (can_free)
1140 				dentry_free(dentry);
1141 			continue;
1142 		}
1143 		rcu_read_unlock();
1144 		d_shrink_del(dentry);
1145 		parent = dentry->d_parent;
1146 		if (parent != dentry)
1147 			__dput_to_list(parent, list);
1148 		__dentry_kill(dentry);
1149 	}
1150 }
1151 
1152 static enum lru_status dentry_lru_isolate(struct list_head *item,
1153 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1154 {
1155 	struct list_head *freeable = arg;
1156 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1157 
1158 
1159 	/*
1160 	 * we are inverting the lru lock/dentry->d_lock here,
1161 	 * so use a trylock. If we fail to get the lock, just skip
1162 	 * it
1163 	 */
1164 	if (!spin_trylock(&dentry->d_lock))
1165 		return LRU_SKIP;
1166 
1167 	/*
1168 	 * Referenced dentries are still in use. If they have active
1169 	 * counts, just remove them from the LRU. Otherwise give them
1170 	 * another pass through the LRU.
1171 	 */
1172 	if (dentry->d_lockref.count) {
1173 		d_lru_isolate(lru, dentry);
1174 		spin_unlock(&dentry->d_lock);
1175 		return LRU_REMOVED;
1176 	}
1177 
1178 	if (dentry->d_flags & DCACHE_REFERENCED) {
1179 		dentry->d_flags &= ~DCACHE_REFERENCED;
1180 		spin_unlock(&dentry->d_lock);
1181 
1182 		/*
1183 		 * The list move itself will be made by the common LRU code. At
1184 		 * this point, we've dropped the dentry->d_lock but keep the
1185 		 * lru lock. This is safe to do, since every list movement is
1186 		 * protected by the lru lock even if both locks are held.
1187 		 *
1188 		 * This is guaranteed by the fact that all LRU management
1189 		 * functions are intermediated by the LRU API calls like
1190 		 * list_lru_add and list_lru_del. List movement in this file
1191 		 * only ever occur through this functions or through callbacks
1192 		 * like this one, that are called from the LRU API.
1193 		 *
1194 		 * The only exceptions to this are functions like
1195 		 * shrink_dentry_list, and code that first checks for the
1196 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1197 		 * operating only with stack provided lists after they are
1198 		 * properly isolated from the main list.  It is thus, always a
1199 		 * local access.
1200 		 */
1201 		return LRU_ROTATE;
1202 	}
1203 
1204 	d_lru_shrink_move(lru, dentry, freeable);
1205 	spin_unlock(&dentry->d_lock);
1206 
1207 	return LRU_REMOVED;
1208 }
1209 
1210 /**
1211  * prune_dcache_sb - shrink the dcache
1212  * @sb: superblock
1213  * @sc: shrink control, passed to list_lru_shrink_walk()
1214  *
1215  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1216  * is done when we need more memory and called from the superblock shrinker
1217  * function.
1218  *
1219  * This function may fail to free any resources if all the dentries are in
1220  * use.
1221  */
1222 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1223 {
1224 	LIST_HEAD(dispose);
1225 	long freed;
1226 
1227 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1228 				     dentry_lru_isolate, &dispose);
1229 	shrink_dentry_list(&dispose);
1230 	return freed;
1231 }
1232 
1233 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1234 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1235 {
1236 	struct list_head *freeable = arg;
1237 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1238 
1239 	/*
1240 	 * we are inverting the lru lock/dentry->d_lock here,
1241 	 * so use a trylock. If we fail to get the lock, just skip
1242 	 * it
1243 	 */
1244 	if (!spin_trylock(&dentry->d_lock))
1245 		return LRU_SKIP;
1246 
1247 	d_lru_shrink_move(lru, dentry, freeable);
1248 	spin_unlock(&dentry->d_lock);
1249 
1250 	return LRU_REMOVED;
1251 }
1252 
1253 
1254 /**
1255  * shrink_dcache_sb - shrink dcache for a superblock
1256  * @sb: superblock
1257  *
1258  * Shrink the dcache for the specified super block. This is used to free
1259  * the dcache before unmounting a file system.
1260  */
1261 void shrink_dcache_sb(struct super_block *sb)
1262 {
1263 	do {
1264 		LIST_HEAD(dispose);
1265 
1266 		list_lru_walk(&sb->s_dentry_lru,
1267 			dentry_lru_isolate_shrink, &dispose, 1024);
1268 		shrink_dentry_list(&dispose);
1269 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1270 }
1271 EXPORT_SYMBOL(shrink_dcache_sb);
1272 
1273 /**
1274  * enum d_walk_ret - action to talke during tree walk
1275  * @D_WALK_CONTINUE:	contrinue walk
1276  * @D_WALK_QUIT:	quit walk
1277  * @D_WALK_NORETRY:	quit when retry is needed
1278  * @D_WALK_SKIP:	skip this dentry and its children
1279  */
1280 enum d_walk_ret {
1281 	D_WALK_CONTINUE,
1282 	D_WALK_QUIT,
1283 	D_WALK_NORETRY,
1284 	D_WALK_SKIP,
1285 };
1286 
1287 /**
1288  * d_walk - walk the dentry tree
1289  * @parent:	start of walk
1290  * @data:	data passed to @enter() and @finish()
1291  * @enter:	callback when first entering the dentry
1292  *
1293  * The @enter() callbacks are called with d_lock held.
1294  */
1295 static void d_walk(struct dentry *parent, void *data,
1296 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1297 {
1298 	struct dentry *this_parent;
1299 	struct list_head *next;
1300 	unsigned seq = 0;
1301 	enum d_walk_ret ret;
1302 	bool retry = true;
1303 
1304 again:
1305 	read_seqbegin_or_lock(&rename_lock, &seq);
1306 	this_parent = parent;
1307 	spin_lock(&this_parent->d_lock);
1308 
1309 	ret = enter(data, this_parent);
1310 	switch (ret) {
1311 	case D_WALK_CONTINUE:
1312 		break;
1313 	case D_WALK_QUIT:
1314 	case D_WALK_SKIP:
1315 		goto out_unlock;
1316 	case D_WALK_NORETRY:
1317 		retry = false;
1318 		break;
1319 	}
1320 repeat:
1321 	next = this_parent->d_subdirs.next;
1322 resume:
1323 	while (next != &this_parent->d_subdirs) {
1324 		struct list_head *tmp = next;
1325 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1326 		next = tmp->next;
1327 
1328 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1329 			continue;
1330 
1331 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1332 
1333 		ret = enter(data, dentry);
1334 		switch (ret) {
1335 		case D_WALK_CONTINUE:
1336 			break;
1337 		case D_WALK_QUIT:
1338 			spin_unlock(&dentry->d_lock);
1339 			goto out_unlock;
1340 		case D_WALK_NORETRY:
1341 			retry = false;
1342 			break;
1343 		case D_WALK_SKIP:
1344 			spin_unlock(&dentry->d_lock);
1345 			continue;
1346 		}
1347 
1348 		if (!list_empty(&dentry->d_subdirs)) {
1349 			spin_unlock(&this_parent->d_lock);
1350 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1351 			this_parent = dentry;
1352 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1353 			goto repeat;
1354 		}
1355 		spin_unlock(&dentry->d_lock);
1356 	}
1357 	/*
1358 	 * All done at this level ... ascend and resume the search.
1359 	 */
1360 	rcu_read_lock();
1361 ascend:
1362 	if (this_parent != parent) {
1363 		struct dentry *child = this_parent;
1364 		this_parent = child->d_parent;
1365 
1366 		spin_unlock(&child->d_lock);
1367 		spin_lock(&this_parent->d_lock);
1368 
1369 		/* might go back up the wrong parent if we have had a rename. */
1370 		if (need_seqretry(&rename_lock, seq))
1371 			goto rename_retry;
1372 		/* go into the first sibling still alive */
1373 		do {
1374 			next = child->d_child.next;
1375 			if (next == &this_parent->d_subdirs)
1376 				goto ascend;
1377 			child = list_entry(next, struct dentry, d_child);
1378 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1379 		rcu_read_unlock();
1380 		goto resume;
1381 	}
1382 	if (need_seqretry(&rename_lock, seq))
1383 		goto rename_retry;
1384 	rcu_read_unlock();
1385 
1386 out_unlock:
1387 	spin_unlock(&this_parent->d_lock);
1388 	done_seqretry(&rename_lock, seq);
1389 	return;
1390 
1391 rename_retry:
1392 	spin_unlock(&this_parent->d_lock);
1393 	rcu_read_unlock();
1394 	BUG_ON(seq & 1);
1395 	if (!retry)
1396 		return;
1397 	seq = 1;
1398 	goto again;
1399 }
1400 
1401 struct check_mount {
1402 	struct vfsmount *mnt;
1403 	unsigned int mounted;
1404 };
1405 
1406 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1407 {
1408 	struct check_mount *info = data;
1409 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1410 
1411 	if (likely(!d_mountpoint(dentry)))
1412 		return D_WALK_CONTINUE;
1413 	if (__path_is_mountpoint(&path)) {
1414 		info->mounted = 1;
1415 		return D_WALK_QUIT;
1416 	}
1417 	return D_WALK_CONTINUE;
1418 }
1419 
1420 /**
1421  * path_has_submounts - check for mounts over a dentry in the
1422  *                      current namespace.
1423  * @parent: path to check.
1424  *
1425  * Return true if the parent or its subdirectories contain
1426  * a mount point in the current namespace.
1427  */
1428 int path_has_submounts(const struct path *parent)
1429 {
1430 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1431 
1432 	read_seqlock_excl(&mount_lock);
1433 	d_walk(parent->dentry, &data, path_check_mount);
1434 	read_sequnlock_excl(&mount_lock);
1435 
1436 	return data.mounted;
1437 }
1438 EXPORT_SYMBOL(path_has_submounts);
1439 
1440 /*
1441  * Called by mount code to set a mountpoint and check if the mountpoint is
1442  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1443  * subtree can become unreachable).
1444  *
1445  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1446  * this reason take rename_lock and d_lock on dentry and ancestors.
1447  */
1448 int d_set_mounted(struct dentry *dentry)
1449 {
1450 	struct dentry *p;
1451 	int ret = -ENOENT;
1452 	write_seqlock(&rename_lock);
1453 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1454 		/* Need exclusion wrt. d_invalidate() */
1455 		spin_lock(&p->d_lock);
1456 		if (unlikely(d_unhashed(p))) {
1457 			spin_unlock(&p->d_lock);
1458 			goto out;
1459 		}
1460 		spin_unlock(&p->d_lock);
1461 	}
1462 	spin_lock(&dentry->d_lock);
1463 	if (!d_unlinked(dentry)) {
1464 		ret = -EBUSY;
1465 		if (!d_mountpoint(dentry)) {
1466 			dentry->d_flags |= DCACHE_MOUNTED;
1467 			ret = 0;
1468 		}
1469 	}
1470  	spin_unlock(&dentry->d_lock);
1471 out:
1472 	write_sequnlock(&rename_lock);
1473 	return ret;
1474 }
1475 
1476 /*
1477  * Search the dentry child list of the specified parent,
1478  * and move any unused dentries to the end of the unused
1479  * list for prune_dcache(). We descend to the next level
1480  * whenever the d_subdirs list is non-empty and continue
1481  * searching.
1482  *
1483  * It returns zero iff there are no unused children,
1484  * otherwise  it returns the number of children moved to
1485  * the end of the unused list. This may not be the total
1486  * number of unused children, because select_parent can
1487  * drop the lock and return early due to latency
1488  * constraints.
1489  */
1490 
1491 struct select_data {
1492 	struct dentry *start;
1493 	union {
1494 		long found;
1495 		struct dentry *victim;
1496 	};
1497 	struct list_head dispose;
1498 };
1499 
1500 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1501 {
1502 	struct select_data *data = _data;
1503 	enum d_walk_ret ret = D_WALK_CONTINUE;
1504 
1505 	if (data->start == dentry)
1506 		goto out;
1507 
1508 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1509 		data->found++;
1510 	} else {
1511 		if (dentry->d_flags & DCACHE_LRU_LIST)
1512 			d_lru_del(dentry);
1513 		if (!dentry->d_lockref.count) {
1514 			d_shrink_add(dentry, &data->dispose);
1515 			data->found++;
1516 		}
1517 	}
1518 	/*
1519 	 * We can return to the caller if we have found some (this
1520 	 * ensures forward progress). We'll be coming back to find
1521 	 * the rest.
1522 	 */
1523 	if (!list_empty(&data->dispose))
1524 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1525 out:
1526 	return ret;
1527 }
1528 
1529 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1530 {
1531 	struct select_data *data = _data;
1532 	enum d_walk_ret ret = D_WALK_CONTINUE;
1533 
1534 	if (data->start == dentry)
1535 		goto out;
1536 
1537 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1538 		if (!dentry->d_lockref.count) {
1539 			rcu_read_lock();
1540 			data->victim = dentry;
1541 			return D_WALK_QUIT;
1542 		}
1543 	} else {
1544 		if (dentry->d_flags & DCACHE_LRU_LIST)
1545 			d_lru_del(dentry);
1546 		if (!dentry->d_lockref.count)
1547 			d_shrink_add(dentry, &data->dispose);
1548 	}
1549 	/*
1550 	 * We can return to the caller if we have found some (this
1551 	 * ensures forward progress). We'll be coming back to find
1552 	 * the rest.
1553 	 */
1554 	if (!list_empty(&data->dispose))
1555 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1556 out:
1557 	return ret;
1558 }
1559 
1560 /**
1561  * shrink_dcache_parent - prune dcache
1562  * @parent: parent of entries to prune
1563  *
1564  * Prune the dcache to remove unused children of the parent dentry.
1565  */
1566 void shrink_dcache_parent(struct dentry *parent)
1567 {
1568 	for (;;) {
1569 		struct select_data data = {.start = parent};
1570 
1571 		INIT_LIST_HEAD(&data.dispose);
1572 		d_walk(parent, &data, select_collect);
1573 
1574 		if (!list_empty(&data.dispose)) {
1575 			shrink_dentry_list(&data.dispose);
1576 			continue;
1577 		}
1578 
1579 		cond_resched();
1580 		if (!data.found)
1581 			break;
1582 		data.victim = NULL;
1583 		d_walk(parent, &data, select_collect2);
1584 		if (data.victim) {
1585 			struct dentry *parent;
1586 			spin_lock(&data.victim->d_lock);
1587 			if (!shrink_lock_dentry(data.victim)) {
1588 				spin_unlock(&data.victim->d_lock);
1589 				rcu_read_unlock();
1590 			} else {
1591 				rcu_read_unlock();
1592 				parent = data.victim->d_parent;
1593 				if (parent != data.victim)
1594 					__dput_to_list(parent, &data.dispose);
1595 				__dentry_kill(data.victim);
1596 			}
1597 		}
1598 		if (!list_empty(&data.dispose))
1599 			shrink_dentry_list(&data.dispose);
1600 	}
1601 }
1602 EXPORT_SYMBOL(shrink_dcache_parent);
1603 
1604 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1605 {
1606 	/* it has busy descendents; complain about those instead */
1607 	if (!list_empty(&dentry->d_subdirs))
1608 		return D_WALK_CONTINUE;
1609 
1610 	/* root with refcount 1 is fine */
1611 	if (dentry == _data && dentry->d_lockref.count == 1)
1612 		return D_WALK_CONTINUE;
1613 
1614 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1615 			" still in use (%d) [unmount of %s %s]\n",
1616 		       dentry,
1617 		       dentry->d_inode ?
1618 		       dentry->d_inode->i_ino : 0UL,
1619 		       dentry,
1620 		       dentry->d_lockref.count,
1621 		       dentry->d_sb->s_type->name,
1622 		       dentry->d_sb->s_id);
1623 	WARN_ON(1);
1624 	return D_WALK_CONTINUE;
1625 }
1626 
1627 static void do_one_tree(struct dentry *dentry)
1628 {
1629 	shrink_dcache_parent(dentry);
1630 	d_walk(dentry, dentry, umount_check);
1631 	d_drop(dentry);
1632 	dput(dentry);
1633 }
1634 
1635 /*
1636  * destroy the dentries attached to a superblock on unmounting
1637  */
1638 void shrink_dcache_for_umount(struct super_block *sb)
1639 {
1640 	struct dentry *dentry;
1641 
1642 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1643 
1644 	dentry = sb->s_root;
1645 	sb->s_root = NULL;
1646 	do_one_tree(dentry);
1647 
1648 	while (!hlist_bl_empty(&sb->s_roots)) {
1649 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1650 		do_one_tree(dentry);
1651 	}
1652 }
1653 
1654 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1655 {
1656 	struct dentry **victim = _data;
1657 	if (d_mountpoint(dentry)) {
1658 		__dget_dlock(dentry);
1659 		*victim = dentry;
1660 		return D_WALK_QUIT;
1661 	}
1662 	return D_WALK_CONTINUE;
1663 }
1664 
1665 /**
1666  * d_invalidate - detach submounts, prune dcache, and drop
1667  * @dentry: dentry to invalidate (aka detach, prune and drop)
1668  */
1669 void d_invalidate(struct dentry *dentry)
1670 {
1671 	bool had_submounts = false;
1672 	spin_lock(&dentry->d_lock);
1673 	if (d_unhashed(dentry)) {
1674 		spin_unlock(&dentry->d_lock);
1675 		return;
1676 	}
1677 	__d_drop(dentry);
1678 	spin_unlock(&dentry->d_lock);
1679 
1680 	/* Negative dentries can be dropped without further checks */
1681 	if (!dentry->d_inode)
1682 		return;
1683 
1684 	shrink_dcache_parent(dentry);
1685 	for (;;) {
1686 		struct dentry *victim = NULL;
1687 		d_walk(dentry, &victim, find_submount);
1688 		if (!victim) {
1689 			if (had_submounts)
1690 				shrink_dcache_parent(dentry);
1691 			return;
1692 		}
1693 		had_submounts = true;
1694 		detach_mounts(victim);
1695 		dput(victim);
1696 	}
1697 }
1698 EXPORT_SYMBOL(d_invalidate);
1699 
1700 /**
1701  * __d_alloc	-	allocate a dcache entry
1702  * @sb: filesystem it will belong to
1703  * @name: qstr of the name
1704  *
1705  * Allocates a dentry. It returns %NULL if there is insufficient memory
1706  * available. On a success the dentry is returned. The name passed in is
1707  * copied and the copy passed in may be reused after this call.
1708  */
1709 
1710 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1711 {
1712 	struct dentry *dentry;
1713 	char *dname;
1714 	int err;
1715 
1716 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1717 	if (!dentry)
1718 		return NULL;
1719 
1720 	/*
1721 	 * We guarantee that the inline name is always NUL-terminated.
1722 	 * This way the memcpy() done by the name switching in rename
1723 	 * will still always have a NUL at the end, even if we might
1724 	 * be overwriting an internal NUL character
1725 	 */
1726 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1727 	if (unlikely(!name)) {
1728 		name = &slash_name;
1729 		dname = dentry->d_iname;
1730 	} else if (name->len > DNAME_INLINE_LEN-1) {
1731 		size_t size = offsetof(struct external_name, name[1]);
1732 		struct external_name *p = kmalloc(size + name->len,
1733 						  GFP_KERNEL_ACCOUNT |
1734 						  __GFP_RECLAIMABLE);
1735 		if (!p) {
1736 			kmem_cache_free(dentry_cache, dentry);
1737 			return NULL;
1738 		}
1739 		atomic_set(&p->u.count, 1);
1740 		dname = p->name;
1741 	} else  {
1742 		dname = dentry->d_iname;
1743 	}
1744 
1745 	dentry->d_name.len = name->len;
1746 	dentry->d_name.hash = name->hash;
1747 	memcpy(dname, name->name, name->len);
1748 	dname[name->len] = 0;
1749 
1750 	/* Make sure we always see the terminating NUL character */
1751 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1752 
1753 	dentry->d_lockref.count = 1;
1754 	dentry->d_flags = 0;
1755 	spin_lock_init(&dentry->d_lock);
1756 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1757 	dentry->d_inode = NULL;
1758 	dentry->d_parent = dentry;
1759 	dentry->d_sb = sb;
1760 	dentry->d_op = NULL;
1761 	dentry->d_fsdata = NULL;
1762 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1763 	INIT_LIST_HEAD(&dentry->d_lru);
1764 	INIT_LIST_HEAD(&dentry->d_subdirs);
1765 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1766 	INIT_LIST_HEAD(&dentry->d_child);
1767 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1768 
1769 	if (dentry->d_op && dentry->d_op->d_init) {
1770 		err = dentry->d_op->d_init(dentry);
1771 		if (err) {
1772 			if (dname_external(dentry))
1773 				kfree(external_name(dentry));
1774 			kmem_cache_free(dentry_cache, dentry);
1775 			return NULL;
1776 		}
1777 	}
1778 
1779 	this_cpu_inc(nr_dentry);
1780 
1781 	return dentry;
1782 }
1783 
1784 /**
1785  * d_alloc	-	allocate a dcache entry
1786  * @parent: parent of entry to allocate
1787  * @name: qstr of the name
1788  *
1789  * Allocates a dentry. It returns %NULL if there is insufficient memory
1790  * available. On a success the dentry is returned. The name passed in is
1791  * copied and the copy passed in may be reused after this call.
1792  */
1793 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1794 {
1795 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1796 	if (!dentry)
1797 		return NULL;
1798 	spin_lock(&parent->d_lock);
1799 	/*
1800 	 * don't need child lock because it is not subject
1801 	 * to concurrency here
1802 	 */
1803 	__dget_dlock(parent);
1804 	dentry->d_parent = parent;
1805 	list_add(&dentry->d_child, &parent->d_subdirs);
1806 	spin_unlock(&parent->d_lock);
1807 
1808 	return dentry;
1809 }
1810 EXPORT_SYMBOL(d_alloc);
1811 
1812 struct dentry *d_alloc_anon(struct super_block *sb)
1813 {
1814 	return __d_alloc(sb, NULL);
1815 }
1816 EXPORT_SYMBOL(d_alloc_anon);
1817 
1818 struct dentry *d_alloc_cursor(struct dentry * parent)
1819 {
1820 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1821 	if (dentry) {
1822 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1823 		dentry->d_parent = dget(parent);
1824 	}
1825 	return dentry;
1826 }
1827 
1828 /**
1829  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1830  * @sb: the superblock
1831  * @name: qstr of the name
1832  *
1833  * For a filesystem that just pins its dentries in memory and never
1834  * performs lookups at all, return an unhashed IS_ROOT dentry.
1835  * This is used for pipes, sockets et.al. - the stuff that should
1836  * never be anyone's children or parents.  Unlike all other
1837  * dentries, these will not have RCU delay between dropping the
1838  * last reference and freeing them.
1839  *
1840  * The only user is alloc_file_pseudo() and that's what should
1841  * be considered a public interface.  Don't use directly.
1842  */
1843 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1844 {
1845 	struct dentry *dentry = __d_alloc(sb, name);
1846 	if (likely(dentry))
1847 		dentry->d_flags |= DCACHE_NORCU;
1848 	return dentry;
1849 }
1850 
1851 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1852 {
1853 	struct qstr q;
1854 
1855 	q.name = name;
1856 	q.hash_len = hashlen_string(parent, name);
1857 	return d_alloc(parent, &q);
1858 }
1859 EXPORT_SYMBOL(d_alloc_name);
1860 
1861 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1862 {
1863 	WARN_ON_ONCE(dentry->d_op);
1864 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1865 				DCACHE_OP_COMPARE	|
1866 				DCACHE_OP_REVALIDATE	|
1867 				DCACHE_OP_WEAK_REVALIDATE	|
1868 				DCACHE_OP_DELETE	|
1869 				DCACHE_OP_REAL));
1870 	dentry->d_op = op;
1871 	if (!op)
1872 		return;
1873 	if (op->d_hash)
1874 		dentry->d_flags |= DCACHE_OP_HASH;
1875 	if (op->d_compare)
1876 		dentry->d_flags |= DCACHE_OP_COMPARE;
1877 	if (op->d_revalidate)
1878 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1879 	if (op->d_weak_revalidate)
1880 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1881 	if (op->d_delete)
1882 		dentry->d_flags |= DCACHE_OP_DELETE;
1883 	if (op->d_prune)
1884 		dentry->d_flags |= DCACHE_OP_PRUNE;
1885 	if (op->d_real)
1886 		dentry->d_flags |= DCACHE_OP_REAL;
1887 
1888 }
1889 EXPORT_SYMBOL(d_set_d_op);
1890 
1891 
1892 /*
1893  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1894  * @dentry - The dentry to mark
1895  *
1896  * Mark a dentry as falling through to the lower layer (as set with
1897  * d_pin_lower()).  This flag may be recorded on the medium.
1898  */
1899 void d_set_fallthru(struct dentry *dentry)
1900 {
1901 	spin_lock(&dentry->d_lock);
1902 	dentry->d_flags |= DCACHE_FALLTHRU;
1903 	spin_unlock(&dentry->d_lock);
1904 }
1905 EXPORT_SYMBOL(d_set_fallthru);
1906 
1907 static unsigned d_flags_for_inode(struct inode *inode)
1908 {
1909 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1910 
1911 	if (!inode)
1912 		return DCACHE_MISS_TYPE;
1913 
1914 	if (S_ISDIR(inode->i_mode)) {
1915 		add_flags = DCACHE_DIRECTORY_TYPE;
1916 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1917 			if (unlikely(!inode->i_op->lookup))
1918 				add_flags = DCACHE_AUTODIR_TYPE;
1919 			else
1920 				inode->i_opflags |= IOP_LOOKUP;
1921 		}
1922 		goto type_determined;
1923 	}
1924 
1925 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1926 		if (unlikely(inode->i_op->get_link)) {
1927 			add_flags = DCACHE_SYMLINK_TYPE;
1928 			goto type_determined;
1929 		}
1930 		inode->i_opflags |= IOP_NOFOLLOW;
1931 	}
1932 
1933 	if (unlikely(!S_ISREG(inode->i_mode)))
1934 		add_flags = DCACHE_SPECIAL_TYPE;
1935 
1936 type_determined:
1937 	if (unlikely(IS_AUTOMOUNT(inode)))
1938 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1939 	return add_flags;
1940 }
1941 
1942 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1943 {
1944 	unsigned add_flags = d_flags_for_inode(inode);
1945 	WARN_ON(d_in_lookup(dentry));
1946 
1947 	spin_lock(&dentry->d_lock);
1948 	/*
1949 	 * Decrement negative dentry count if it was in the LRU list.
1950 	 */
1951 	if (dentry->d_flags & DCACHE_LRU_LIST)
1952 		this_cpu_dec(nr_dentry_negative);
1953 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1954 	raw_write_seqcount_begin(&dentry->d_seq);
1955 	__d_set_inode_and_type(dentry, inode, add_flags);
1956 	raw_write_seqcount_end(&dentry->d_seq);
1957 	fsnotify_update_flags(dentry);
1958 	spin_unlock(&dentry->d_lock);
1959 }
1960 
1961 /**
1962  * d_instantiate - fill in inode information for a dentry
1963  * @entry: dentry to complete
1964  * @inode: inode to attach to this dentry
1965  *
1966  * Fill in inode information in the entry.
1967  *
1968  * This turns negative dentries into productive full members
1969  * of society.
1970  *
1971  * NOTE! This assumes that the inode count has been incremented
1972  * (or otherwise set) by the caller to indicate that it is now
1973  * in use by the dcache.
1974  */
1975 
1976 void d_instantiate(struct dentry *entry, struct inode * inode)
1977 {
1978 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1979 	if (inode) {
1980 		security_d_instantiate(entry, inode);
1981 		spin_lock(&inode->i_lock);
1982 		__d_instantiate(entry, inode);
1983 		spin_unlock(&inode->i_lock);
1984 	}
1985 }
1986 EXPORT_SYMBOL(d_instantiate);
1987 
1988 /*
1989  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1990  * with lockdep-related part of unlock_new_inode() done before
1991  * anything else.  Use that instead of open-coding d_instantiate()/
1992  * unlock_new_inode() combinations.
1993  */
1994 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1995 {
1996 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1997 	BUG_ON(!inode);
1998 	lockdep_annotate_inode_mutex_key(inode);
1999 	security_d_instantiate(entry, inode);
2000 	spin_lock(&inode->i_lock);
2001 	__d_instantiate(entry, inode);
2002 	WARN_ON(!(inode->i_state & I_NEW));
2003 	inode->i_state &= ~I_NEW & ~I_CREATING;
2004 	smp_mb();
2005 	wake_up_bit(&inode->i_state, __I_NEW);
2006 	spin_unlock(&inode->i_lock);
2007 }
2008 EXPORT_SYMBOL(d_instantiate_new);
2009 
2010 struct dentry *d_make_root(struct inode *root_inode)
2011 {
2012 	struct dentry *res = NULL;
2013 
2014 	if (root_inode) {
2015 		res = d_alloc_anon(root_inode->i_sb);
2016 		if (res)
2017 			d_instantiate(res, root_inode);
2018 		else
2019 			iput(root_inode);
2020 	}
2021 	return res;
2022 }
2023 EXPORT_SYMBOL(d_make_root);
2024 
2025 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2026 					   struct inode *inode,
2027 					   bool disconnected)
2028 {
2029 	struct dentry *res;
2030 	unsigned add_flags;
2031 
2032 	security_d_instantiate(dentry, inode);
2033 	spin_lock(&inode->i_lock);
2034 	res = __d_find_any_alias(inode);
2035 	if (res) {
2036 		spin_unlock(&inode->i_lock);
2037 		dput(dentry);
2038 		goto out_iput;
2039 	}
2040 
2041 	/* attach a disconnected dentry */
2042 	add_flags = d_flags_for_inode(inode);
2043 
2044 	if (disconnected)
2045 		add_flags |= DCACHE_DISCONNECTED;
2046 
2047 	spin_lock(&dentry->d_lock);
2048 	__d_set_inode_and_type(dentry, inode, add_flags);
2049 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2050 	if (!disconnected) {
2051 		hlist_bl_lock(&dentry->d_sb->s_roots);
2052 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2053 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2054 	}
2055 	spin_unlock(&dentry->d_lock);
2056 	spin_unlock(&inode->i_lock);
2057 
2058 	return dentry;
2059 
2060  out_iput:
2061 	iput(inode);
2062 	return res;
2063 }
2064 
2065 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2066 {
2067 	return __d_instantiate_anon(dentry, inode, true);
2068 }
2069 EXPORT_SYMBOL(d_instantiate_anon);
2070 
2071 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2072 {
2073 	struct dentry *tmp;
2074 	struct dentry *res;
2075 
2076 	if (!inode)
2077 		return ERR_PTR(-ESTALE);
2078 	if (IS_ERR(inode))
2079 		return ERR_CAST(inode);
2080 
2081 	res = d_find_any_alias(inode);
2082 	if (res)
2083 		goto out_iput;
2084 
2085 	tmp = d_alloc_anon(inode->i_sb);
2086 	if (!tmp) {
2087 		res = ERR_PTR(-ENOMEM);
2088 		goto out_iput;
2089 	}
2090 
2091 	return __d_instantiate_anon(tmp, inode, disconnected);
2092 
2093 out_iput:
2094 	iput(inode);
2095 	return res;
2096 }
2097 
2098 /**
2099  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2100  * @inode: inode to allocate the dentry for
2101  *
2102  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2103  * similar open by handle operations.  The returned dentry may be anonymous,
2104  * or may have a full name (if the inode was already in the cache).
2105  *
2106  * When called on a directory inode, we must ensure that the inode only ever
2107  * has one dentry.  If a dentry is found, that is returned instead of
2108  * allocating a new one.
2109  *
2110  * On successful return, the reference to the inode has been transferred
2111  * to the dentry.  In case of an error the reference on the inode is released.
2112  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2113  * be passed in and the error will be propagated to the return value,
2114  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2115  */
2116 struct dentry *d_obtain_alias(struct inode *inode)
2117 {
2118 	return __d_obtain_alias(inode, true);
2119 }
2120 EXPORT_SYMBOL(d_obtain_alias);
2121 
2122 /**
2123  * d_obtain_root - find or allocate a dentry for a given inode
2124  * @inode: inode to allocate the dentry for
2125  *
2126  * Obtain an IS_ROOT dentry for the root of a filesystem.
2127  *
2128  * We must ensure that directory inodes only ever have one dentry.  If a
2129  * dentry is found, that is returned instead of allocating a new one.
2130  *
2131  * On successful return, the reference to the inode has been transferred
2132  * to the dentry.  In case of an error the reference on the inode is
2133  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2134  * error will be propagate to the return value, with a %NULL @inode
2135  * replaced by ERR_PTR(-ESTALE).
2136  */
2137 struct dentry *d_obtain_root(struct inode *inode)
2138 {
2139 	return __d_obtain_alias(inode, false);
2140 }
2141 EXPORT_SYMBOL(d_obtain_root);
2142 
2143 /**
2144  * d_add_ci - lookup or allocate new dentry with case-exact name
2145  * @inode:  the inode case-insensitive lookup has found
2146  * @dentry: the negative dentry that was passed to the parent's lookup func
2147  * @name:   the case-exact name to be associated with the returned dentry
2148  *
2149  * This is to avoid filling the dcache with case-insensitive names to the
2150  * same inode, only the actual correct case is stored in the dcache for
2151  * case-insensitive filesystems.
2152  *
2153  * For a case-insensitive lookup match and if the the case-exact dentry
2154  * already exists in in the dcache, use it and return it.
2155  *
2156  * If no entry exists with the exact case name, allocate new dentry with
2157  * the exact case, and return the spliced entry.
2158  */
2159 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2160 			struct qstr *name)
2161 {
2162 	struct dentry *found, *res;
2163 
2164 	/*
2165 	 * First check if a dentry matching the name already exists,
2166 	 * if not go ahead and create it now.
2167 	 */
2168 	found = d_hash_and_lookup(dentry->d_parent, name);
2169 	if (found) {
2170 		iput(inode);
2171 		return found;
2172 	}
2173 	if (d_in_lookup(dentry)) {
2174 		found = d_alloc_parallel(dentry->d_parent, name,
2175 					dentry->d_wait);
2176 		if (IS_ERR(found) || !d_in_lookup(found)) {
2177 			iput(inode);
2178 			return found;
2179 		}
2180 	} else {
2181 		found = d_alloc(dentry->d_parent, name);
2182 		if (!found) {
2183 			iput(inode);
2184 			return ERR_PTR(-ENOMEM);
2185 		}
2186 	}
2187 	res = d_splice_alias(inode, found);
2188 	if (res) {
2189 		dput(found);
2190 		return res;
2191 	}
2192 	return found;
2193 }
2194 EXPORT_SYMBOL(d_add_ci);
2195 
2196 
2197 static inline bool d_same_name(const struct dentry *dentry,
2198 				const struct dentry *parent,
2199 				const struct qstr *name)
2200 {
2201 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2202 		if (dentry->d_name.len != name->len)
2203 			return false;
2204 		return dentry_cmp(dentry, name->name, name->len) == 0;
2205 	}
2206 	return parent->d_op->d_compare(dentry,
2207 				       dentry->d_name.len, dentry->d_name.name,
2208 				       name) == 0;
2209 }
2210 
2211 /**
2212  * __d_lookup_rcu - search for a dentry (racy, store-free)
2213  * @parent: parent dentry
2214  * @name: qstr of name we wish to find
2215  * @seqp: returns d_seq value at the point where the dentry was found
2216  * Returns: dentry, or NULL
2217  *
2218  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2219  * resolution (store-free path walking) design described in
2220  * Documentation/filesystems/path-lookup.txt.
2221  *
2222  * This is not to be used outside core vfs.
2223  *
2224  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2225  * held, and rcu_read_lock held. The returned dentry must not be stored into
2226  * without taking d_lock and checking d_seq sequence count against @seq
2227  * returned here.
2228  *
2229  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2230  * function.
2231  *
2232  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2233  * the returned dentry, so long as its parent's seqlock is checked after the
2234  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2235  * is formed, giving integrity down the path walk.
2236  *
2237  * NOTE! The caller *has* to check the resulting dentry against the sequence
2238  * number we've returned before using any of the resulting dentry state!
2239  */
2240 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2241 				const struct qstr *name,
2242 				unsigned *seqp)
2243 {
2244 	u64 hashlen = name->hash_len;
2245 	const unsigned char *str = name->name;
2246 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2247 	struct hlist_bl_node *node;
2248 	struct dentry *dentry;
2249 
2250 	/*
2251 	 * Note: There is significant duplication with __d_lookup_rcu which is
2252 	 * required to prevent single threaded performance regressions
2253 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2254 	 * Keep the two functions in sync.
2255 	 */
2256 
2257 	/*
2258 	 * The hash list is protected using RCU.
2259 	 *
2260 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2261 	 * races with d_move().
2262 	 *
2263 	 * It is possible that concurrent renames can mess up our list
2264 	 * walk here and result in missing our dentry, resulting in the
2265 	 * false-negative result. d_lookup() protects against concurrent
2266 	 * renames using rename_lock seqlock.
2267 	 *
2268 	 * See Documentation/filesystems/path-lookup.txt for more details.
2269 	 */
2270 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2271 		unsigned seq;
2272 
2273 seqretry:
2274 		/*
2275 		 * The dentry sequence count protects us from concurrent
2276 		 * renames, and thus protects parent and name fields.
2277 		 *
2278 		 * The caller must perform a seqcount check in order
2279 		 * to do anything useful with the returned dentry.
2280 		 *
2281 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2282 		 * we don't wait for the sequence count to stabilize if it
2283 		 * is in the middle of a sequence change. If we do the slow
2284 		 * dentry compare, we will do seqretries until it is stable,
2285 		 * and if we end up with a successful lookup, we actually
2286 		 * want to exit RCU lookup anyway.
2287 		 *
2288 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2289 		 * we are still guaranteed NUL-termination of ->d_name.name.
2290 		 */
2291 		seq = raw_seqcount_begin(&dentry->d_seq);
2292 		if (dentry->d_parent != parent)
2293 			continue;
2294 		if (d_unhashed(dentry))
2295 			continue;
2296 
2297 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2298 			int tlen;
2299 			const char *tname;
2300 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2301 				continue;
2302 			tlen = dentry->d_name.len;
2303 			tname = dentry->d_name.name;
2304 			/* we want a consistent (name,len) pair */
2305 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2306 				cpu_relax();
2307 				goto seqretry;
2308 			}
2309 			if (parent->d_op->d_compare(dentry,
2310 						    tlen, tname, name) != 0)
2311 				continue;
2312 		} else {
2313 			if (dentry->d_name.hash_len != hashlen)
2314 				continue;
2315 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2316 				continue;
2317 		}
2318 		*seqp = seq;
2319 		return dentry;
2320 	}
2321 	return NULL;
2322 }
2323 
2324 /**
2325  * d_lookup - search for a dentry
2326  * @parent: parent dentry
2327  * @name: qstr of name we wish to find
2328  * Returns: dentry, or NULL
2329  *
2330  * d_lookup searches the children of the parent dentry for the name in
2331  * question. If the dentry is found its reference count is incremented and the
2332  * dentry is returned. The caller must use dput to free the entry when it has
2333  * finished using it. %NULL is returned if the dentry does not exist.
2334  */
2335 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2336 {
2337 	struct dentry *dentry;
2338 	unsigned seq;
2339 
2340 	do {
2341 		seq = read_seqbegin(&rename_lock);
2342 		dentry = __d_lookup(parent, name);
2343 		if (dentry)
2344 			break;
2345 	} while (read_seqretry(&rename_lock, seq));
2346 	return dentry;
2347 }
2348 EXPORT_SYMBOL(d_lookup);
2349 
2350 /**
2351  * __d_lookup - search for a dentry (racy)
2352  * @parent: parent dentry
2353  * @name: qstr of name we wish to find
2354  * Returns: dentry, or NULL
2355  *
2356  * __d_lookup is like d_lookup, however it may (rarely) return a
2357  * false-negative result due to unrelated rename activity.
2358  *
2359  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2360  * however it must be used carefully, eg. with a following d_lookup in
2361  * the case of failure.
2362  *
2363  * __d_lookup callers must be commented.
2364  */
2365 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2366 {
2367 	unsigned int hash = name->hash;
2368 	struct hlist_bl_head *b = d_hash(hash);
2369 	struct hlist_bl_node *node;
2370 	struct dentry *found = NULL;
2371 	struct dentry *dentry;
2372 
2373 	/*
2374 	 * Note: There is significant duplication with __d_lookup_rcu which is
2375 	 * required to prevent single threaded performance regressions
2376 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2377 	 * Keep the two functions in sync.
2378 	 */
2379 
2380 	/*
2381 	 * The hash list is protected using RCU.
2382 	 *
2383 	 * Take d_lock when comparing a candidate dentry, to avoid races
2384 	 * with d_move().
2385 	 *
2386 	 * It is possible that concurrent renames can mess up our list
2387 	 * walk here and result in missing our dentry, resulting in the
2388 	 * false-negative result. d_lookup() protects against concurrent
2389 	 * renames using rename_lock seqlock.
2390 	 *
2391 	 * See Documentation/filesystems/path-lookup.txt for more details.
2392 	 */
2393 	rcu_read_lock();
2394 
2395 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2396 
2397 		if (dentry->d_name.hash != hash)
2398 			continue;
2399 
2400 		spin_lock(&dentry->d_lock);
2401 		if (dentry->d_parent != parent)
2402 			goto next;
2403 		if (d_unhashed(dentry))
2404 			goto next;
2405 
2406 		if (!d_same_name(dentry, parent, name))
2407 			goto next;
2408 
2409 		dentry->d_lockref.count++;
2410 		found = dentry;
2411 		spin_unlock(&dentry->d_lock);
2412 		break;
2413 next:
2414 		spin_unlock(&dentry->d_lock);
2415  	}
2416  	rcu_read_unlock();
2417 
2418  	return found;
2419 }
2420 
2421 /**
2422  * d_hash_and_lookup - hash the qstr then search for a dentry
2423  * @dir: Directory to search in
2424  * @name: qstr of name we wish to find
2425  *
2426  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2427  */
2428 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2429 {
2430 	/*
2431 	 * Check for a fs-specific hash function. Note that we must
2432 	 * calculate the standard hash first, as the d_op->d_hash()
2433 	 * routine may choose to leave the hash value unchanged.
2434 	 */
2435 	name->hash = full_name_hash(dir, name->name, name->len);
2436 	if (dir->d_flags & DCACHE_OP_HASH) {
2437 		int err = dir->d_op->d_hash(dir, name);
2438 		if (unlikely(err < 0))
2439 			return ERR_PTR(err);
2440 	}
2441 	return d_lookup(dir, name);
2442 }
2443 EXPORT_SYMBOL(d_hash_and_lookup);
2444 
2445 /*
2446  * When a file is deleted, we have two options:
2447  * - turn this dentry into a negative dentry
2448  * - unhash this dentry and free it.
2449  *
2450  * Usually, we want to just turn this into
2451  * a negative dentry, but if anybody else is
2452  * currently using the dentry or the inode
2453  * we can't do that and we fall back on removing
2454  * it from the hash queues and waiting for
2455  * it to be deleted later when it has no users
2456  */
2457 
2458 /**
2459  * d_delete - delete a dentry
2460  * @dentry: The dentry to delete
2461  *
2462  * Turn the dentry into a negative dentry if possible, otherwise
2463  * remove it from the hash queues so it can be deleted later
2464  */
2465 
2466 void d_delete(struct dentry * dentry)
2467 {
2468 	struct inode *inode = dentry->d_inode;
2469 
2470 	spin_lock(&inode->i_lock);
2471 	spin_lock(&dentry->d_lock);
2472 	/*
2473 	 * Are we the only user?
2474 	 */
2475 	if (dentry->d_lockref.count == 1) {
2476 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2477 		dentry_unlink_inode(dentry);
2478 	} else {
2479 		__d_drop(dentry);
2480 		spin_unlock(&dentry->d_lock);
2481 		spin_unlock(&inode->i_lock);
2482 	}
2483 }
2484 EXPORT_SYMBOL(d_delete);
2485 
2486 static void __d_rehash(struct dentry *entry)
2487 {
2488 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2489 
2490 	hlist_bl_lock(b);
2491 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2492 	hlist_bl_unlock(b);
2493 }
2494 
2495 /**
2496  * d_rehash	- add an entry back to the hash
2497  * @entry: dentry to add to the hash
2498  *
2499  * Adds a dentry to the hash according to its name.
2500  */
2501 
2502 void d_rehash(struct dentry * entry)
2503 {
2504 	spin_lock(&entry->d_lock);
2505 	__d_rehash(entry);
2506 	spin_unlock(&entry->d_lock);
2507 }
2508 EXPORT_SYMBOL(d_rehash);
2509 
2510 static inline unsigned start_dir_add(struct inode *dir)
2511 {
2512 
2513 	for (;;) {
2514 		unsigned n = dir->i_dir_seq;
2515 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2516 			return n;
2517 		cpu_relax();
2518 	}
2519 }
2520 
2521 static inline void end_dir_add(struct inode *dir, unsigned n)
2522 {
2523 	smp_store_release(&dir->i_dir_seq, n + 2);
2524 }
2525 
2526 static void d_wait_lookup(struct dentry *dentry)
2527 {
2528 	if (d_in_lookup(dentry)) {
2529 		DECLARE_WAITQUEUE(wait, current);
2530 		add_wait_queue(dentry->d_wait, &wait);
2531 		do {
2532 			set_current_state(TASK_UNINTERRUPTIBLE);
2533 			spin_unlock(&dentry->d_lock);
2534 			schedule();
2535 			spin_lock(&dentry->d_lock);
2536 		} while (d_in_lookup(dentry));
2537 	}
2538 }
2539 
2540 struct dentry *d_alloc_parallel(struct dentry *parent,
2541 				const struct qstr *name,
2542 				wait_queue_head_t *wq)
2543 {
2544 	unsigned int hash = name->hash;
2545 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2546 	struct hlist_bl_node *node;
2547 	struct dentry *new = d_alloc(parent, name);
2548 	struct dentry *dentry;
2549 	unsigned seq, r_seq, d_seq;
2550 
2551 	if (unlikely(!new))
2552 		return ERR_PTR(-ENOMEM);
2553 
2554 retry:
2555 	rcu_read_lock();
2556 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2557 	r_seq = read_seqbegin(&rename_lock);
2558 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2559 	if (unlikely(dentry)) {
2560 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2561 			rcu_read_unlock();
2562 			goto retry;
2563 		}
2564 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2565 			rcu_read_unlock();
2566 			dput(dentry);
2567 			goto retry;
2568 		}
2569 		rcu_read_unlock();
2570 		dput(new);
2571 		return dentry;
2572 	}
2573 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2574 		rcu_read_unlock();
2575 		goto retry;
2576 	}
2577 
2578 	if (unlikely(seq & 1)) {
2579 		rcu_read_unlock();
2580 		goto retry;
2581 	}
2582 
2583 	hlist_bl_lock(b);
2584 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2585 		hlist_bl_unlock(b);
2586 		rcu_read_unlock();
2587 		goto retry;
2588 	}
2589 	/*
2590 	 * No changes for the parent since the beginning of d_lookup().
2591 	 * Since all removals from the chain happen with hlist_bl_lock(),
2592 	 * any potential in-lookup matches are going to stay here until
2593 	 * we unlock the chain.  All fields are stable in everything
2594 	 * we encounter.
2595 	 */
2596 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2597 		if (dentry->d_name.hash != hash)
2598 			continue;
2599 		if (dentry->d_parent != parent)
2600 			continue;
2601 		if (!d_same_name(dentry, parent, name))
2602 			continue;
2603 		hlist_bl_unlock(b);
2604 		/* now we can try to grab a reference */
2605 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2606 			rcu_read_unlock();
2607 			goto retry;
2608 		}
2609 
2610 		rcu_read_unlock();
2611 		/*
2612 		 * somebody is likely to be still doing lookup for it;
2613 		 * wait for them to finish
2614 		 */
2615 		spin_lock(&dentry->d_lock);
2616 		d_wait_lookup(dentry);
2617 		/*
2618 		 * it's not in-lookup anymore; in principle we should repeat
2619 		 * everything from dcache lookup, but it's likely to be what
2620 		 * d_lookup() would've found anyway.  If it is, just return it;
2621 		 * otherwise we really have to repeat the whole thing.
2622 		 */
2623 		if (unlikely(dentry->d_name.hash != hash))
2624 			goto mismatch;
2625 		if (unlikely(dentry->d_parent != parent))
2626 			goto mismatch;
2627 		if (unlikely(d_unhashed(dentry)))
2628 			goto mismatch;
2629 		if (unlikely(!d_same_name(dentry, parent, name)))
2630 			goto mismatch;
2631 		/* OK, it *is* a hashed match; return it */
2632 		spin_unlock(&dentry->d_lock);
2633 		dput(new);
2634 		return dentry;
2635 	}
2636 	rcu_read_unlock();
2637 	/* we can't take ->d_lock here; it's OK, though. */
2638 	new->d_flags |= DCACHE_PAR_LOOKUP;
2639 	new->d_wait = wq;
2640 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2641 	hlist_bl_unlock(b);
2642 	return new;
2643 mismatch:
2644 	spin_unlock(&dentry->d_lock);
2645 	dput(dentry);
2646 	goto retry;
2647 }
2648 EXPORT_SYMBOL(d_alloc_parallel);
2649 
2650 void __d_lookup_done(struct dentry *dentry)
2651 {
2652 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2653 						 dentry->d_name.hash);
2654 	hlist_bl_lock(b);
2655 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2656 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2657 	wake_up_all(dentry->d_wait);
2658 	dentry->d_wait = NULL;
2659 	hlist_bl_unlock(b);
2660 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2661 	INIT_LIST_HEAD(&dentry->d_lru);
2662 }
2663 EXPORT_SYMBOL(__d_lookup_done);
2664 
2665 /* inode->i_lock held if inode is non-NULL */
2666 
2667 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2668 {
2669 	struct inode *dir = NULL;
2670 	unsigned n;
2671 	spin_lock(&dentry->d_lock);
2672 	if (unlikely(d_in_lookup(dentry))) {
2673 		dir = dentry->d_parent->d_inode;
2674 		n = start_dir_add(dir);
2675 		__d_lookup_done(dentry);
2676 	}
2677 	if (inode) {
2678 		unsigned add_flags = d_flags_for_inode(inode);
2679 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2680 		raw_write_seqcount_begin(&dentry->d_seq);
2681 		__d_set_inode_and_type(dentry, inode, add_flags);
2682 		raw_write_seqcount_end(&dentry->d_seq);
2683 		fsnotify_update_flags(dentry);
2684 	}
2685 	__d_rehash(dentry);
2686 	if (dir)
2687 		end_dir_add(dir, n);
2688 	spin_unlock(&dentry->d_lock);
2689 	if (inode)
2690 		spin_unlock(&inode->i_lock);
2691 }
2692 
2693 /**
2694  * d_add - add dentry to hash queues
2695  * @entry: dentry to add
2696  * @inode: The inode to attach to this dentry
2697  *
2698  * This adds the entry to the hash queues and initializes @inode.
2699  * The entry was actually filled in earlier during d_alloc().
2700  */
2701 
2702 void d_add(struct dentry *entry, struct inode *inode)
2703 {
2704 	if (inode) {
2705 		security_d_instantiate(entry, inode);
2706 		spin_lock(&inode->i_lock);
2707 	}
2708 	__d_add(entry, inode);
2709 }
2710 EXPORT_SYMBOL(d_add);
2711 
2712 /**
2713  * d_exact_alias - find and hash an exact unhashed alias
2714  * @entry: dentry to add
2715  * @inode: The inode to go with this dentry
2716  *
2717  * If an unhashed dentry with the same name/parent and desired
2718  * inode already exists, hash and return it.  Otherwise, return
2719  * NULL.
2720  *
2721  * Parent directory should be locked.
2722  */
2723 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2724 {
2725 	struct dentry *alias;
2726 	unsigned int hash = entry->d_name.hash;
2727 
2728 	spin_lock(&inode->i_lock);
2729 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2730 		/*
2731 		 * Don't need alias->d_lock here, because aliases with
2732 		 * d_parent == entry->d_parent are not subject to name or
2733 		 * parent changes, because the parent inode i_mutex is held.
2734 		 */
2735 		if (alias->d_name.hash != hash)
2736 			continue;
2737 		if (alias->d_parent != entry->d_parent)
2738 			continue;
2739 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2740 			continue;
2741 		spin_lock(&alias->d_lock);
2742 		if (!d_unhashed(alias)) {
2743 			spin_unlock(&alias->d_lock);
2744 			alias = NULL;
2745 		} else {
2746 			__dget_dlock(alias);
2747 			__d_rehash(alias);
2748 			spin_unlock(&alias->d_lock);
2749 		}
2750 		spin_unlock(&inode->i_lock);
2751 		return alias;
2752 	}
2753 	spin_unlock(&inode->i_lock);
2754 	return NULL;
2755 }
2756 EXPORT_SYMBOL(d_exact_alias);
2757 
2758 static void swap_names(struct dentry *dentry, struct dentry *target)
2759 {
2760 	if (unlikely(dname_external(target))) {
2761 		if (unlikely(dname_external(dentry))) {
2762 			/*
2763 			 * Both external: swap the pointers
2764 			 */
2765 			swap(target->d_name.name, dentry->d_name.name);
2766 		} else {
2767 			/*
2768 			 * dentry:internal, target:external.  Steal target's
2769 			 * storage and make target internal.
2770 			 */
2771 			memcpy(target->d_iname, dentry->d_name.name,
2772 					dentry->d_name.len + 1);
2773 			dentry->d_name.name = target->d_name.name;
2774 			target->d_name.name = target->d_iname;
2775 		}
2776 	} else {
2777 		if (unlikely(dname_external(dentry))) {
2778 			/*
2779 			 * dentry:external, target:internal.  Give dentry's
2780 			 * storage to target and make dentry internal
2781 			 */
2782 			memcpy(dentry->d_iname, target->d_name.name,
2783 					target->d_name.len + 1);
2784 			target->d_name.name = dentry->d_name.name;
2785 			dentry->d_name.name = dentry->d_iname;
2786 		} else {
2787 			/*
2788 			 * Both are internal.
2789 			 */
2790 			unsigned int i;
2791 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2792 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2793 				swap(((long *) &dentry->d_iname)[i],
2794 				     ((long *) &target->d_iname)[i]);
2795 			}
2796 		}
2797 	}
2798 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2799 }
2800 
2801 static void copy_name(struct dentry *dentry, struct dentry *target)
2802 {
2803 	struct external_name *old_name = NULL;
2804 	if (unlikely(dname_external(dentry)))
2805 		old_name = external_name(dentry);
2806 	if (unlikely(dname_external(target))) {
2807 		atomic_inc(&external_name(target)->u.count);
2808 		dentry->d_name = target->d_name;
2809 	} else {
2810 		memcpy(dentry->d_iname, target->d_name.name,
2811 				target->d_name.len + 1);
2812 		dentry->d_name.name = dentry->d_iname;
2813 		dentry->d_name.hash_len = target->d_name.hash_len;
2814 	}
2815 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2816 		kfree_rcu(old_name, u.head);
2817 }
2818 
2819 /*
2820  * __d_move - move a dentry
2821  * @dentry: entry to move
2822  * @target: new dentry
2823  * @exchange: exchange the two dentries
2824  *
2825  * Update the dcache to reflect the move of a file name. Negative
2826  * dcache entries should not be moved in this way. Caller must hold
2827  * rename_lock, the i_mutex of the source and target directories,
2828  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2829  */
2830 static void __d_move(struct dentry *dentry, struct dentry *target,
2831 		     bool exchange)
2832 {
2833 	struct dentry *old_parent, *p;
2834 	struct inode *dir = NULL;
2835 	unsigned n;
2836 
2837 	WARN_ON(!dentry->d_inode);
2838 	if (WARN_ON(dentry == target))
2839 		return;
2840 
2841 	BUG_ON(d_ancestor(target, dentry));
2842 	old_parent = dentry->d_parent;
2843 	p = d_ancestor(old_parent, target);
2844 	if (IS_ROOT(dentry)) {
2845 		BUG_ON(p);
2846 		spin_lock(&target->d_parent->d_lock);
2847 	} else if (!p) {
2848 		/* target is not a descendent of dentry->d_parent */
2849 		spin_lock(&target->d_parent->d_lock);
2850 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2851 	} else {
2852 		BUG_ON(p == dentry);
2853 		spin_lock(&old_parent->d_lock);
2854 		if (p != target)
2855 			spin_lock_nested(&target->d_parent->d_lock,
2856 					DENTRY_D_LOCK_NESTED);
2857 	}
2858 	spin_lock_nested(&dentry->d_lock, 2);
2859 	spin_lock_nested(&target->d_lock, 3);
2860 
2861 	if (unlikely(d_in_lookup(target))) {
2862 		dir = target->d_parent->d_inode;
2863 		n = start_dir_add(dir);
2864 		__d_lookup_done(target);
2865 	}
2866 
2867 	write_seqcount_begin(&dentry->d_seq);
2868 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2869 
2870 	/* unhash both */
2871 	if (!d_unhashed(dentry))
2872 		___d_drop(dentry);
2873 	if (!d_unhashed(target))
2874 		___d_drop(target);
2875 
2876 	/* ... and switch them in the tree */
2877 	dentry->d_parent = target->d_parent;
2878 	if (!exchange) {
2879 		copy_name(dentry, target);
2880 		target->d_hash.pprev = NULL;
2881 		dentry->d_parent->d_lockref.count++;
2882 		if (dentry != old_parent) /* wasn't IS_ROOT */
2883 			WARN_ON(!--old_parent->d_lockref.count);
2884 	} else {
2885 		target->d_parent = old_parent;
2886 		swap_names(dentry, target);
2887 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2888 		__d_rehash(target);
2889 		fsnotify_update_flags(target);
2890 	}
2891 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2892 	__d_rehash(dentry);
2893 	fsnotify_update_flags(dentry);
2894 	fscrypt_handle_d_move(dentry);
2895 
2896 	write_seqcount_end(&target->d_seq);
2897 	write_seqcount_end(&dentry->d_seq);
2898 
2899 	if (dir)
2900 		end_dir_add(dir, n);
2901 
2902 	if (dentry->d_parent != old_parent)
2903 		spin_unlock(&dentry->d_parent->d_lock);
2904 	if (dentry != old_parent)
2905 		spin_unlock(&old_parent->d_lock);
2906 	spin_unlock(&target->d_lock);
2907 	spin_unlock(&dentry->d_lock);
2908 }
2909 
2910 /*
2911  * d_move - move a dentry
2912  * @dentry: entry to move
2913  * @target: new dentry
2914  *
2915  * Update the dcache to reflect the move of a file name. Negative
2916  * dcache entries should not be moved in this way. See the locking
2917  * requirements for __d_move.
2918  */
2919 void d_move(struct dentry *dentry, struct dentry *target)
2920 {
2921 	write_seqlock(&rename_lock);
2922 	__d_move(dentry, target, false);
2923 	write_sequnlock(&rename_lock);
2924 }
2925 EXPORT_SYMBOL(d_move);
2926 
2927 /*
2928  * d_exchange - exchange two dentries
2929  * @dentry1: first dentry
2930  * @dentry2: second dentry
2931  */
2932 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2933 {
2934 	write_seqlock(&rename_lock);
2935 
2936 	WARN_ON(!dentry1->d_inode);
2937 	WARN_ON(!dentry2->d_inode);
2938 	WARN_ON(IS_ROOT(dentry1));
2939 	WARN_ON(IS_ROOT(dentry2));
2940 
2941 	__d_move(dentry1, dentry2, true);
2942 
2943 	write_sequnlock(&rename_lock);
2944 }
2945 
2946 /**
2947  * d_ancestor - search for an ancestor
2948  * @p1: ancestor dentry
2949  * @p2: child dentry
2950  *
2951  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2952  * an ancestor of p2, else NULL.
2953  */
2954 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2955 {
2956 	struct dentry *p;
2957 
2958 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2959 		if (p->d_parent == p1)
2960 			return p;
2961 	}
2962 	return NULL;
2963 }
2964 
2965 /*
2966  * This helper attempts to cope with remotely renamed directories
2967  *
2968  * It assumes that the caller is already holding
2969  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2970  *
2971  * Note: If ever the locking in lock_rename() changes, then please
2972  * remember to update this too...
2973  */
2974 static int __d_unalias(struct inode *inode,
2975 		struct dentry *dentry, struct dentry *alias)
2976 {
2977 	struct mutex *m1 = NULL;
2978 	struct rw_semaphore *m2 = NULL;
2979 	int ret = -ESTALE;
2980 
2981 	/* If alias and dentry share a parent, then no extra locks required */
2982 	if (alias->d_parent == dentry->d_parent)
2983 		goto out_unalias;
2984 
2985 	/* See lock_rename() */
2986 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2987 		goto out_err;
2988 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2989 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2990 		goto out_err;
2991 	m2 = &alias->d_parent->d_inode->i_rwsem;
2992 out_unalias:
2993 	__d_move(alias, dentry, false);
2994 	ret = 0;
2995 out_err:
2996 	if (m2)
2997 		up_read(m2);
2998 	if (m1)
2999 		mutex_unlock(m1);
3000 	return ret;
3001 }
3002 
3003 /**
3004  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3005  * @inode:  the inode which may have a disconnected dentry
3006  * @dentry: a negative dentry which we want to point to the inode.
3007  *
3008  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3009  * place of the given dentry and return it, else simply d_add the inode
3010  * to the dentry and return NULL.
3011  *
3012  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3013  * we should error out: directories can't have multiple aliases.
3014  *
3015  * This is needed in the lookup routine of any filesystem that is exportable
3016  * (via knfsd) so that we can build dcache paths to directories effectively.
3017  *
3018  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3019  * is returned.  This matches the expected return value of ->lookup.
3020  *
3021  * Cluster filesystems may call this function with a negative, hashed dentry.
3022  * In that case, we know that the inode will be a regular file, and also this
3023  * will only occur during atomic_open. So we need to check for the dentry
3024  * being already hashed only in the final case.
3025  */
3026 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3027 {
3028 	if (IS_ERR(inode))
3029 		return ERR_CAST(inode);
3030 
3031 	BUG_ON(!d_unhashed(dentry));
3032 
3033 	if (!inode)
3034 		goto out;
3035 
3036 	security_d_instantiate(dentry, inode);
3037 	spin_lock(&inode->i_lock);
3038 	if (S_ISDIR(inode->i_mode)) {
3039 		struct dentry *new = __d_find_any_alias(inode);
3040 		if (unlikely(new)) {
3041 			/* The reference to new ensures it remains an alias */
3042 			spin_unlock(&inode->i_lock);
3043 			write_seqlock(&rename_lock);
3044 			if (unlikely(d_ancestor(new, dentry))) {
3045 				write_sequnlock(&rename_lock);
3046 				dput(new);
3047 				new = ERR_PTR(-ELOOP);
3048 				pr_warn_ratelimited(
3049 					"VFS: Lookup of '%s' in %s %s"
3050 					" would have caused loop\n",
3051 					dentry->d_name.name,
3052 					inode->i_sb->s_type->name,
3053 					inode->i_sb->s_id);
3054 			} else if (!IS_ROOT(new)) {
3055 				struct dentry *old_parent = dget(new->d_parent);
3056 				int err = __d_unalias(inode, dentry, new);
3057 				write_sequnlock(&rename_lock);
3058 				if (err) {
3059 					dput(new);
3060 					new = ERR_PTR(err);
3061 				}
3062 				dput(old_parent);
3063 			} else {
3064 				__d_move(new, dentry, false);
3065 				write_sequnlock(&rename_lock);
3066 			}
3067 			iput(inode);
3068 			return new;
3069 		}
3070 	}
3071 out:
3072 	__d_add(dentry, inode);
3073 	return NULL;
3074 }
3075 EXPORT_SYMBOL(d_splice_alias);
3076 
3077 /*
3078  * Test whether new_dentry is a subdirectory of old_dentry.
3079  *
3080  * Trivially implemented using the dcache structure
3081  */
3082 
3083 /**
3084  * is_subdir - is new dentry a subdirectory of old_dentry
3085  * @new_dentry: new dentry
3086  * @old_dentry: old dentry
3087  *
3088  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3089  * Returns false otherwise.
3090  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3091  */
3092 
3093 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3094 {
3095 	bool result;
3096 	unsigned seq;
3097 
3098 	if (new_dentry == old_dentry)
3099 		return true;
3100 
3101 	do {
3102 		/* for restarting inner loop in case of seq retry */
3103 		seq = read_seqbegin(&rename_lock);
3104 		/*
3105 		 * Need rcu_readlock to protect against the d_parent trashing
3106 		 * due to d_move
3107 		 */
3108 		rcu_read_lock();
3109 		if (d_ancestor(old_dentry, new_dentry))
3110 			result = true;
3111 		else
3112 			result = false;
3113 		rcu_read_unlock();
3114 	} while (read_seqretry(&rename_lock, seq));
3115 
3116 	return result;
3117 }
3118 EXPORT_SYMBOL(is_subdir);
3119 
3120 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3121 {
3122 	struct dentry *root = data;
3123 	if (dentry != root) {
3124 		if (d_unhashed(dentry) || !dentry->d_inode)
3125 			return D_WALK_SKIP;
3126 
3127 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3128 			dentry->d_flags |= DCACHE_GENOCIDE;
3129 			dentry->d_lockref.count--;
3130 		}
3131 	}
3132 	return D_WALK_CONTINUE;
3133 }
3134 
3135 void d_genocide(struct dentry *parent)
3136 {
3137 	d_walk(parent, parent, d_genocide_kill);
3138 }
3139 
3140 EXPORT_SYMBOL(d_genocide);
3141 
3142 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3143 {
3144 	inode_dec_link_count(inode);
3145 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3146 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3147 		!d_unlinked(dentry));
3148 	spin_lock(&dentry->d_parent->d_lock);
3149 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3150 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3151 				(unsigned long long)inode->i_ino);
3152 	spin_unlock(&dentry->d_lock);
3153 	spin_unlock(&dentry->d_parent->d_lock);
3154 	d_instantiate(dentry, inode);
3155 }
3156 EXPORT_SYMBOL(d_tmpfile);
3157 
3158 static __initdata unsigned long dhash_entries;
3159 static int __init set_dhash_entries(char *str)
3160 {
3161 	if (!str)
3162 		return 0;
3163 	dhash_entries = simple_strtoul(str, &str, 0);
3164 	return 1;
3165 }
3166 __setup("dhash_entries=", set_dhash_entries);
3167 
3168 static void __init dcache_init_early(void)
3169 {
3170 	/* If hashes are distributed across NUMA nodes, defer
3171 	 * hash allocation until vmalloc space is available.
3172 	 */
3173 	if (hashdist)
3174 		return;
3175 
3176 	dentry_hashtable =
3177 		alloc_large_system_hash("Dentry cache",
3178 					sizeof(struct hlist_bl_head),
3179 					dhash_entries,
3180 					13,
3181 					HASH_EARLY | HASH_ZERO,
3182 					&d_hash_shift,
3183 					NULL,
3184 					0,
3185 					0);
3186 	d_hash_shift = 32 - d_hash_shift;
3187 }
3188 
3189 static void __init dcache_init(void)
3190 {
3191 	/*
3192 	 * A constructor could be added for stable state like the lists,
3193 	 * but it is probably not worth it because of the cache nature
3194 	 * of the dcache.
3195 	 */
3196 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3197 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3198 		d_iname);
3199 
3200 	/* Hash may have been set up in dcache_init_early */
3201 	if (!hashdist)
3202 		return;
3203 
3204 	dentry_hashtable =
3205 		alloc_large_system_hash("Dentry cache",
3206 					sizeof(struct hlist_bl_head),
3207 					dhash_entries,
3208 					13,
3209 					HASH_ZERO,
3210 					&d_hash_shift,
3211 					NULL,
3212 					0,
3213 					0);
3214 	d_hash_shift = 32 - d_hash_shift;
3215 }
3216 
3217 /* SLAB cache for __getname() consumers */
3218 struct kmem_cache *names_cachep __read_mostly;
3219 EXPORT_SYMBOL(names_cachep);
3220 
3221 void __init vfs_caches_init_early(void)
3222 {
3223 	int i;
3224 
3225 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3226 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3227 
3228 	dcache_init_early();
3229 	inode_init_early();
3230 }
3231 
3232 void __init vfs_caches_init(void)
3233 {
3234 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3235 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3236 
3237 	dcache_init();
3238 	inode_init();
3239 	files_init();
3240 	files_maxfiles_init();
3241 	mnt_init();
3242 	bdev_cache_init();
3243 	chrdev_init();
3244 }
3245