xref: /linux/fs/dcache.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 static seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static kmem_cache_t *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 static LIST_HEAD(dentry_unused);
65 
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat = {
68 	.age_limit = 45,
69 };
70 
71 static void d_callback(struct rcu_head *head)
72 {
73 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
74 
75 	if (dname_external(dentry))
76 		kfree(dentry->d_name.name);
77 	kmem_cache_free(dentry_cache, dentry);
78 }
79 
80 /*
81  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
82  * inside dcache_lock.
83  */
84 static void d_free(struct dentry *dentry)
85 {
86 	if (dentry->d_op && dentry->d_op->d_release)
87 		dentry->d_op->d_release(dentry);
88  	call_rcu(&dentry->d_u.d_rcu, d_callback);
89 }
90 
91 /*
92  * Release the dentry's inode, using the filesystem
93  * d_iput() operation if defined.
94  * Called with dcache_lock and per dentry lock held, drops both.
95  */
96 static void dentry_iput(struct dentry * dentry)
97 {
98 	struct inode *inode = dentry->d_inode;
99 	if (inode) {
100 		dentry->d_inode = NULL;
101 		list_del_init(&dentry->d_alias);
102 		spin_unlock(&dentry->d_lock);
103 		spin_unlock(&dcache_lock);
104 		if (!inode->i_nlink)
105 			fsnotify_inoderemove(inode);
106 		if (dentry->d_op && dentry->d_op->d_iput)
107 			dentry->d_op->d_iput(dentry, inode);
108 		else
109 			iput(inode);
110 	} else {
111 		spin_unlock(&dentry->d_lock);
112 		spin_unlock(&dcache_lock);
113 	}
114 }
115 
116 /*
117  * This is dput
118  *
119  * This is complicated by the fact that we do not want to put
120  * dentries that are no longer on any hash chain on the unused
121  * list: we'd much rather just get rid of them immediately.
122  *
123  * However, that implies that we have to traverse the dentry
124  * tree upwards to the parents which might _also_ now be
125  * scheduled for deletion (it may have been only waiting for
126  * its last child to go away).
127  *
128  * This tail recursion is done by hand as we don't want to depend
129  * on the compiler to always get this right (gcc generally doesn't).
130  * Real recursion would eat up our stack space.
131  */
132 
133 /*
134  * dput - release a dentry
135  * @dentry: dentry to release
136  *
137  * Release a dentry. This will drop the usage count and if appropriate
138  * call the dentry unlink method as well as removing it from the queues and
139  * releasing its resources. If the parent dentries were scheduled for release
140  * they too may now get deleted.
141  *
142  * no dcache lock, please.
143  */
144 
145 void dput(struct dentry *dentry)
146 {
147 	if (!dentry)
148 		return;
149 
150 repeat:
151 	if (atomic_read(&dentry->d_count) == 1)
152 		might_sleep();
153 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
154 		return;
155 
156 	spin_lock(&dentry->d_lock);
157 	if (atomic_read(&dentry->d_count)) {
158 		spin_unlock(&dentry->d_lock);
159 		spin_unlock(&dcache_lock);
160 		return;
161 	}
162 
163 	/*
164 	 * AV: ->d_delete() is _NOT_ allowed to block now.
165 	 */
166 	if (dentry->d_op && dentry->d_op->d_delete) {
167 		if (dentry->d_op->d_delete(dentry))
168 			goto unhash_it;
169 	}
170 	/* Unreachable? Get rid of it */
171  	if (d_unhashed(dentry))
172 		goto kill_it;
173   	if (list_empty(&dentry->d_lru)) {
174   		dentry->d_flags |= DCACHE_REFERENCED;
175   		list_add(&dentry->d_lru, &dentry_unused);
176   		dentry_stat.nr_unused++;
177   	}
178  	spin_unlock(&dentry->d_lock);
179 	spin_unlock(&dcache_lock);
180 	return;
181 
182 unhash_it:
183 	__d_drop(dentry);
184 
185 kill_it: {
186 		struct dentry *parent;
187 
188 		/* If dentry was on d_lru list
189 		 * delete it from there
190 		 */
191   		if (!list_empty(&dentry->d_lru)) {
192   			list_del(&dentry->d_lru);
193   			dentry_stat.nr_unused--;
194   		}
195   		list_del(&dentry->d_u.d_child);
196 		dentry_stat.nr_dentry--;	/* For d_free, below */
197 		/*drops the locks, at that point nobody can reach this dentry */
198 		dentry_iput(dentry);
199 		parent = dentry->d_parent;
200 		d_free(dentry);
201 		if (dentry == parent)
202 			return;
203 		dentry = parent;
204 		goto repeat;
205 	}
206 }
207 
208 /**
209  * d_invalidate - invalidate a dentry
210  * @dentry: dentry to invalidate
211  *
212  * Try to invalidate the dentry if it turns out to be
213  * possible. If there are other dentries that can be
214  * reached through this one we can't delete it and we
215  * return -EBUSY. On success we return 0.
216  *
217  * no dcache lock.
218  */
219 
220 int d_invalidate(struct dentry * dentry)
221 {
222 	/*
223 	 * If it's already been dropped, return OK.
224 	 */
225 	spin_lock(&dcache_lock);
226 	if (d_unhashed(dentry)) {
227 		spin_unlock(&dcache_lock);
228 		return 0;
229 	}
230 	/*
231 	 * Check whether to do a partial shrink_dcache
232 	 * to get rid of unused child entries.
233 	 */
234 	if (!list_empty(&dentry->d_subdirs)) {
235 		spin_unlock(&dcache_lock);
236 		shrink_dcache_parent(dentry);
237 		spin_lock(&dcache_lock);
238 	}
239 
240 	/*
241 	 * Somebody else still using it?
242 	 *
243 	 * If it's a directory, we can't drop it
244 	 * for fear of somebody re-populating it
245 	 * with children (even though dropping it
246 	 * would make it unreachable from the root,
247 	 * we might still populate it if it was a
248 	 * working directory or similar).
249 	 */
250 	spin_lock(&dentry->d_lock);
251 	if (atomic_read(&dentry->d_count) > 1) {
252 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
253 			spin_unlock(&dentry->d_lock);
254 			spin_unlock(&dcache_lock);
255 			return -EBUSY;
256 		}
257 	}
258 
259 	__d_drop(dentry);
260 	spin_unlock(&dentry->d_lock);
261 	spin_unlock(&dcache_lock);
262 	return 0;
263 }
264 
265 /* This should be called _only_ with dcache_lock held */
266 
267 static inline struct dentry * __dget_locked(struct dentry *dentry)
268 {
269 	atomic_inc(&dentry->d_count);
270 	if (!list_empty(&dentry->d_lru)) {
271 		dentry_stat.nr_unused--;
272 		list_del_init(&dentry->d_lru);
273 	}
274 	return dentry;
275 }
276 
277 struct dentry * dget_locked(struct dentry *dentry)
278 {
279 	return __dget_locked(dentry);
280 }
281 
282 /**
283  * d_find_alias - grab a hashed alias of inode
284  * @inode: inode in question
285  * @want_discon:  flag, used by d_splice_alias, to request
286  *          that only a DISCONNECTED alias be returned.
287  *
288  * If inode has a hashed alias, or is a directory and has any alias,
289  * acquire the reference to alias and return it. Otherwise return NULL.
290  * Notice that if inode is a directory there can be only one alias and
291  * it can be unhashed only if it has no children, or if it is the root
292  * of a filesystem.
293  *
294  * If the inode has a DCACHE_DISCONNECTED alias, then prefer
295  * any other hashed alias over that one unless @want_discon is set,
296  * in which case only return a DCACHE_DISCONNECTED alias.
297  */
298 
299 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
300 {
301 	struct list_head *head, *next, *tmp;
302 	struct dentry *alias, *discon_alias=NULL;
303 
304 	head = &inode->i_dentry;
305 	next = inode->i_dentry.next;
306 	while (next != head) {
307 		tmp = next;
308 		next = tmp->next;
309 		prefetch(next);
310 		alias = list_entry(tmp, struct dentry, d_alias);
311  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
312 			if (alias->d_flags & DCACHE_DISCONNECTED)
313 				discon_alias = alias;
314 			else if (!want_discon) {
315 				__dget_locked(alias);
316 				return alias;
317 			}
318 		}
319 	}
320 	if (discon_alias)
321 		__dget_locked(discon_alias);
322 	return discon_alias;
323 }
324 
325 struct dentry * d_find_alias(struct inode *inode)
326 {
327 	struct dentry *de = NULL;
328 
329 	if (!list_empty(&inode->i_dentry)) {
330 		spin_lock(&dcache_lock);
331 		de = __d_find_alias(inode, 0);
332 		spin_unlock(&dcache_lock);
333 	}
334 	return de;
335 }
336 
337 /*
338  *	Try to kill dentries associated with this inode.
339  * WARNING: you must own a reference to inode.
340  */
341 void d_prune_aliases(struct inode *inode)
342 {
343 	struct dentry *dentry;
344 restart:
345 	spin_lock(&dcache_lock);
346 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
347 		spin_lock(&dentry->d_lock);
348 		if (!atomic_read(&dentry->d_count)) {
349 			__dget_locked(dentry);
350 			__d_drop(dentry);
351 			spin_unlock(&dentry->d_lock);
352 			spin_unlock(&dcache_lock);
353 			dput(dentry);
354 			goto restart;
355 		}
356 		spin_unlock(&dentry->d_lock);
357 	}
358 	spin_unlock(&dcache_lock);
359 }
360 
361 /*
362  * Throw away a dentry - free the inode, dput the parent.
363  * This requires that the LRU list has already been
364  * removed.
365  * Called with dcache_lock, drops it and then regains.
366  */
367 static inline void prune_one_dentry(struct dentry * dentry)
368 {
369 	struct dentry * parent;
370 
371 	__d_drop(dentry);
372 	list_del(&dentry->d_u.d_child);
373 	dentry_stat.nr_dentry--;	/* For d_free, below */
374 	dentry_iput(dentry);
375 	parent = dentry->d_parent;
376 	d_free(dentry);
377 	if (parent != dentry)
378 		dput(parent);
379 	spin_lock(&dcache_lock);
380 }
381 
382 /**
383  * prune_dcache - shrink the dcache
384  * @count: number of entries to try and free
385  *
386  * Shrink the dcache. This is done when we need
387  * more memory, or simply when we need to unmount
388  * something (at which point we need to unuse
389  * all dentries).
390  *
391  * This function may fail to free any resources if
392  * all the dentries are in use.
393  */
394 
395 static void prune_dcache(int count)
396 {
397 	spin_lock(&dcache_lock);
398 	for (; count ; count--) {
399 		struct dentry *dentry;
400 		struct list_head *tmp;
401 
402 		cond_resched_lock(&dcache_lock);
403 
404 		tmp = dentry_unused.prev;
405 		if (tmp == &dentry_unused)
406 			break;
407 		list_del_init(tmp);
408 		prefetch(dentry_unused.prev);
409  		dentry_stat.nr_unused--;
410 		dentry = list_entry(tmp, struct dentry, d_lru);
411 
412  		spin_lock(&dentry->d_lock);
413 		/*
414 		 * We found an inuse dentry which was not removed from
415 		 * dentry_unused because of laziness during lookup.  Do not free
416 		 * it - just keep it off the dentry_unused list.
417 		 */
418  		if (atomic_read(&dentry->d_count)) {
419  			spin_unlock(&dentry->d_lock);
420 			continue;
421 		}
422 		/* If the dentry was recently referenced, don't free it. */
423 		if (dentry->d_flags & DCACHE_REFERENCED) {
424 			dentry->d_flags &= ~DCACHE_REFERENCED;
425  			list_add(&dentry->d_lru, &dentry_unused);
426  			dentry_stat.nr_unused++;
427  			spin_unlock(&dentry->d_lock);
428 			continue;
429 		}
430 		prune_one_dentry(dentry);
431 	}
432 	spin_unlock(&dcache_lock);
433 }
434 
435 /*
436  * Shrink the dcache for the specified super block.
437  * This allows us to unmount a device without disturbing
438  * the dcache for the other devices.
439  *
440  * This implementation makes just two traversals of the
441  * unused list.  On the first pass we move the selected
442  * dentries to the most recent end, and on the second
443  * pass we free them.  The second pass must restart after
444  * each dput(), but since the target dentries are all at
445  * the end, it's really just a single traversal.
446  */
447 
448 /**
449  * shrink_dcache_sb - shrink dcache for a superblock
450  * @sb: superblock
451  *
452  * Shrink the dcache for the specified super block. This
453  * is used to free the dcache before unmounting a file
454  * system
455  */
456 
457 void shrink_dcache_sb(struct super_block * sb)
458 {
459 	struct list_head *tmp, *next;
460 	struct dentry *dentry;
461 
462 	/*
463 	 * Pass one ... move the dentries for the specified
464 	 * superblock to the most recent end of the unused list.
465 	 */
466 	spin_lock(&dcache_lock);
467 	list_for_each_safe(tmp, next, &dentry_unused) {
468 		dentry = list_entry(tmp, struct dentry, d_lru);
469 		if (dentry->d_sb != sb)
470 			continue;
471 		list_del(tmp);
472 		list_add(tmp, &dentry_unused);
473 	}
474 
475 	/*
476 	 * Pass two ... free the dentries for this superblock.
477 	 */
478 repeat:
479 	list_for_each_safe(tmp, next, &dentry_unused) {
480 		dentry = list_entry(tmp, struct dentry, d_lru);
481 		if (dentry->d_sb != sb)
482 			continue;
483 		dentry_stat.nr_unused--;
484 		list_del_init(tmp);
485 		spin_lock(&dentry->d_lock);
486 		if (atomic_read(&dentry->d_count)) {
487 			spin_unlock(&dentry->d_lock);
488 			continue;
489 		}
490 		prune_one_dentry(dentry);
491 		cond_resched_lock(&dcache_lock);
492 		goto repeat;
493 	}
494 	spin_unlock(&dcache_lock);
495 }
496 
497 /*
498  * Search for at least 1 mount point in the dentry's subdirs.
499  * We descend to the next level whenever the d_subdirs
500  * list is non-empty and continue searching.
501  */
502 
503 /**
504  * have_submounts - check for mounts over a dentry
505  * @parent: dentry to check.
506  *
507  * Return true if the parent or its subdirectories contain
508  * a mount point
509  */
510 
511 int have_submounts(struct dentry *parent)
512 {
513 	struct dentry *this_parent = parent;
514 	struct list_head *next;
515 
516 	spin_lock(&dcache_lock);
517 	if (d_mountpoint(parent))
518 		goto positive;
519 repeat:
520 	next = this_parent->d_subdirs.next;
521 resume:
522 	while (next != &this_parent->d_subdirs) {
523 		struct list_head *tmp = next;
524 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
525 		next = tmp->next;
526 		/* Have we found a mount point ? */
527 		if (d_mountpoint(dentry))
528 			goto positive;
529 		if (!list_empty(&dentry->d_subdirs)) {
530 			this_parent = dentry;
531 			goto repeat;
532 		}
533 	}
534 	/*
535 	 * All done at this level ... ascend and resume the search.
536 	 */
537 	if (this_parent != parent) {
538 		next = this_parent->d_u.d_child.next;
539 		this_parent = this_parent->d_parent;
540 		goto resume;
541 	}
542 	spin_unlock(&dcache_lock);
543 	return 0; /* No mount points found in tree */
544 positive:
545 	spin_unlock(&dcache_lock);
546 	return 1;
547 }
548 
549 /*
550  * Search the dentry child list for the specified parent,
551  * and move any unused dentries to the end of the unused
552  * list for prune_dcache(). We descend to the next level
553  * whenever the d_subdirs list is non-empty and continue
554  * searching.
555  *
556  * It returns zero iff there are no unused children,
557  * otherwise  it returns the number of children moved to
558  * the end of the unused list. This may not be the total
559  * number of unused children, because select_parent can
560  * drop the lock and return early due to latency
561  * constraints.
562  */
563 static int select_parent(struct dentry * parent)
564 {
565 	struct dentry *this_parent = parent;
566 	struct list_head *next;
567 	int found = 0;
568 
569 	spin_lock(&dcache_lock);
570 repeat:
571 	next = this_parent->d_subdirs.next;
572 resume:
573 	while (next != &this_parent->d_subdirs) {
574 		struct list_head *tmp = next;
575 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
576 		next = tmp->next;
577 
578 		if (!list_empty(&dentry->d_lru)) {
579 			dentry_stat.nr_unused--;
580 			list_del_init(&dentry->d_lru);
581 		}
582 		/*
583 		 * move only zero ref count dentries to the end
584 		 * of the unused list for prune_dcache
585 		 */
586 		if (!atomic_read(&dentry->d_count)) {
587 			list_add(&dentry->d_lru, dentry_unused.prev);
588 			dentry_stat.nr_unused++;
589 			found++;
590 		}
591 
592 		/*
593 		 * We can return to the caller if we have found some (this
594 		 * ensures forward progress). We'll be coming back to find
595 		 * the rest.
596 		 */
597 		if (found && need_resched())
598 			goto out;
599 
600 		/*
601 		 * Descend a level if the d_subdirs list is non-empty.
602 		 */
603 		if (!list_empty(&dentry->d_subdirs)) {
604 			this_parent = dentry;
605 			goto repeat;
606 		}
607 	}
608 	/*
609 	 * All done at this level ... ascend and resume the search.
610 	 */
611 	if (this_parent != parent) {
612 		next = this_parent->d_u.d_child.next;
613 		this_parent = this_parent->d_parent;
614 		goto resume;
615 	}
616 out:
617 	spin_unlock(&dcache_lock);
618 	return found;
619 }
620 
621 /**
622  * shrink_dcache_parent - prune dcache
623  * @parent: parent of entries to prune
624  *
625  * Prune the dcache to remove unused children of the parent dentry.
626  */
627 
628 void shrink_dcache_parent(struct dentry * parent)
629 {
630 	int found;
631 
632 	while ((found = select_parent(parent)) != 0)
633 		prune_dcache(found);
634 }
635 
636 /**
637  * shrink_dcache_anon - further prune the cache
638  * @head: head of d_hash list of dentries to prune
639  *
640  * Prune the dentries that are anonymous
641  *
642  * parsing d_hash list does not hlist_for_each_entry_rcu() as it
643  * done under dcache_lock.
644  *
645  */
646 void shrink_dcache_anon(struct hlist_head *head)
647 {
648 	struct hlist_node *lp;
649 	int found;
650 	do {
651 		found = 0;
652 		spin_lock(&dcache_lock);
653 		hlist_for_each(lp, head) {
654 			struct dentry *this = hlist_entry(lp, struct dentry, d_hash);
655 			if (!list_empty(&this->d_lru)) {
656 				dentry_stat.nr_unused--;
657 				list_del_init(&this->d_lru);
658 			}
659 
660 			/*
661 			 * move only zero ref count dentries to the end
662 			 * of the unused list for prune_dcache
663 			 */
664 			if (!atomic_read(&this->d_count)) {
665 				list_add_tail(&this->d_lru, &dentry_unused);
666 				dentry_stat.nr_unused++;
667 				found++;
668 			}
669 		}
670 		spin_unlock(&dcache_lock);
671 		prune_dcache(found);
672 	} while(found);
673 }
674 
675 /*
676  * Scan `nr' dentries and return the number which remain.
677  *
678  * We need to avoid reentering the filesystem if the caller is performing a
679  * GFP_NOFS allocation attempt.  One example deadlock is:
680  *
681  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
682  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
683  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
684  *
685  * In this case we return -1 to tell the caller that we baled.
686  */
687 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
688 {
689 	if (nr) {
690 		if (!(gfp_mask & __GFP_FS))
691 			return -1;
692 		prune_dcache(nr);
693 	}
694 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
695 }
696 
697 /**
698  * d_alloc	-	allocate a dcache entry
699  * @parent: parent of entry to allocate
700  * @name: qstr of the name
701  *
702  * Allocates a dentry. It returns %NULL if there is insufficient memory
703  * available. On a success the dentry is returned. The name passed in is
704  * copied and the copy passed in may be reused after this call.
705  */
706 
707 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
708 {
709 	struct dentry *dentry;
710 	char *dname;
711 
712 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
713 	if (!dentry)
714 		return NULL;
715 
716 	if (name->len > DNAME_INLINE_LEN-1) {
717 		dname = kmalloc(name->len + 1, GFP_KERNEL);
718 		if (!dname) {
719 			kmem_cache_free(dentry_cache, dentry);
720 			return NULL;
721 		}
722 	} else  {
723 		dname = dentry->d_iname;
724 	}
725 	dentry->d_name.name = dname;
726 
727 	dentry->d_name.len = name->len;
728 	dentry->d_name.hash = name->hash;
729 	memcpy(dname, name->name, name->len);
730 	dname[name->len] = 0;
731 
732 	atomic_set(&dentry->d_count, 1);
733 	dentry->d_flags = DCACHE_UNHASHED;
734 	spin_lock_init(&dentry->d_lock);
735 	dentry->d_inode = NULL;
736 	dentry->d_parent = NULL;
737 	dentry->d_sb = NULL;
738 	dentry->d_op = NULL;
739 	dentry->d_fsdata = NULL;
740 	dentry->d_mounted = 0;
741 #ifdef CONFIG_PROFILING
742 	dentry->d_cookie = NULL;
743 #endif
744 	INIT_HLIST_NODE(&dentry->d_hash);
745 	INIT_LIST_HEAD(&dentry->d_lru);
746 	INIT_LIST_HEAD(&dentry->d_subdirs);
747 	INIT_LIST_HEAD(&dentry->d_alias);
748 
749 	if (parent) {
750 		dentry->d_parent = dget(parent);
751 		dentry->d_sb = parent->d_sb;
752 	} else {
753 		INIT_LIST_HEAD(&dentry->d_u.d_child);
754 	}
755 
756 	spin_lock(&dcache_lock);
757 	if (parent)
758 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
759 	dentry_stat.nr_dentry++;
760 	spin_unlock(&dcache_lock);
761 
762 	return dentry;
763 }
764 
765 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
766 {
767 	struct qstr q;
768 
769 	q.name = name;
770 	q.len = strlen(name);
771 	q.hash = full_name_hash(q.name, q.len);
772 	return d_alloc(parent, &q);
773 }
774 
775 /**
776  * d_instantiate - fill in inode information for a dentry
777  * @entry: dentry to complete
778  * @inode: inode to attach to this dentry
779  *
780  * Fill in inode information in the entry.
781  *
782  * This turns negative dentries into productive full members
783  * of society.
784  *
785  * NOTE! This assumes that the inode count has been incremented
786  * (or otherwise set) by the caller to indicate that it is now
787  * in use by the dcache.
788  */
789 
790 void d_instantiate(struct dentry *entry, struct inode * inode)
791 {
792 	BUG_ON(!list_empty(&entry->d_alias));
793 	spin_lock(&dcache_lock);
794 	if (inode)
795 		list_add(&entry->d_alias, &inode->i_dentry);
796 	entry->d_inode = inode;
797 	fsnotify_d_instantiate(entry, inode);
798 	spin_unlock(&dcache_lock);
799 	security_d_instantiate(entry, inode);
800 }
801 
802 /**
803  * d_instantiate_unique - instantiate a non-aliased dentry
804  * @entry: dentry to instantiate
805  * @inode: inode to attach to this dentry
806  *
807  * Fill in inode information in the entry. On success, it returns NULL.
808  * If an unhashed alias of "entry" already exists, then we return the
809  * aliased dentry instead and drop one reference to inode.
810  *
811  * Note that in order to avoid conflicts with rename() etc, the caller
812  * had better be holding the parent directory semaphore.
813  *
814  * This also assumes that the inode count has been incremented
815  * (or otherwise set) by the caller to indicate that it is now
816  * in use by the dcache.
817  */
818 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
819 {
820 	struct dentry *alias;
821 	int len = entry->d_name.len;
822 	const char *name = entry->d_name.name;
823 	unsigned int hash = entry->d_name.hash;
824 
825 	BUG_ON(!list_empty(&entry->d_alias));
826 	spin_lock(&dcache_lock);
827 	if (!inode)
828 		goto do_negative;
829 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
830 		struct qstr *qstr = &alias->d_name;
831 
832 		if (qstr->hash != hash)
833 			continue;
834 		if (alias->d_parent != entry->d_parent)
835 			continue;
836 		if (qstr->len != len)
837 			continue;
838 		if (memcmp(qstr->name, name, len))
839 			continue;
840 		dget_locked(alias);
841 		spin_unlock(&dcache_lock);
842 		BUG_ON(!d_unhashed(alias));
843 		iput(inode);
844 		return alias;
845 	}
846 	list_add(&entry->d_alias, &inode->i_dentry);
847 do_negative:
848 	entry->d_inode = inode;
849 	fsnotify_d_instantiate(entry, inode);
850 	spin_unlock(&dcache_lock);
851 	security_d_instantiate(entry, inode);
852 	return NULL;
853 }
854 EXPORT_SYMBOL(d_instantiate_unique);
855 
856 /**
857  * d_alloc_root - allocate root dentry
858  * @root_inode: inode to allocate the root for
859  *
860  * Allocate a root ("/") dentry for the inode given. The inode is
861  * instantiated and returned. %NULL is returned if there is insufficient
862  * memory or the inode passed is %NULL.
863  */
864 
865 struct dentry * d_alloc_root(struct inode * root_inode)
866 {
867 	struct dentry *res = NULL;
868 
869 	if (root_inode) {
870 		static const struct qstr name = { .name = "/", .len = 1 };
871 
872 		res = d_alloc(NULL, &name);
873 		if (res) {
874 			res->d_sb = root_inode->i_sb;
875 			res->d_parent = res;
876 			d_instantiate(res, root_inode);
877 		}
878 	}
879 	return res;
880 }
881 
882 static inline struct hlist_head *d_hash(struct dentry *parent,
883 					unsigned long hash)
884 {
885 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
886 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
887 	return dentry_hashtable + (hash & D_HASHMASK);
888 }
889 
890 /**
891  * d_alloc_anon - allocate an anonymous dentry
892  * @inode: inode to allocate the dentry for
893  *
894  * This is similar to d_alloc_root.  It is used by filesystems when
895  * creating a dentry for a given inode, often in the process of
896  * mapping a filehandle to a dentry.  The returned dentry may be
897  * anonymous, or may have a full name (if the inode was already
898  * in the cache).  The file system may need to make further
899  * efforts to connect this dentry into the dcache properly.
900  *
901  * When called on a directory inode, we must ensure that
902  * the inode only ever has one dentry.  If a dentry is
903  * found, that is returned instead of allocating a new one.
904  *
905  * On successful return, the reference to the inode has been transferred
906  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
907  * the reference on the inode has not been released.
908  */
909 
910 struct dentry * d_alloc_anon(struct inode *inode)
911 {
912 	static const struct qstr anonstring = { .name = "" };
913 	struct dentry *tmp;
914 	struct dentry *res;
915 
916 	if ((res = d_find_alias(inode))) {
917 		iput(inode);
918 		return res;
919 	}
920 
921 	tmp = d_alloc(NULL, &anonstring);
922 	if (!tmp)
923 		return NULL;
924 
925 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
926 
927 	spin_lock(&dcache_lock);
928 	res = __d_find_alias(inode, 0);
929 	if (!res) {
930 		/* attach a disconnected dentry */
931 		res = tmp;
932 		tmp = NULL;
933 		spin_lock(&res->d_lock);
934 		res->d_sb = inode->i_sb;
935 		res->d_parent = res;
936 		res->d_inode = inode;
937 		res->d_flags |= DCACHE_DISCONNECTED;
938 		res->d_flags &= ~DCACHE_UNHASHED;
939 		list_add(&res->d_alias, &inode->i_dentry);
940 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
941 		spin_unlock(&res->d_lock);
942 
943 		inode = NULL; /* don't drop reference */
944 	}
945 	spin_unlock(&dcache_lock);
946 
947 	if (inode)
948 		iput(inode);
949 	if (tmp)
950 		dput(tmp);
951 	return res;
952 }
953 
954 
955 /**
956  * d_splice_alias - splice a disconnected dentry into the tree if one exists
957  * @inode:  the inode which may have a disconnected dentry
958  * @dentry: a negative dentry which we want to point to the inode.
959  *
960  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
961  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
962  * and return it, else simply d_add the inode to the dentry and return NULL.
963  *
964  * This is needed in the lookup routine of any filesystem that is exportable
965  * (via knfsd) so that we can build dcache paths to directories effectively.
966  *
967  * If a dentry was found and moved, then it is returned.  Otherwise NULL
968  * is returned.  This matches the expected return value of ->lookup.
969  *
970  */
971 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
972 {
973 	struct dentry *new = NULL;
974 
975 	if (inode) {
976 		spin_lock(&dcache_lock);
977 		new = __d_find_alias(inode, 1);
978 		if (new) {
979 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
980 			fsnotify_d_instantiate(new, inode);
981 			spin_unlock(&dcache_lock);
982 			security_d_instantiate(new, inode);
983 			d_rehash(dentry);
984 			d_move(new, dentry);
985 			iput(inode);
986 		} else {
987 			/* d_instantiate takes dcache_lock, so we do it by hand */
988 			list_add(&dentry->d_alias, &inode->i_dentry);
989 			dentry->d_inode = inode;
990 			fsnotify_d_instantiate(dentry, inode);
991 			spin_unlock(&dcache_lock);
992 			security_d_instantiate(dentry, inode);
993 			d_rehash(dentry);
994 		}
995 	} else
996 		d_add(dentry, inode);
997 	return new;
998 }
999 
1000 
1001 /**
1002  * d_lookup - search for a dentry
1003  * @parent: parent dentry
1004  * @name: qstr of name we wish to find
1005  *
1006  * Searches the children of the parent dentry for the name in question. If
1007  * the dentry is found its reference count is incremented and the dentry
1008  * is returned. The caller must use d_put to free the entry when it has
1009  * finished using it. %NULL is returned on failure.
1010  *
1011  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1012  * Memory barriers are used while updating and doing lockless traversal.
1013  * To avoid races with d_move while rename is happening, d_lock is used.
1014  *
1015  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1016  * and name pointer in one structure pointed by d_qstr.
1017  *
1018  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1019  * lookup is going on.
1020  *
1021  * dentry_unused list is not updated even if lookup finds the required dentry
1022  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1023  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1024  * acquisition.
1025  *
1026  * d_lookup() is protected against the concurrent renames in some unrelated
1027  * directory using the seqlockt_t rename_lock.
1028  */
1029 
1030 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1031 {
1032 	struct dentry * dentry = NULL;
1033 	unsigned long seq;
1034 
1035         do {
1036                 seq = read_seqbegin(&rename_lock);
1037                 dentry = __d_lookup(parent, name);
1038                 if (dentry)
1039 			break;
1040 	} while (read_seqretry(&rename_lock, seq));
1041 	return dentry;
1042 }
1043 
1044 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1045 {
1046 	unsigned int len = name->len;
1047 	unsigned int hash = name->hash;
1048 	const unsigned char *str = name->name;
1049 	struct hlist_head *head = d_hash(parent,hash);
1050 	struct dentry *found = NULL;
1051 	struct hlist_node *node;
1052 	struct dentry *dentry;
1053 
1054 	rcu_read_lock();
1055 
1056 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1057 		struct qstr *qstr;
1058 
1059 		if (dentry->d_name.hash != hash)
1060 			continue;
1061 		if (dentry->d_parent != parent)
1062 			continue;
1063 
1064 		spin_lock(&dentry->d_lock);
1065 
1066 		/*
1067 		 * Recheck the dentry after taking the lock - d_move may have
1068 		 * changed things.  Don't bother checking the hash because we're
1069 		 * about to compare the whole name anyway.
1070 		 */
1071 		if (dentry->d_parent != parent)
1072 			goto next;
1073 
1074 		/*
1075 		 * It is safe to compare names since d_move() cannot
1076 		 * change the qstr (protected by d_lock).
1077 		 */
1078 		qstr = &dentry->d_name;
1079 		if (parent->d_op && parent->d_op->d_compare) {
1080 			if (parent->d_op->d_compare(parent, qstr, name))
1081 				goto next;
1082 		} else {
1083 			if (qstr->len != len)
1084 				goto next;
1085 			if (memcmp(qstr->name, str, len))
1086 				goto next;
1087 		}
1088 
1089 		if (!d_unhashed(dentry)) {
1090 			atomic_inc(&dentry->d_count);
1091 			found = dentry;
1092 		}
1093 		spin_unlock(&dentry->d_lock);
1094 		break;
1095 next:
1096 		spin_unlock(&dentry->d_lock);
1097  	}
1098  	rcu_read_unlock();
1099 
1100  	return found;
1101 }
1102 
1103 /**
1104  * d_validate - verify dentry provided from insecure source
1105  * @dentry: The dentry alleged to be valid child of @dparent
1106  * @dparent: The parent dentry (known to be valid)
1107  * @hash: Hash of the dentry
1108  * @len: Length of the name
1109  *
1110  * An insecure source has sent us a dentry, here we verify it and dget() it.
1111  * This is used by ncpfs in its readdir implementation.
1112  * Zero is returned in the dentry is invalid.
1113  */
1114 
1115 int d_validate(struct dentry *dentry, struct dentry *dparent)
1116 {
1117 	struct hlist_head *base;
1118 	struct hlist_node *lhp;
1119 
1120 	/* Check whether the ptr might be valid at all.. */
1121 	if (!kmem_ptr_validate(dentry_cache, dentry))
1122 		goto out;
1123 
1124 	if (dentry->d_parent != dparent)
1125 		goto out;
1126 
1127 	spin_lock(&dcache_lock);
1128 	base = d_hash(dparent, dentry->d_name.hash);
1129 	hlist_for_each(lhp,base) {
1130 		/* hlist_for_each_entry_rcu() not required for d_hash list
1131 		 * as it is parsed under dcache_lock
1132 		 */
1133 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1134 			__dget_locked(dentry);
1135 			spin_unlock(&dcache_lock);
1136 			return 1;
1137 		}
1138 	}
1139 	spin_unlock(&dcache_lock);
1140 out:
1141 	return 0;
1142 }
1143 
1144 /*
1145  * When a file is deleted, we have two options:
1146  * - turn this dentry into a negative dentry
1147  * - unhash this dentry and free it.
1148  *
1149  * Usually, we want to just turn this into
1150  * a negative dentry, but if anybody else is
1151  * currently using the dentry or the inode
1152  * we can't do that and we fall back on removing
1153  * it from the hash queues and waiting for
1154  * it to be deleted later when it has no users
1155  */
1156 
1157 /**
1158  * d_delete - delete a dentry
1159  * @dentry: The dentry to delete
1160  *
1161  * Turn the dentry into a negative dentry if possible, otherwise
1162  * remove it from the hash queues so it can be deleted later
1163  */
1164 
1165 void d_delete(struct dentry * dentry)
1166 {
1167 	int isdir = 0;
1168 	/*
1169 	 * Are we the only user?
1170 	 */
1171 	spin_lock(&dcache_lock);
1172 	spin_lock(&dentry->d_lock);
1173 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1174 	if (atomic_read(&dentry->d_count) == 1) {
1175 		/* remove this and other inotify debug checks after 2.6.18 */
1176 		dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED;
1177 
1178 		dentry_iput(dentry);
1179 		fsnotify_nameremove(dentry, isdir);
1180 		return;
1181 	}
1182 
1183 	if (!d_unhashed(dentry))
1184 		__d_drop(dentry);
1185 
1186 	spin_unlock(&dentry->d_lock);
1187 	spin_unlock(&dcache_lock);
1188 
1189 	fsnotify_nameremove(dentry, isdir);
1190 }
1191 
1192 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1193 {
1194 
1195  	entry->d_flags &= ~DCACHE_UNHASHED;
1196  	hlist_add_head_rcu(&entry->d_hash, list);
1197 }
1198 
1199 /**
1200  * d_rehash	- add an entry back to the hash
1201  * @entry: dentry to add to the hash
1202  *
1203  * Adds a dentry to the hash according to its name.
1204  */
1205 
1206 void d_rehash(struct dentry * entry)
1207 {
1208 	struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash);
1209 
1210 	spin_lock(&dcache_lock);
1211 	spin_lock(&entry->d_lock);
1212 	__d_rehash(entry, list);
1213 	spin_unlock(&entry->d_lock);
1214 	spin_unlock(&dcache_lock);
1215 }
1216 
1217 #define do_switch(x,y) do { \
1218 	__typeof__ (x) __tmp = x; \
1219 	x = y; y = __tmp; } while (0)
1220 
1221 /*
1222  * When switching names, the actual string doesn't strictly have to
1223  * be preserved in the target - because we're dropping the target
1224  * anyway. As such, we can just do a simple memcpy() to copy over
1225  * the new name before we switch.
1226  *
1227  * Note that we have to be a lot more careful about getting the hash
1228  * switched - we have to switch the hash value properly even if it
1229  * then no longer matches the actual (corrupted) string of the target.
1230  * The hash value has to match the hash queue that the dentry is on..
1231  */
1232 static void switch_names(struct dentry *dentry, struct dentry *target)
1233 {
1234 	if (dname_external(target)) {
1235 		if (dname_external(dentry)) {
1236 			/*
1237 			 * Both external: swap the pointers
1238 			 */
1239 			do_switch(target->d_name.name, dentry->d_name.name);
1240 		} else {
1241 			/*
1242 			 * dentry:internal, target:external.  Steal target's
1243 			 * storage and make target internal.
1244 			 */
1245 			dentry->d_name.name = target->d_name.name;
1246 			target->d_name.name = target->d_iname;
1247 		}
1248 	} else {
1249 		if (dname_external(dentry)) {
1250 			/*
1251 			 * dentry:external, target:internal.  Give dentry's
1252 			 * storage to target and make dentry internal
1253 			 */
1254 			memcpy(dentry->d_iname, target->d_name.name,
1255 					target->d_name.len + 1);
1256 			target->d_name.name = dentry->d_name.name;
1257 			dentry->d_name.name = dentry->d_iname;
1258 		} else {
1259 			/*
1260 			 * Both are internal.  Just copy target to dentry
1261 			 */
1262 			memcpy(dentry->d_iname, target->d_name.name,
1263 					target->d_name.len + 1);
1264 		}
1265 	}
1266 }
1267 
1268 /*
1269  * We cannibalize "target" when moving dentry on top of it,
1270  * because it's going to be thrown away anyway. We could be more
1271  * polite about it, though.
1272  *
1273  * This forceful removal will result in ugly /proc output if
1274  * somebody holds a file open that got deleted due to a rename.
1275  * We could be nicer about the deleted file, and let it show
1276  * up under the name it got deleted rather than the name that
1277  * deleted it.
1278  */
1279 
1280 /**
1281  * d_move - move a dentry
1282  * @dentry: entry to move
1283  * @target: new dentry
1284  *
1285  * Update the dcache to reflect the move of a file name. Negative
1286  * dcache entries should not be moved in this way.
1287  */
1288 
1289 void d_move(struct dentry * dentry, struct dentry * target)
1290 {
1291 	struct hlist_head *list;
1292 
1293 	if (!dentry->d_inode)
1294 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1295 
1296 	spin_lock(&dcache_lock);
1297 	write_seqlock(&rename_lock);
1298 	/*
1299 	 * XXXX: do we really need to take target->d_lock?
1300 	 */
1301 	if (target < dentry) {
1302 		spin_lock(&target->d_lock);
1303 		spin_lock(&dentry->d_lock);
1304 	} else {
1305 		spin_lock(&dentry->d_lock);
1306 		spin_lock(&target->d_lock);
1307 	}
1308 
1309 	/* Move the dentry to the target hash queue, if on different bucket */
1310 	if (dentry->d_flags & DCACHE_UNHASHED)
1311 		goto already_unhashed;
1312 
1313 	hlist_del_rcu(&dentry->d_hash);
1314 
1315 already_unhashed:
1316 	list = d_hash(target->d_parent, target->d_name.hash);
1317 	__d_rehash(dentry, list);
1318 
1319 	/* Unhash the target: dput() will then get rid of it */
1320 	__d_drop(target);
1321 
1322 	list_del(&dentry->d_u.d_child);
1323 	list_del(&target->d_u.d_child);
1324 
1325 	/* Switch the names.. */
1326 	switch_names(dentry, target);
1327 	do_switch(dentry->d_name.len, target->d_name.len);
1328 	do_switch(dentry->d_name.hash, target->d_name.hash);
1329 
1330 	/* ... and switch the parents */
1331 	if (IS_ROOT(dentry)) {
1332 		dentry->d_parent = target->d_parent;
1333 		target->d_parent = target;
1334 		INIT_LIST_HEAD(&target->d_u.d_child);
1335 	} else {
1336 		do_switch(dentry->d_parent, target->d_parent);
1337 
1338 		/* And add them back to the (new) parent lists */
1339 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1340 	}
1341 
1342 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1343 	spin_unlock(&target->d_lock);
1344 	fsnotify_d_move(dentry);
1345 	spin_unlock(&dentry->d_lock);
1346 	write_sequnlock(&rename_lock);
1347 	spin_unlock(&dcache_lock);
1348 }
1349 
1350 /**
1351  * d_path - return the path of a dentry
1352  * @dentry: dentry to report
1353  * @vfsmnt: vfsmnt to which the dentry belongs
1354  * @root: root dentry
1355  * @rootmnt: vfsmnt to which the root dentry belongs
1356  * @buffer: buffer to return value in
1357  * @buflen: buffer length
1358  *
1359  * Convert a dentry into an ASCII path name. If the entry has been deleted
1360  * the string " (deleted)" is appended. Note that this is ambiguous.
1361  *
1362  * Returns the buffer or an error code if the path was too long.
1363  *
1364  * "buflen" should be positive. Caller holds the dcache_lock.
1365  */
1366 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1367 			struct dentry *root, struct vfsmount *rootmnt,
1368 			char *buffer, int buflen)
1369 {
1370 	char * end = buffer+buflen;
1371 	char * retval;
1372 	int namelen;
1373 
1374 	*--end = '\0';
1375 	buflen--;
1376 	if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1377 		buflen -= 10;
1378 		end -= 10;
1379 		if (buflen < 0)
1380 			goto Elong;
1381 		memcpy(end, " (deleted)", 10);
1382 	}
1383 
1384 	if (buflen < 1)
1385 		goto Elong;
1386 	/* Get '/' right */
1387 	retval = end-1;
1388 	*retval = '/';
1389 
1390 	for (;;) {
1391 		struct dentry * parent;
1392 
1393 		if (dentry == root && vfsmnt == rootmnt)
1394 			break;
1395 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1396 			/* Global root? */
1397 			spin_lock(&vfsmount_lock);
1398 			if (vfsmnt->mnt_parent == vfsmnt) {
1399 				spin_unlock(&vfsmount_lock);
1400 				goto global_root;
1401 			}
1402 			dentry = vfsmnt->mnt_mountpoint;
1403 			vfsmnt = vfsmnt->mnt_parent;
1404 			spin_unlock(&vfsmount_lock);
1405 			continue;
1406 		}
1407 		parent = dentry->d_parent;
1408 		prefetch(parent);
1409 		namelen = dentry->d_name.len;
1410 		buflen -= namelen + 1;
1411 		if (buflen < 0)
1412 			goto Elong;
1413 		end -= namelen;
1414 		memcpy(end, dentry->d_name.name, namelen);
1415 		*--end = '/';
1416 		retval = end;
1417 		dentry = parent;
1418 	}
1419 
1420 	return retval;
1421 
1422 global_root:
1423 	namelen = dentry->d_name.len;
1424 	buflen -= namelen;
1425 	if (buflen < 0)
1426 		goto Elong;
1427 	retval -= namelen-1;	/* hit the slash */
1428 	memcpy(retval, dentry->d_name.name, namelen);
1429 	return retval;
1430 Elong:
1431 	return ERR_PTR(-ENAMETOOLONG);
1432 }
1433 
1434 /* write full pathname into buffer and return start of pathname */
1435 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1436 				char *buf, int buflen)
1437 {
1438 	char *res;
1439 	struct vfsmount *rootmnt;
1440 	struct dentry *root;
1441 
1442 	read_lock(&current->fs->lock);
1443 	rootmnt = mntget(current->fs->rootmnt);
1444 	root = dget(current->fs->root);
1445 	read_unlock(&current->fs->lock);
1446 	spin_lock(&dcache_lock);
1447 	res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1448 	spin_unlock(&dcache_lock);
1449 	dput(root);
1450 	mntput(rootmnt);
1451 	return res;
1452 }
1453 
1454 /*
1455  * NOTE! The user-level library version returns a
1456  * character pointer. The kernel system call just
1457  * returns the length of the buffer filled (which
1458  * includes the ending '\0' character), or a negative
1459  * error value. So libc would do something like
1460  *
1461  *	char *getcwd(char * buf, size_t size)
1462  *	{
1463  *		int retval;
1464  *
1465  *		retval = sys_getcwd(buf, size);
1466  *		if (retval >= 0)
1467  *			return buf;
1468  *		errno = -retval;
1469  *		return NULL;
1470  *	}
1471  */
1472 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1473 {
1474 	int error;
1475 	struct vfsmount *pwdmnt, *rootmnt;
1476 	struct dentry *pwd, *root;
1477 	char *page = (char *) __get_free_page(GFP_USER);
1478 
1479 	if (!page)
1480 		return -ENOMEM;
1481 
1482 	read_lock(&current->fs->lock);
1483 	pwdmnt = mntget(current->fs->pwdmnt);
1484 	pwd = dget(current->fs->pwd);
1485 	rootmnt = mntget(current->fs->rootmnt);
1486 	root = dget(current->fs->root);
1487 	read_unlock(&current->fs->lock);
1488 
1489 	error = -ENOENT;
1490 	/* Has the current directory has been unlinked? */
1491 	spin_lock(&dcache_lock);
1492 	if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1493 		unsigned long len;
1494 		char * cwd;
1495 
1496 		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1497 		spin_unlock(&dcache_lock);
1498 
1499 		error = PTR_ERR(cwd);
1500 		if (IS_ERR(cwd))
1501 			goto out;
1502 
1503 		error = -ERANGE;
1504 		len = PAGE_SIZE + page - cwd;
1505 		if (len <= size) {
1506 			error = len;
1507 			if (copy_to_user(buf, cwd, len))
1508 				error = -EFAULT;
1509 		}
1510 	} else
1511 		spin_unlock(&dcache_lock);
1512 
1513 out:
1514 	dput(pwd);
1515 	mntput(pwdmnt);
1516 	dput(root);
1517 	mntput(rootmnt);
1518 	free_page((unsigned long) page);
1519 	return error;
1520 }
1521 
1522 /*
1523  * Test whether new_dentry is a subdirectory of old_dentry.
1524  *
1525  * Trivially implemented using the dcache structure
1526  */
1527 
1528 /**
1529  * is_subdir - is new dentry a subdirectory of old_dentry
1530  * @new_dentry: new dentry
1531  * @old_dentry: old dentry
1532  *
1533  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1534  * Returns 0 otherwise.
1535  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1536  */
1537 
1538 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1539 {
1540 	int result;
1541 	struct dentry * saved = new_dentry;
1542 	unsigned long seq;
1543 
1544 	/* need rcu_readlock to protect against the d_parent trashing due to
1545 	 * d_move
1546 	 */
1547 	rcu_read_lock();
1548         do {
1549 		/* for restarting inner loop in case of seq retry */
1550 		new_dentry = saved;
1551 		result = 0;
1552 		seq = read_seqbegin(&rename_lock);
1553 		for (;;) {
1554 			if (new_dentry != old_dentry) {
1555 				struct dentry * parent = new_dentry->d_parent;
1556 				if (parent == new_dentry)
1557 					break;
1558 				new_dentry = parent;
1559 				continue;
1560 			}
1561 			result = 1;
1562 			break;
1563 		}
1564 	} while (read_seqretry(&rename_lock, seq));
1565 	rcu_read_unlock();
1566 
1567 	return result;
1568 }
1569 
1570 void d_genocide(struct dentry *root)
1571 {
1572 	struct dentry *this_parent = root;
1573 	struct list_head *next;
1574 
1575 	spin_lock(&dcache_lock);
1576 repeat:
1577 	next = this_parent->d_subdirs.next;
1578 resume:
1579 	while (next != &this_parent->d_subdirs) {
1580 		struct list_head *tmp = next;
1581 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1582 		next = tmp->next;
1583 		if (d_unhashed(dentry)||!dentry->d_inode)
1584 			continue;
1585 		if (!list_empty(&dentry->d_subdirs)) {
1586 			this_parent = dentry;
1587 			goto repeat;
1588 		}
1589 		atomic_dec(&dentry->d_count);
1590 	}
1591 	if (this_parent != root) {
1592 		next = this_parent->d_u.d_child.next;
1593 		atomic_dec(&this_parent->d_count);
1594 		this_parent = this_parent->d_parent;
1595 		goto resume;
1596 	}
1597 	spin_unlock(&dcache_lock);
1598 }
1599 
1600 /**
1601  * find_inode_number - check for dentry with name
1602  * @dir: directory to check
1603  * @name: Name to find.
1604  *
1605  * Check whether a dentry already exists for the given name,
1606  * and return the inode number if it has an inode. Otherwise
1607  * 0 is returned.
1608  *
1609  * This routine is used to post-process directory listings for
1610  * filesystems using synthetic inode numbers, and is necessary
1611  * to keep getcwd() working.
1612  */
1613 
1614 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1615 {
1616 	struct dentry * dentry;
1617 	ino_t ino = 0;
1618 
1619 	/*
1620 	 * Check for a fs-specific hash function. Note that we must
1621 	 * calculate the standard hash first, as the d_op->d_hash()
1622 	 * routine may choose to leave the hash value unchanged.
1623 	 */
1624 	name->hash = full_name_hash(name->name, name->len);
1625 	if (dir->d_op && dir->d_op->d_hash)
1626 	{
1627 		if (dir->d_op->d_hash(dir, name) != 0)
1628 			goto out;
1629 	}
1630 
1631 	dentry = d_lookup(dir, name);
1632 	if (dentry)
1633 	{
1634 		if (dentry->d_inode)
1635 			ino = dentry->d_inode->i_ino;
1636 		dput(dentry);
1637 	}
1638 out:
1639 	return ino;
1640 }
1641 
1642 static __initdata unsigned long dhash_entries;
1643 static int __init set_dhash_entries(char *str)
1644 {
1645 	if (!str)
1646 		return 0;
1647 	dhash_entries = simple_strtoul(str, &str, 0);
1648 	return 1;
1649 }
1650 __setup("dhash_entries=", set_dhash_entries);
1651 
1652 static void __init dcache_init_early(void)
1653 {
1654 	int loop;
1655 
1656 	/* If hashes are distributed across NUMA nodes, defer
1657 	 * hash allocation until vmalloc space is available.
1658 	 */
1659 	if (hashdist)
1660 		return;
1661 
1662 	dentry_hashtable =
1663 		alloc_large_system_hash("Dentry cache",
1664 					sizeof(struct hlist_head),
1665 					dhash_entries,
1666 					13,
1667 					HASH_EARLY,
1668 					&d_hash_shift,
1669 					&d_hash_mask,
1670 					0);
1671 
1672 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1673 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1674 }
1675 
1676 static void __init dcache_init(unsigned long mempages)
1677 {
1678 	int loop;
1679 
1680 	/*
1681 	 * A constructor could be added for stable state like the lists,
1682 	 * but it is probably not worth it because of the cache nature
1683 	 * of the dcache.
1684 	 */
1685 	dentry_cache = kmem_cache_create("dentry_cache",
1686 					 sizeof(struct dentry),
1687 					 0,
1688 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1689 					 SLAB_MEM_SPREAD),
1690 					 NULL, NULL);
1691 
1692 	set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1693 
1694 	/* Hash may have been set up in dcache_init_early */
1695 	if (!hashdist)
1696 		return;
1697 
1698 	dentry_hashtable =
1699 		alloc_large_system_hash("Dentry cache",
1700 					sizeof(struct hlist_head),
1701 					dhash_entries,
1702 					13,
1703 					0,
1704 					&d_hash_shift,
1705 					&d_hash_mask,
1706 					0);
1707 
1708 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1709 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1710 }
1711 
1712 /* SLAB cache for __getname() consumers */
1713 kmem_cache_t *names_cachep __read_mostly;
1714 
1715 /* SLAB cache for file structures */
1716 kmem_cache_t *filp_cachep __read_mostly;
1717 
1718 EXPORT_SYMBOL(d_genocide);
1719 
1720 extern void bdev_cache_init(void);
1721 extern void chrdev_init(void);
1722 
1723 void __init vfs_caches_init_early(void)
1724 {
1725 	dcache_init_early();
1726 	inode_init_early();
1727 }
1728 
1729 void __init vfs_caches_init(unsigned long mempages)
1730 {
1731 	unsigned long reserve;
1732 
1733 	/* Base hash sizes on available memory, with a reserve equal to
1734            150% of current kernel size */
1735 
1736 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1737 	mempages -= reserve;
1738 
1739 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1740 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1741 
1742 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
1743 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1744 
1745 	dcache_init(mempages);
1746 	inode_init(mempages);
1747 	files_init(mempages);
1748 	mnt_init(mempages);
1749 	bdev_cache_init();
1750 	chrdev_init();
1751 }
1752 
1753 EXPORT_SYMBOL(d_alloc);
1754 EXPORT_SYMBOL(d_alloc_anon);
1755 EXPORT_SYMBOL(d_alloc_root);
1756 EXPORT_SYMBOL(d_delete);
1757 EXPORT_SYMBOL(d_find_alias);
1758 EXPORT_SYMBOL(d_instantiate);
1759 EXPORT_SYMBOL(d_invalidate);
1760 EXPORT_SYMBOL(d_lookup);
1761 EXPORT_SYMBOL(d_move);
1762 EXPORT_SYMBOL(d_path);
1763 EXPORT_SYMBOL(d_prune_aliases);
1764 EXPORT_SYMBOL(d_rehash);
1765 EXPORT_SYMBOL(d_splice_alias);
1766 EXPORT_SYMBOL(d_validate);
1767 EXPORT_SYMBOL(dget_locked);
1768 EXPORT_SYMBOL(dput);
1769 EXPORT_SYMBOL(find_inode_number);
1770 EXPORT_SYMBOL(have_submounts);
1771 EXPORT_SYMBOL(names_cachep);
1772 EXPORT_SYMBOL(shrink_dcache_parent);
1773 EXPORT_SYMBOL(shrink_dcache_sb);
1774