xref: /linux/fs/dcache.c (revision dc6876a288cc6a446a6617ccfcb96082f67fa0c4)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
40 
41 /*
42  * Usage:
43  * dcache->d_inode->i_lock protects:
44  *   - i_dentry, d_alias, d_inode of aliases
45  * dcache_hash_bucket lock protects:
46  *   - the dcache hash table
47  * s_anon bl list spinlock protects:
48  *   - the s_anon list (see __d_drop)
49  * dcache_lru_lock protects:
50  *   - the dcache lru lists and counters
51  * d_lock protects:
52  *   - d_flags
53  *   - d_name
54  *   - d_lru
55  *   - d_count
56  *   - d_unhashed()
57  *   - d_parent and d_subdirs
58  *   - childrens' d_child and d_parent
59  *   - d_alias, d_inode
60  *
61  * Ordering:
62  * dentry->d_inode->i_lock
63  *   dentry->d_lock
64  *     dcache_lru_lock
65  *     dcache_hash_bucket lock
66  *     s_anon lock
67  *
68  * If there is an ancestor relationship:
69  * dentry->d_parent->...->d_parent->d_lock
70  *   ...
71  *     dentry->d_parent->d_lock
72  *       dentry->d_lock
73  *
74  * If no ancestor relationship:
75  * if (dentry1 < dentry2)
76  *   dentry1->d_lock
77  *     dentry2->d_lock
78  */
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
81 
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
84 
85 EXPORT_SYMBOL(rename_lock);
86 
87 static struct kmem_cache *dentry_cache __read_mostly;
88 
89 /*
90  * This is the single most critical data structure when it comes
91  * to the dcache: the hashtable for lookups. Somebody should try
92  * to make this good - I've just made it work.
93  *
94  * This hash-function tries to avoid losing too many bits of hash
95  * information, yet avoid using a prime hash-size or similar.
96  */
97 #define D_HASHBITS     d_hash_shift
98 #define D_HASHMASK     d_hash_mask
99 
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
102 
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
104 
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 					unsigned long hash)
107 {
108 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 	return dentry_hashtable + (hash & D_HASHMASK);
111 }
112 
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 	.age_limit = 45,
116 };
117 
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
119 
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
122 {
123 	int i;
124 	int sum = 0;
125 	for_each_possible_cpu(i)
126 		sum += per_cpu(nr_dentry, i);
127 	return sum < 0 ? 0 : sum;
128 }
129 
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 		   size_t *lenp, loff_t *ppos)
132 {
133 	dentry_stat.nr_dentry = get_nr_dentry();
134 	return proc_dointvec(table, write, buffer, lenp, ppos);
135 }
136 #endif
137 
138 static void __d_free(struct rcu_head *head)
139 {
140 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
141 
142 	WARN_ON(!list_empty(&dentry->d_alias));
143 	if (dname_external(dentry))
144 		kfree(dentry->d_name.name);
145 	kmem_cache_free(dentry_cache, dentry);
146 }
147 
148 /*
149  * no locks, please.
150  */
151 static void d_free(struct dentry *dentry)
152 {
153 	BUG_ON(dentry->d_count);
154 	this_cpu_dec(nr_dentry);
155 	if (dentry->d_op && dentry->d_op->d_release)
156 		dentry->d_op->d_release(dentry);
157 
158 	/* if dentry was never visible to RCU, immediate free is OK */
159 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 		__d_free(&dentry->d_u.d_rcu);
161 	else
162 		call_rcu(&dentry->d_u.d_rcu, __d_free);
163 }
164 
165 /**
166  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167  * @dentry: the target dentry
168  * After this call, in-progress rcu-walk path lookup will fail. This
169  * should be called after unhashing, and after changing d_inode (if
170  * the dentry has not already been unhashed).
171  */
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
173 {
174 	assert_spin_locked(&dentry->d_lock);
175 	/* Go through a barrier */
176 	write_seqcount_barrier(&dentry->d_seq);
177 }
178 
179 /*
180  * Release the dentry's inode, using the filesystem
181  * d_iput() operation if defined. Dentry has no refcount
182  * and is unhashed.
183  */
184 static void dentry_iput(struct dentry * dentry)
185 	__releases(dentry->d_lock)
186 	__releases(dentry->d_inode->i_lock)
187 {
188 	struct inode *inode = dentry->d_inode;
189 	if (inode) {
190 		dentry->d_inode = NULL;
191 		list_del_init(&dentry->d_alias);
192 		spin_unlock(&dentry->d_lock);
193 		spin_unlock(&inode->i_lock);
194 		if (!inode->i_nlink)
195 			fsnotify_inoderemove(inode);
196 		if (dentry->d_op && dentry->d_op->d_iput)
197 			dentry->d_op->d_iput(dentry, inode);
198 		else
199 			iput(inode);
200 	} else {
201 		spin_unlock(&dentry->d_lock);
202 	}
203 }
204 
205 /*
206  * Release the dentry's inode, using the filesystem
207  * d_iput() operation if defined. dentry remains in-use.
208  */
209 static void dentry_unlink_inode(struct dentry * dentry)
210 	__releases(dentry->d_lock)
211 	__releases(dentry->d_inode->i_lock)
212 {
213 	struct inode *inode = dentry->d_inode;
214 	dentry->d_inode = NULL;
215 	list_del_init(&dentry->d_alias);
216 	dentry_rcuwalk_barrier(dentry);
217 	spin_unlock(&dentry->d_lock);
218 	spin_unlock(&inode->i_lock);
219 	if (!inode->i_nlink)
220 		fsnotify_inoderemove(inode);
221 	if (dentry->d_op && dentry->d_op->d_iput)
222 		dentry->d_op->d_iput(dentry, inode);
223 	else
224 		iput(inode);
225 }
226 
227 /*
228  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
229  */
230 static void dentry_lru_add(struct dentry *dentry)
231 {
232 	if (list_empty(&dentry->d_lru)) {
233 		spin_lock(&dcache_lru_lock);
234 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 		dentry->d_sb->s_nr_dentry_unused++;
236 		dentry_stat.nr_unused++;
237 		spin_unlock(&dcache_lru_lock);
238 	}
239 }
240 
241 static void __dentry_lru_del(struct dentry *dentry)
242 {
243 	list_del_init(&dentry->d_lru);
244 	dentry->d_sb->s_nr_dentry_unused--;
245 	dentry_stat.nr_unused--;
246 }
247 
248 /*
249  * Remove a dentry with references from the LRU.
250  */
251 static void dentry_lru_del(struct dentry *dentry)
252 {
253 	if (!list_empty(&dentry->d_lru)) {
254 		spin_lock(&dcache_lru_lock);
255 		__dentry_lru_del(dentry);
256 		spin_unlock(&dcache_lru_lock);
257 	}
258 }
259 
260 /*
261  * Remove a dentry that is unreferenced and about to be pruned
262  * (unhashed and destroyed) from the LRU, and inform the file system.
263  * This wrapper should be called _prior_ to unhashing a victim dentry.
264  */
265 static void dentry_lru_prune(struct dentry *dentry)
266 {
267 	if (!list_empty(&dentry->d_lru)) {
268 		if (dentry->d_flags & DCACHE_OP_PRUNE)
269 			dentry->d_op->d_prune(dentry);
270 
271 		spin_lock(&dcache_lru_lock);
272 		__dentry_lru_del(dentry);
273 		spin_unlock(&dcache_lru_lock);
274 	}
275 }
276 
277 static void dentry_lru_move_tail(struct dentry *dentry)
278 {
279 	spin_lock(&dcache_lru_lock);
280 	if (list_empty(&dentry->d_lru)) {
281 		list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
282 		dentry->d_sb->s_nr_dentry_unused++;
283 		dentry_stat.nr_unused++;
284 	} else {
285 		list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
286 	}
287 	spin_unlock(&dcache_lru_lock);
288 }
289 
290 /**
291  * d_kill - kill dentry and return parent
292  * @dentry: dentry to kill
293  * @parent: parent dentry
294  *
295  * The dentry must already be unhashed and removed from the LRU.
296  *
297  * If this is the root of the dentry tree, return NULL.
298  *
299  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
300  * d_kill.
301  */
302 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
303 	__releases(dentry->d_lock)
304 	__releases(parent->d_lock)
305 	__releases(dentry->d_inode->i_lock)
306 {
307 	list_del(&dentry->d_u.d_child);
308 	/*
309 	 * Inform try_to_ascend() that we are no longer attached to the
310 	 * dentry tree
311 	 */
312 	dentry->d_flags |= DCACHE_DISCONNECTED;
313 	if (parent)
314 		spin_unlock(&parent->d_lock);
315 	dentry_iput(dentry);
316 	/*
317 	 * dentry_iput drops the locks, at which point nobody (except
318 	 * transient RCU lookups) can reach this dentry.
319 	 */
320 	d_free(dentry);
321 	return parent;
322 }
323 
324 /*
325  * Unhash a dentry without inserting an RCU walk barrier or checking that
326  * dentry->d_lock is locked.  The caller must take care of that, if
327  * appropriate.
328  */
329 static void __d_shrink(struct dentry *dentry)
330 {
331 	if (!d_unhashed(dentry)) {
332 		struct hlist_bl_head *b;
333 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
334 			b = &dentry->d_sb->s_anon;
335 		else
336 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
337 
338 		hlist_bl_lock(b);
339 		__hlist_bl_del(&dentry->d_hash);
340 		dentry->d_hash.pprev = NULL;
341 		hlist_bl_unlock(b);
342 	}
343 }
344 
345 /**
346  * d_drop - drop a dentry
347  * @dentry: dentry to drop
348  *
349  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
350  * be found through a VFS lookup any more. Note that this is different from
351  * deleting the dentry - d_delete will try to mark the dentry negative if
352  * possible, giving a successful _negative_ lookup, while d_drop will
353  * just make the cache lookup fail.
354  *
355  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
356  * reason (NFS timeouts or autofs deletes).
357  *
358  * __d_drop requires dentry->d_lock.
359  */
360 void __d_drop(struct dentry *dentry)
361 {
362 	if (!d_unhashed(dentry)) {
363 		__d_shrink(dentry);
364 		dentry_rcuwalk_barrier(dentry);
365 	}
366 }
367 EXPORT_SYMBOL(__d_drop);
368 
369 void d_drop(struct dentry *dentry)
370 {
371 	spin_lock(&dentry->d_lock);
372 	__d_drop(dentry);
373 	spin_unlock(&dentry->d_lock);
374 }
375 EXPORT_SYMBOL(d_drop);
376 
377 /*
378  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
379  * @dentry: dentry to drop
380  *
381  * This is called when we do a lookup on a placeholder dentry that needed to be
382  * looked up.  The dentry should have been hashed in order for it to be found by
383  * the lookup code, but now needs to be unhashed while we do the actual lookup
384  * and clear the DCACHE_NEED_LOOKUP flag.
385  */
386 void d_clear_need_lookup(struct dentry *dentry)
387 {
388 	spin_lock(&dentry->d_lock);
389 	__d_drop(dentry);
390 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
391 	spin_unlock(&dentry->d_lock);
392 }
393 EXPORT_SYMBOL(d_clear_need_lookup);
394 
395 /*
396  * Finish off a dentry we've decided to kill.
397  * dentry->d_lock must be held, returns with it unlocked.
398  * If ref is non-zero, then decrement the refcount too.
399  * Returns dentry requiring refcount drop, or NULL if we're done.
400  */
401 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
402 	__releases(dentry->d_lock)
403 {
404 	struct inode *inode;
405 	struct dentry *parent;
406 
407 	inode = dentry->d_inode;
408 	if (inode && !spin_trylock(&inode->i_lock)) {
409 relock:
410 		spin_unlock(&dentry->d_lock);
411 		cpu_relax();
412 		return dentry; /* try again with same dentry */
413 	}
414 	if (IS_ROOT(dentry))
415 		parent = NULL;
416 	else
417 		parent = dentry->d_parent;
418 	if (parent && !spin_trylock(&parent->d_lock)) {
419 		if (inode)
420 			spin_unlock(&inode->i_lock);
421 		goto relock;
422 	}
423 
424 	if (ref)
425 		dentry->d_count--;
426 	/*
427 	 * if dentry was on the d_lru list delete it from there.
428 	 * inform the fs via d_prune that this dentry is about to be
429 	 * unhashed and destroyed.
430 	 */
431 	dentry_lru_prune(dentry);
432 	/* if it was on the hash then remove it */
433 	__d_drop(dentry);
434 	return d_kill(dentry, parent);
435 }
436 
437 /*
438  * This is dput
439  *
440  * This is complicated by the fact that we do not want to put
441  * dentries that are no longer on any hash chain on the unused
442  * list: we'd much rather just get rid of them immediately.
443  *
444  * However, that implies that we have to traverse the dentry
445  * tree upwards to the parents which might _also_ now be
446  * scheduled for deletion (it may have been only waiting for
447  * its last child to go away).
448  *
449  * This tail recursion is done by hand as we don't want to depend
450  * on the compiler to always get this right (gcc generally doesn't).
451  * Real recursion would eat up our stack space.
452  */
453 
454 /*
455  * dput - release a dentry
456  * @dentry: dentry to release
457  *
458  * Release a dentry. This will drop the usage count and if appropriate
459  * call the dentry unlink method as well as removing it from the queues and
460  * releasing its resources. If the parent dentries were scheduled for release
461  * they too may now get deleted.
462  */
463 void dput(struct dentry *dentry)
464 {
465 	if (!dentry)
466 		return;
467 
468 repeat:
469 	if (dentry->d_count == 1)
470 		might_sleep();
471 	spin_lock(&dentry->d_lock);
472 	BUG_ON(!dentry->d_count);
473 	if (dentry->d_count > 1) {
474 		dentry->d_count--;
475 		spin_unlock(&dentry->d_lock);
476 		return;
477 	}
478 
479 	if (dentry->d_flags & DCACHE_OP_DELETE) {
480 		if (dentry->d_op->d_delete(dentry))
481 			goto kill_it;
482 	}
483 
484 	/* Unreachable? Get rid of it */
485  	if (d_unhashed(dentry))
486 		goto kill_it;
487 
488 	/*
489 	 * If this dentry needs lookup, don't set the referenced flag so that it
490 	 * is more likely to be cleaned up by the dcache shrinker in case of
491 	 * memory pressure.
492 	 */
493 	if (!d_need_lookup(dentry))
494 		dentry->d_flags |= DCACHE_REFERENCED;
495 	dentry_lru_add(dentry);
496 
497 	dentry->d_count--;
498 	spin_unlock(&dentry->d_lock);
499 	return;
500 
501 kill_it:
502 	dentry = dentry_kill(dentry, 1);
503 	if (dentry)
504 		goto repeat;
505 }
506 EXPORT_SYMBOL(dput);
507 
508 /**
509  * d_invalidate - invalidate a dentry
510  * @dentry: dentry to invalidate
511  *
512  * Try to invalidate the dentry if it turns out to be
513  * possible. If there are other dentries that can be
514  * reached through this one we can't delete it and we
515  * return -EBUSY. On success we return 0.
516  *
517  * no dcache lock.
518  */
519 
520 int d_invalidate(struct dentry * dentry)
521 {
522 	/*
523 	 * If it's already been dropped, return OK.
524 	 */
525 	spin_lock(&dentry->d_lock);
526 	if (d_unhashed(dentry)) {
527 		spin_unlock(&dentry->d_lock);
528 		return 0;
529 	}
530 	/*
531 	 * Check whether to do a partial shrink_dcache
532 	 * to get rid of unused child entries.
533 	 */
534 	if (!list_empty(&dentry->d_subdirs)) {
535 		spin_unlock(&dentry->d_lock);
536 		shrink_dcache_parent(dentry);
537 		spin_lock(&dentry->d_lock);
538 	}
539 
540 	/*
541 	 * Somebody else still using it?
542 	 *
543 	 * If it's a directory, we can't drop it
544 	 * for fear of somebody re-populating it
545 	 * with children (even though dropping it
546 	 * would make it unreachable from the root,
547 	 * we might still populate it if it was a
548 	 * working directory or similar).
549 	 * We also need to leave mountpoints alone,
550 	 * directory or not.
551 	 */
552 	if (dentry->d_count > 1 && dentry->d_inode) {
553 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
554 			spin_unlock(&dentry->d_lock);
555 			return -EBUSY;
556 		}
557 	}
558 
559 	__d_drop(dentry);
560 	spin_unlock(&dentry->d_lock);
561 	return 0;
562 }
563 EXPORT_SYMBOL(d_invalidate);
564 
565 /* This must be called with d_lock held */
566 static inline void __dget_dlock(struct dentry *dentry)
567 {
568 	dentry->d_count++;
569 }
570 
571 static inline void __dget(struct dentry *dentry)
572 {
573 	spin_lock(&dentry->d_lock);
574 	__dget_dlock(dentry);
575 	spin_unlock(&dentry->d_lock);
576 }
577 
578 struct dentry *dget_parent(struct dentry *dentry)
579 {
580 	struct dentry *ret;
581 
582 repeat:
583 	/*
584 	 * Don't need rcu_dereference because we re-check it was correct under
585 	 * the lock.
586 	 */
587 	rcu_read_lock();
588 	ret = dentry->d_parent;
589 	spin_lock(&ret->d_lock);
590 	if (unlikely(ret != dentry->d_parent)) {
591 		spin_unlock(&ret->d_lock);
592 		rcu_read_unlock();
593 		goto repeat;
594 	}
595 	rcu_read_unlock();
596 	BUG_ON(!ret->d_count);
597 	ret->d_count++;
598 	spin_unlock(&ret->d_lock);
599 	return ret;
600 }
601 EXPORT_SYMBOL(dget_parent);
602 
603 /**
604  * d_find_alias - grab a hashed alias of inode
605  * @inode: inode in question
606  * @want_discon:  flag, used by d_splice_alias, to request
607  *          that only a DISCONNECTED alias be returned.
608  *
609  * If inode has a hashed alias, or is a directory and has any alias,
610  * acquire the reference to alias and return it. Otherwise return NULL.
611  * Notice that if inode is a directory there can be only one alias and
612  * it can be unhashed only if it has no children, or if it is the root
613  * of a filesystem.
614  *
615  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
616  * any other hashed alias over that one unless @want_discon is set,
617  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
618  */
619 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
620 {
621 	struct dentry *alias, *discon_alias;
622 
623 again:
624 	discon_alias = NULL;
625 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
626 		spin_lock(&alias->d_lock);
627  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
628 			if (IS_ROOT(alias) &&
629 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
630 				discon_alias = alias;
631 			} else if (!want_discon) {
632 				__dget_dlock(alias);
633 				spin_unlock(&alias->d_lock);
634 				return alias;
635 			}
636 		}
637 		spin_unlock(&alias->d_lock);
638 	}
639 	if (discon_alias) {
640 		alias = discon_alias;
641 		spin_lock(&alias->d_lock);
642 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
643 			if (IS_ROOT(alias) &&
644 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
645 				__dget_dlock(alias);
646 				spin_unlock(&alias->d_lock);
647 				return alias;
648 			}
649 		}
650 		spin_unlock(&alias->d_lock);
651 		goto again;
652 	}
653 	return NULL;
654 }
655 
656 struct dentry *d_find_alias(struct inode *inode)
657 {
658 	struct dentry *de = NULL;
659 
660 	if (!list_empty(&inode->i_dentry)) {
661 		spin_lock(&inode->i_lock);
662 		de = __d_find_alias(inode, 0);
663 		spin_unlock(&inode->i_lock);
664 	}
665 	return de;
666 }
667 EXPORT_SYMBOL(d_find_alias);
668 
669 /*
670  *	Try to kill dentries associated with this inode.
671  * WARNING: you must own a reference to inode.
672  */
673 void d_prune_aliases(struct inode *inode)
674 {
675 	struct dentry *dentry;
676 restart:
677 	spin_lock(&inode->i_lock);
678 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
679 		spin_lock(&dentry->d_lock);
680 		if (!dentry->d_count) {
681 			__dget_dlock(dentry);
682 			__d_drop(dentry);
683 			spin_unlock(&dentry->d_lock);
684 			spin_unlock(&inode->i_lock);
685 			dput(dentry);
686 			goto restart;
687 		}
688 		spin_unlock(&dentry->d_lock);
689 	}
690 	spin_unlock(&inode->i_lock);
691 }
692 EXPORT_SYMBOL(d_prune_aliases);
693 
694 /*
695  * Try to throw away a dentry - free the inode, dput the parent.
696  * Requires dentry->d_lock is held, and dentry->d_count == 0.
697  * Releases dentry->d_lock.
698  *
699  * This may fail if locks cannot be acquired no problem, just try again.
700  */
701 static void try_prune_one_dentry(struct dentry *dentry)
702 	__releases(dentry->d_lock)
703 {
704 	struct dentry *parent;
705 
706 	parent = dentry_kill(dentry, 0);
707 	/*
708 	 * If dentry_kill returns NULL, we have nothing more to do.
709 	 * if it returns the same dentry, trylocks failed. In either
710 	 * case, just loop again.
711 	 *
712 	 * Otherwise, we need to prune ancestors too. This is necessary
713 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
714 	 * is also expected to be beneficial in reducing dentry cache
715 	 * fragmentation.
716 	 */
717 	if (!parent)
718 		return;
719 	if (parent == dentry)
720 		return;
721 
722 	/* Prune ancestors. */
723 	dentry = parent;
724 	while (dentry) {
725 		spin_lock(&dentry->d_lock);
726 		if (dentry->d_count > 1) {
727 			dentry->d_count--;
728 			spin_unlock(&dentry->d_lock);
729 			return;
730 		}
731 		dentry = dentry_kill(dentry, 1);
732 	}
733 }
734 
735 static void shrink_dentry_list(struct list_head *list)
736 {
737 	struct dentry *dentry;
738 
739 	rcu_read_lock();
740 	for (;;) {
741 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
742 		if (&dentry->d_lru == list)
743 			break; /* empty */
744 		spin_lock(&dentry->d_lock);
745 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
746 			spin_unlock(&dentry->d_lock);
747 			continue;
748 		}
749 
750 		/*
751 		 * We found an inuse dentry which was not removed from
752 		 * the LRU because of laziness during lookup.  Do not free
753 		 * it - just keep it off the LRU list.
754 		 */
755 		if (dentry->d_count) {
756 			dentry_lru_del(dentry);
757 			spin_unlock(&dentry->d_lock);
758 			continue;
759 		}
760 
761 		rcu_read_unlock();
762 
763 		try_prune_one_dentry(dentry);
764 
765 		rcu_read_lock();
766 	}
767 	rcu_read_unlock();
768 }
769 
770 /**
771  * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
772  * @sb:		superblock to shrink dentry LRU.
773  * @count:	number of entries to prune
774  * @flags:	flags to control the dentry processing
775  *
776  * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
777  */
778 static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
779 {
780 	struct dentry *dentry;
781 	LIST_HEAD(referenced);
782 	LIST_HEAD(tmp);
783 
784 relock:
785 	spin_lock(&dcache_lru_lock);
786 	while (!list_empty(&sb->s_dentry_lru)) {
787 		dentry = list_entry(sb->s_dentry_lru.prev,
788 				struct dentry, d_lru);
789 		BUG_ON(dentry->d_sb != sb);
790 
791 		if (!spin_trylock(&dentry->d_lock)) {
792 			spin_unlock(&dcache_lru_lock);
793 			cpu_relax();
794 			goto relock;
795 		}
796 
797 		/*
798 		 * If we are honouring the DCACHE_REFERENCED flag and the
799 		 * dentry has this flag set, don't free it.  Clear the flag
800 		 * and put it back on the LRU.
801 		 */
802 		if (flags & DCACHE_REFERENCED &&
803 				dentry->d_flags & DCACHE_REFERENCED) {
804 			dentry->d_flags &= ~DCACHE_REFERENCED;
805 			list_move(&dentry->d_lru, &referenced);
806 			spin_unlock(&dentry->d_lock);
807 		} else {
808 			list_move_tail(&dentry->d_lru, &tmp);
809 			spin_unlock(&dentry->d_lock);
810 			if (!--count)
811 				break;
812 		}
813 		cond_resched_lock(&dcache_lru_lock);
814 	}
815 	if (!list_empty(&referenced))
816 		list_splice(&referenced, &sb->s_dentry_lru);
817 	spin_unlock(&dcache_lru_lock);
818 
819 	shrink_dentry_list(&tmp);
820 }
821 
822 /**
823  * prune_dcache_sb - shrink the dcache
824  * @sb: superblock
825  * @nr_to_scan: number of entries to try to free
826  *
827  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
828  * done when we need more memory an called from the superblock shrinker
829  * function.
830  *
831  * This function may fail to free any resources if all the dentries are in
832  * use.
833  */
834 void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
835 {
836 	__shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
837 }
838 
839 /**
840  * shrink_dcache_sb - shrink dcache for a superblock
841  * @sb: superblock
842  *
843  * Shrink the dcache for the specified super block. This is used to free
844  * the dcache before unmounting a file system.
845  */
846 void shrink_dcache_sb(struct super_block *sb)
847 {
848 	LIST_HEAD(tmp);
849 
850 	spin_lock(&dcache_lru_lock);
851 	while (!list_empty(&sb->s_dentry_lru)) {
852 		list_splice_init(&sb->s_dentry_lru, &tmp);
853 		spin_unlock(&dcache_lru_lock);
854 		shrink_dentry_list(&tmp);
855 		spin_lock(&dcache_lru_lock);
856 	}
857 	spin_unlock(&dcache_lru_lock);
858 }
859 EXPORT_SYMBOL(shrink_dcache_sb);
860 
861 /*
862  * destroy a single subtree of dentries for unmount
863  * - see the comments on shrink_dcache_for_umount() for a description of the
864  *   locking
865  */
866 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
867 {
868 	struct dentry *parent;
869 
870 	BUG_ON(!IS_ROOT(dentry));
871 
872 	for (;;) {
873 		/* descend to the first leaf in the current subtree */
874 		while (!list_empty(&dentry->d_subdirs))
875 			dentry = list_entry(dentry->d_subdirs.next,
876 					    struct dentry, d_u.d_child);
877 
878 		/* consume the dentries from this leaf up through its parents
879 		 * until we find one with children or run out altogether */
880 		do {
881 			struct inode *inode;
882 
883 			/*
884 			 * remove the dentry from the lru, and inform
885 			 * the fs that this dentry is about to be
886 			 * unhashed and destroyed.
887 			 */
888 			dentry_lru_prune(dentry);
889 			__d_shrink(dentry);
890 
891 			if (dentry->d_count != 0) {
892 				printk(KERN_ERR
893 				       "BUG: Dentry %p{i=%lx,n=%s}"
894 				       " still in use (%d)"
895 				       " [unmount of %s %s]\n",
896 				       dentry,
897 				       dentry->d_inode ?
898 				       dentry->d_inode->i_ino : 0UL,
899 				       dentry->d_name.name,
900 				       dentry->d_count,
901 				       dentry->d_sb->s_type->name,
902 				       dentry->d_sb->s_id);
903 				BUG();
904 			}
905 
906 			if (IS_ROOT(dentry)) {
907 				parent = NULL;
908 				list_del(&dentry->d_u.d_child);
909 			} else {
910 				parent = dentry->d_parent;
911 				parent->d_count--;
912 				list_del(&dentry->d_u.d_child);
913 			}
914 
915 			inode = dentry->d_inode;
916 			if (inode) {
917 				dentry->d_inode = NULL;
918 				list_del_init(&dentry->d_alias);
919 				if (dentry->d_op && dentry->d_op->d_iput)
920 					dentry->d_op->d_iput(dentry, inode);
921 				else
922 					iput(inode);
923 			}
924 
925 			d_free(dentry);
926 
927 			/* finished when we fall off the top of the tree,
928 			 * otherwise we ascend to the parent and move to the
929 			 * next sibling if there is one */
930 			if (!parent)
931 				return;
932 			dentry = parent;
933 		} while (list_empty(&dentry->d_subdirs));
934 
935 		dentry = list_entry(dentry->d_subdirs.next,
936 				    struct dentry, d_u.d_child);
937 	}
938 }
939 
940 /*
941  * destroy the dentries attached to a superblock on unmounting
942  * - we don't need to use dentry->d_lock because:
943  *   - the superblock is detached from all mountings and open files, so the
944  *     dentry trees will not be rearranged by the VFS
945  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
946  *     any dentries belonging to this superblock that it comes across
947  *   - the filesystem itself is no longer permitted to rearrange the dentries
948  *     in this superblock
949  */
950 void shrink_dcache_for_umount(struct super_block *sb)
951 {
952 	struct dentry *dentry;
953 
954 	if (down_read_trylock(&sb->s_umount))
955 		BUG();
956 
957 	dentry = sb->s_root;
958 	sb->s_root = NULL;
959 	dentry->d_count--;
960 	shrink_dcache_for_umount_subtree(dentry);
961 
962 	while (!hlist_bl_empty(&sb->s_anon)) {
963 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
964 		shrink_dcache_for_umount_subtree(dentry);
965 	}
966 }
967 
968 /*
969  * This tries to ascend one level of parenthood, but
970  * we can race with renaming, so we need to re-check
971  * the parenthood after dropping the lock and check
972  * that the sequence number still matches.
973  */
974 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
975 {
976 	struct dentry *new = old->d_parent;
977 
978 	rcu_read_lock();
979 	spin_unlock(&old->d_lock);
980 	spin_lock(&new->d_lock);
981 
982 	/*
983 	 * might go back up the wrong parent if we have had a rename
984 	 * or deletion
985 	 */
986 	if (new != old->d_parent ||
987 		 (old->d_flags & DCACHE_DISCONNECTED) ||
988 		 (!locked && read_seqretry(&rename_lock, seq))) {
989 		spin_unlock(&new->d_lock);
990 		new = NULL;
991 	}
992 	rcu_read_unlock();
993 	return new;
994 }
995 
996 
997 /*
998  * Search for at least 1 mount point in the dentry's subdirs.
999  * We descend to the next level whenever the d_subdirs
1000  * list is non-empty and continue searching.
1001  */
1002 
1003 /**
1004  * have_submounts - check for mounts over a dentry
1005  * @parent: dentry to check.
1006  *
1007  * Return true if the parent or its subdirectories contain
1008  * a mount point
1009  */
1010 int have_submounts(struct dentry *parent)
1011 {
1012 	struct dentry *this_parent;
1013 	struct list_head *next;
1014 	unsigned seq;
1015 	int locked = 0;
1016 
1017 	seq = read_seqbegin(&rename_lock);
1018 again:
1019 	this_parent = parent;
1020 
1021 	if (d_mountpoint(parent))
1022 		goto positive;
1023 	spin_lock(&this_parent->d_lock);
1024 repeat:
1025 	next = this_parent->d_subdirs.next;
1026 resume:
1027 	while (next != &this_parent->d_subdirs) {
1028 		struct list_head *tmp = next;
1029 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1030 		next = tmp->next;
1031 
1032 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1033 		/* Have we found a mount point ? */
1034 		if (d_mountpoint(dentry)) {
1035 			spin_unlock(&dentry->d_lock);
1036 			spin_unlock(&this_parent->d_lock);
1037 			goto positive;
1038 		}
1039 		if (!list_empty(&dentry->d_subdirs)) {
1040 			spin_unlock(&this_parent->d_lock);
1041 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1042 			this_parent = dentry;
1043 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1044 			goto repeat;
1045 		}
1046 		spin_unlock(&dentry->d_lock);
1047 	}
1048 	/*
1049 	 * All done at this level ... ascend and resume the search.
1050 	 */
1051 	if (this_parent != parent) {
1052 		struct dentry *child = this_parent;
1053 		this_parent = try_to_ascend(this_parent, locked, seq);
1054 		if (!this_parent)
1055 			goto rename_retry;
1056 		next = child->d_u.d_child.next;
1057 		goto resume;
1058 	}
1059 	spin_unlock(&this_parent->d_lock);
1060 	if (!locked && read_seqretry(&rename_lock, seq))
1061 		goto rename_retry;
1062 	if (locked)
1063 		write_sequnlock(&rename_lock);
1064 	return 0; /* No mount points found in tree */
1065 positive:
1066 	if (!locked && read_seqretry(&rename_lock, seq))
1067 		goto rename_retry;
1068 	if (locked)
1069 		write_sequnlock(&rename_lock);
1070 	return 1;
1071 
1072 rename_retry:
1073 	locked = 1;
1074 	write_seqlock(&rename_lock);
1075 	goto again;
1076 }
1077 EXPORT_SYMBOL(have_submounts);
1078 
1079 /*
1080  * Search the dentry child list for the specified parent,
1081  * and move any unused dentries to the end of the unused
1082  * list for prune_dcache(). We descend to the next level
1083  * whenever the d_subdirs list is non-empty and continue
1084  * searching.
1085  *
1086  * It returns zero iff there are no unused children,
1087  * otherwise  it returns the number of children moved to
1088  * the end of the unused list. This may not be the total
1089  * number of unused children, because select_parent can
1090  * drop the lock and return early due to latency
1091  * constraints.
1092  */
1093 static int select_parent(struct dentry * parent)
1094 {
1095 	struct dentry *this_parent;
1096 	struct list_head *next;
1097 	unsigned seq;
1098 	int found = 0;
1099 	int locked = 0;
1100 
1101 	seq = read_seqbegin(&rename_lock);
1102 again:
1103 	this_parent = parent;
1104 	spin_lock(&this_parent->d_lock);
1105 repeat:
1106 	next = this_parent->d_subdirs.next;
1107 resume:
1108 	while (next != &this_parent->d_subdirs) {
1109 		struct list_head *tmp = next;
1110 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1111 		next = tmp->next;
1112 
1113 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1114 
1115 		/*
1116 		 * move only zero ref count dentries to the end
1117 		 * of the unused list for prune_dcache
1118 		 */
1119 		if (!dentry->d_count) {
1120 			dentry_lru_move_tail(dentry);
1121 			found++;
1122 		} else {
1123 			dentry_lru_del(dentry);
1124 		}
1125 
1126 		/*
1127 		 * We can return to the caller if we have found some (this
1128 		 * ensures forward progress). We'll be coming back to find
1129 		 * the rest.
1130 		 */
1131 		if (found && need_resched()) {
1132 			spin_unlock(&dentry->d_lock);
1133 			goto out;
1134 		}
1135 
1136 		/*
1137 		 * Descend a level if the d_subdirs list is non-empty.
1138 		 */
1139 		if (!list_empty(&dentry->d_subdirs)) {
1140 			spin_unlock(&this_parent->d_lock);
1141 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1142 			this_parent = dentry;
1143 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1144 			goto repeat;
1145 		}
1146 
1147 		spin_unlock(&dentry->d_lock);
1148 	}
1149 	/*
1150 	 * All done at this level ... ascend and resume the search.
1151 	 */
1152 	if (this_parent != parent) {
1153 		struct dentry *child = this_parent;
1154 		this_parent = try_to_ascend(this_parent, locked, seq);
1155 		if (!this_parent)
1156 			goto rename_retry;
1157 		next = child->d_u.d_child.next;
1158 		goto resume;
1159 	}
1160 out:
1161 	spin_unlock(&this_parent->d_lock);
1162 	if (!locked && read_seqretry(&rename_lock, seq))
1163 		goto rename_retry;
1164 	if (locked)
1165 		write_sequnlock(&rename_lock);
1166 	return found;
1167 
1168 rename_retry:
1169 	if (found)
1170 		return found;
1171 	locked = 1;
1172 	write_seqlock(&rename_lock);
1173 	goto again;
1174 }
1175 
1176 /**
1177  * shrink_dcache_parent - prune dcache
1178  * @parent: parent of entries to prune
1179  *
1180  * Prune the dcache to remove unused children of the parent dentry.
1181  */
1182 
1183 void shrink_dcache_parent(struct dentry * parent)
1184 {
1185 	struct super_block *sb = parent->d_sb;
1186 	int found;
1187 
1188 	while ((found = select_parent(parent)) != 0)
1189 		__shrink_dcache_sb(sb, found, 0);
1190 }
1191 EXPORT_SYMBOL(shrink_dcache_parent);
1192 
1193 /**
1194  * __d_alloc	-	allocate a dcache entry
1195  * @sb: filesystem it will belong to
1196  * @name: qstr of the name
1197  *
1198  * Allocates a dentry. It returns %NULL if there is insufficient memory
1199  * available. On a success the dentry is returned. The name passed in is
1200  * copied and the copy passed in may be reused after this call.
1201  */
1202 
1203 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1204 {
1205 	struct dentry *dentry;
1206 	char *dname;
1207 
1208 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1209 	if (!dentry)
1210 		return NULL;
1211 
1212 	if (name->len > DNAME_INLINE_LEN-1) {
1213 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1214 		if (!dname) {
1215 			kmem_cache_free(dentry_cache, dentry);
1216 			return NULL;
1217 		}
1218 	} else  {
1219 		dname = dentry->d_iname;
1220 	}
1221 	dentry->d_name.name = dname;
1222 
1223 	dentry->d_name.len = name->len;
1224 	dentry->d_name.hash = name->hash;
1225 	memcpy(dname, name->name, name->len);
1226 	dname[name->len] = 0;
1227 
1228 	dentry->d_count = 1;
1229 	dentry->d_flags = 0;
1230 	spin_lock_init(&dentry->d_lock);
1231 	seqcount_init(&dentry->d_seq);
1232 	dentry->d_inode = NULL;
1233 	dentry->d_parent = dentry;
1234 	dentry->d_sb = sb;
1235 	dentry->d_op = NULL;
1236 	dentry->d_fsdata = NULL;
1237 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1238 	INIT_LIST_HEAD(&dentry->d_lru);
1239 	INIT_LIST_HEAD(&dentry->d_subdirs);
1240 	INIT_LIST_HEAD(&dentry->d_alias);
1241 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1242 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1243 
1244 	this_cpu_inc(nr_dentry);
1245 
1246 	return dentry;
1247 }
1248 
1249 /**
1250  * d_alloc	-	allocate a dcache entry
1251  * @parent: parent of entry to allocate
1252  * @name: qstr of the name
1253  *
1254  * Allocates a dentry. It returns %NULL if there is insufficient memory
1255  * available. On a success the dentry is returned. The name passed in is
1256  * copied and the copy passed in may be reused after this call.
1257  */
1258 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1259 {
1260 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1261 	if (!dentry)
1262 		return NULL;
1263 
1264 	spin_lock(&parent->d_lock);
1265 	/*
1266 	 * don't need child lock because it is not subject
1267 	 * to concurrency here
1268 	 */
1269 	__dget_dlock(parent);
1270 	dentry->d_parent = parent;
1271 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1272 	spin_unlock(&parent->d_lock);
1273 
1274 	return dentry;
1275 }
1276 EXPORT_SYMBOL(d_alloc);
1277 
1278 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1279 {
1280 	struct dentry *dentry = __d_alloc(sb, name);
1281 	if (dentry)
1282 		dentry->d_flags |= DCACHE_DISCONNECTED;
1283 	return dentry;
1284 }
1285 EXPORT_SYMBOL(d_alloc_pseudo);
1286 
1287 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1288 {
1289 	struct qstr q;
1290 
1291 	q.name = name;
1292 	q.len = strlen(name);
1293 	q.hash = full_name_hash(q.name, q.len);
1294 	return d_alloc(parent, &q);
1295 }
1296 EXPORT_SYMBOL(d_alloc_name);
1297 
1298 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1299 {
1300 	WARN_ON_ONCE(dentry->d_op);
1301 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1302 				DCACHE_OP_COMPARE	|
1303 				DCACHE_OP_REVALIDATE	|
1304 				DCACHE_OP_DELETE ));
1305 	dentry->d_op = op;
1306 	if (!op)
1307 		return;
1308 	if (op->d_hash)
1309 		dentry->d_flags |= DCACHE_OP_HASH;
1310 	if (op->d_compare)
1311 		dentry->d_flags |= DCACHE_OP_COMPARE;
1312 	if (op->d_revalidate)
1313 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1314 	if (op->d_delete)
1315 		dentry->d_flags |= DCACHE_OP_DELETE;
1316 	if (op->d_prune)
1317 		dentry->d_flags |= DCACHE_OP_PRUNE;
1318 
1319 }
1320 EXPORT_SYMBOL(d_set_d_op);
1321 
1322 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1323 {
1324 	spin_lock(&dentry->d_lock);
1325 	if (inode) {
1326 		if (unlikely(IS_AUTOMOUNT(inode)))
1327 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1328 		list_add(&dentry->d_alias, &inode->i_dentry);
1329 	}
1330 	dentry->d_inode = inode;
1331 	dentry_rcuwalk_barrier(dentry);
1332 	spin_unlock(&dentry->d_lock);
1333 	fsnotify_d_instantiate(dentry, inode);
1334 }
1335 
1336 /**
1337  * d_instantiate - fill in inode information for a dentry
1338  * @entry: dentry to complete
1339  * @inode: inode to attach to this dentry
1340  *
1341  * Fill in inode information in the entry.
1342  *
1343  * This turns negative dentries into productive full members
1344  * of society.
1345  *
1346  * NOTE! This assumes that the inode count has been incremented
1347  * (or otherwise set) by the caller to indicate that it is now
1348  * in use by the dcache.
1349  */
1350 
1351 void d_instantiate(struct dentry *entry, struct inode * inode)
1352 {
1353 	BUG_ON(!list_empty(&entry->d_alias));
1354 	if (inode)
1355 		spin_lock(&inode->i_lock);
1356 	__d_instantiate(entry, inode);
1357 	if (inode)
1358 		spin_unlock(&inode->i_lock);
1359 	security_d_instantiate(entry, inode);
1360 }
1361 EXPORT_SYMBOL(d_instantiate);
1362 
1363 /**
1364  * d_instantiate_unique - instantiate a non-aliased dentry
1365  * @entry: dentry to instantiate
1366  * @inode: inode to attach to this dentry
1367  *
1368  * Fill in inode information in the entry. On success, it returns NULL.
1369  * If an unhashed alias of "entry" already exists, then we return the
1370  * aliased dentry instead and drop one reference to inode.
1371  *
1372  * Note that in order to avoid conflicts with rename() etc, the caller
1373  * had better be holding the parent directory semaphore.
1374  *
1375  * This also assumes that the inode count has been incremented
1376  * (or otherwise set) by the caller to indicate that it is now
1377  * in use by the dcache.
1378  */
1379 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1380 					     struct inode *inode)
1381 {
1382 	struct dentry *alias;
1383 	int len = entry->d_name.len;
1384 	const char *name = entry->d_name.name;
1385 	unsigned int hash = entry->d_name.hash;
1386 
1387 	if (!inode) {
1388 		__d_instantiate(entry, NULL);
1389 		return NULL;
1390 	}
1391 
1392 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1393 		struct qstr *qstr = &alias->d_name;
1394 
1395 		/*
1396 		 * Don't need alias->d_lock here, because aliases with
1397 		 * d_parent == entry->d_parent are not subject to name or
1398 		 * parent changes, because the parent inode i_mutex is held.
1399 		 */
1400 		if (qstr->hash != hash)
1401 			continue;
1402 		if (alias->d_parent != entry->d_parent)
1403 			continue;
1404 		if (dentry_cmp(qstr->name, qstr->len, name, len))
1405 			continue;
1406 		__dget(alias);
1407 		return alias;
1408 	}
1409 
1410 	__d_instantiate(entry, inode);
1411 	return NULL;
1412 }
1413 
1414 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1415 {
1416 	struct dentry *result;
1417 
1418 	BUG_ON(!list_empty(&entry->d_alias));
1419 
1420 	if (inode)
1421 		spin_lock(&inode->i_lock);
1422 	result = __d_instantiate_unique(entry, inode);
1423 	if (inode)
1424 		spin_unlock(&inode->i_lock);
1425 
1426 	if (!result) {
1427 		security_d_instantiate(entry, inode);
1428 		return NULL;
1429 	}
1430 
1431 	BUG_ON(!d_unhashed(result));
1432 	iput(inode);
1433 	return result;
1434 }
1435 
1436 EXPORT_SYMBOL(d_instantiate_unique);
1437 
1438 /**
1439  * d_alloc_root - allocate root dentry
1440  * @root_inode: inode to allocate the root for
1441  *
1442  * Allocate a root ("/") dentry for the inode given. The inode is
1443  * instantiated and returned. %NULL is returned if there is insufficient
1444  * memory or the inode passed is %NULL.
1445  */
1446 
1447 struct dentry * d_alloc_root(struct inode * root_inode)
1448 {
1449 	struct dentry *res = NULL;
1450 
1451 	if (root_inode) {
1452 		static const struct qstr name = { .name = "/", .len = 1 };
1453 
1454 		res = __d_alloc(root_inode->i_sb, &name);
1455 		if (res)
1456 			d_instantiate(res, root_inode);
1457 	}
1458 	return res;
1459 }
1460 EXPORT_SYMBOL(d_alloc_root);
1461 
1462 static struct dentry * __d_find_any_alias(struct inode *inode)
1463 {
1464 	struct dentry *alias;
1465 
1466 	if (list_empty(&inode->i_dentry))
1467 		return NULL;
1468 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1469 	__dget(alias);
1470 	return alias;
1471 }
1472 
1473 static struct dentry * d_find_any_alias(struct inode *inode)
1474 {
1475 	struct dentry *de;
1476 
1477 	spin_lock(&inode->i_lock);
1478 	de = __d_find_any_alias(inode);
1479 	spin_unlock(&inode->i_lock);
1480 	return de;
1481 }
1482 
1483 
1484 /**
1485  * d_obtain_alias - find or allocate a dentry for a given inode
1486  * @inode: inode to allocate the dentry for
1487  *
1488  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1489  * similar open by handle operations.  The returned dentry may be anonymous,
1490  * or may have a full name (if the inode was already in the cache).
1491  *
1492  * When called on a directory inode, we must ensure that the inode only ever
1493  * has one dentry.  If a dentry is found, that is returned instead of
1494  * allocating a new one.
1495  *
1496  * On successful return, the reference to the inode has been transferred
1497  * to the dentry.  In case of an error the reference on the inode is released.
1498  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1499  * be passed in and will be the error will be propagate to the return value,
1500  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1501  */
1502 struct dentry *d_obtain_alias(struct inode *inode)
1503 {
1504 	static const struct qstr anonstring = { .name = "" };
1505 	struct dentry *tmp;
1506 	struct dentry *res;
1507 
1508 	if (!inode)
1509 		return ERR_PTR(-ESTALE);
1510 	if (IS_ERR(inode))
1511 		return ERR_CAST(inode);
1512 
1513 	res = d_find_any_alias(inode);
1514 	if (res)
1515 		goto out_iput;
1516 
1517 	tmp = __d_alloc(inode->i_sb, &anonstring);
1518 	if (!tmp) {
1519 		res = ERR_PTR(-ENOMEM);
1520 		goto out_iput;
1521 	}
1522 
1523 	spin_lock(&inode->i_lock);
1524 	res = __d_find_any_alias(inode);
1525 	if (res) {
1526 		spin_unlock(&inode->i_lock);
1527 		dput(tmp);
1528 		goto out_iput;
1529 	}
1530 
1531 	/* attach a disconnected dentry */
1532 	spin_lock(&tmp->d_lock);
1533 	tmp->d_inode = inode;
1534 	tmp->d_flags |= DCACHE_DISCONNECTED;
1535 	list_add(&tmp->d_alias, &inode->i_dentry);
1536 	hlist_bl_lock(&tmp->d_sb->s_anon);
1537 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1538 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1539 	spin_unlock(&tmp->d_lock);
1540 	spin_unlock(&inode->i_lock);
1541 	security_d_instantiate(tmp, inode);
1542 
1543 	return tmp;
1544 
1545  out_iput:
1546 	if (res && !IS_ERR(res))
1547 		security_d_instantiate(res, inode);
1548 	iput(inode);
1549 	return res;
1550 }
1551 EXPORT_SYMBOL(d_obtain_alias);
1552 
1553 /**
1554  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1555  * @inode:  the inode which may have a disconnected dentry
1556  * @dentry: a negative dentry which we want to point to the inode.
1557  *
1558  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1559  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1560  * and return it, else simply d_add the inode to the dentry and return NULL.
1561  *
1562  * This is needed in the lookup routine of any filesystem that is exportable
1563  * (via knfsd) so that we can build dcache paths to directories effectively.
1564  *
1565  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1566  * is returned.  This matches the expected return value of ->lookup.
1567  *
1568  */
1569 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1570 {
1571 	struct dentry *new = NULL;
1572 
1573 	if (IS_ERR(inode))
1574 		return ERR_CAST(inode);
1575 
1576 	if (inode && S_ISDIR(inode->i_mode)) {
1577 		spin_lock(&inode->i_lock);
1578 		new = __d_find_alias(inode, 1);
1579 		if (new) {
1580 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1581 			spin_unlock(&inode->i_lock);
1582 			security_d_instantiate(new, inode);
1583 			d_move(new, dentry);
1584 			iput(inode);
1585 		} else {
1586 			/* already taking inode->i_lock, so d_add() by hand */
1587 			__d_instantiate(dentry, inode);
1588 			spin_unlock(&inode->i_lock);
1589 			security_d_instantiate(dentry, inode);
1590 			d_rehash(dentry);
1591 		}
1592 	} else
1593 		d_add(dentry, inode);
1594 	return new;
1595 }
1596 EXPORT_SYMBOL(d_splice_alias);
1597 
1598 /**
1599  * d_add_ci - lookup or allocate new dentry with case-exact name
1600  * @inode:  the inode case-insensitive lookup has found
1601  * @dentry: the negative dentry that was passed to the parent's lookup func
1602  * @name:   the case-exact name to be associated with the returned dentry
1603  *
1604  * This is to avoid filling the dcache with case-insensitive names to the
1605  * same inode, only the actual correct case is stored in the dcache for
1606  * case-insensitive filesystems.
1607  *
1608  * For a case-insensitive lookup match and if the the case-exact dentry
1609  * already exists in in the dcache, use it and return it.
1610  *
1611  * If no entry exists with the exact case name, allocate new dentry with
1612  * the exact case, and return the spliced entry.
1613  */
1614 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1615 			struct qstr *name)
1616 {
1617 	int error;
1618 	struct dentry *found;
1619 	struct dentry *new;
1620 
1621 	/*
1622 	 * First check if a dentry matching the name already exists,
1623 	 * if not go ahead and create it now.
1624 	 */
1625 	found = d_hash_and_lookup(dentry->d_parent, name);
1626 	if (!found) {
1627 		new = d_alloc(dentry->d_parent, name);
1628 		if (!new) {
1629 			error = -ENOMEM;
1630 			goto err_out;
1631 		}
1632 
1633 		found = d_splice_alias(inode, new);
1634 		if (found) {
1635 			dput(new);
1636 			return found;
1637 		}
1638 		return new;
1639 	}
1640 
1641 	/*
1642 	 * If a matching dentry exists, and it's not negative use it.
1643 	 *
1644 	 * Decrement the reference count to balance the iget() done
1645 	 * earlier on.
1646 	 */
1647 	if (found->d_inode) {
1648 		if (unlikely(found->d_inode != inode)) {
1649 			/* This can't happen because bad inodes are unhashed. */
1650 			BUG_ON(!is_bad_inode(inode));
1651 			BUG_ON(!is_bad_inode(found->d_inode));
1652 		}
1653 		iput(inode);
1654 		return found;
1655 	}
1656 
1657 	/*
1658 	 * We are going to instantiate this dentry, unhash it and clear the
1659 	 * lookup flag so we can do that.
1660 	 */
1661 	if (unlikely(d_need_lookup(found)))
1662 		d_clear_need_lookup(found);
1663 
1664 	/*
1665 	 * Negative dentry: instantiate it unless the inode is a directory and
1666 	 * already has a dentry.
1667 	 */
1668 	new = d_splice_alias(inode, found);
1669 	if (new) {
1670 		dput(found);
1671 		found = new;
1672 	}
1673 	return found;
1674 
1675 err_out:
1676 	iput(inode);
1677 	return ERR_PTR(error);
1678 }
1679 EXPORT_SYMBOL(d_add_ci);
1680 
1681 /**
1682  * __d_lookup_rcu - search for a dentry (racy, store-free)
1683  * @parent: parent dentry
1684  * @name: qstr of name we wish to find
1685  * @seq: returns d_seq value at the point where the dentry was found
1686  * @inode: returns dentry->d_inode when the inode was found valid.
1687  * Returns: dentry, or NULL
1688  *
1689  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1690  * resolution (store-free path walking) design described in
1691  * Documentation/filesystems/path-lookup.txt.
1692  *
1693  * This is not to be used outside core vfs.
1694  *
1695  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1696  * held, and rcu_read_lock held. The returned dentry must not be stored into
1697  * without taking d_lock and checking d_seq sequence count against @seq
1698  * returned here.
1699  *
1700  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1701  * function.
1702  *
1703  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1704  * the returned dentry, so long as its parent's seqlock is checked after the
1705  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1706  * is formed, giving integrity down the path walk.
1707  */
1708 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1709 				unsigned *seq, struct inode **inode)
1710 {
1711 	unsigned int len = name->len;
1712 	unsigned int hash = name->hash;
1713 	const unsigned char *str = name->name;
1714 	struct hlist_bl_head *b = d_hash(parent, hash);
1715 	struct hlist_bl_node *node;
1716 	struct dentry *dentry;
1717 
1718 	/*
1719 	 * Note: There is significant duplication with __d_lookup_rcu which is
1720 	 * required to prevent single threaded performance regressions
1721 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1722 	 * Keep the two functions in sync.
1723 	 */
1724 
1725 	/*
1726 	 * The hash list is protected using RCU.
1727 	 *
1728 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1729 	 * races with d_move().
1730 	 *
1731 	 * It is possible that concurrent renames can mess up our list
1732 	 * walk here and result in missing our dentry, resulting in the
1733 	 * false-negative result. d_lookup() protects against concurrent
1734 	 * renames using rename_lock seqlock.
1735 	 *
1736 	 * See Documentation/filesystems/path-lookup.txt for more details.
1737 	 */
1738 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1739 		struct inode *i;
1740 		const char *tname;
1741 		int tlen;
1742 
1743 		if (dentry->d_name.hash != hash)
1744 			continue;
1745 
1746 seqretry:
1747 		*seq = read_seqcount_begin(&dentry->d_seq);
1748 		if (dentry->d_parent != parent)
1749 			continue;
1750 		if (d_unhashed(dentry))
1751 			continue;
1752 		tlen = dentry->d_name.len;
1753 		tname = dentry->d_name.name;
1754 		i = dentry->d_inode;
1755 		prefetch(tname);
1756 		/*
1757 		 * This seqcount check is required to ensure name and
1758 		 * len are loaded atomically, so as not to walk off the
1759 		 * edge of memory when walking. If we could load this
1760 		 * atomically some other way, we could drop this check.
1761 		 */
1762 		if (read_seqcount_retry(&dentry->d_seq, *seq))
1763 			goto seqretry;
1764 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1765 			if (parent->d_op->d_compare(parent, *inode,
1766 						dentry, i,
1767 						tlen, tname, name))
1768 				continue;
1769 		} else {
1770 			if (dentry_cmp(tname, tlen, str, len))
1771 				continue;
1772 		}
1773 		/*
1774 		 * No extra seqcount check is required after the name
1775 		 * compare. The caller must perform a seqcount check in
1776 		 * order to do anything useful with the returned dentry
1777 		 * anyway.
1778 		 */
1779 		*inode = i;
1780 		return dentry;
1781 	}
1782 	return NULL;
1783 }
1784 
1785 /**
1786  * d_lookup - search for a dentry
1787  * @parent: parent dentry
1788  * @name: qstr of name we wish to find
1789  * Returns: dentry, or NULL
1790  *
1791  * d_lookup searches the children of the parent dentry for the name in
1792  * question. If the dentry is found its reference count is incremented and the
1793  * dentry is returned. The caller must use dput to free the entry when it has
1794  * finished using it. %NULL is returned if the dentry does not exist.
1795  */
1796 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1797 {
1798 	struct dentry *dentry;
1799 	unsigned seq;
1800 
1801         do {
1802                 seq = read_seqbegin(&rename_lock);
1803                 dentry = __d_lookup(parent, name);
1804                 if (dentry)
1805 			break;
1806 	} while (read_seqretry(&rename_lock, seq));
1807 	return dentry;
1808 }
1809 EXPORT_SYMBOL(d_lookup);
1810 
1811 /**
1812  * __d_lookup - search for a dentry (racy)
1813  * @parent: parent dentry
1814  * @name: qstr of name we wish to find
1815  * Returns: dentry, or NULL
1816  *
1817  * __d_lookup is like d_lookup, however it may (rarely) return a
1818  * false-negative result due to unrelated rename activity.
1819  *
1820  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1821  * however it must be used carefully, eg. with a following d_lookup in
1822  * the case of failure.
1823  *
1824  * __d_lookup callers must be commented.
1825  */
1826 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1827 {
1828 	unsigned int len = name->len;
1829 	unsigned int hash = name->hash;
1830 	const unsigned char *str = name->name;
1831 	struct hlist_bl_head *b = d_hash(parent, hash);
1832 	struct hlist_bl_node *node;
1833 	struct dentry *found = NULL;
1834 	struct dentry *dentry;
1835 
1836 	/*
1837 	 * Note: There is significant duplication with __d_lookup_rcu which is
1838 	 * required to prevent single threaded performance regressions
1839 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1840 	 * Keep the two functions in sync.
1841 	 */
1842 
1843 	/*
1844 	 * The hash list is protected using RCU.
1845 	 *
1846 	 * Take d_lock when comparing a candidate dentry, to avoid races
1847 	 * with d_move().
1848 	 *
1849 	 * It is possible that concurrent renames can mess up our list
1850 	 * walk here and result in missing our dentry, resulting in the
1851 	 * false-negative result. d_lookup() protects against concurrent
1852 	 * renames using rename_lock seqlock.
1853 	 *
1854 	 * See Documentation/filesystems/path-lookup.txt for more details.
1855 	 */
1856 	rcu_read_lock();
1857 
1858 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1859 		const char *tname;
1860 		int tlen;
1861 
1862 		if (dentry->d_name.hash != hash)
1863 			continue;
1864 
1865 		spin_lock(&dentry->d_lock);
1866 		if (dentry->d_parent != parent)
1867 			goto next;
1868 		if (d_unhashed(dentry))
1869 			goto next;
1870 
1871 		/*
1872 		 * It is safe to compare names since d_move() cannot
1873 		 * change the qstr (protected by d_lock).
1874 		 */
1875 		tlen = dentry->d_name.len;
1876 		tname = dentry->d_name.name;
1877 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1878 			if (parent->d_op->d_compare(parent, parent->d_inode,
1879 						dentry, dentry->d_inode,
1880 						tlen, tname, name))
1881 				goto next;
1882 		} else {
1883 			if (dentry_cmp(tname, tlen, str, len))
1884 				goto next;
1885 		}
1886 
1887 		dentry->d_count++;
1888 		found = dentry;
1889 		spin_unlock(&dentry->d_lock);
1890 		break;
1891 next:
1892 		spin_unlock(&dentry->d_lock);
1893  	}
1894  	rcu_read_unlock();
1895 
1896  	return found;
1897 }
1898 
1899 /**
1900  * d_hash_and_lookup - hash the qstr then search for a dentry
1901  * @dir: Directory to search in
1902  * @name: qstr of name we wish to find
1903  *
1904  * On hash failure or on lookup failure NULL is returned.
1905  */
1906 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1907 {
1908 	struct dentry *dentry = NULL;
1909 
1910 	/*
1911 	 * Check for a fs-specific hash function. Note that we must
1912 	 * calculate the standard hash first, as the d_op->d_hash()
1913 	 * routine may choose to leave the hash value unchanged.
1914 	 */
1915 	name->hash = full_name_hash(name->name, name->len);
1916 	if (dir->d_flags & DCACHE_OP_HASH) {
1917 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1918 			goto out;
1919 	}
1920 	dentry = d_lookup(dir, name);
1921 out:
1922 	return dentry;
1923 }
1924 
1925 /**
1926  * d_validate - verify dentry provided from insecure source (deprecated)
1927  * @dentry: The dentry alleged to be valid child of @dparent
1928  * @dparent: The parent dentry (known to be valid)
1929  *
1930  * An insecure source has sent us a dentry, here we verify it and dget() it.
1931  * This is used by ncpfs in its readdir implementation.
1932  * Zero is returned in the dentry is invalid.
1933  *
1934  * This function is slow for big directories, and deprecated, do not use it.
1935  */
1936 int d_validate(struct dentry *dentry, struct dentry *dparent)
1937 {
1938 	struct dentry *child;
1939 
1940 	spin_lock(&dparent->d_lock);
1941 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1942 		if (dentry == child) {
1943 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1944 			__dget_dlock(dentry);
1945 			spin_unlock(&dentry->d_lock);
1946 			spin_unlock(&dparent->d_lock);
1947 			return 1;
1948 		}
1949 	}
1950 	spin_unlock(&dparent->d_lock);
1951 
1952 	return 0;
1953 }
1954 EXPORT_SYMBOL(d_validate);
1955 
1956 /*
1957  * When a file is deleted, we have two options:
1958  * - turn this dentry into a negative dentry
1959  * - unhash this dentry and free it.
1960  *
1961  * Usually, we want to just turn this into
1962  * a negative dentry, but if anybody else is
1963  * currently using the dentry or the inode
1964  * we can't do that and we fall back on removing
1965  * it from the hash queues and waiting for
1966  * it to be deleted later when it has no users
1967  */
1968 
1969 /**
1970  * d_delete - delete a dentry
1971  * @dentry: The dentry to delete
1972  *
1973  * Turn the dentry into a negative dentry if possible, otherwise
1974  * remove it from the hash queues so it can be deleted later
1975  */
1976 
1977 void d_delete(struct dentry * dentry)
1978 {
1979 	struct inode *inode;
1980 	int isdir = 0;
1981 	/*
1982 	 * Are we the only user?
1983 	 */
1984 again:
1985 	spin_lock(&dentry->d_lock);
1986 	inode = dentry->d_inode;
1987 	isdir = S_ISDIR(inode->i_mode);
1988 	if (dentry->d_count == 1) {
1989 		if (inode && !spin_trylock(&inode->i_lock)) {
1990 			spin_unlock(&dentry->d_lock);
1991 			cpu_relax();
1992 			goto again;
1993 		}
1994 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1995 		dentry_unlink_inode(dentry);
1996 		fsnotify_nameremove(dentry, isdir);
1997 		return;
1998 	}
1999 
2000 	if (!d_unhashed(dentry))
2001 		__d_drop(dentry);
2002 
2003 	spin_unlock(&dentry->d_lock);
2004 
2005 	fsnotify_nameremove(dentry, isdir);
2006 }
2007 EXPORT_SYMBOL(d_delete);
2008 
2009 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2010 {
2011 	BUG_ON(!d_unhashed(entry));
2012 	hlist_bl_lock(b);
2013 	entry->d_flags |= DCACHE_RCUACCESS;
2014 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2015 	hlist_bl_unlock(b);
2016 }
2017 
2018 static void _d_rehash(struct dentry * entry)
2019 {
2020 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2021 }
2022 
2023 /**
2024  * d_rehash	- add an entry back to the hash
2025  * @entry: dentry to add to the hash
2026  *
2027  * Adds a dentry to the hash according to its name.
2028  */
2029 
2030 void d_rehash(struct dentry * entry)
2031 {
2032 	spin_lock(&entry->d_lock);
2033 	_d_rehash(entry);
2034 	spin_unlock(&entry->d_lock);
2035 }
2036 EXPORT_SYMBOL(d_rehash);
2037 
2038 /**
2039  * dentry_update_name_case - update case insensitive dentry with a new name
2040  * @dentry: dentry to be updated
2041  * @name: new name
2042  *
2043  * Update a case insensitive dentry with new case of name.
2044  *
2045  * dentry must have been returned by d_lookup with name @name. Old and new
2046  * name lengths must match (ie. no d_compare which allows mismatched name
2047  * lengths).
2048  *
2049  * Parent inode i_mutex must be held over d_lookup and into this call (to
2050  * keep renames and concurrent inserts, and readdir(2) away).
2051  */
2052 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2053 {
2054 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2055 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2056 
2057 	spin_lock(&dentry->d_lock);
2058 	write_seqcount_begin(&dentry->d_seq);
2059 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2060 	write_seqcount_end(&dentry->d_seq);
2061 	spin_unlock(&dentry->d_lock);
2062 }
2063 EXPORT_SYMBOL(dentry_update_name_case);
2064 
2065 static void switch_names(struct dentry *dentry, struct dentry *target)
2066 {
2067 	if (dname_external(target)) {
2068 		if (dname_external(dentry)) {
2069 			/*
2070 			 * Both external: swap the pointers
2071 			 */
2072 			swap(target->d_name.name, dentry->d_name.name);
2073 		} else {
2074 			/*
2075 			 * dentry:internal, target:external.  Steal target's
2076 			 * storage and make target internal.
2077 			 */
2078 			memcpy(target->d_iname, dentry->d_name.name,
2079 					dentry->d_name.len + 1);
2080 			dentry->d_name.name = target->d_name.name;
2081 			target->d_name.name = target->d_iname;
2082 		}
2083 	} else {
2084 		if (dname_external(dentry)) {
2085 			/*
2086 			 * dentry:external, target:internal.  Give dentry's
2087 			 * storage to target and make dentry internal
2088 			 */
2089 			memcpy(dentry->d_iname, target->d_name.name,
2090 					target->d_name.len + 1);
2091 			target->d_name.name = dentry->d_name.name;
2092 			dentry->d_name.name = dentry->d_iname;
2093 		} else {
2094 			/*
2095 			 * Both are internal.  Just copy target to dentry
2096 			 */
2097 			memcpy(dentry->d_iname, target->d_name.name,
2098 					target->d_name.len + 1);
2099 			dentry->d_name.len = target->d_name.len;
2100 			return;
2101 		}
2102 	}
2103 	swap(dentry->d_name.len, target->d_name.len);
2104 }
2105 
2106 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2107 {
2108 	/*
2109 	 * XXXX: do we really need to take target->d_lock?
2110 	 */
2111 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2112 		spin_lock(&target->d_parent->d_lock);
2113 	else {
2114 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2115 			spin_lock(&dentry->d_parent->d_lock);
2116 			spin_lock_nested(&target->d_parent->d_lock,
2117 						DENTRY_D_LOCK_NESTED);
2118 		} else {
2119 			spin_lock(&target->d_parent->d_lock);
2120 			spin_lock_nested(&dentry->d_parent->d_lock,
2121 						DENTRY_D_LOCK_NESTED);
2122 		}
2123 	}
2124 	if (target < dentry) {
2125 		spin_lock_nested(&target->d_lock, 2);
2126 		spin_lock_nested(&dentry->d_lock, 3);
2127 	} else {
2128 		spin_lock_nested(&dentry->d_lock, 2);
2129 		spin_lock_nested(&target->d_lock, 3);
2130 	}
2131 }
2132 
2133 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2134 					struct dentry *target)
2135 {
2136 	if (target->d_parent != dentry->d_parent)
2137 		spin_unlock(&dentry->d_parent->d_lock);
2138 	if (target->d_parent != target)
2139 		spin_unlock(&target->d_parent->d_lock);
2140 }
2141 
2142 /*
2143  * When switching names, the actual string doesn't strictly have to
2144  * be preserved in the target - because we're dropping the target
2145  * anyway. As such, we can just do a simple memcpy() to copy over
2146  * the new name before we switch.
2147  *
2148  * Note that we have to be a lot more careful about getting the hash
2149  * switched - we have to switch the hash value properly even if it
2150  * then no longer matches the actual (corrupted) string of the target.
2151  * The hash value has to match the hash queue that the dentry is on..
2152  */
2153 /*
2154  * __d_move - move a dentry
2155  * @dentry: entry to move
2156  * @target: new dentry
2157  *
2158  * Update the dcache to reflect the move of a file name. Negative
2159  * dcache entries should not be moved in this way. Caller must hold
2160  * rename_lock, the i_mutex of the source and target directories,
2161  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2162  */
2163 static void __d_move(struct dentry * dentry, struct dentry * target)
2164 {
2165 	if (!dentry->d_inode)
2166 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2167 
2168 	BUG_ON(d_ancestor(dentry, target));
2169 	BUG_ON(d_ancestor(target, dentry));
2170 
2171 	dentry_lock_for_move(dentry, target);
2172 
2173 	write_seqcount_begin(&dentry->d_seq);
2174 	write_seqcount_begin(&target->d_seq);
2175 
2176 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2177 
2178 	/*
2179 	 * Move the dentry to the target hash queue. Don't bother checking
2180 	 * for the same hash queue because of how unlikely it is.
2181 	 */
2182 	__d_drop(dentry);
2183 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2184 
2185 	/* Unhash the target: dput() will then get rid of it */
2186 	__d_drop(target);
2187 
2188 	list_del(&dentry->d_u.d_child);
2189 	list_del(&target->d_u.d_child);
2190 
2191 	/* Switch the names.. */
2192 	switch_names(dentry, target);
2193 	swap(dentry->d_name.hash, target->d_name.hash);
2194 
2195 	/* ... and switch the parents */
2196 	if (IS_ROOT(dentry)) {
2197 		dentry->d_parent = target->d_parent;
2198 		target->d_parent = target;
2199 		INIT_LIST_HEAD(&target->d_u.d_child);
2200 	} else {
2201 		swap(dentry->d_parent, target->d_parent);
2202 
2203 		/* And add them back to the (new) parent lists */
2204 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2205 	}
2206 
2207 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2208 
2209 	write_seqcount_end(&target->d_seq);
2210 	write_seqcount_end(&dentry->d_seq);
2211 
2212 	dentry_unlock_parents_for_move(dentry, target);
2213 	spin_unlock(&target->d_lock);
2214 	fsnotify_d_move(dentry);
2215 	spin_unlock(&dentry->d_lock);
2216 }
2217 
2218 /*
2219  * d_move - move a dentry
2220  * @dentry: entry to move
2221  * @target: new dentry
2222  *
2223  * Update the dcache to reflect the move of a file name. Negative
2224  * dcache entries should not be moved in this way. See the locking
2225  * requirements for __d_move.
2226  */
2227 void d_move(struct dentry *dentry, struct dentry *target)
2228 {
2229 	write_seqlock(&rename_lock);
2230 	__d_move(dentry, target);
2231 	write_sequnlock(&rename_lock);
2232 }
2233 EXPORT_SYMBOL(d_move);
2234 
2235 /**
2236  * d_ancestor - search for an ancestor
2237  * @p1: ancestor dentry
2238  * @p2: child dentry
2239  *
2240  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2241  * an ancestor of p2, else NULL.
2242  */
2243 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2244 {
2245 	struct dentry *p;
2246 
2247 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2248 		if (p->d_parent == p1)
2249 			return p;
2250 	}
2251 	return NULL;
2252 }
2253 
2254 /*
2255  * This helper attempts to cope with remotely renamed directories
2256  *
2257  * It assumes that the caller is already holding
2258  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2259  *
2260  * Note: If ever the locking in lock_rename() changes, then please
2261  * remember to update this too...
2262  */
2263 static struct dentry *__d_unalias(struct inode *inode,
2264 		struct dentry *dentry, struct dentry *alias)
2265 {
2266 	struct mutex *m1 = NULL, *m2 = NULL;
2267 	struct dentry *ret;
2268 
2269 	/* If alias and dentry share a parent, then no extra locks required */
2270 	if (alias->d_parent == dentry->d_parent)
2271 		goto out_unalias;
2272 
2273 	/* See lock_rename() */
2274 	ret = ERR_PTR(-EBUSY);
2275 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2276 		goto out_err;
2277 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2278 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2279 		goto out_err;
2280 	m2 = &alias->d_parent->d_inode->i_mutex;
2281 out_unalias:
2282 	__d_move(alias, dentry);
2283 	ret = alias;
2284 out_err:
2285 	spin_unlock(&inode->i_lock);
2286 	if (m2)
2287 		mutex_unlock(m2);
2288 	if (m1)
2289 		mutex_unlock(m1);
2290 	return ret;
2291 }
2292 
2293 /*
2294  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2295  * named dentry in place of the dentry to be replaced.
2296  * returns with anon->d_lock held!
2297  */
2298 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2299 {
2300 	struct dentry *dparent, *aparent;
2301 
2302 	dentry_lock_for_move(anon, dentry);
2303 
2304 	write_seqcount_begin(&dentry->d_seq);
2305 	write_seqcount_begin(&anon->d_seq);
2306 
2307 	dparent = dentry->d_parent;
2308 	aparent = anon->d_parent;
2309 
2310 	switch_names(dentry, anon);
2311 	swap(dentry->d_name.hash, anon->d_name.hash);
2312 
2313 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2314 	list_del(&dentry->d_u.d_child);
2315 	if (!IS_ROOT(dentry))
2316 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2317 	else
2318 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2319 
2320 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2321 	list_del(&anon->d_u.d_child);
2322 	if (!IS_ROOT(anon))
2323 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2324 	else
2325 		INIT_LIST_HEAD(&anon->d_u.d_child);
2326 
2327 	write_seqcount_end(&dentry->d_seq);
2328 	write_seqcount_end(&anon->d_seq);
2329 
2330 	dentry_unlock_parents_for_move(anon, dentry);
2331 	spin_unlock(&dentry->d_lock);
2332 
2333 	/* anon->d_lock still locked, returns locked */
2334 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2335 }
2336 
2337 /**
2338  * d_materialise_unique - introduce an inode into the tree
2339  * @dentry: candidate dentry
2340  * @inode: inode to bind to the dentry, to which aliases may be attached
2341  *
2342  * Introduces an dentry into the tree, substituting an extant disconnected
2343  * root directory alias in its place if there is one. Caller must hold the
2344  * i_mutex of the parent directory.
2345  */
2346 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2347 {
2348 	struct dentry *actual;
2349 
2350 	BUG_ON(!d_unhashed(dentry));
2351 
2352 	if (!inode) {
2353 		actual = dentry;
2354 		__d_instantiate(dentry, NULL);
2355 		d_rehash(actual);
2356 		goto out_nolock;
2357 	}
2358 
2359 	spin_lock(&inode->i_lock);
2360 
2361 	if (S_ISDIR(inode->i_mode)) {
2362 		struct dentry *alias;
2363 
2364 		/* Does an aliased dentry already exist? */
2365 		alias = __d_find_alias(inode, 0);
2366 		if (alias) {
2367 			actual = alias;
2368 			write_seqlock(&rename_lock);
2369 
2370 			if (d_ancestor(alias, dentry)) {
2371 				/* Check for loops */
2372 				actual = ERR_PTR(-ELOOP);
2373 			} else if (IS_ROOT(alias)) {
2374 				/* Is this an anonymous mountpoint that we
2375 				 * could splice into our tree? */
2376 				__d_materialise_dentry(dentry, alias);
2377 				write_sequnlock(&rename_lock);
2378 				__d_drop(alias);
2379 				goto found;
2380 			} else {
2381 				/* Nope, but we must(!) avoid directory
2382 				 * aliasing */
2383 				actual = __d_unalias(inode, dentry, alias);
2384 			}
2385 			write_sequnlock(&rename_lock);
2386 			if (IS_ERR(actual))
2387 				dput(alias);
2388 			goto out_nolock;
2389 		}
2390 	}
2391 
2392 	/* Add a unique reference */
2393 	actual = __d_instantiate_unique(dentry, inode);
2394 	if (!actual)
2395 		actual = dentry;
2396 	else
2397 		BUG_ON(!d_unhashed(actual));
2398 
2399 	spin_lock(&actual->d_lock);
2400 found:
2401 	_d_rehash(actual);
2402 	spin_unlock(&actual->d_lock);
2403 	spin_unlock(&inode->i_lock);
2404 out_nolock:
2405 	if (actual == dentry) {
2406 		security_d_instantiate(dentry, inode);
2407 		return NULL;
2408 	}
2409 
2410 	iput(inode);
2411 	return actual;
2412 }
2413 EXPORT_SYMBOL_GPL(d_materialise_unique);
2414 
2415 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2416 {
2417 	*buflen -= namelen;
2418 	if (*buflen < 0)
2419 		return -ENAMETOOLONG;
2420 	*buffer -= namelen;
2421 	memcpy(*buffer, str, namelen);
2422 	return 0;
2423 }
2424 
2425 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2426 {
2427 	return prepend(buffer, buflen, name->name, name->len);
2428 }
2429 
2430 /**
2431  * prepend_path - Prepend path string to a buffer
2432  * @path: the dentry/vfsmount to report
2433  * @root: root vfsmnt/dentry (may be modified by this function)
2434  * @buffer: pointer to the end of the buffer
2435  * @buflen: pointer to buffer length
2436  *
2437  * Caller holds the rename_lock.
2438  *
2439  * If path is not reachable from the supplied root, then the value of
2440  * root is changed (without modifying refcounts).
2441  */
2442 static int prepend_path(const struct path *path, struct path *root,
2443 			char **buffer, int *buflen)
2444 {
2445 	struct dentry *dentry = path->dentry;
2446 	struct vfsmount *vfsmnt = path->mnt;
2447 	bool slash = false;
2448 	int error = 0;
2449 
2450 	br_read_lock(vfsmount_lock);
2451 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2452 		struct dentry * parent;
2453 
2454 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2455 			/* Global root? */
2456 			if (vfsmnt->mnt_parent == vfsmnt) {
2457 				goto global_root;
2458 			}
2459 			dentry = vfsmnt->mnt_mountpoint;
2460 			vfsmnt = vfsmnt->mnt_parent;
2461 			continue;
2462 		}
2463 		parent = dentry->d_parent;
2464 		prefetch(parent);
2465 		spin_lock(&dentry->d_lock);
2466 		error = prepend_name(buffer, buflen, &dentry->d_name);
2467 		spin_unlock(&dentry->d_lock);
2468 		if (!error)
2469 			error = prepend(buffer, buflen, "/", 1);
2470 		if (error)
2471 			break;
2472 
2473 		slash = true;
2474 		dentry = parent;
2475 	}
2476 
2477 out:
2478 	if (!error && !slash)
2479 		error = prepend(buffer, buflen, "/", 1);
2480 
2481 	br_read_unlock(vfsmount_lock);
2482 	return error;
2483 
2484 global_root:
2485 	/*
2486 	 * Filesystems needing to implement special "root names"
2487 	 * should do so with ->d_dname()
2488 	 */
2489 	if (IS_ROOT(dentry) &&
2490 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2491 		WARN(1, "Root dentry has weird name <%.*s>\n",
2492 		     (int) dentry->d_name.len, dentry->d_name.name);
2493 	}
2494 	root->mnt = vfsmnt;
2495 	root->dentry = dentry;
2496 	goto out;
2497 }
2498 
2499 /**
2500  * __d_path - return the path of a dentry
2501  * @path: the dentry/vfsmount to report
2502  * @root: root vfsmnt/dentry (may be modified by this function)
2503  * @buf: buffer to return value in
2504  * @buflen: buffer length
2505  *
2506  * Convert a dentry into an ASCII path name.
2507  *
2508  * Returns a pointer into the buffer or an error code if the
2509  * path was too long.
2510  *
2511  * "buflen" should be positive.
2512  *
2513  * If path is not reachable from the supplied root, then the value of
2514  * root is changed (without modifying refcounts).
2515  */
2516 char *__d_path(const struct path *path, struct path *root,
2517 	       char *buf, int buflen)
2518 {
2519 	char *res = buf + buflen;
2520 	int error;
2521 
2522 	prepend(&res, &buflen, "\0", 1);
2523 	write_seqlock(&rename_lock);
2524 	error = prepend_path(path, root, &res, &buflen);
2525 	write_sequnlock(&rename_lock);
2526 
2527 	if (error)
2528 		return ERR_PTR(error);
2529 	return res;
2530 }
2531 
2532 /*
2533  * same as __d_path but appends "(deleted)" for unlinked files.
2534  */
2535 static int path_with_deleted(const struct path *path, struct path *root,
2536 				 char **buf, int *buflen)
2537 {
2538 	prepend(buf, buflen, "\0", 1);
2539 	if (d_unlinked(path->dentry)) {
2540 		int error = prepend(buf, buflen, " (deleted)", 10);
2541 		if (error)
2542 			return error;
2543 	}
2544 
2545 	return prepend_path(path, root, buf, buflen);
2546 }
2547 
2548 static int prepend_unreachable(char **buffer, int *buflen)
2549 {
2550 	return prepend(buffer, buflen, "(unreachable)", 13);
2551 }
2552 
2553 /**
2554  * d_path - return the path of a dentry
2555  * @path: path to report
2556  * @buf: buffer to return value in
2557  * @buflen: buffer length
2558  *
2559  * Convert a dentry into an ASCII path name. If the entry has been deleted
2560  * the string " (deleted)" is appended. Note that this is ambiguous.
2561  *
2562  * Returns a pointer into the buffer or an error code if the path was
2563  * too long. Note: Callers should use the returned pointer, not the passed
2564  * in buffer, to use the name! The implementation often starts at an offset
2565  * into the buffer, and may leave 0 bytes at the start.
2566  *
2567  * "buflen" should be positive.
2568  */
2569 char *d_path(const struct path *path, char *buf, int buflen)
2570 {
2571 	char *res = buf + buflen;
2572 	struct path root;
2573 	struct path tmp;
2574 	int error;
2575 
2576 	/*
2577 	 * We have various synthetic filesystems that never get mounted.  On
2578 	 * these filesystems dentries are never used for lookup purposes, and
2579 	 * thus don't need to be hashed.  They also don't need a name until a
2580 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2581 	 * below allows us to generate a name for these objects on demand:
2582 	 */
2583 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2584 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2585 
2586 	get_fs_root(current->fs, &root);
2587 	write_seqlock(&rename_lock);
2588 	tmp = root;
2589 	error = path_with_deleted(path, &tmp, &res, &buflen);
2590 	if (error)
2591 		res = ERR_PTR(error);
2592 	write_sequnlock(&rename_lock);
2593 	path_put(&root);
2594 	return res;
2595 }
2596 EXPORT_SYMBOL(d_path);
2597 
2598 /**
2599  * d_path_with_unreachable - return the path of a dentry
2600  * @path: path to report
2601  * @buf: buffer to return value in
2602  * @buflen: buffer length
2603  *
2604  * The difference from d_path() is that this prepends "(unreachable)"
2605  * to paths which are unreachable from the current process' root.
2606  */
2607 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2608 {
2609 	char *res = buf + buflen;
2610 	struct path root;
2611 	struct path tmp;
2612 	int error;
2613 
2614 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2615 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2616 
2617 	get_fs_root(current->fs, &root);
2618 	write_seqlock(&rename_lock);
2619 	tmp = root;
2620 	error = path_with_deleted(path, &tmp, &res, &buflen);
2621 	if (!error && !path_equal(&tmp, &root))
2622 		error = prepend_unreachable(&res, &buflen);
2623 	write_sequnlock(&rename_lock);
2624 	path_put(&root);
2625 	if (error)
2626 		res =  ERR_PTR(error);
2627 
2628 	return res;
2629 }
2630 
2631 /*
2632  * Helper function for dentry_operations.d_dname() members
2633  */
2634 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2635 			const char *fmt, ...)
2636 {
2637 	va_list args;
2638 	char temp[64];
2639 	int sz;
2640 
2641 	va_start(args, fmt);
2642 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2643 	va_end(args);
2644 
2645 	if (sz > sizeof(temp) || sz > buflen)
2646 		return ERR_PTR(-ENAMETOOLONG);
2647 
2648 	buffer += buflen - sz;
2649 	return memcpy(buffer, temp, sz);
2650 }
2651 
2652 /*
2653  * Write full pathname from the root of the filesystem into the buffer.
2654  */
2655 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2656 {
2657 	char *end = buf + buflen;
2658 	char *retval;
2659 
2660 	prepend(&end, &buflen, "\0", 1);
2661 	if (buflen < 1)
2662 		goto Elong;
2663 	/* Get '/' right */
2664 	retval = end-1;
2665 	*retval = '/';
2666 
2667 	while (!IS_ROOT(dentry)) {
2668 		struct dentry *parent = dentry->d_parent;
2669 		int error;
2670 
2671 		prefetch(parent);
2672 		spin_lock(&dentry->d_lock);
2673 		error = prepend_name(&end, &buflen, &dentry->d_name);
2674 		spin_unlock(&dentry->d_lock);
2675 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2676 			goto Elong;
2677 
2678 		retval = end;
2679 		dentry = parent;
2680 	}
2681 	return retval;
2682 Elong:
2683 	return ERR_PTR(-ENAMETOOLONG);
2684 }
2685 
2686 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2687 {
2688 	char *retval;
2689 
2690 	write_seqlock(&rename_lock);
2691 	retval = __dentry_path(dentry, buf, buflen);
2692 	write_sequnlock(&rename_lock);
2693 
2694 	return retval;
2695 }
2696 EXPORT_SYMBOL(dentry_path_raw);
2697 
2698 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2699 {
2700 	char *p = NULL;
2701 	char *retval;
2702 
2703 	write_seqlock(&rename_lock);
2704 	if (d_unlinked(dentry)) {
2705 		p = buf + buflen;
2706 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2707 			goto Elong;
2708 		buflen++;
2709 	}
2710 	retval = __dentry_path(dentry, buf, buflen);
2711 	write_sequnlock(&rename_lock);
2712 	if (!IS_ERR(retval) && p)
2713 		*p = '/';	/* restore '/' overriden with '\0' */
2714 	return retval;
2715 Elong:
2716 	return ERR_PTR(-ENAMETOOLONG);
2717 }
2718 
2719 /*
2720  * NOTE! The user-level library version returns a
2721  * character pointer. The kernel system call just
2722  * returns the length of the buffer filled (which
2723  * includes the ending '\0' character), or a negative
2724  * error value. So libc would do something like
2725  *
2726  *	char *getcwd(char * buf, size_t size)
2727  *	{
2728  *		int retval;
2729  *
2730  *		retval = sys_getcwd(buf, size);
2731  *		if (retval >= 0)
2732  *			return buf;
2733  *		errno = -retval;
2734  *		return NULL;
2735  *	}
2736  */
2737 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2738 {
2739 	int error;
2740 	struct path pwd, root;
2741 	char *page = (char *) __get_free_page(GFP_USER);
2742 
2743 	if (!page)
2744 		return -ENOMEM;
2745 
2746 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2747 
2748 	error = -ENOENT;
2749 	write_seqlock(&rename_lock);
2750 	if (!d_unlinked(pwd.dentry)) {
2751 		unsigned long len;
2752 		struct path tmp = root;
2753 		char *cwd = page + PAGE_SIZE;
2754 		int buflen = PAGE_SIZE;
2755 
2756 		prepend(&cwd, &buflen, "\0", 1);
2757 		error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2758 		write_sequnlock(&rename_lock);
2759 
2760 		if (error)
2761 			goto out;
2762 
2763 		/* Unreachable from current root */
2764 		if (!path_equal(&tmp, &root)) {
2765 			error = prepend_unreachable(&cwd, &buflen);
2766 			if (error)
2767 				goto out;
2768 		}
2769 
2770 		error = -ERANGE;
2771 		len = PAGE_SIZE + page - cwd;
2772 		if (len <= size) {
2773 			error = len;
2774 			if (copy_to_user(buf, cwd, len))
2775 				error = -EFAULT;
2776 		}
2777 	} else {
2778 		write_sequnlock(&rename_lock);
2779 	}
2780 
2781 out:
2782 	path_put(&pwd);
2783 	path_put(&root);
2784 	free_page((unsigned long) page);
2785 	return error;
2786 }
2787 
2788 /*
2789  * Test whether new_dentry is a subdirectory of old_dentry.
2790  *
2791  * Trivially implemented using the dcache structure
2792  */
2793 
2794 /**
2795  * is_subdir - is new dentry a subdirectory of old_dentry
2796  * @new_dentry: new dentry
2797  * @old_dentry: old dentry
2798  *
2799  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2800  * Returns 0 otherwise.
2801  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2802  */
2803 
2804 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2805 {
2806 	int result;
2807 	unsigned seq;
2808 
2809 	if (new_dentry == old_dentry)
2810 		return 1;
2811 
2812 	do {
2813 		/* for restarting inner loop in case of seq retry */
2814 		seq = read_seqbegin(&rename_lock);
2815 		/*
2816 		 * Need rcu_readlock to protect against the d_parent trashing
2817 		 * due to d_move
2818 		 */
2819 		rcu_read_lock();
2820 		if (d_ancestor(old_dentry, new_dentry))
2821 			result = 1;
2822 		else
2823 			result = 0;
2824 		rcu_read_unlock();
2825 	} while (read_seqretry(&rename_lock, seq));
2826 
2827 	return result;
2828 }
2829 
2830 int path_is_under(struct path *path1, struct path *path2)
2831 {
2832 	struct vfsmount *mnt = path1->mnt;
2833 	struct dentry *dentry = path1->dentry;
2834 	int res;
2835 
2836 	br_read_lock(vfsmount_lock);
2837 	if (mnt != path2->mnt) {
2838 		for (;;) {
2839 			if (mnt->mnt_parent == mnt) {
2840 				br_read_unlock(vfsmount_lock);
2841 				return 0;
2842 			}
2843 			if (mnt->mnt_parent == path2->mnt)
2844 				break;
2845 			mnt = mnt->mnt_parent;
2846 		}
2847 		dentry = mnt->mnt_mountpoint;
2848 	}
2849 	res = is_subdir(dentry, path2->dentry);
2850 	br_read_unlock(vfsmount_lock);
2851 	return res;
2852 }
2853 EXPORT_SYMBOL(path_is_under);
2854 
2855 void d_genocide(struct dentry *root)
2856 {
2857 	struct dentry *this_parent;
2858 	struct list_head *next;
2859 	unsigned seq;
2860 	int locked = 0;
2861 
2862 	seq = read_seqbegin(&rename_lock);
2863 again:
2864 	this_parent = root;
2865 	spin_lock(&this_parent->d_lock);
2866 repeat:
2867 	next = this_parent->d_subdirs.next;
2868 resume:
2869 	while (next != &this_parent->d_subdirs) {
2870 		struct list_head *tmp = next;
2871 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2872 		next = tmp->next;
2873 
2874 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2875 		if (d_unhashed(dentry) || !dentry->d_inode) {
2876 			spin_unlock(&dentry->d_lock);
2877 			continue;
2878 		}
2879 		if (!list_empty(&dentry->d_subdirs)) {
2880 			spin_unlock(&this_parent->d_lock);
2881 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2882 			this_parent = dentry;
2883 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2884 			goto repeat;
2885 		}
2886 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2887 			dentry->d_flags |= DCACHE_GENOCIDE;
2888 			dentry->d_count--;
2889 		}
2890 		spin_unlock(&dentry->d_lock);
2891 	}
2892 	if (this_parent != root) {
2893 		struct dentry *child = this_parent;
2894 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2895 			this_parent->d_flags |= DCACHE_GENOCIDE;
2896 			this_parent->d_count--;
2897 		}
2898 		this_parent = try_to_ascend(this_parent, locked, seq);
2899 		if (!this_parent)
2900 			goto rename_retry;
2901 		next = child->d_u.d_child.next;
2902 		goto resume;
2903 	}
2904 	spin_unlock(&this_parent->d_lock);
2905 	if (!locked && read_seqretry(&rename_lock, seq))
2906 		goto rename_retry;
2907 	if (locked)
2908 		write_sequnlock(&rename_lock);
2909 	return;
2910 
2911 rename_retry:
2912 	locked = 1;
2913 	write_seqlock(&rename_lock);
2914 	goto again;
2915 }
2916 
2917 /**
2918  * find_inode_number - check for dentry with name
2919  * @dir: directory to check
2920  * @name: Name to find.
2921  *
2922  * Check whether a dentry already exists for the given name,
2923  * and return the inode number if it has an inode. Otherwise
2924  * 0 is returned.
2925  *
2926  * This routine is used to post-process directory listings for
2927  * filesystems using synthetic inode numbers, and is necessary
2928  * to keep getcwd() working.
2929  */
2930 
2931 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2932 {
2933 	struct dentry * dentry;
2934 	ino_t ino = 0;
2935 
2936 	dentry = d_hash_and_lookup(dir, name);
2937 	if (dentry) {
2938 		if (dentry->d_inode)
2939 			ino = dentry->d_inode->i_ino;
2940 		dput(dentry);
2941 	}
2942 	return ino;
2943 }
2944 EXPORT_SYMBOL(find_inode_number);
2945 
2946 static __initdata unsigned long dhash_entries;
2947 static int __init set_dhash_entries(char *str)
2948 {
2949 	if (!str)
2950 		return 0;
2951 	dhash_entries = simple_strtoul(str, &str, 0);
2952 	return 1;
2953 }
2954 __setup("dhash_entries=", set_dhash_entries);
2955 
2956 static void __init dcache_init_early(void)
2957 {
2958 	int loop;
2959 
2960 	/* If hashes are distributed across NUMA nodes, defer
2961 	 * hash allocation until vmalloc space is available.
2962 	 */
2963 	if (hashdist)
2964 		return;
2965 
2966 	dentry_hashtable =
2967 		alloc_large_system_hash("Dentry cache",
2968 					sizeof(struct hlist_bl_head),
2969 					dhash_entries,
2970 					13,
2971 					HASH_EARLY,
2972 					&d_hash_shift,
2973 					&d_hash_mask,
2974 					0);
2975 
2976 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2977 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2978 }
2979 
2980 static void __init dcache_init(void)
2981 {
2982 	int loop;
2983 
2984 	/*
2985 	 * A constructor could be added for stable state like the lists,
2986 	 * but it is probably not worth it because of the cache nature
2987 	 * of the dcache.
2988 	 */
2989 	dentry_cache = KMEM_CACHE(dentry,
2990 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2991 
2992 	/* Hash may have been set up in dcache_init_early */
2993 	if (!hashdist)
2994 		return;
2995 
2996 	dentry_hashtable =
2997 		alloc_large_system_hash("Dentry cache",
2998 					sizeof(struct hlist_bl_head),
2999 					dhash_entries,
3000 					13,
3001 					0,
3002 					&d_hash_shift,
3003 					&d_hash_mask,
3004 					0);
3005 
3006 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3007 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3008 }
3009 
3010 /* SLAB cache for __getname() consumers */
3011 struct kmem_cache *names_cachep __read_mostly;
3012 EXPORT_SYMBOL(names_cachep);
3013 
3014 EXPORT_SYMBOL(d_genocide);
3015 
3016 void __init vfs_caches_init_early(void)
3017 {
3018 	dcache_init_early();
3019 	inode_init_early();
3020 }
3021 
3022 void __init vfs_caches_init(unsigned long mempages)
3023 {
3024 	unsigned long reserve;
3025 
3026 	/* Base hash sizes on available memory, with a reserve equal to
3027            150% of current kernel size */
3028 
3029 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3030 	mempages -= reserve;
3031 
3032 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3033 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3034 
3035 	dcache_init();
3036 	inode_init();
3037 	files_init(mempages);
3038 	mnt_init();
3039 	bdev_cache_init();
3040 	chrdev_init();
3041 }
3042