xref: /linux/fs/dcache.c (revision e0583b6acb92683ba192c745f12ef31997e9b8b1)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * fs/dcache.c
4   *
5   * Complete reimplementation
6   * (C) 1997 Thomas Schoebel-Theuer,
7   * with heavy changes by Linus Torvalds
8   */
9  
10  /*
11   * Notes on the allocation strategy:
12   *
13   * The dcache is a master of the icache - whenever a dcache entry
14   * exists, the inode will always exist. "iput()" is done either when
15   * the dcache entry is deleted or garbage collected.
16   */
17  
18  #include <linux/ratelimit.h>
19  #include <linux/string.h>
20  #include <linux/mm.h>
21  #include <linux/fs.h>
22  #include <linux/fscrypt.h>
23  #include <linux/fsnotify.h>
24  #include <linux/slab.h>
25  #include <linux/init.h>
26  #include <linux/hash.h>
27  #include <linux/cache.h>
28  #include <linux/export.h>
29  #include <linux/security.h>
30  #include <linux/seqlock.h>
31  #include <linux/memblock.h>
32  #include <linux/bit_spinlock.h>
33  #include <linux/rculist_bl.h>
34  #include <linux/list_lru.h>
35  #include "internal.h"
36  #include "mount.h"
37  
38  /*
39   * Usage:
40   * dcache->d_inode->i_lock protects:
41   *   - i_dentry, d_u.d_alias, d_inode of aliases
42   * dcache_hash_bucket lock protects:
43   *   - the dcache hash table
44   * s_roots bl list spinlock protects:
45   *   - the s_roots list (see __d_drop)
46   * dentry->d_sb->s_dentry_lru_lock protects:
47   *   - the dcache lru lists and counters
48   * d_lock protects:
49   *   - d_flags
50   *   - d_name
51   *   - d_lru
52   *   - d_count
53   *   - d_unhashed()
54   *   - d_parent and d_subdirs
55   *   - childrens' d_child and d_parent
56   *   - d_u.d_alias, d_inode
57   *
58   * Ordering:
59   * dentry->d_inode->i_lock
60   *   dentry->d_lock
61   *     dentry->d_sb->s_dentry_lru_lock
62   *     dcache_hash_bucket lock
63   *     s_roots lock
64   *
65   * If there is an ancestor relationship:
66   * dentry->d_parent->...->d_parent->d_lock
67   *   ...
68   *     dentry->d_parent->d_lock
69   *       dentry->d_lock
70   *
71   * If no ancestor relationship:
72   * arbitrary, since it's serialized on rename_lock
73   */
74  int sysctl_vfs_cache_pressure __read_mostly = 100;
75  EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76  
77  __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78  
79  EXPORT_SYMBOL(rename_lock);
80  
81  static struct kmem_cache *dentry_cache __read_mostly;
82  
83  const struct qstr empty_name = QSTR_INIT("", 0);
84  EXPORT_SYMBOL(empty_name);
85  const struct qstr slash_name = QSTR_INIT("/", 1);
86  EXPORT_SYMBOL(slash_name);
87  const struct qstr dotdot_name = QSTR_INIT("..", 2);
88  EXPORT_SYMBOL(dotdot_name);
89  
90  /*
91   * This is the single most critical data structure when it comes
92   * to the dcache: the hashtable for lookups. Somebody should try
93   * to make this good - I've just made it work.
94   *
95   * This hash-function tries to avoid losing too many bits of hash
96   * information, yet avoid using a prime hash-size or similar.
97   */
98  
99  static unsigned int d_hash_shift __read_mostly;
100  
101  static struct hlist_bl_head *dentry_hashtable __read_mostly;
102  
103  static inline struct hlist_bl_head *d_hash(unsigned int hash)
104  {
105  	return dentry_hashtable + (hash >> d_hash_shift);
106  }
107  
108  #define IN_LOOKUP_SHIFT 10
109  static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110  
111  static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112  					unsigned int hash)
113  {
114  	hash += (unsigned long) parent / L1_CACHE_BYTES;
115  	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116  }
117  
118  
119  /* Statistics gathering. */
120  struct dentry_stat_t dentry_stat = {
121  	.age_limit = 45,
122  };
123  
124  static DEFINE_PER_CPU(long, nr_dentry);
125  static DEFINE_PER_CPU(long, nr_dentry_unused);
126  static DEFINE_PER_CPU(long, nr_dentry_negative);
127  
128  #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
129  
130  /*
131   * Here we resort to our own counters instead of using generic per-cpu counters
132   * for consistency with what the vfs inode code does. We are expected to harvest
133   * better code and performance by having our own specialized counters.
134   *
135   * Please note that the loop is done over all possible CPUs, not over all online
136   * CPUs. The reason for this is that we don't want to play games with CPUs going
137   * on and off. If one of them goes off, we will just keep their counters.
138   *
139   * glommer: See cffbc8a for details, and if you ever intend to change this,
140   * please update all vfs counters to match.
141   */
142  static long get_nr_dentry(void)
143  {
144  	int i;
145  	long sum = 0;
146  	for_each_possible_cpu(i)
147  		sum += per_cpu(nr_dentry, i);
148  	return sum < 0 ? 0 : sum;
149  }
150  
151  static long get_nr_dentry_unused(void)
152  {
153  	int i;
154  	long sum = 0;
155  	for_each_possible_cpu(i)
156  		sum += per_cpu(nr_dentry_unused, i);
157  	return sum < 0 ? 0 : sum;
158  }
159  
160  static long get_nr_dentry_negative(void)
161  {
162  	int i;
163  	long sum = 0;
164  
165  	for_each_possible_cpu(i)
166  		sum += per_cpu(nr_dentry_negative, i);
167  	return sum < 0 ? 0 : sum;
168  }
169  
170  int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
171  		   size_t *lenp, loff_t *ppos)
172  {
173  	dentry_stat.nr_dentry = get_nr_dentry();
174  	dentry_stat.nr_unused = get_nr_dentry_unused();
175  	dentry_stat.nr_negative = get_nr_dentry_negative();
176  	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
177  }
178  #endif
179  
180  /*
181   * Compare 2 name strings, return 0 if they match, otherwise non-zero.
182   * The strings are both count bytes long, and count is non-zero.
183   */
184  #ifdef CONFIG_DCACHE_WORD_ACCESS
185  
186  #include <asm/word-at-a-time.h>
187  /*
188   * NOTE! 'cs' and 'scount' come from a dentry, so it has a
189   * aligned allocation for this particular component. We don't
190   * strictly need the load_unaligned_zeropad() safety, but it
191   * doesn't hurt either.
192   *
193   * In contrast, 'ct' and 'tcount' can be from a pathname, and do
194   * need the careful unaligned handling.
195   */
196  static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
197  {
198  	unsigned long a,b,mask;
199  
200  	for (;;) {
201  		a = read_word_at_a_time(cs);
202  		b = load_unaligned_zeropad(ct);
203  		if (tcount < sizeof(unsigned long))
204  			break;
205  		if (unlikely(a != b))
206  			return 1;
207  		cs += sizeof(unsigned long);
208  		ct += sizeof(unsigned long);
209  		tcount -= sizeof(unsigned long);
210  		if (!tcount)
211  			return 0;
212  	}
213  	mask = bytemask_from_count(tcount);
214  	return unlikely(!!((a ^ b) & mask));
215  }
216  
217  #else
218  
219  static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
220  {
221  	do {
222  		if (*cs != *ct)
223  			return 1;
224  		cs++;
225  		ct++;
226  		tcount--;
227  	} while (tcount);
228  	return 0;
229  }
230  
231  #endif
232  
233  static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
234  {
235  	/*
236  	 * Be careful about RCU walk racing with rename:
237  	 * use 'READ_ONCE' to fetch the name pointer.
238  	 *
239  	 * NOTE! Even if a rename will mean that the length
240  	 * was not loaded atomically, we don't care. The
241  	 * RCU walk will check the sequence count eventually,
242  	 * and catch it. And we won't overrun the buffer,
243  	 * because we're reading the name pointer atomically,
244  	 * and a dentry name is guaranteed to be properly
245  	 * terminated with a NUL byte.
246  	 *
247  	 * End result: even if 'len' is wrong, we'll exit
248  	 * early because the data cannot match (there can
249  	 * be no NUL in the ct/tcount data)
250  	 */
251  	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
252  
253  	return dentry_string_cmp(cs, ct, tcount);
254  }
255  
256  struct external_name {
257  	union {
258  		atomic_t count;
259  		struct rcu_head head;
260  	} u;
261  	unsigned char name[];
262  };
263  
264  static inline struct external_name *external_name(struct dentry *dentry)
265  {
266  	return container_of(dentry->d_name.name, struct external_name, name[0]);
267  }
268  
269  static void __d_free(struct rcu_head *head)
270  {
271  	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272  
273  	kmem_cache_free(dentry_cache, dentry);
274  }
275  
276  static void __d_free_external(struct rcu_head *head)
277  {
278  	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
279  	kfree(external_name(dentry));
280  	kmem_cache_free(dentry_cache, dentry);
281  }
282  
283  static inline int dname_external(const struct dentry *dentry)
284  {
285  	return dentry->d_name.name != dentry->d_iname;
286  }
287  
288  void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
289  {
290  	spin_lock(&dentry->d_lock);
291  	name->name = dentry->d_name;
292  	if (unlikely(dname_external(dentry))) {
293  		atomic_inc(&external_name(dentry)->u.count);
294  	} else {
295  		memcpy(name->inline_name, dentry->d_iname,
296  		       dentry->d_name.len + 1);
297  		name->name.name = name->inline_name;
298  	}
299  	spin_unlock(&dentry->d_lock);
300  }
301  EXPORT_SYMBOL(take_dentry_name_snapshot);
302  
303  void release_dentry_name_snapshot(struct name_snapshot *name)
304  {
305  	if (unlikely(name->name.name != name->inline_name)) {
306  		struct external_name *p;
307  		p = container_of(name->name.name, struct external_name, name[0]);
308  		if (unlikely(atomic_dec_and_test(&p->u.count)))
309  			kfree_rcu(p, u.head);
310  	}
311  }
312  EXPORT_SYMBOL(release_dentry_name_snapshot);
313  
314  static inline void __d_set_inode_and_type(struct dentry *dentry,
315  					  struct inode *inode,
316  					  unsigned type_flags)
317  {
318  	unsigned flags;
319  
320  	dentry->d_inode = inode;
321  	flags = READ_ONCE(dentry->d_flags);
322  	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
323  	flags |= type_flags;
324  	smp_store_release(&dentry->d_flags, flags);
325  }
326  
327  static inline void __d_clear_type_and_inode(struct dentry *dentry)
328  {
329  	unsigned flags = READ_ONCE(dentry->d_flags);
330  
331  	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
332  	WRITE_ONCE(dentry->d_flags, flags);
333  	dentry->d_inode = NULL;
334  	if (dentry->d_flags & DCACHE_LRU_LIST)
335  		this_cpu_inc(nr_dentry_negative);
336  }
337  
338  static void dentry_free(struct dentry *dentry)
339  {
340  	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
341  	if (unlikely(dname_external(dentry))) {
342  		struct external_name *p = external_name(dentry);
343  		if (likely(atomic_dec_and_test(&p->u.count))) {
344  			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
345  			return;
346  		}
347  	}
348  	/* if dentry was never visible to RCU, immediate free is OK */
349  	if (dentry->d_flags & DCACHE_NORCU)
350  		__d_free(&dentry->d_u.d_rcu);
351  	else
352  		call_rcu(&dentry->d_u.d_rcu, __d_free);
353  }
354  
355  /*
356   * Release the dentry's inode, using the filesystem
357   * d_iput() operation if defined.
358   */
359  static void dentry_unlink_inode(struct dentry * dentry)
360  	__releases(dentry->d_lock)
361  	__releases(dentry->d_inode->i_lock)
362  {
363  	struct inode *inode = dentry->d_inode;
364  
365  	raw_write_seqcount_begin(&dentry->d_seq);
366  	__d_clear_type_and_inode(dentry);
367  	hlist_del_init(&dentry->d_u.d_alias);
368  	raw_write_seqcount_end(&dentry->d_seq);
369  	spin_unlock(&dentry->d_lock);
370  	spin_unlock(&inode->i_lock);
371  	if (!inode->i_nlink)
372  		fsnotify_inoderemove(inode);
373  	if (dentry->d_op && dentry->d_op->d_iput)
374  		dentry->d_op->d_iput(dentry, inode);
375  	else
376  		iput(inode);
377  }
378  
379  /*
380   * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381   * is in use - which includes both the "real" per-superblock
382   * LRU list _and_ the DCACHE_SHRINK_LIST use.
383   *
384   * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385   * on the shrink list (ie not on the superblock LRU list).
386   *
387   * The per-cpu "nr_dentry_unused" counters are updated with
388   * the DCACHE_LRU_LIST bit.
389   *
390   * The per-cpu "nr_dentry_negative" counters are only updated
391   * when deleted from or added to the per-superblock LRU list, not
392   * from/to the shrink list. That is to avoid an unneeded dec/inc
393   * pair when moving from LRU to shrink list in select_collect().
394   *
395   * These helper functions make sure we always follow the
396   * rules. d_lock must be held by the caller.
397   */
398  #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
399  static void d_lru_add(struct dentry *dentry)
400  {
401  	D_FLAG_VERIFY(dentry, 0);
402  	dentry->d_flags |= DCACHE_LRU_LIST;
403  	this_cpu_inc(nr_dentry_unused);
404  	if (d_is_negative(dentry))
405  		this_cpu_inc(nr_dentry_negative);
406  	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407  }
408  
409  static void d_lru_del(struct dentry *dentry)
410  {
411  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412  	dentry->d_flags &= ~DCACHE_LRU_LIST;
413  	this_cpu_dec(nr_dentry_unused);
414  	if (d_is_negative(dentry))
415  		this_cpu_dec(nr_dentry_negative);
416  	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
417  }
418  
419  static void d_shrink_del(struct dentry *dentry)
420  {
421  	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422  	list_del_init(&dentry->d_lru);
423  	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
424  	this_cpu_dec(nr_dentry_unused);
425  }
426  
427  static void d_shrink_add(struct dentry *dentry, struct list_head *list)
428  {
429  	D_FLAG_VERIFY(dentry, 0);
430  	list_add(&dentry->d_lru, list);
431  	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
432  	this_cpu_inc(nr_dentry_unused);
433  }
434  
435  /*
436   * These can only be called under the global LRU lock, ie during the
437   * callback for freeing the LRU list. "isolate" removes it from the
438   * LRU lists entirely, while shrink_move moves it to the indicated
439   * private list.
440   */
441  static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
442  {
443  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444  	dentry->d_flags &= ~DCACHE_LRU_LIST;
445  	this_cpu_dec(nr_dentry_unused);
446  	if (d_is_negative(dentry))
447  		this_cpu_dec(nr_dentry_negative);
448  	list_lru_isolate(lru, &dentry->d_lru);
449  }
450  
451  static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
452  			      struct list_head *list)
453  {
454  	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
455  	dentry->d_flags |= DCACHE_SHRINK_LIST;
456  	if (d_is_negative(dentry))
457  		this_cpu_dec(nr_dentry_negative);
458  	list_lru_isolate_move(lru, &dentry->d_lru, list);
459  }
460  
461  static void ___d_drop(struct dentry *dentry)
462  {
463  	struct hlist_bl_head *b;
464  	/*
465  	 * Hashed dentries are normally on the dentry hashtable,
466  	 * with the exception of those newly allocated by
467  	 * d_obtain_root, which are always IS_ROOT:
468  	 */
469  	if (unlikely(IS_ROOT(dentry)))
470  		b = &dentry->d_sb->s_roots;
471  	else
472  		b = d_hash(dentry->d_name.hash);
473  
474  	hlist_bl_lock(b);
475  	__hlist_bl_del(&dentry->d_hash);
476  	hlist_bl_unlock(b);
477  }
478  
479  void __d_drop(struct dentry *dentry)
480  {
481  	if (!d_unhashed(dentry)) {
482  		___d_drop(dentry);
483  		dentry->d_hash.pprev = NULL;
484  		write_seqcount_invalidate(&dentry->d_seq);
485  	}
486  }
487  EXPORT_SYMBOL(__d_drop);
488  
489  /**
490   * d_drop - drop a dentry
491   * @dentry: dentry to drop
492   *
493   * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
494   * be found through a VFS lookup any more. Note that this is different from
495   * deleting the dentry - d_delete will try to mark the dentry negative if
496   * possible, giving a successful _negative_ lookup, while d_drop will
497   * just make the cache lookup fail.
498   *
499   * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
500   * reason (NFS timeouts or autofs deletes).
501   *
502   * __d_drop requires dentry->d_lock
503   *
504   * ___d_drop doesn't mark dentry as "unhashed"
505   * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
506   */
507  void d_drop(struct dentry *dentry)
508  {
509  	spin_lock(&dentry->d_lock);
510  	__d_drop(dentry);
511  	spin_unlock(&dentry->d_lock);
512  }
513  EXPORT_SYMBOL(d_drop);
514  
515  static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
516  {
517  	struct dentry *next;
518  	/*
519  	 * Inform d_walk() and shrink_dentry_list() that we are no longer
520  	 * attached to the dentry tree
521  	 */
522  	dentry->d_flags |= DCACHE_DENTRY_KILLED;
523  	if (unlikely(list_empty(&dentry->d_child)))
524  		return;
525  	__list_del_entry(&dentry->d_child);
526  	/*
527  	 * Cursors can move around the list of children.  While we'd been
528  	 * a normal list member, it didn't matter - ->d_child.next would've
529  	 * been updated.  However, from now on it won't be and for the
530  	 * things like d_walk() it might end up with a nasty surprise.
531  	 * Normally d_walk() doesn't care about cursors moving around -
532  	 * ->d_lock on parent prevents that and since a cursor has no children
533  	 * of its own, we get through it without ever unlocking the parent.
534  	 * There is one exception, though - if we ascend from a child that
535  	 * gets killed as soon as we unlock it, the next sibling is found
536  	 * using the value left in its ->d_child.next.  And if _that_
537  	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
538  	 * before d_walk() regains parent->d_lock, we'll end up skipping
539  	 * everything the cursor had been moved past.
540  	 *
541  	 * Solution: make sure that the pointer left behind in ->d_child.next
542  	 * points to something that won't be moving around.  I.e. skip the
543  	 * cursors.
544  	 */
545  	while (dentry->d_child.next != &parent->d_subdirs) {
546  		next = list_entry(dentry->d_child.next, struct dentry, d_child);
547  		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
548  			break;
549  		dentry->d_child.next = next->d_child.next;
550  	}
551  }
552  
553  static void __dentry_kill(struct dentry *dentry)
554  {
555  	struct dentry *parent = NULL;
556  	bool can_free = true;
557  	if (!IS_ROOT(dentry))
558  		parent = dentry->d_parent;
559  
560  	/*
561  	 * The dentry is now unrecoverably dead to the world.
562  	 */
563  	lockref_mark_dead(&dentry->d_lockref);
564  
565  	/*
566  	 * inform the fs via d_prune that this dentry is about to be
567  	 * unhashed and destroyed.
568  	 */
569  	if (dentry->d_flags & DCACHE_OP_PRUNE)
570  		dentry->d_op->d_prune(dentry);
571  
572  	if (dentry->d_flags & DCACHE_LRU_LIST) {
573  		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
574  			d_lru_del(dentry);
575  	}
576  	/* if it was on the hash then remove it */
577  	__d_drop(dentry);
578  	dentry_unlist(dentry, parent);
579  	if (parent)
580  		spin_unlock(&parent->d_lock);
581  	if (dentry->d_inode)
582  		dentry_unlink_inode(dentry);
583  	else
584  		spin_unlock(&dentry->d_lock);
585  	this_cpu_dec(nr_dentry);
586  	if (dentry->d_op && dentry->d_op->d_release)
587  		dentry->d_op->d_release(dentry);
588  
589  	spin_lock(&dentry->d_lock);
590  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
591  		dentry->d_flags |= DCACHE_MAY_FREE;
592  		can_free = false;
593  	}
594  	spin_unlock(&dentry->d_lock);
595  	if (likely(can_free))
596  		dentry_free(dentry);
597  	cond_resched();
598  }
599  
600  static struct dentry *__lock_parent(struct dentry *dentry)
601  {
602  	struct dentry *parent;
603  	rcu_read_lock();
604  	spin_unlock(&dentry->d_lock);
605  again:
606  	parent = READ_ONCE(dentry->d_parent);
607  	spin_lock(&parent->d_lock);
608  	/*
609  	 * We can't blindly lock dentry until we are sure
610  	 * that we won't violate the locking order.
611  	 * Any changes of dentry->d_parent must have
612  	 * been done with parent->d_lock held, so
613  	 * spin_lock() above is enough of a barrier
614  	 * for checking if it's still our child.
615  	 */
616  	if (unlikely(parent != dentry->d_parent)) {
617  		spin_unlock(&parent->d_lock);
618  		goto again;
619  	}
620  	rcu_read_unlock();
621  	if (parent != dentry)
622  		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
623  	else
624  		parent = NULL;
625  	return parent;
626  }
627  
628  static inline struct dentry *lock_parent(struct dentry *dentry)
629  {
630  	struct dentry *parent = dentry->d_parent;
631  	if (IS_ROOT(dentry))
632  		return NULL;
633  	if (likely(spin_trylock(&parent->d_lock)))
634  		return parent;
635  	return __lock_parent(dentry);
636  }
637  
638  static inline bool retain_dentry(struct dentry *dentry)
639  {
640  	WARN_ON(d_in_lookup(dentry));
641  
642  	/* Unreachable? Get rid of it */
643  	if (unlikely(d_unhashed(dentry)))
644  		return false;
645  
646  	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
647  		return false;
648  
649  	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
650  		if (dentry->d_op->d_delete(dentry))
651  			return false;
652  	}
653  
654  	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
655  		return false;
656  
657  	/* retain; LRU fodder */
658  	dentry->d_lockref.count--;
659  	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
660  		d_lru_add(dentry);
661  	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
662  		dentry->d_flags |= DCACHE_REFERENCED;
663  	return true;
664  }
665  
666  void d_mark_dontcache(struct inode *inode)
667  {
668  	struct dentry *de;
669  
670  	spin_lock(&inode->i_lock);
671  	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
672  		spin_lock(&de->d_lock);
673  		de->d_flags |= DCACHE_DONTCACHE;
674  		spin_unlock(&de->d_lock);
675  	}
676  	inode->i_state |= I_DONTCACHE;
677  	spin_unlock(&inode->i_lock);
678  }
679  EXPORT_SYMBOL(d_mark_dontcache);
680  
681  /*
682   * Finish off a dentry we've decided to kill.
683   * dentry->d_lock must be held, returns with it unlocked.
684   * Returns dentry requiring refcount drop, or NULL if we're done.
685   */
686  static struct dentry *dentry_kill(struct dentry *dentry)
687  	__releases(dentry->d_lock)
688  {
689  	struct inode *inode = dentry->d_inode;
690  	struct dentry *parent = NULL;
691  
692  	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
693  		goto slow_positive;
694  
695  	if (!IS_ROOT(dentry)) {
696  		parent = dentry->d_parent;
697  		if (unlikely(!spin_trylock(&parent->d_lock))) {
698  			parent = __lock_parent(dentry);
699  			if (likely(inode || !dentry->d_inode))
700  				goto got_locks;
701  			/* negative that became positive */
702  			if (parent)
703  				spin_unlock(&parent->d_lock);
704  			inode = dentry->d_inode;
705  			goto slow_positive;
706  		}
707  	}
708  	__dentry_kill(dentry);
709  	return parent;
710  
711  slow_positive:
712  	spin_unlock(&dentry->d_lock);
713  	spin_lock(&inode->i_lock);
714  	spin_lock(&dentry->d_lock);
715  	parent = lock_parent(dentry);
716  got_locks:
717  	if (unlikely(dentry->d_lockref.count != 1)) {
718  		dentry->d_lockref.count--;
719  	} else if (likely(!retain_dentry(dentry))) {
720  		__dentry_kill(dentry);
721  		return parent;
722  	}
723  	/* we are keeping it, after all */
724  	if (inode)
725  		spin_unlock(&inode->i_lock);
726  	if (parent)
727  		spin_unlock(&parent->d_lock);
728  	spin_unlock(&dentry->d_lock);
729  	return NULL;
730  }
731  
732  /*
733   * Try to do a lockless dput(), and return whether that was successful.
734   *
735   * If unsuccessful, we return false, having already taken the dentry lock.
736   *
737   * The caller needs to hold the RCU read lock, so that the dentry is
738   * guaranteed to stay around even if the refcount goes down to zero!
739   */
740  static inline bool fast_dput(struct dentry *dentry)
741  {
742  	int ret;
743  	unsigned int d_flags;
744  
745  	/*
746  	 * If we have a d_op->d_delete() operation, we sould not
747  	 * let the dentry count go to zero, so use "put_or_lock".
748  	 */
749  	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
750  		return lockref_put_or_lock(&dentry->d_lockref);
751  
752  	/*
753  	 * .. otherwise, we can try to just decrement the
754  	 * lockref optimistically.
755  	 */
756  	ret = lockref_put_return(&dentry->d_lockref);
757  
758  	/*
759  	 * If the lockref_put_return() failed due to the lock being held
760  	 * by somebody else, the fast path has failed. We will need to
761  	 * get the lock, and then check the count again.
762  	 */
763  	if (unlikely(ret < 0)) {
764  		spin_lock(&dentry->d_lock);
765  		if (dentry->d_lockref.count > 1) {
766  			dentry->d_lockref.count--;
767  			spin_unlock(&dentry->d_lock);
768  			return true;
769  		}
770  		return false;
771  	}
772  
773  	/*
774  	 * If we weren't the last ref, we're done.
775  	 */
776  	if (ret)
777  		return true;
778  
779  	/*
780  	 * Careful, careful. The reference count went down
781  	 * to zero, but we don't hold the dentry lock, so
782  	 * somebody else could get it again, and do another
783  	 * dput(), and we need to not race with that.
784  	 *
785  	 * However, there is a very special and common case
786  	 * where we don't care, because there is nothing to
787  	 * do: the dentry is still hashed, it does not have
788  	 * a 'delete' op, and it's referenced and already on
789  	 * the LRU list.
790  	 *
791  	 * NOTE! Since we aren't locked, these values are
792  	 * not "stable". However, it is sufficient that at
793  	 * some point after we dropped the reference the
794  	 * dentry was hashed and the flags had the proper
795  	 * value. Other dentry users may have re-gotten
796  	 * a reference to the dentry and change that, but
797  	 * our work is done - we can leave the dentry
798  	 * around with a zero refcount.
799  	 *
800  	 * Nevertheless, there are two cases that we should kill
801  	 * the dentry anyway.
802  	 * 1. free disconnected dentries as soon as their refcount
803  	 *    reached zero.
804  	 * 2. free dentries if they should not be cached.
805  	 */
806  	smp_rmb();
807  	d_flags = READ_ONCE(dentry->d_flags);
808  	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
809  			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
810  
811  	/* Nothing to do? Dropping the reference was all we needed? */
812  	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
813  		return true;
814  
815  	/*
816  	 * Not the fast normal case? Get the lock. We've already decremented
817  	 * the refcount, but we'll need to re-check the situation after
818  	 * getting the lock.
819  	 */
820  	spin_lock(&dentry->d_lock);
821  
822  	/*
823  	 * Did somebody else grab a reference to it in the meantime, and
824  	 * we're no longer the last user after all? Alternatively, somebody
825  	 * else could have killed it and marked it dead. Either way, we
826  	 * don't need to do anything else.
827  	 */
828  	if (dentry->d_lockref.count) {
829  		spin_unlock(&dentry->d_lock);
830  		return true;
831  	}
832  
833  	/*
834  	 * Re-get the reference we optimistically dropped. We hold the
835  	 * lock, and we just tested that it was zero, so we can just
836  	 * set it to 1.
837  	 */
838  	dentry->d_lockref.count = 1;
839  	return false;
840  }
841  
842  
843  /*
844   * This is dput
845   *
846   * This is complicated by the fact that we do not want to put
847   * dentries that are no longer on any hash chain on the unused
848   * list: we'd much rather just get rid of them immediately.
849   *
850   * However, that implies that we have to traverse the dentry
851   * tree upwards to the parents which might _also_ now be
852   * scheduled for deletion (it may have been only waiting for
853   * its last child to go away).
854   *
855   * This tail recursion is done by hand as we don't want to depend
856   * on the compiler to always get this right (gcc generally doesn't).
857   * Real recursion would eat up our stack space.
858   */
859  
860  /*
861   * dput - release a dentry
862   * @dentry: dentry to release
863   *
864   * Release a dentry. This will drop the usage count and if appropriate
865   * call the dentry unlink method as well as removing it from the queues and
866   * releasing its resources. If the parent dentries were scheduled for release
867   * they too may now get deleted.
868   */
869  void dput(struct dentry *dentry)
870  {
871  	while (dentry) {
872  		might_sleep();
873  
874  		rcu_read_lock();
875  		if (likely(fast_dput(dentry))) {
876  			rcu_read_unlock();
877  			return;
878  		}
879  
880  		/* Slow case: now with the dentry lock held */
881  		rcu_read_unlock();
882  
883  		if (likely(retain_dentry(dentry))) {
884  			spin_unlock(&dentry->d_lock);
885  			return;
886  		}
887  
888  		dentry = dentry_kill(dentry);
889  	}
890  }
891  EXPORT_SYMBOL(dput);
892  
893  static void __dput_to_list(struct dentry *dentry, struct list_head *list)
894  __must_hold(&dentry->d_lock)
895  {
896  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
897  		/* let the owner of the list it's on deal with it */
898  		--dentry->d_lockref.count;
899  	} else {
900  		if (dentry->d_flags & DCACHE_LRU_LIST)
901  			d_lru_del(dentry);
902  		if (!--dentry->d_lockref.count)
903  			d_shrink_add(dentry, list);
904  	}
905  }
906  
907  void dput_to_list(struct dentry *dentry, struct list_head *list)
908  {
909  	rcu_read_lock();
910  	if (likely(fast_dput(dentry))) {
911  		rcu_read_unlock();
912  		return;
913  	}
914  	rcu_read_unlock();
915  	if (!retain_dentry(dentry))
916  		__dput_to_list(dentry, list);
917  	spin_unlock(&dentry->d_lock);
918  }
919  
920  /* This must be called with d_lock held */
921  static inline void __dget_dlock(struct dentry *dentry)
922  {
923  	dentry->d_lockref.count++;
924  }
925  
926  static inline void __dget(struct dentry *dentry)
927  {
928  	lockref_get(&dentry->d_lockref);
929  }
930  
931  struct dentry *dget_parent(struct dentry *dentry)
932  {
933  	int gotref;
934  	struct dentry *ret;
935  	unsigned seq;
936  
937  	/*
938  	 * Do optimistic parent lookup without any
939  	 * locking.
940  	 */
941  	rcu_read_lock();
942  	seq = raw_seqcount_begin(&dentry->d_seq);
943  	ret = READ_ONCE(dentry->d_parent);
944  	gotref = lockref_get_not_zero(&ret->d_lockref);
945  	rcu_read_unlock();
946  	if (likely(gotref)) {
947  		if (!read_seqcount_retry(&dentry->d_seq, seq))
948  			return ret;
949  		dput(ret);
950  	}
951  
952  repeat:
953  	/*
954  	 * Don't need rcu_dereference because we re-check it was correct under
955  	 * the lock.
956  	 */
957  	rcu_read_lock();
958  	ret = dentry->d_parent;
959  	spin_lock(&ret->d_lock);
960  	if (unlikely(ret != dentry->d_parent)) {
961  		spin_unlock(&ret->d_lock);
962  		rcu_read_unlock();
963  		goto repeat;
964  	}
965  	rcu_read_unlock();
966  	BUG_ON(!ret->d_lockref.count);
967  	ret->d_lockref.count++;
968  	spin_unlock(&ret->d_lock);
969  	return ret;
970  }
971  EXPORT_SYMBOL(dget_parent);
972  
973  static struct dentry * __d_find_any_alias(struct inode *inode)
974  {
975  	struct dentry *alias;
976  
977  	if (hlist_empty(&inode->i_dentry))
978  		return NULL;
979  	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
980  	__dget(alias);
981  	return alias;
982  }
983  
984  /**
985   * d_find_any_alias - find any alias for a given inode
986   * @inode: inode to find an alias for
987   *
988   * If any aliases exist for the given inode, take and return a
989   * reference for one of them.  If no aliases exist, return %NULL.
990   */
991  struct dentry *d_find_any_alias(struct inode *inode)
992  {
993  	struct dentry *de;
994  
995  	spin_lock(&inode->i_lock);
996  	de = __d_find_any_alias(inode);
997  	spin_unlock(&inode->i_lock);
998  	return de;
999  }
1000  EXPORT_SYMBOL(d_find_any_alias);
1001  
1002  static struct dentry *__d_find_alias(struct inode *inode)
1003  {
1004  	struct dentry *alias;
1005  
1006  	if (S_ISDIR(inode->i_mode))
1007  		return __d_find_any_alias(inode);
1008  
1009  	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1010  		spin_lock(&alias->d_lock);
1011   		if (!d_unhashed(alias)) {
1012  			__dget_dlock(alias);
1013  			spin_unlock(&alias->d_lock);
1014  			return alias;
1015  		}
1016  		spin_unlock(&alias->d_lock);
1017  	}
1018  	return NULL;
1019  }
1020  
1021  /**
1022   * d_find_alias - grab a hashed alias of inode
1023   * @inode: inode in question
1024   *
1025   * If inode has a hashed alias, or is a directory and has any alias,
1026   * acquire the reference to alias and return it. Otherwise return NULL.
1027   * Notice that if inode is a directory there can be only one alias and
1028   * it can be unhashed only if it has no children, or if it is the root
1029   * of a filesystem, or if the directory was renamed and d_revalidate
1030   * was the first vfs operation to notice.
1031   *
1032   * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1033   * any other hashed alias over that one.
1034   */
1035  struct dentry *d_find_alias(struct inode *inode)
1036  {
1037  	struct dentry *de = NULL;
1038  
1039  	if (!hlist_empty(&inode->i_dentry)) {
1040  		spin_lock(&inode->i_lock);
1041  		de = __d_find_alias(inode);
1042  		spin_unlock(&inode->i_lock);
1043  	}
1044  	return de;
1045  }
1046  EXPORT_SYMBOL(d_find_alias);
1047  
1048  /*
1049   *  Caller MUST be holding rcu_read_lock() and be guaranteed
1050   *  that inode won't get freed until rcu_read_unlock().
1051   */
1052  struct dentry *d_find_alias_rcu(struct inode *inode)
1053  {
1054  	struct hlist_head *l = &inode->i_dentry;
1055  	struct dentry *de = NULL;
1056  
1057  	spin_lock(&inode->i_lock);
1058  	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1059  	// used without having I_FREEING set, which means no aliases left
1060  	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1061  		if (S_ISDIR(inode->i_mode)) {
1062  			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1063  		} else {
1064  			hlist_for_each_entry(de, l, d_u.d_alias)
1065  				if (!d_unhashed(de))
1066  					break;
1067  		}
1068  	}
1069  	spin_unlock(&inode->i_lock);
1070  	return de;
1071  }
1072  
1073  /*
1074   *	Try to kill dentries associated with this inode.
1075   * WARNING: you must own a reference to inode.
1076   */
1077  void d_prune_aliases(struct inode *inode)
1078  {
1079  	struct dentry *dentry;
1080  restart:
1081  	spin_lock(&inode->i_lock);
1082  	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1083  		spin_lock(&dentry->d_lock);
1084  		if (!dentry->d_lockref.count) {
1085  			struct dentry *parent = lock_parent(dentry);
1086  			if (likely(!dentry->d_lockref.count)) {
1087  				__dentry_kill(dentry);
1088  				dput(parent);
1089  				goto restart;
1090  			}
1091  			if (parent)
1092  				spin_unlock(&parent->d_lock);
1093  		}
1094  		spin_unlock(&dentry->d_lock);
1095  	}
1096  	spin_unlock(&inode->i_lock);
1097  }
1098  EXPORT_SYMBOL(d_prune_aliases);
1099  
1100  /*
1101   * Lock a dentry from shrink list.
1102   * Called under rcu_read_lock() and dentry->d_lock; the former
1103   * guarantees that nothing we access will be freed under us.
1104   * Note that dentry is *not* protected from concurrent dentry_kill(),
1105   * d_delete(), etc.
1106   *
1107   * Return false if dentry has been disrupted or grabbed, leaving
1108   * the caller to kick it off-list.  Otherwise, return true and have
1109   * that dentry's inode and parent both locked.
1110   */
1111  static bool shrink_lock_dentry(struct dentry *dentry)
1112  {
1113  	struct inode *inode;
1114  	struct dentry *parent;
1115  
1116  	if (dentry->d_lockref.count)
1117  		return false;
1118  
1119  	inode = dentry->d_inode;
1120  	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1121  		spin_unlock(&dentry->d_lock);
1122  		spin_lock(&inode->i_lock);
1123  		spin_lock(&dentry->d_lock);
1124  		if (unlikely(dentry->d_lockref.count))
1125  			goto out;
1126  		/* changed inode means that somebody had grabbed it */
1127  		if (unlikely(inode != dentry->d_inode))
1128  			goto out;
1129  	}
1130  
1131  	parent = dentry->d_parent;
1132  	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1133  		return true;
1134  
1135  	spin_unlock(&dentry->d_lock);
1136  	spin_lock(&parent->d_lock);
1137  	if (unlikely(parent != dentry->d_parent)) {
1138  		spin_unlock(&parent->d_lock);
1139  		spin_lock(&dentry->d_lock);
1140  		goto out;
1141  	}
1142  	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1143  	if (likely(!dentry->d_lockref.count))
1144  		return true;
1145  	spin_unlock(&parent->d_lock);
1146  out:
1147  	if (inode)
1148  		spin_unlock(&inode->i_lock);
1149  	return false;
1150  }
1151  
1152  void shrink_dentry_list(struct list_head *list)
1153  {
1154  	while (!list_empty(list)) {
1155  		struct dentry *dentry, *parent;
1156  
1157  		dentry = list_entry(list->prev, struct dentry, d_lru);
1158  		spin_lock(&dentry->d_lock);
1159  		rcu_read_lock();
1160  		if (!shrink_lock_dentry(dentry)) {
1161  			bool can_free = false;
1162  			rcu_read_unlock();
1163  			d_shrink_del(dentry);
1164  			if (dentry->d_lockref.count < 0)
1165  				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1166  			spin_unlock(&dentry->d_lock);
1167  			if (can_free)
1168  				dentry_free(dentry);
1169  			continue;
1170  		}
1171  		rcu_read_unlock();
1172  		d_shrink_del(dentry);
1173  		parent = dentry->d_parent;
1174  		if (parent != dentry)
1175  			__dput_to_list(parent, list);
1176  		__dentry_kill(dentry);
1177  	}
1178  }
1179  
1180  static enum lru_status dentry_lru_isolate(struct list_head *item,
1181  		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1182  {
1183  	struct list_head *freeable = arg;
1184  	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1185  
1186  
1187  	/*
1188  	 * we are inverting the lru lock/dentry->d_lock here,
1189  	 * so use a trylock. If we fail to get the lock, just skip
1190  	 * it
1191  	 */
1192  	if (!spin_trylock(&dentry->d_lock))
1193  		return LRU_SKIP;
1194  
1195  	/*
1196  	 * Referenced dentries are still in use. If they have active
1197  	 * counts, just remove them from the LRU. Otherwise give them
1198  	 * another pass through the LRU.
1199  	 */
1200  	if (dentry->d_lockref.count) {
1201  		d_lru_isolate(lru, dentry);
1202  		spin_unlock(&dentry->d_lock);
1203  		return LRU_REMOVED;
1204  	}
1205  
1206  	if (dentry->d_flags & DCACHE_REFERENCED) {
1207  		dentry->d_flags &= ~DCACHE_REFERENCED;
1208  		spin_unlock(&dentry->d_lock);
1209  
1210  		/*
1211  		 * The list move itself will be made by the common LRU code. At
1212  		 * this point, we've dropped the dentry->d_lock but keep the
1213  		 * lru lock. This is safe to do, since every list movement is
1214  		 * protected by the lru lock even if both locks are held.
1215  		 *
1216  		 * This is guaranteed by the fact that all LRU management
1217  		 * functions are intermediated by the LRU API calls like
1218  		 * list_lru_add and list_lru_del. List movement in this file
1219  		 * only ever occur through this functions or through callbacks
1220  		 * like this one, that are called from the LRU API.
1221  		 *
1222  		 * The only exceptions to this are functions like
1223  		 * shrink_dentry_list, and code that first checks for the
1224  		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1225  		 * operating only with stack provided lists after they are
1226  		 * properly isolated from the main list.  It is thus, always a
1227  		 * local access.
1228  		 */
1229  		return LRU_ROTATE;
1230  	}
1231  
1232  	d_lru_shrink_move(lru, dentry, freeable);
1233  	spin_unlock(&dentry->d_lock);
1234  
1235  	return LRU_REMOVED;
1236  }
1237  
1238  /**
1239   * prune_dcache_sb - shrink the dcache
1240   * @sb: superblock
1241   * @sc: shrink control, passed to list_lru_shrink_walk()
1242   *
1243   * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1244   * is done when we need more memory and called from the superblock shrinker
1245   * function.
1246   *
1247   * This function may fail to free any resources if all the dentries are in
1248   * use.
1249   */
1250  long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1251  {
1252  	LIST_HEAD(dispose);
1253  	long freed;
1254  
1255  	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1256  				     dentry_lru_isolate, &dispose);
1257  	shrink_dentry_list(&dispose);
1258  	return freed;
1259  }
1260  
1261  static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1262  		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1263  {
1264  	struct list_head *freeable = arg;
1265  	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1266  
1267  	/*
1268  	 * we are inverting the lru lock/dentry->d_lock here,
1269  	 * so use a trylock. If we fail to get the lock, just skip
1270  	 * it
1271  	 */
1272  	if (!spin_trylock(&dentry->d_lock))
1273  		return LRU_SKIP;
1274  
1275  	d_lru_shrink_move(lru, dentry, freeable);
1276  	spin_unlock(&dentry->d_lock);
1277  
1278  	return LRU_REMOVED;
1279  }
1280  
1281  
1282  /**
1283   * shrink_dcache_sb - shrink dcache for a superblock
1284   * @sb: superblock
1285   *
1286   * Shrink the dcache for the specified super block. This is used to free
1287   * the dcache before unmounting a file system.
1288   */
1289  void shrink_dcache_sb(struct super_block *sb)
1290  {
1291  	do {
1292  		LIST_HEAD(dispose);
1293  
1294  		list_lru_walk(&sb->s_dentry_lru,
1295  			dentry_lru_isolate_shrink, &dispose, 1024);
1296  		shrink_dentry_list(&dispose);
1297  	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1298  }
1299  EXPORT_SYMBOL(shrink_dcache_sb);
1300  
1301  /**
1302   * enum d_walk_ret - action to talke during tree walk
1303   * @D_WALK_CONTINUE:	contrinue walk
1304   * @D_WALK_QUIT:	quit walk
1305   * @D_WALK_NORETRY:	quit when retry is needed
1306   * @D_WALK_SKIP:	skip this dentry and its children
1307   */
1308  enum d_walk_ret {
1309  	D_WALK_CONTINUE,
1310  	D_WALK_QUIT,
1311  	D_WALK_NORETRY,
1312  	D_WALK_SKIP,
1313  };
1314  
1315  /**
1316   * d_walk - walk the dentry tree
1317   * @parent:	start of walk
1318   * @data:	data passed to @enter() and @finish()
1319   * @enter:	callback when first entering the dentry
1320   *
1321   * The @enter() callbacks are called with d_lock held.
1322   */
1323  static void d_walk(struct dentry *parent, void *data,
1324  		   enum d_walk_ret (*enter)(void *, struct dentry *))
1325  {
1326  	struct dentry *this_parent;
1327  	struct list_head *next;
1328  	unsigned seq = 0;
1329  	enum d_walk_ret ret;
1330  	bool retry = true;
1331  
1332  again:
1333  	read_seqbegin_or_lock(&rename_lock, &seq);
1334  	this_parent = parent;
1335  	spin_lock(&this_parent->d_lock);
1336  
1337  	ret = enter(data, this_parent);
1338  	switch (ret) {
1339  	case D_WALK_CONTINUE:
1340  		break;
1341  	case D_WALK_QUIT:
1342  	case D_WALK_SKIP:
1343  		goto out_unlock;
1344  	case D_WALK_NORETRY:
1345  		retry = false;
1346  		break;
1347  	}
1348  repeat:
1349  	next = this_parent->d_subdirs.next;
1350  resume:
1351  	while (next != &this_parent->d_subdirs) {
1352  		struct list_head *tmp = next;
1353  		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1354  		next = tmp->next;
1355  
1356  		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1357  			continue;
1358  
1359  		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1360  
1361  		ret = enter(data, dentry);
1362  		switch (ret) {
1363  		case D_WALK_CONTINUE:
1364  			break;
1365  		case D_WALK_QUIT:
1366  			spin_unlock(&dentry->d_lock);
1367  			goto out_unlock;
1368  		case D_WALK_NORETRY:
1369  			retry = false;
1370  			break;
1371  		case D_WALK_SKIP:
1372  			spin_unlock(&dentry->d_lock);
1373  			continue;
1374  		}
1375  
1376  		if (!list_empty(&dentry->d_subdirs)) {
1377  			spin_unlock(&this_parent->d_lock);
1378  			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1379  			this_parent = dentry;
1380  			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1381  			goto repeat;
1382  		}
1383  		spin_unlock(&dentry->d_lock);
1384  	}
1385  	/*
1386  	 * All done at this level ... ascend and resume the search.
1387  	 */
1388  	rcu_read_lock();
1389  ascend:
1390  	if (this_parent != parent) {
1391  		struct dentry *child = this_parent;
1392  		this_parent = child->d_parent;
1393  
1394  		spin_unlock(&child->d_lock);
1395  		spin_lock(&this_parent->d_lock);
1396  
1397  		/* might go back up the wrong parent if we have had a rename. */
1398  		if (need_seqretry(&rename_lock, seq))
1399  			goto rename_retry;
1400  		/* go into the first sibling still alive */
1401  		do {
1402  			next = child->d_child.next;
1403  			if (next == &this_parent->d_subdirs)
1404  				goto ascend;
1405  			child = list_entry(next, struct dentry, d_child);
1406  		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1407  		rcu_read_unlock();
1408  		goto resume;
1409  	}
1410  	if (need_seqretry(&rename_lock, seq))
1411  		goto rename_retry;
1412  	rcu_read_unlock();
1413  
1414  out_unlock:
1415  	spin_unlock(&this_parent->d_lock);
1416  	done_seqretry(&rename_lock, seq);
1417  	return;
1418  
1419  rename_retry:
1420  	spin_unlock(&this_parent->d_lock);
1421  	rcu_read_unlock();
1422  	BUG_ON(seq & 1);
1423  	if (!retry)
1424  		return;
1425  	seq = 1;
1426  	goto again;
1427  }
1428  
1429  struct check_mount {
1430  	struct vfsmount *mnt;
1431  	unsigned int mounted;
1432  };
1433  
1434  static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1435  {
1436  	struct check_mount *info = data;
1437  	struct path path = { .mnt = info->mnt, .dentry = dentry };
1438  
1439  	if (likely(!d_mountpoint(dentry)))
1440  		return D_WALK_CONTINUE;
1441  	if (__path_is_mountpoint(&path)) {
1442  		info->mounted = 1;
1443  		return D_WALK_QUIT;
1444  	}
1445  	return D_WALK_CONTINUE;
1446  }
1447  
1448  /**
1449   * path_has_submounts - check for mounts over a dentry in the
1450   *                      current namespace.
1451   * @parent: path to check.
1452   *
1453   * Return true if the parent or its subdirectories contain
1454   * a mount point in the current namespace.
1455   */
1456  int path_has_submounts(const struct path *parent)
1457  {
1458  	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1459  
1460  	read_seqlock_excl(&mount_lock);
1461  	d_walk(parent->dentry, &data, path_check_mount);
1462  	read_sequnlock_excl(&mount_lock);
1463  
1464  	return data.mounted;
1465  }
1466  EXPORT_SYMBOL(path_has_submounts);
1467  
1468  /*
1469   * Called by mount code to set a mountpoint and check if the mountpoint is
1470   * reachable (e.g. NFS can unhash a directory dentry and then the complete
1471   * subtree can become unreachable).
1472   *
1473   * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1474   * this reason take rename_lock and d_lock on dentry and ancestors.
1475   */
1476  int d_set_mounted(struct dentry *dentry)
1477  {
1478  	struct dentry *p;
1479  	int ret = -ENOENT;
1480  	write_seqlock(&rename_lock);
1481  	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1482  		/* Need exclusion wrt. d_invalidate() */
1483  		spin_lock(&p->d_lock);
1484  		if (unlikely(d_unhashed(p))) {
1485  			spin_unlock(&p->d_lock);
1486  			goto out;
1487  		}
1488  		spin_unlock(&p->d_lock);
1489  	}
1490  	spin_lock(&dentry->d_lock);
1491  	if (!d_unlinked(dentry)) {
1492  		ret = -EBUSY;
1493  		if (!d_mountpoint(dentry)) {
1494  			dentry->d_flags |= DCACHE_MOUNTED;
1495  			ret = 0;
1496  		}
1497  	}
1498   	spin_unlock(&dentry->d_lock);
1499  out:
1500  	write_sequnlock(&rename_lock);
1501  	return ret;
1502  }
1503  
1504  /*
1505   * Search the dentry child list of the specified parent,
1506   * and move any unused dentries to the end of the unused
1507   * list for prune_dcache(). We descend to the next level
1508   * whenever the d_subdirs list is non-empty and continue
1509   * searching.
1510   *
1511   * It returns zero iff there are no unused children,
1512   * otherwise  it returns the number of children moved to
1513   * the end of the unused list. This may not be the total
1514   * number of unused children, because select_parent can
1515   * drop the lock and return early due to latency
1516   * constraints.
1517   */
1518  
1519  struct select_data {
1520  	struct dentry *start;
1521  	union {
1522  		long found;
1523  		struct dentry *victim;
1524  	};
1525  	struct list_head dispose;
1526  };
1527  
1528  static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1529  {
1530  	struct select_data *data = _data;
1531  	enum d_walk_ret ret = D_WALK_CONTINUE;
1532  
1533  	if (data->start == dentry)
1534  		goto out;
1535  
1536  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1537  		data->found++;
1538  	} else {
1539  		if (dentry->d_flags & DCACHE_LRU_LIST)
1540  			d_lru_del(dentry);
1541  		if (!dentry->d_lockref.count) {
1542  			d_shrink_add(dentry, &data->dispose);
1543  			data->found++;
1544  		}
1545  	}
1546  	/*
1547  	 * We can return to the caller if we have found some (this
1548  	 * ensures forward progress). We'll be coming back to find
1549  	 * the rest.
1550  	 */
1551  	if (!list_empty(&data->dispose))
1552  		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1553  out:
1554  	return ret;
1555  }
1556  
1557  static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1558  {
1559  	struct select_data *data = _data;
1560  	enum d_walk_ret ret = D_WALK_CONTINUE;
1561  
1562  	if (data->start == dentry)
1563  		goto out;
1564  
1565  	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1566  		if (!dentry->d_lockref.count) {
1567  			rcu_read_lock();
1568  			data->victim = dentry;
1569  			return D_WALK_QUIT;
1570  		}
1571  	} else {
1572  		if (dentry->d_flags & DCACHE_LRU_LIST)
1573  			d_lru_del(dentry);
1574  		if (!dentry->d_lockref.count)
1575  			d_shrink_add(dentry, &data->dispose);
1576  	}
1577  	/*
1578  	 * We can return to the caller if we have found some (this
1579  	 * ensures forward progress). We'll be coming back to find
1580  	 * the rest.
1581  	 */
1582  	if (!list_empty(&data->dispose))
1583  		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1584  out:
1585  	return ret;
1586  }
1587  
1588  /**
1589   * shrink_dcache_parent - prune dcache
1590   * @parent: parent of entries to prune
1591   *
1592   * Prune the dcache to remove unused children of the parent dentry.
1593   */
1594  void shrink_dcache_parent(struct dentry *parent)
1595  {
1596  	for (;;) {
1597  		struct select_data data = {.start = parent};
1598  
1599  		INIT_LIST_HEAD(&data.dispose);
1600  		d_walk(parent, &data, select_collect);
1601  
1602  		if (!list_empty(&data.dispose)) {
1603  			shrink_dentry_list(&data.dispose);
1604  			continue;
1605  		}
1606  
1607  		cond_resched();
1608  		if (!data.found)
1609  			break;
1610  		data.victim = NULL;
1611  		d_walk(parent, &data, select_collect2);
1612  		if (data.victim) {
1613  			struct dentry *parent;
1614  			spin_lock(&data.victim->d_lock);
1615  			if (!shrink_lock_dentry(data.victim)) {
1616  				spin_unlock(&data.victim->d_lock);
1617  				rcu_read_unlock();
1618  			} else {
1619  				rcu_read_unlock();
1620  				parent = data.victim->d_parent;
1621  				if (parent != data.victim)
1622  					__dput_to_list(parent, &data.dispose);
1623  				__dentry_kill(data.victim);
1624  			}
1625  		}
1626  		if (!list_empty(&data.dispose))
1627  			shrink_dentry_list(&data.dispose);
1628  	}
1629  }
1630  EXPORT_SYMBOL(shrink_dcache_parent);
1631  
1632  static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1633  {
1634  	/* it has busy descendents; complain about those instead */
1635  	if (!list_empty(&dentry->d_subdirs))
1636  		return D_WALK_CONTINUE;
1637  
1638  	/* root with refcount 1 is fine */
1639  	if (dentry == _data && dentry->d_lockref.count == 1)
1640  		return D_WALK_CONTINUE;
1641  
1642  	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1643  			" still in use (%d) [unmount of %s %s]\n",
1644  		       dentry,
1645  		       dentry->d_inode ?
1646  		       dentry->d_inode->i_ino : 0UL,
1647  		       dentry,
1648  		       dentry->d_lockref.count,
1649  		       dentry->d_sb->s_type->name,
1650  		       dentry->d_sb->s_id);
1651  	WARN_ON(1);
1652  	return D_WALK_CONTINUE;
1653  }
1654  
1655  static void do_one_tree(struct dentry *dentry)
1656  {
1657  	shrink_dcache_parent(dentry);
1658  	d_walk(dentry, dentry, umount_check);
1659  	d_drop(dentry);
1660  	dput(dentry);
1661  }
1662  
1663  /*
1664   * destroy the dentries attached to a superblock on unmounting
1665   */
1666  void shrink_dcache_for_umount(struct super_block *sb)
1667  {
1668  	struct dentry *dentry;
1669  
1670  	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1671  
1672  	dentry = sb->s_root;
1673  	sb->s_root = NULL;
1674  	do_one_tree(dentry);
1675  
1676  	while (!hlist_bl_empty(&sb->s_roots)) {
1677  		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1678  		do_one_tree(dentry);
1679  	}
1680  }
1681  
1682  static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1683  {
1684  	struct dentry **victim = _data;
1685  	if (d_mountpoint(dentry)) {
1686  		__dget_dlock(dentry);
1687  		*victim = dentry;
1688  		return D_WALK_QUIT;
1689  	}
1690  	return D_WALK_CONTINUE;
1691  }
1692  
1693  /**
1694   * d_invalidate - detach submounts, prune dcache, and drop
1695   * @dentry: dentry to invalidate (aka detach, prune and drop)
1696   */
1697  void d_invalidate(struct dentry *dentry)
1698  {
1699  	bool had_submounts = false;
1700  	spin_lock(&dentry->d_lock);
1701  	if (d_unhashed(dentry)) {
1702  		spin_unlock(&dentry->d_lock);
1703  		return;
1704  	}
1705  	__d_drop(dentry);
1706  	spin_unlock(&dentry->d_lock);
1707  
1708  	/* Negative dentries can be dropped without further checks */
1709  	if (!dentry->d_inode)
1710  		return;
1711  
1712  	shrink_dcache_parent(dentry);
1713  	for (;;) {
1714  		struct dentry *victim = NULL;
1715  		d_walk(dentry, &victim, find_submount);
1716  		if (!victim) {
1717  			if (had_submounts)
1718  				shrink_dcache_parent(dentry);
1719  			return;
1720  		}
1721  		had_submounts = true;
1722  		detach_mounts(victim);
1723  		dput(victim);
1724  	}
1725  }
1726  EXPORT_SYMBOL(d_invalidate);
1727  
1728  /**
1729   * __d_alloc	-	allocate a dcache entry
1730   * @sb: filesystem it will belong to
1731   * @name: qstr of the name
1732   *
1733   * Allocates a dentry. It returns %NULL if there is insufficient memory
1734   * available. On a success the dentry is returned. The name passed in is
1735   * copied and the copy passed in may be reused after this call.
1736   */
1737  
1738  static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1739  {
1740  	struct dentry *dentry;
1741  	char *dname;
1742  	int err;
1743  
1744  	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1745  	if (!dentry)
1746  		return NULL;
1747  
1748  	/*
1749  	 * We guarantee that the inline name is always NUL-terminated.
1750  	 * This way the memcpy() done by the name switching in rename
1751  	 * will still always have a NUL at the end, even if we might
1752  	 * be overwriting an internal NUL character
1753  	 */
1754  	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1755  	if (unlikely(!name)) {
1756  		name = &slash_name;
1757  		dname = dentry->d_iname;
1758  	} else if (name->len > DNAME_INLINE_LEN-1) {
1759  		size_t size = offsetof(struct external_name, name[1]);
1760  		struct external_name *p = kmalloc(size + name->len,
1761  						  GFP_KERNEL_ACCOUNT |
1762  						  __GFP_RECLAIMABLE);
1763  		if (!p) {
1764  			kmem_cache_free(dentry_cache, dentry);
1765  			return NULL;
1766  		}
1767  		atomic_set(&p->u.count, 1);
1768  		dname = p->name;
1769  	} else  {
1770  		dname = dentry->d_iname;
1771  	}
1772  
1773  	dentry->d_name.len = name->len;
1774  	dentry->d_name.hash = name->hash;
1775  	memcpy(dname, name->name, name->len);
1776  	dname[name->len] = 0;
1777  
1778  	/* Make sure we always see the terminating NUL character */
1779  	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1780  
1781  	dentry->d_lockref.count = 1;
1782  	dentry->d_flags = 0;
1783  	spin_lock_init(&dentry->d_lock);
1784  	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1785  	dentry->d_inode = NULL;
1786  	dentry->d_parent = dentry;
1787  	dentry->d_sb = sb;
1788  	dentry->d_op = NULL;
1789  	dentry->d_fsdata = NULL;
1790  	INIT_HLIST_BL_NODE(&dentry->d_hash);
1791  	INIT_LIST_HEAD(&dentry->d_lru);
1792  	INIT_LIST_HEAD(&dentry->d_subdirs);
1793  	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1794  	INIT_LIST_HEAD(&dentry->d_child);
1795  	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1796  
1797  	if (dentry->d_op && dentry->d_op->d_init) {
1798  		err = dentry->d_op->d_init(dentry);
1799  		if (err) {
1800  			if (dname_external(dentry))
1801  				kfree(external_name(dentry));
1802  			kmem_cache_free(dentry_cache, dentry);
1803  			return NULL;
1804  		}
1805  	}
1806  
1807  	this_cpu_inc(nr_dentry);
1808  
1809  	return dentry;
1810  }
1811  
1812  /**
1813   * d_alloc	-	allocate a dcache entry
1814   * @parent: parent of entry to allocate
1815   * @name: qstr of the name
1816   *
1817   * Allocates a dentry. It returns %NULL if there is insufficient memory
1818   * available. On a success the dentry is returned. The name passed in is
1819   * copied and the copy passed in may be reused after this call.
1820   */
1821  struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1822  {
1823  	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1824  	if (!dentry)
1825  		return NULL;
1826  	spin_lock(&parent->d_lock);
1827  	/*
1828  	 * don't need child lock because it is not subject
1829  	 * to concurrency here
1830  	 */
1831  	__dget_dlock(parent);
1832  	dentry->d_parent = parent;
1833  	list_add(&dentry->d_child, &parent->d_subdirs);
1834  	spin_unlock(&parent->d_lock);
1835  
1836  	return dentry;
1837  }
1838  EXPORT_SYMBOL(d_alloc);
1839  
1840  struct dentry *d_alloc_anon(struct super_block *sb)
1841  {
1842  	return __d_alloc(sb, NULL);
1843  }
1844  EXPORT_SYMBOL(d_alloc_anon);
1845  
1846  struct dentry *d_alloc_cursor(struct dentry * parent)
1847  {
1848  	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1849  	if (dentry) {
1850  		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1851  		dentry->d_parent = dget(parent);
1852  	}
1853  	return dentry;
1854  }
1855  
1856  /**
1857   * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1858   * @sb: the superblock
1859   * @name: qstr of the name
1860   *
1861   * For a filesystem that just pins its dentries in memory and never
1862   * performs lookups at all, return an unhashed IS_ROOT dentry.
1863   * This is used for pipes, sockets et.al. - the stuff that should
1864   * never be anyone's children or parents.  Unlike all other
1865   * dentries, these will not have RCU delay between dropping the
1866   * last reference and freeing them.
1867   *
1868   * The only user is alloc_file_pseudo() and that's what should
1869   * be considered a public interface.  Don't use directly.
1870   */
1871  struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1872  {
1873  	struct dentry *dentry = __d_alloc(sb, name);
1874  	if (likely(dentry))
1875  		dentry->d_flags |= DCACHE_NORCU;
1876  	return dentry;
1877  }
1878  
1879  struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1880  {
1881  	struct qstr q;
1882  
1883  	q.name = name;
1884  	q.hash_len = hashlen_string(parent, name);
1885  	return d_alloc(parent, &q);
1886  }
1887  EXPORT_SYMBOL(d_alloc_name);
1888  
1889  void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1890  {
1891  	WARN_ON_ONCE(dentry->d_op);
1892  	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1893  				DCACHE_OP_COMPARE	|
1894  				DCACHE_OP_REVALIDATE	|
1895  				DCACHE_OP_WEAK_REVALIDATE	|
1896  				DCACHE_OP_DELETE	|
1897  				DCACHE_OP_REAL));
1898  	dentry->d_op = op;
1899  	if (!op)
1900  		return;
1901  	if (op->d_hash)
1902  		dentry->d_flags |= DCACHE_OP_HASH;
1903  	if (op->d_compare)
1904  		dentry->d_flags |= DCACHE_OP_COMPARE;
1905  	if (op->d_revalidate)
1906  		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1907  	if (op->d_weak_revalidate)
1908  		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1909  	if (op->d_delete)
1910  		dentry->d_flags |= DCACHE_OP_DELETE;
1911  	if (op->d_prune)
1912  		dentry->d_flags |= DCACHE_OP_PRUNE;
1913  	if (op->d_real)
1914  		dentry->d_flags |= DCACHE_OP_REAL;
1915  
1916  }
1917  EXPORT_SYMBOL(d_set_d_op);
1918  
1919  
1920  /*
1921   * d_set_fallthru - Mark a dentry as falling through to a lower layer
1922   * @dentry - The dentry to mark
1923   *
1924   * Mark a dentry as falling through to the lower layer (as set with
1925   * d_pin_lower()).  This flag may be recorded on the medium.
1926   */
1927  void d_set_fallthru(struct dentry *dentry)
1928  {
1929  	spin_lock(&dentry->d_lock);
1930  	dentry->d_flags |= DCACHE_FALLTHRU;
1931  	spin_unlock(&dentry->d_lock);
1932  }
1933  EXPORT_SYMBOL(d_set_fallthru);
1934  
1935  static unsigned d_flags_for_inode(struct inode *inode)
1936  {
1937  	unsigned add_flags = DCACHE_REGULAR_TYPE;
1938  
1939  	if (!inode)
1940  		return DCACHE_MISS_TYPE;
1941  
1942  	if (S_ISDIR(inode->i_mode)) {
1943  		add_flags = DCACHE_DIRECTORY_TYPE;
1944  		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1945  			if (unlikely(!inode->i_op->lookup))
1946  				add_flags = DCACHE_AUTODIR_TYPE;
1947  			else
1948  				inode->i_opflags |= IOP_LOOKUP;
1949  		}
1950  		goto type_determined;
1951  	}
1952  
1953  	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1954  		if (unlikely(inode->i_op->get_link)) {
1955  			add_flags = DCACHE_SYMLINK_TYPE;
1956  			goto type_determined;
1957  		}
1958  		inode->i_opflags |= IOP_NOFOLLOW;
1959  	}
1960  
1961  	if (unlikely(!S_ISREG(inode->i_mode)))
1962  		add_flags = DCACHE_SPECIAL_TYPE;
1963  
1964  type_determined:
1965  	if (unlikely(IS_AUTOMOUNT(inode)))
1966  		add_flags |= DCACHE_NEED_AUTOMOUNT;
1967  	return add_flags;
1968  }
1969  
1970  static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1971  {
1972  	unsigned add_flags = d_flags_for_inode(inode);
1973  	WARN_ON(d_in_lookup(dentry));
1974  
1975  	spin_lock(&dentry->d_lock);
1976  	/*
1977  	 * Decrement negative dentry count if it was in the LRU list.
1978  	 */
1979  	if (dentry->d_flags & DCACHE_LRU_LIST)
1980  		this_cpu_dec(nr_dentry_negative);
1981  	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1982  	raw_write_seqcount_begin(&dentry->d_seq);
1983  	__d_set_inode_and_type(dentry, inode, add_flags);
1984  	raw_write_seqcount_end(&dentry->d_seq);
1985  	fsnotify_update_flags(dentry);
1986  	spin_unlock(&dentry->d_lock);
1987  }
1988  
1989  /**
1990   * d_instantiate - fill in inode information for a dentry
1991   * @entry: dentry to complete
1992   * @inode: inode to attach to this dentry
1993   *
1994   * Fill in inode information in the entry.
1995   *
1996   * This turns negative dentries into productive full members
1997   * of society.
1998   *
1999   * NOTE! This assumes that the inode count has been incremented
2000   * (or otherwise set) by the caller to indicate that it is now
2001   * in use by the dcache.
2002   */
2003  
2004  void d_instantiate(struct dentry *entry, struct inode * inode)
2005  {
2006  	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2007  	if (inode) {
2008  		security_d_instantiate(entry, inode);
2009  		spin_lock(&inode->i_lock);
2010  		__d_instantiate(entry, inode);
2011  		spin_unlock(&inode->i_lock);
2012  	}
2013  }
2014  EXPORT_SYMBOL(d_instantiate);
2015  
2016  /*
2017   * This should be equivalent to d_instantiate() + unlock_new_inode(),
2018   * with lockdep-related part of unlock_new_inode() done before
2019   * anything else.  Use that instead of open-coding d_instantiate()/
2020   * unlock_new_inode() combinations.
2021   */
2022  void d_instantiate_new(struct dentry *entry, struct inode *inode)
2023  {
2024  	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2025  	BUG_ON(!inode);
2026  	lockdep_annotate_inode_mutex_key(inode);
2027  	security_d_instantiate(entry, inode);
2028  	spin_lock(&inode->i_lock);
2029  	__d_instantiate(entry, inode);
2030  	WARN_ON(!(inode->i_state & I_NEW));
2031  	inode->i_state &= ~I_NEW & ~I_CREATING;
2032  	smp_mb();
2033  	wake_up_bit(&inode->i_state, __I_NEW);
2034  	spin_unlock(&inode->i_lock);
2035  }
2036  EXPORT_SYMBOL(d_instantiate_new);
2037  
2038  struct dentry *d_make_root(struct inode *root_inode)
2039  {
2040  	struct dentry *res = NULL;
2041  
2042  	if (root_inode) {
2043  		res = d_alloc_anon(root_inode->i_sb);
2044  		if (res)
2045  			d_instantiate(res, root_inode);
2046  		else
2047  			iput(root_inode);
2048  	}
2049  	return res;
2050  }
2051  EXPORT_SYMBOL(d_make_root);
2052  
2053  static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2054  					   struct inode *inode,
2055  					   bool disconnected)
2056  {
2057  	struct dentry *res;
2058  	unsigned add_flags;
2059  
2060  	security_d_instantiate(dentry, inode);
2061  	spin_lock(&inode->i_lock);
2062  	res = __d_find_any_alias(inode);
2063  	if (res) {
2064  		spin_unlock(&inode->i_lock);
2065  		dput(dentry);
2066  		goto out_iput;
2067  	}
2068  
2069  	/* attach a disconnected dentry */
2070  	add_flags = d_flags_for_inode(inode);
2071  
2072  	if (disconnected)
2073  		add_flags |= DCACHE_DISCONNECTED;
2074  
2075  	spin_lock(&dentry->d_lock);
2076  	__d_set_inode_and_type(dentry, inode, add_flags);
2077  	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2078  	if (!disconnected) {
2079  		hlist_bl_lock(&dentry->d_sb->s_roots);
2080  		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2081  		hlist_bl_unlock(&dentry->d_sb->s_roots);
2082  	}
2083  	spin_unlock(&dentry->d_lock);
2084  	spin_unlock(&inode->i_lock);
2085  
2086  	return dentry;
2087  
2088   out_iput:
2089  	iput(inode);
2090  	return res;
2091  }
2092  
2093  struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2094  {
2095  	return __d_instantiate_anon(dentry, inode, true);
2096  }
2097  EXPORT_SYMBOL(d_instantiate_anon);
2098  
2099  static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2100  {
2101  	struct dentry *tmp;
2102  	struct dentry *res;
2103  
2104  	if (!inode)
2105  		return ERR_PTR(-ESTALE);
2106  	if (IS_ERR(inode))
2107  		return ERR_CAST(inode);
2108  
2109  	res = d_find_any_alias(inode);
2110  	if (res)
2111  		goto out_iput;
2112  
2113  	tmp = d_alloc_anon(inode->i_sb);
2114  	if (!tmp) {
2115  		res = ERR_PTR(-ENOMEM);
2116  		goto out_iput;
2117  	}
2118  
2119  	return __d_instantiate_anon(tmp, inode, disconnected);
2120  
2121  out_iput:
2122  	iput(inode);
2123  	return res;
2124  }
2125  
2126  /**
2127   * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2128   * @inode: inode to allocate the dentry for
2129   *
2130   * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2131   * similar open by handle operations.  The returned dentry may be anonymous,
2132   * or may have a full name (if the inode was already in the cache).
2133   *
2134   * When called on a directory inode, we must ensure that the inode only ever
2135   * has one dentry.  If a dentry is found, that is returned instead of
2136   * allocating a new one.
2137   *
2138   * On successful return, the reference to the inode has been transferred
2139   * to the dentry.  In case of an error the reference on the inode is released.
2140   * To make it easier to use in export operations a %NULL or IS_ERR inode may
2141   * be passed in and the error will be propagated to the return value,
2142   * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2143   */
2144  struct dentry *d_obtain_alias(struct inode *inode)
2145  {
2146  	return __d_obtain_alias(inode, true);
2147  }
2148  EXPORT_SYMBOL(d_obtain_alias);
2149  
2150  /**
2151   * d_obtain_root - find or allocate a dentry for a given inode
2152   * @inode: inode to allocate the dentry for
2153   *
2154   * Obtain an IS_ROOT dentry for the root of a filesystem.
2155   *
2156   * We must ensure that directory inodes only ever have one dentry.  If a
2157   * dentry is found, that is returned instead of allocating a new one.
2158   *
2159   * On successful return, the reference to the inode has been transferred
2160   * to the dentry.  In case of an error the reference on the inode is
2161   * released.  A %NULL or IS_ERR inode may be passed in and will be the
2162   * error will be propagate to the return value, with a %NULL @inode
2163   * replaced by ERR_PTR(-ESTALE).
2164   */
2165  struct dentry *d_obtain_root(struct inode *inode)
2166  {
2167  	return __d_obtain_alias(inode, false);
2168  }
2169  EXPORT_SYMBOL(d_obtain_root);
2170  
2171  /**
2172   * d_add_ci - lookup or allocate new dentry with case-exact name
2173   * @inode:  the inode case-insensitive lookup has found
2174   * @dentry: the negative dentry that was passed to the parent's lookup func
2175   * @name:   the case-exact name to be associated with the returned dentry
2176   *
2177   * This is to avoid filling the dcache with case-insensitive names to the
2178   * same inode, only the actual correct case is stored in the dcache for
2179   * case-insensitive filesystems.
2180   *
2181   * For a case-insensitive lookup match and if the case-exact dentry
2182   * already exists in the dcache, use it and return it.
2183   *
2184   * If no entry exists with the exact case name, allocate new dentry with
2185   * the exact case, and return the spliced entry.
2186   */
2187  struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2188  			struct qstr *name)
2189  {
2190  	struct dentry *found, *res;
2191  
2192  	/*
2193  	 * First check if a dentry matching the name already exists,
2194  	 * if not go ahead and create it now.
2195  	 */
2196  	found = d_hash_and_lookup(dentry->d_parent, name);
2197  	if (found) {
2198  		iput(inode);
2199  		return found;
2200  	}
2201  	if (d_in_lookup(dentry)) {
2202  		found = d_alloc_parallel(dentry->d_parent, name,
2203  					dentry->d_wait);
2204  		if (IS_ERR(found) || !d_in_lookup(found)) {
2205  			iput(inode);
2206  			return found;
2207  		}
2208  	} else {
2209  		found = d_alloc(dentry->d_parent, name);
2210  		if (!found) {
2211  			iput(inode);
2212  			return ERR_PTR(-ENOMEM);
2213  		}
2214  	}
2215  	res = d_splice_alias(inode, found);
2216  	if (res) {
2217  		dput(found);
2218  		return res;
2219  	}
2220  	return found;
2221  }
2222  EXPORT_SYMBOL(d_add_ci);
2223  
2224  
2225  static inline bool d_same_name(const struct dentry *dentry,
2226  				const struct dentry *parent,
2227  				const struct qstr *name)
2228  {
2229  	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2230  		if (dentry->d_name.len != name->len)
2231  			return false;
2232  		return dentry_cmp(dentry, name->name, name->len) == 0;
2233  	}
2234  	return parent->d_op->d_compare(dentry,
2235  				       dentry->d_name.len, dentry->d_name.name,
2236  				       name) == 0;
2237  }
2238  
2239  /**
2240   * __d_lookup_rcu - search for a dentry (racy, store-free)
2241   * @parent: parent dentry
2242   * @name: qstr of name we wish to find
2243   * @seqp: returns d_seq value at the point where the dentry was found
2244   * Returns: dentry, or NULL
2245   *
2246   * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2247   * resolution (store-free path walking) design described in
2248   * Documentation/filesystems/path-lookup.txt.
2249   *
2250   * This is not to be used outside core vfs.
2251   *
2252   * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2253   * held, and rcu_read_lock held. The returned dentry must not be stored into
2254   * without taking d_lock and checking d_seq sequence count against @seq
2255   * returned here.
2256   *
2257   * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2258   * function.
2259   *
2260   * Alternatively, __d_lookup_rcu may be called again to look up the child of
2261   * the returned dentry, so long as its parent's seqlock is checked after the
2262   * child is looked up. Thus, an interlocking stepping of sequence lock checks
2263   * is formed, giving integrity down the path walk.
2264   *
2265   * NOTE! The caller *has* to check the resulting dentry against the sequence
2266   * number we've returned before using any of the resulting dentry state!
2267   */
2268  struct dentry *__d_lookup_rcu(const struct dentry *parent,
2269  				const struct qstr *name,
2270  				unsigned *seqp)
2271  {
2272  	u64 hashlen = name->hash_len;
2273  	const unsigned char *str = name->name;
2274  	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2275  	struct hlist_bl_node *node;
2276  	struct dentry *dentry;
2277  
2278  	/*
2279  	 * Note: There is significant duplication with __d_lookup_rcu which is
2280  	 * required to prevent single threaded performance regressions
2281  	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2282  	 * Keep the two functions in sync.
2283  	 */
2284  
2285  	/*
2286  	 * The hash list is protected using RCU.
2287  	 *
2288  	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2289  	 * races with d_move().
2290  	 *
2291  	 * It is possible that concurrent renames can mess up our list
2292  	 * walk here and result in missing our dentry, resulting in the
2293  	 * false-negative result. d_lookup() protects against concurrent
2294  	 * renames using rename_lock seqlock.
2295  	 *
2296  	 * See Documentation/filesystems/path-lookup.txt for more details.
2297  	 */
2298  	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2299  		unsigned seq;
2300  
2301  seqretry:
2302  		/*
2303  		 * The dentry sequence count protects us from concurrent
2304  		 * renames, and thus protects parent and name fields.
2305  		 *
2306  		 * The caller must perform a seqcount check in order
2307  		 * to do anything useful with the returned dentry.
2308  		 *
2309  		 * NOTE! We do a "raw" seqcount_begin here. That means that
2310  		 * we don't wait for the sequence count to stabilize if it
2311  		 * is in the middle of a sequence change. If we do the slow
2312  		 * dentry compare, we will do seqretries until it is stable,
2313  		 * and if we end up with a successful lookup, we actually
2314  		 * want to exit RCU lookup anyway.
2315  		 *
2316  		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2317  		 * we are still guaranteed NUL-termination of ->d_name.name.
2318  		 */
2319  		seq = raw_seqcount_begin(&dentry->d_seq);
2320  		if (dentry->d_parent != parent)
2321  			continue;
2322  		if (d_unhashed(dentry))
2323  			continue;
2324  
2325  		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2326  			int tlen;
2327  			const char *tname;
2328  			if (dentry->d_name.hash != hashlen_hash(hashlen))
2329  				continue;
2330  			tlen = dentry->d_name.len;
2331  			tname = dentry->d_name.name;
2332  			/* we want a consistent (name,len) pair */
2333  			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2334  				cpu_relax();
2335  				goto seqretry;
2336  			}
2337  			if (parent->d_op->d_compare(dentry,
2338  						    tlen, tname, name) != 0)
2339  				continue;
2340  		} else {
2341  			if (dentry->d_name.hash_len != hashlen)
2342  				continue;
2343  			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2344  				continue;
2345  		}
2346  		*seqp = seq;
2347  		return dentry;
2348  	}
2349  	return NULL;
2350  }
2351  
2352  /**
2353   * d_lookup - search for a dentry
2354   * @parent: parent dentry
2355   * @name: qstr of name we wish to find
2356   * Returns: dentry, or NULL
2357   *
2358   * d_lookup searches the children of the parent dentry for the name in
2359   * question. If the dentry is found its reference count is incremented and the
2360   * dentry is returned. The caller must use dput to free the entry when it has
2361   * finished using it. %NULL is returned if the dentry does not exist.
2362   */
2363  struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2364  {
2365  	struct dentry *dentry;
2366  	unsigned seq;
2367  
2368  	do {
2369  		seq = read_seqbegin(&rename_lock);
2370  		dentry = __d_lookup(parent, name);
2371  		if (dentry)
2372  			break;
2373  	} while (read_seqretry(&rename_lock, seq));
2374  	return dentry;
2375  }
2376  EXPORT_SYMBOL(d_lookup);
2377  
2378  /**
2379   * __d_lookup - search for a dentry (racy)
2380   * @parent: parent dentry
2381   * @name: qstr of name we wish to find
2382   * Returns: dentry, or NULL
2383   *
2384   * __d_lookup is like d_lookup, however it may (rarely) return a
2385   * false-negative result due to unrelated rename activity.
2386   *
2387   * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2388   * however it must be used carefully, eg. with a following d_lookup in
2389   * the case of failure.
2390   *
2391   * __d_lookup callers must be commented.
2392   */
2393  struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2394  {
2395  	unsigned int hash = name->hash;
2396  	struct hlist_bl_head *b = d_hash(hash);
2397  	struct hlist_bl_node *node;
2398  	struct dentry *found = NULL;
2399  	struct dentry *dentry;
2400  
2401  	/*
2402  	 * Note: There is significant duplication with __d_lookup_rcu which is
2403  	 * required to prevent single threaded performance regressions
2404  	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2405  	 * Keep the two functions in sync.
2406  	 */
2407  
2408  	/*
2409  	 * The hash list is protected using RCU.
2410  	 *
2411  	 * Take d_lock when comparing a candidate dentry, to avoid races
2412  	 * with d_move().
2413  	 *
2414  	 * It is possible that concurrent renames can mess up our list
2415  	 * walk here and result in missing our dentry, resulting in the
2416  	 * false-negative result. d_lookup() protects against concurrent
2417  	 * renames using rename_lock seqlock.
2418  	 *
2419  	 * See Documentation/filesystems/path-lookup.txt for more details.
2420  	 */
2421  	rcu_read_lock();
2422  
2423  	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2424  
2425  		if (dentry->d_name.hash != hash)
2426  			continue;
2427  
2428  		spin_lock(&dentry->d_lock);
2429  		if (dentry->d_parent != parent)
2430  			goto next;
2431  		if (d_unhashed(dentry))
2432  			goto next;
2433  
2434  		if (!d_same_name(dentry, parent, name))
2435  			goto next;
2436  
2437  		dentry->d_lockref.count++;
2438  		found = dentry;
2439  		spin_unlock(&dentry->d_lock);
2440  		break;
2441  next:
2442  		spin_unlock(&dentry->d_lock);
2443   	}
2444   	rcu_read_unlock();
2445  
2446   	return found;
2447  }
2448  
2449  /**
2450   * d_hash_and_lookup - hash the qstr then search for a dentry
2451   * @dir: Directory to search in
2452   * @name: qstr of name we wish to find
2453   *
2454   * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2455   */
2456  struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2457  {
2458  	/*
2459  	 * Check for a fs-specific hash function. Note that we must
2460  	 * calculate the standard hash first, as the d_op->d_hash()
2461  	 * routine may choose to leave the hash value unchanged.
2462  	 */
2463  	name->hash = full_name_hash(dir, name->name, name->len);
2464  	if (dir->d_flags & DCACHE_OP_HASH) {
2465  		int err = dir->d_op->d_hash(dir, name);
2466  		if (unlikely(err < 0))
2467  			return ERR_PTR(err);
2468  	}
2469  	return d_lookup(dir, name);
2470  }
2471  EXPORT_SYMBOL(d_hash_and_lookup);
2472  
2473  /*
2474   * When a file is deleted, we have two options:
2475   * - turn this dentry into a negative dentry
2476   * - unhash this dentry and free it.
2477   *
2478   * Usually, we want to just turn this into
2479   * a negative dentry, but if anybody else is
2480   * currently using the dentry or the inode
2481   * we can't do that and we fall back on removing
2482   * it from the hash queues and waiting for
2483   * it to be deleted later when it has no users
2484   */
2485  
2486  /**
2487   * d_delete - delete a dentry
2488   * @dentry: The dentry to delete
2489   *
2490   * Turn the dentry into a negative dentry if possible, otherwise
2491   * remove it from the hash queues so it can be deleted later
2492   */
2493  
2494  void d_delete(struct dentry * dentry)
2495  {
2496  	struct inode *inode = dentry->d_inode;
2497  
2498  	spin_lock(&inode->i_lock);
2499  	spin_lock(&dentry->d_lock);
2500  	/*
2501  	 * Are we the only user?
2502  	 */
2503  	if (dentry->d_lockref.count == 1) {
2504  		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2505  		dentry_unlink_inode(dentry);
2506  	} else {
2507  		__d_drop(dentry);
2508  		spin_unlock(&dentry->d_lock);
2509  		spin_unlock(&inode->i_lock);
2510  	}
2511  }
2512  EXPORT_SYMBOL(d_delete);
2513  
2514  static void __d_rehash(struct dentry *entry)
2515  {
2516  	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2517  
2518  	hlist_bl_lock(b);
2519  	hlist_bl_add_head_rcu(&entry->d_hash, b);
2520  	hlist_bl_unlock(b);
2521  }
2522  
2523  /**
2524   * d_rehash	- add an entry back to the hash
2525   * @entry: dentry to add to the hash
2526   *
2527   * Adds a dentry to the hash according to its name.
2528   */
2529  
2530  void d_rehash(struct dentry * entry)
2531  {
2532  	spin_lock(&entry->d_lock);
2533  	__d_rehash(entry);
2534  	spin_unlock(&entry->d_lock);
2535  }
2536  EXPORT_SYMBOL(d_rehash);
2537  
2538  static inline unsigned start_dir_add(struct inode *dir)
2539  {
2540  
2541  	for (;;) {
2542  		unsigned n = dir->i_dir_seq;
2543  		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2544  			return n;
2545  		cpu_relax();
2546  	}
2547  }
2548  
2549  static inline void end_dir_add(struct inode *dir, unsigned n)
2550  {
2551  	smp_store_release(&dir->i_dir_seq, n + 2);
2552  }
2553  
2554  static void d_wait_lookup(struct dentry *dentry)
2555  {
2556  	if (d_in_lookup(dentry)) {
2557  		DECLARE_WAITQUEUE(wait, current);
2558  		add_wait_queue(dentry->d_wait, &wait);
2559  		do {
2560  			set_current_state(TASK_UNINTERRUPTIBLE);
2561  			spin_unlock(&dentry->d_lock);
2562  			schedule();
2563  			spin_lock(&dentry->d_lock);
2564  		} while (d_in_lookup(dentry));
2565  	}
2566  }
2567  
2568  struct dentry *d_alloc_parallel(struct dentry *parent,
2569  				const struct qstr *name,
2570  				wait_queue_head_t *wq)
2571  {
2572  	unsigned int hash = name->hash;
2573  	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2574  	struct hlist_bl_node *node;
2575  	struct dentry *new = d_alloc(parent, name);
2576  	struct dentry *dentry;
2577  	unsigned seq, r_seq, d_seq;
2578  
2579  	if (unlikely(!new))
2580  		return ERR_PTR(-ENOMEM);
2581  
2582  retry:
2583  	rcu_read_lock();
2584  	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2585  	r_seq = read_seqbegin(&rename_lock);
2586  	dentry = __d_lookup_rcu(parent, name, &d_seq);
2587  	if (unlikely(dentry)) {
2588  		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2589  			rcu_read_unlock();
2590  			goto retry;
2591  		}
2592  		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2593  			rcu_read_unlock();
2594  			dput(dentry);
2595  			goto retry;
2596  		}
2597  		rcu_read_unlock();
2598  		dput(new);
2599  		return dentry;
2600  	}
2601  	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2602  		rcu_read_unlock();
2603  		goto retry;
2604  	}
2605  
2606  	if (unlikely(seq & 1)) {
2607  		rcu_read_unlock();
2608  		goto retry;
2609  	}
2610  
2611  	hlist_bl_lock(b);
2612  	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2613  		hlist_bl_unlock(b);
2614  		rcu_read_unlock();
2615  		goto retry;
2616  	}
2617  	/*
2618  	 * No changes for the parent since the beginning of d_lookup().
2619  	 * Since all removals from the chain happen with hlist_bl_lock(),
2620  	 * any potential in-lookup matches are going to stay here until
2621  	 * we unlock the chain.  All fields are stable in everything
2622  	 * we encounter.
2623  	 */
2624  	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2625  		if (dentry->d_name.hash != hash)
2626  			continue;
2627  		if (dentry->d_parent != parent)
2628  			continue;
2629  		if (!d_same_name(dentry, parent, name))
2630  			continue;
2631  		hlist_bl_unlock(b);
2632  		/* now we can try to grab a reference */
2633  		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2634  			rcu_read_unlock();
2635  			goto retry;
2636  		}
2637  
2638  		rcu_read_unlock();
2639  		/*
2640  		 * somebody is likely to be still doing lookup for it;
2641  		 * wait for them to finish
2642  		 */
2643  		spin_lock(&dentry->d_lock);
2644  		d_wait_lookup(dentry);
2645  		/*
2646  		 * it's not in-lookup anymore; in principle we should repeat
2647  		 * everything from dcache lookup, but it's likely to be what
2648  		 * d_lookup() would've found anyway.  If it is, just return it;
2649  		 * otherwise we really have to repeat the whole thing.
2650  		 */
2651  		if (unlikely(dentry->d_name.hash != hash))
2652  			goto mismatch;
2653  		if (unlikely(dentry->d_parent != parent))
2654  			goto mismatch;
2655  		if (unlikely(d_unhashed(dentry)))
2656  			goto mismatch;
2657  		if (unlikely(!d_same_name(dentry, parent, name)))
2658  			goto mismatch;
2659  		/* OK, it *is* a hashed match; return it */
2660  		spin_unlock(&dentry->d_lock);
2661  		dput(new);
2662  		return dentry;
2663  	}
2664  	rcu_read_unlock();
2665  	/* we can't take ->d_lock here; it's OK, though. */
2666  	new->d_flags |= DCACHE_PAR_LOOKUP;
2667  	new->d_wait = wq;
2668  	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2669  	hlist_bl_unlock(b);
2670  	return new;
2671  mismatch:
2672  	spin_unlock(&dentry->d_lock);
2673  	dput(dentry);
2674  	goto retry;
2675  }
2676  EXPORT_SYMBOL(d_alloc_parallel);
2677  
2678  void __d_lookup_done(struct dentry *dentry)
2679  {
2680  	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2681  						 dentry->d_name.hash);
2682  	hlist_bl_lock(b);
2683  	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2684  	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2685  	wake_up_all(dentry->d_wait);
2686  	dentry->d_wait = NULL;
2687  	hlist_bl_unlock(b);
2688  	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2689  	INIT_LIST_HEAD(&dentry->d_lru);
2690  }
2691  EXPORT_SYMBOL(__d_lookup_done);
2692  
2693  /* inode->i_lock held if inode is non-NULL */
2694  
2695  static inline void __d_add(struct dentry *dentry, struct inode *inode)
2696  {
2697  	struct inode *dir = NULL;
2698  	unsigned n;
2699  	spin_lock(&dentry->d_lock);
2700  	if (unlikely(d_in_lookup(dentry))) {
2701  		dir = dentry->d_parent->d_inode;
2702  		n = start_dir_add(dir);
2703  		__d_lookup_done(dentry);
2704  	}
2705  	if (inode) {
2706  		unsigned add_flags = d_flags_for_inode(inode);
2707  		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2708  		raw_write_seqcount_begin(&dentry->d_seq);
2709  		__d_set_inode_and_type(dentry, inode, add_flags);
2710  		raw_write_seqcount_end(&dentry->d_seq);
2711  		fsnotify_update_flags(dentry);
2712  	}
2713  	__d_rehash(dentry);
2714  	if (dir)
2715  		end_dir_add(dir, n);
2716  	spin_unlock(&dentry->d_lock);
2717  	if (inode)
2718  		spin_unlock(&inode->i_lock);
2719  }
2720  
2721  /**
2722   * d_add - add dentry to hash queues
2723   * @entry: dentry to add
2724   * @inode: The inode to attach to this dentry
2725   *
2726   * This adds the entry to the hash queues and initializes @inode.
2727   * The entry was actually filled in earlier during d_alloc().
2728   */
2729  
2730  void d_add(struct dentry *entry, struct inode *inode)
2731  {
2732  	if (inode) {
2733  		security_d_instantiate(entry, inode);
2734  		spin_lock(&inode->i_lock);
2735  	}
2736  	__d_add(entry, inode);
2737  }
2738  EXPORT_SYMBOL(d_add);
2739  
2740  /**
2741   * d_exact_alias - find and hash an exact unhashed alias
2742   * @entry: dentry to add
2743   * @inode: The inode to go with this dentry
2744   *
2745   * If an unhashed dentry with the same name/parent and desired
2746   * inode already exists, hash and return it.  Otherwise, return
2747   * NULL.
2748   *
2749   * Parent directory should be locked.
2750   */
2751  struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2752  {
2753  	struct dentry *alias;
2754  	unsigned int hash = entry->d_name.hash;
2755  
2756  	spin_lock(&inode->i_lock);
2757  	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2758  		/*
2759  		 * Don't need alias->d_lock here, because aliases with
2760  		 * d_parent == entry->d_parent are not subject to name or
2761  		 * parent changes, because the parent inode i_mutex is held.
2762  		 */
2763  		if (alias->d_name.hash != hash)
2764  			continue;
2765  		if (alias->d_parent != entry->d_parent)
2766  			continue;
2767  		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2768  			continue;
2769  		spin_lock(&alias->d_lock);
2770  		if (!d_unhashed(alias)) {
2771  			spin_unlock(&alias->d_lock);
2772  			alias = NULL;
2773  		} else {
2774  			__dget_dlock(alias);
2775  			__d_rehash(alias);
2776  			spin_unlock(&alias->d_lock);
2777  		}
2778  		spin_unlock(&inode->i_lock);
2779  		return alias;
2780  	}
2781  	spin_unlock(&inode->i_lock);
2782  	return NULL;
2783  }
2784  EXPORT_SYMBOL(d_exact_alias);
2785  
2786  static void swap_names(struct dentry *dentry, struct dentry *target)
2787  {
2788  	if (unlikely(dname_external(target))) {
2789  		if (unlikely(dname_external(dentry))) {
2790  			/*
2791  			 * Both external: swap the pointers
2792  			 */
2793  			swap(target->d_name.name, dentry->d_name.name);
2794  		} else {
2795  			/*
2796  			 * dentry:internal, target:external.  Steal target's
2797  			 * storage and make target internal.
2798  			 */
2799  			memcpy(target->d_iname, dentry->d_name.name,
2800  					dentry->d_name.len + 1);
2801  			dentry->d_name.name = target->d_name.name;
2802  			target->d_name.name = target->d_iname;
2803  		}
2804  	} else {
2805  		if (unlikely(dname_external(dentry))) {
2806  			/*
2807  			 * dentry:external, target:internal.  Give dentry's
2808  			 * storage to target and make dentry internal
2809  			 */
2810  			memcpy(dentry->d_iname, target->d_name.name,
2811  					target->d_name.len + 1);
2812  			target->d_name.name = dentry->d_name.name;
2813  			dentry->d_name.name = dentry->d_iname;
2814  		} else {
2815  			/*
2816  			 * Both are internal.
2817  			 */
2818  			unsigned int i;
2819  			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2820  			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2821  				swap(((long *) &dentry->d_iname)[i],
2822  				     ((long *) &target->d_iname)[i]);
2823  			}
2824  		}
2825  	}
2826  	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2827  }
2828  
2829  static void copy_name(struct dentry *dentry, struct dentry *target)
2830  {
2831  	struct external_name *old_name = NULL;
2832  	if (unlikely(dname_external(dentry)))
2833  		old_name = external_name(dentry);
2834  	if (unlikely(dname_external(target))) {
2835  		atomic_inc(&external_name(target)->u.count);
2836  		dentry->d_name = target->d_name;
2837  	} else {
2838  		memcpy(dentry->d_iname, target->d_name.name,
2839  				target->d_name.len + 1);
2840  		dentry->d_name.name = dentry->d_iname;
2841  		dentry->d_name.hash_len = target->d_name.hash_len;
2842  	}
2843  	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2844  		kfree_rcu(old_name, u.head);
2845  }
2846  
2847  /*
2848   * __d_move - move a dentry
2849   * @dentry: entry to move
2850   * @target: new dentry
2851   * @exchange: exchange the two dentries
2852   *
2853   * Update the dcache to reflect the move of a file name. Negative
2854   * dcache entries should not be moved in this way. Caller must hold
2855   * rename_lock, the i_mutex of the source and target directories,
2856   * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2857   */
2858  static void __d_move(struct dentry *dentry, struct dentry *target,
2859  		     bool exchange)
2860  {
2861  	struct dentry *old_parent, *p;
2862  	struct inode *dir = NULL;
2863  	unsigned n;
2864  
2865  	WARN_ON(!dentry->d_inode);
2866  	if (WARN_ON(dentry == target))
2867  		return;
2868  
2869  	BUG_ON(d_ancestor(target, dentry));
2870  	old_parent = dentry->d_parent;
2871  	p = d_ancestor(old_parent, target);
2872  	if (IS_ROOT(dentry)) {
2873  		BUG_ON(p);
2874  		spin_lock(&target->d_parent->d_lock);
2875  	} else if (!p) {
2876  		/* target is not a descendent of dentry->d_parent */
2877  		spin_lock(&target->d_parent->d_lock);
2878  		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2879  	} else {
2880  		BUG_ON(p == dentry);
2881  		spin_lock(&old_parent->d_lock);
2882  		if (p != target)
2883  			spin_lock_nested(&target->d_parent->d_lock,
2884  					DENTRY_D_LOCK_NESTED);
2885  	}
2886  	spin_lock_nested(&dentry->d_lock, 2);
2887  	spin_lock_nested(&target->d_lock, 3);
2888  
2889  	if (unlikely(d_in_lookup(target))) {
2890  		dir = target->d_parent->d_inode;
2891  		n = start_dir_add(dir);
2892  		__d_lookup_done(target);
2893  	}
2894  
2895  	write_seqcount_begin(&dentry->d_seq);
2896  	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2897  
2898  	/* unhash both */
2899  	if (!d_unhashed(dentry))
2900  		___d_drop(dentry);
2901  	if (!d_unhashed(target))
2902  		___d_drop(target);
2903  
2904  	/* ... and switch them in the tree */
2905  	dentry->d_parent = target->d_parent;
2906  	if (!exchange) {
2907  		copy_name(dentry, target);
2908  		target->d_hash.pprev = NULL;
2909  		dentry->d_parent->d_lockref.count++;
2910  		if (dentry != old_parent) /* wasn't IS_ROOT */
2911  			WARN_ON(!--old_parent->d_lockref.count);
2912  	} else {
2913  		target->d_parent = old_parent;
2914  		swap_names(dentry, target);
2915  		list_move(&target->d_child, &target->d_parent->d_subdirs);
2916  		__d_rehash(target);
2917  		fsnotify_update_flags(target);
2918  	}
2919  	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2920  	__d_rehash(dentry);
2921  	fsnotify_update_flags(dentry);
2922  	fscrypt_handle_d_move(dentry);
2923  
2924  	write_seqcount_end(&target->d_seq);
2925  	write_seqcount_end(&dentry->d_seq);
2926  
2927  	if (dir)
2928  		end_dir_add(dir, n);
2929  
2930  	if (dentry->d_parent != old_parent)
2931  		spin_unlock(&dentry->d_parent->d_lock);
2932  	if (dentry != old_parent)
2933  		spin_unlock(&old_parent->d_lock);
2934  	spin_unlock(&target->d_lock);
2935  	spin_unlock(&dentry->d_lock);
2936  }
2937  
2938  /*
2939   * d_move - move a dentry
2940   * @dentry: entry to move
2941   * @target: new dentry
2942   *
2943   * Update the dcache to reflect the move of a file name. Negative
2944   * dcache entries should not be moved in this way. See the locking
2945   * requirements for __d_move.
2946   */
2947  void d_move(struct dentry *dentry, struct dentry *target)
2948  {
2949  	write_seqlock(&rename_lock);
2950  	__d_move(dentry, target, false);
2951  	write_sequnlock(&rename_lock);
2952  }
2953  EXPORT_SYMBOL(d_move);
2954  
2955  /*
2956   * d_exchange - exchange two dentries
2957   * @dentry1: first dentry
2958   * @dentry2: second dentry
2959   */
2960  void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2961  {
2962  	write_seqlock(&rename_lock);
2963  
2964  	WARN_ON(!dentry1->d_inode);
2965  	WARN_ON(!dentry2->d_inode);
2966  	WARN_ON(IS_ROOT(dentry1));
2967  	WARN_ON(IS_ROOT(dentry2));
2968  
2969  	__d_move(dentry1, dentry2, true);
2970  
2971  	write_sequnlock(&rename_lock);
2972  }
2973  
2974  /**
2975   * d_ancestor - search for an ancestor
2976   * @p1: ancestor dentry
2977   * @p2: child dentry
2978   *
2979   * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2980   * an ancestor of p2, else NULL.
2981   */
2982  struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2983  {
2984  	struct dentry *p;
2985  
2986  	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2987  		if (p->d_parent == p1)
2988  			return p;
2989  	}
2990  	return NULL;
2991  }
2992  
2993  /*
2994   * This helper attempts to cope with remotely renamed directories
2995   *
2996   * It assumes that the caller is already holding
2997   * dentry->d_parent->d_inode->i_mutex, and rename_lock
2998   *
2999   * Note: If ever the locking in lock_rename() changes, then please
3000   * remember to update this too...
3001   */
3002  static int __d_unalias(struct inode *inode,
3003  		struct dentry *dentry, struct dentry *alias)
3004  {
3005  	struct mutex *m1 = NULL;
3006  	struct rw_semaphore *m2 = NULL;
3007  	int ret = -ESTALE;
3008  
3009  	/* If alias and dentry share a parent, then no extra locks required */
3010  	if (alias->d_parent == dentry->d_parent)
3011  		goto out_unalias;
3012  
3013  	/* See lock_rename() */
3014  	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3015  		goto out_err;
3016  	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3017  	if (!inode_trylock_shared(alias->d_parent->d_inode))
3018  		goto out_err;
3019  	m2 = &alias->d_parent->d_inode->i_rwsem;
3020  out_unalias:
3021  	__d_move(alias, dentry, false);
3022  	ret = 0;
3023  out_err:
3024  	if (m2)
3025  		up_read(m2);
3026  	if (m1)
3027  		mutex_unlock(m1);
3028  	return ret;
3029  }
3030  
3031  /**
3032   * d_splice_alias - splice a disconnected dentry into the tree if one exists
3033   * @inode:  the inode which may have a disconnected dentry
3034   * @dentry: a negative dentry which we want to point to the inode.
3035   *
3036   * If inode is a directory and has an IS_ROOT alias, then d_move that in
3037   * place of the given dentry and return it, else simply d_add the inode
3038   * to the dentry and return NULL.
3039   *
3040   * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3041   * we should error out: directories can't have multiple aliases.
3042   *
3043   * This is needed in the lookup routine of any filesystem that is exportable
3044   * (via knfsd) so that we can build dcache paths to directories effectively.
3045   *
3046   * If a dentry was found and moved, then it is returned.  Otherwise NULL
3047   * is returned.  This matches the expected return value of ->lookup.
3048   *
3049   * Cluster filesystems may call this function with a negative, hashed dentry.
3050   * In that case, we know that the inode will be a regular file, and also this
3051   * will only occur during atomic_open. So we need to check for the dentry
3052   * being already hashed only in the final case.
3053   */
3054  struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3055  {
3056  	if (IS_ERR(inode))
3057  		return ERR_CAST(inode);
3058  
3059  	BUG_ON(!d_unhashed(dentry));
3060  
3061  	if (!inode)
3062  		goto out;
3063  
3064  	security_d_instantiate(dentry, inode);
3065  	spin_lock(&inode->i_lock);
3066  	if (S_ISDIR(inode->i_mode)) {
3067  		struct dentry *new = __d_find_any_alias(inode);
3068  		if (unlikely(new)) {
3069  			/* The reference to new ensures it remains an alias */
3070  			spin_unlock(&inode->i_lock);
3071  			write_seqlock(&rename_lock);
3072  			if (unlikely(d_ancestor(new, dentry))) {
3073  				write_sequnlock(&rename_lock);
3074  				dput(new);
3075  				new = ERR_PTR(-ELOOP);
3076  				pr_warn_ratelimited(
3077  					"VFS: Lookup of '%s' in %s %s"
3078  					" would have caused loop\n",
3079  					dentry->d_name.name,
3080  					inode->i_sb->s_type->name,
3081  					inode->i_sb->s_id);
3082  			} else if (!IS_ROOT(new)) {
3083  				struct dentry *old_parent = dget(new->d_parent);
3084  				int err = __d_unalias(inode, dentry, new);
3085  				write_sequnlock(&rename_lock);
3086  				if (err) {
3087  					dput(new);
3088  					new = ERR_PTR(err);
3089  				}
3090  				dput(old_parent);
3091  			} else {
3092  				__d_move(new, dentry, false);
3093  				write_sequnlock(&rename_lock);
3094  			}
3095  			iput(inode);
3096  			return new;
3097  		}
3098  	}
3099  out:
3100  	__d_add(dentry, inode);
3101  	return NULL;
3102  }
3103  EXPORT_SYMBOL(d_splice_alias);
3104  
3105  /*
3106   * Test whether new_dentry is a subdirectory of old_dentry.
3107   *
3108   * Trivially implemented using the dcache structure
3109   */
3110  
3111  /**
3112   * is_subdir - is new dentry a subdirectory of old_dentry
3113   * @new_dentry: new dentry
3114   * @old_dentry: old dentry
3115   *
3116   * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3117   * Returns false otherwise.
3118   * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3119   */
3120  
3121  bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3122  {
3123  	bool result;
3124  	unsigned seq;
3125  
3126  	if (new_dentry == old_dentry)
3127  		return true;
3128  
3129  	do {
3130  		/* for restarting inner loop in case of seq retry */
3131  		seq = read_seqbegin(&rename_lock);
3132  		/*
3133  		 * Need rcu_readlock to protect against the d_parent trashing
3134  		 * due to d_move
3135  		 */
3136  		rcu_read_lock();
3137  		if (d_ancestor(old_dentry, new_dentry))
3138  			result = true;
3139  		else
3140  			result = false;
3141  		rcu_read_unlock();
3142  	} while (read_seqretry(&rename_lock, seq));
3143  
3144  	return result;
3145  }
3146  EXPORT_SYMBOL(is_subdir);
3147  
3148  static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3149  {
3150  	struct dentry *root = data;
3151  	if (dentry != root) {
3152  		if (d_unhashed(dentry) || !dentry->d_inode)
3153  			return D_WALK_SKIP;
3154  
3155  		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3156  			dentry->d_flags |= DCACHE_GENOCIDE;
3157  			dentry->d_lockref.count--;
3158  		}
3159  	}
3160  	return D_WALK_CONTINUE;
3161  }
3162  
3163  void d_genocide(struct dentry *parent)
3164  {
3165  	d_walk(parent, parent, d_genocide_kill);
3166  }
3167  
3168  EXPORT_SYMBOL(d_genocide);
3169  
3170  void d_tmpfile(struct dentry *dentry, struct inode *inode)
3171  {
3172  	inode_dec_link_count(inode);
3173  	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3174  		!hlist_unhashed(&dentry->d_u.d_alias) ||
3175  		!d_unlinked(dentry));
3176  	spin_lock(&dentry->d_parent->d_lock);
3177  	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3178  	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3179  				(unsigned long long)inode->i_ino);
3180  	spin_unlock(&dentry->d_lock);
3181  	spin_unlock(&dentry->d_parent->d_lock);
3182  	d_instantiate(dentry, inode);
3183  }
3184  EXPORT_SYMBOL(d_tmpfile);
3185  
3186  static __initdata unsigned long dhash_entries;
3187  static int __init set_dhash_entries(char *str)
3188  {
3189  	if (!str)
3190  		return 0;
3191  	dhash_entries = simple_strtoul(str, &str, 0);
3192  	return 1;
3193  }
3194  __setup("dhash_entries=", set_dhash_entries);
3195  
3196  static void __init dcache_init_early(void)
3197  {
3198  	/* If hashes are distributed across NUMA nodes, defer
3199  	 * hash allocation until vmalloc space is available.
3200  	 */
3201  	if (hashdist)
3202  		return;
3203  
3204  	dentry_hashtable =
3205  		alloc_large_system_hash("Dentry cache",
3206  					sizeof(struct hlist_bl_head),
3207  					dhash_entries,
3208  					13,
3209  					HASH_EARLY | HASH_ZERO,
3210  					&d_hash_shift,
3211  					NULL,
3212  					0,
3213  					0);
3214  	d_hash_shift = 32 - d_hash_shift;
3215  }
3216  
3217  static void __init dcache_init(void)
3218  {
3219  	/*
3220  	 * A constructor could be added for stable state like the lists,
3221  	 * but it is probably not worth it because of the cache nature
3222  	 * of the dcache.
3223  	 */
3224  	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3225  		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3226  		d_iname);
3227  
3228  	/* Hash may have been set up in dcache_init_early */
3229  	if (!hashdist)
3230  		return;
3231  
3232  	dentry_hashtable =
3233  		alloc_large_system_hash("Dentry cache",
3234  					sizeof(struct hlist_bl_head),
3235  					dhash_entries,
3236  					13,
3237  					HASH_ZERO,
3238  					&d_hash_shift,
3239  					NULL,
3240  					0,
3241  					0);
3242  	d_hash_shift = 32 - d_hash_shift;
3243  }
3244  
3245  /* SLAB cache for __getname() consumers */
3246  struct kmem_cache *names_cachep __read_mostly;
3247  EXPORT_SYMBOL(names_cachep);
3248  
3249  void __init vfs_caches_init_early(void)
3250  {
3251  	int i;
3252  
3253  	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3254  		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3255  
3256  	dcache_init_early();
3257  	inode_init_early();
3258  }
3259  
3260  void __init vfs_caches_init(void)
3261  {
3262  	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3263  			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3264  
3265  	dcache_init();
3266  	inode_init();
3267  	files_init();
3268  	files_maxfiles_init();
3269  	mnt_init();
3270  	bdev_cache_init();
3271  	chrdev_init();
3272  }
3273