1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_chilren 55 * - childrens' d_sib and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __ro_after_init; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 const struct qstr dotdot_name = QSTR_INIT("..", 2); 88 EXPORT_SYMBOL(dotdot_name); 89 90 /* 91 * This is the single most critical data structure when it comes 92 * to the dcache: the hashtable for lookups. Somebody should try 93 * to make this good - I've just made it work. 94 * 95 * This hash-function tries to avoid losing too many bits of hash 96 * information, yet avoid using a prime hash-size or similar. 97 */ 98 99 static unsigned int d_hash_shift __ro_after_init; 100 101 static struct hlist_bl_head *dentry_hashtable __ro_after_init; 102 103 static inline struct hlist_bl_head *d_hash(unsigned int hash) 104 { 105 return dentry_hashtable + (hash >> d_hash_shift); 106 } 107 108 #define IN_LOOKUP_SHIFT 10 109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 110 111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 112 unsigned int hash) 113 { 114 hash += (unsigned long) parent / L1_CACHE_BYTES; 115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 116 } 117 118 struct dentry_stat_t { 119 long nr_dentry; 120 long nr_unused; 121 long age_limit; /* age in seconds */ 122 long want_pages; /* pages requested by system */ 123 long nr_negative; /* # of unused negative dentries */ 124 long dummy; /* Reserved for future use */ 125 }; 126 127 static DEFINE_PER_CPU(long, nr_dentry); 128 static DEFINE_PER_CPU(long, nr_dentry_unused); 129 static DEFINE_PER_CPU(long, nr_dentry_negative); 130 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 132 /* Statistics gathering. */ 133 static struct dentry_stat_t dentry_stat = { 134 .age_limit = 45, 135 }; 136 137 /* 138 * Here we resort to our own counters instead of using generic per-cpu counters 139 * for consistency with what the vfs inode code does. We are expected to harvest 140 * better code and performance by having our own specialized counters. 141 * 142 * Please note that the loop is done over all possible CPUs, not over all online 143 * CPUs. The reason for this is that we don't want to play games with CPUs going 144 * on and off. If one of them goes off, we will just keep their counters. 145 * 146 * glommer: See cffbc8a for details, and if you ever intend to change this, 147 * please update all vfs counters to match. 148 */ 149 static long get_nr_dentry(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_unused(void) 159 { 160 int i; 161 long sum = 0; 162 for_each_possible_cpu(i) 163 sum += per_cpu(nr_dentry_unused, i); 164 return sum < 0 ? 0 : sum; 165 } 166 167 static long get_nr_dentry_negative(void) 168 { 169 int i; 170 long sum = 0; 171 172 for_each_possible_cpu(i) 173 sum += per_cpu(nr_dentry_negative, i); 174 return sum < 0 ? 0 : sum; 175 } 176 177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 178 size_t *lenp, loff_t *ppos) 179 { 180 dentry_stat.nr_dentry = get_nr_dentry(); 181 dentry_stat.nr_unused = get_nr_dentry_unused(); 182 dentry_stat.nr_negative = get_nr_dentry_negative(); 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 184 } 185 186 static struct ctl_table fs_dcache_sysctls[] = { 187 { 188 .procname = "dentry-state", 189 .data = &dentry_stat, 190 .maxlen = 6*sizeof(long), 191 .mode = 0444, 192 .proc_handler = proc_nr_dentry, 193 }, 194 }; 195 196 static int __init init_fs_dcache_sysctls(void) 197 { 198 register_sysctl_init("fs", fs_dcache_sysctls); 199 return 0; 200 } 201 fs_initcall(init_fs_dcache_sysctls); 202 #endif 203 204 /* 205 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 206 * The strings are both count bytes long, and count is non-zero. 207 */ 208 #ifdef CONFIG_DCACHE_WORD_ACCESS 209 210 #include <asm/word-at-a-time.h> 211 /* 212 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 213 * aligned allocation for this particular component. We don't 214 * strictly need the load_unaligned_zeropad() safety, but it 215 * doesn't hurt either. 216 * 217 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 218 * need the careful unaligned handling. 219 */ 220 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 221 { 222 unsigned long a,b,mask; 223 224 for (;;) { 225 a = read_word_at_a_time(cs); 226 b = load_unaligned_zeropad(ct); 227 if (tcount < sizeof(unsigned long)) 228 break; 229 if (unlikely(a != b)) 230 return 1; 231 cs += sizeof(unsigned long); 232 ct += sizeof(unsigned long); 233 tcount -= sizeof(unsigned long); 234 if (!tcount) 235 return 0; 236 } 237 mask = bytemask_from_count(tcount); 238 return unlikely(!!((a ^ b) & mask)); 239 } 240 241 #else 242 243 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 244 { 245 do { 246 if (*cs != *ct) 247 return 1; 248 cs++; 249 ct++; 250 tcount--; 251 } while (tcount); 252 return 0; 253 } 254 255 #endif 256 257 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 258 { 259 /* 260 * Be careful about RCU walk racing with rename: 261 * use 'READ_ONCE' to fetch the name pointer. 262 * 263 * NOTE! Even if a rename will mean that the length 264 * was not loaded atomically, we don't care. The 265 * RCU walk will check the sequence count eventually, 266 * and catch it. And we won't overrun the buffer, 267 * because we're reading the name pointer atomically, 268 * and a dentry name is guaranteed to be properly 269 * terminated with a NUL byte. 270 * 271 * End result: even if 'len' is wrong, we'll exit 272 * early because the data cannot match (there can 273 * be no NUL in the ct/tcount data) 274 */ 275 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 276 277 return dentry_string_cmp(cs, ct, tcount); 278 } 279 280 struct external_name { 281 union { 282 atomic_t count; 283 struct rcu_head head; 284 } u; 285 unsigned char name[]; 286 }; 287 288 static inline struct external_name *external_name(struct dentry *dentry) 289 { 290 return container_of(dentry->d_name.name, struct external_name, name[0]); 291 } 292 293 static void __d_free(struct rcu_head *head) 294 { 295 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 296 297 kmem_cache_free(dentry_cache, dentry); 298 } 299 300 static void __d_free_external(struct rcu_head *head) 301 { 302 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 303 kfree(external_name(dentry)); 304 kmem_cache_free(dentry_cache, dentry); 305 } 306 307 static inline int dname_external(const struct dentry *dentry) 308 { 309 return dentry->d_name.name != dentry->d_iname; 310 } 311 312 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 313 { 314 spin_lock(&dentry->d_lock); 315 name->name = dentry->d_name; 316 if (unlikely(dname_external(dentry))) { 317 atomic_inc(&external_name(dentry)->u.count); 318 } else { 319 memcpy(name->inline_name, dentry->d_iname, 320 dentry->d_name.len + 1); 321 name->name.name = name->inline_name; 322 } 323 spin_unlock(&dentry->d_lock); 324 } 325 EXPORT_SYMBOL(take_dentry_name_snapshot); 326 327 void release_dentry_name_snapshot(struct name_snapshot *name) 328 { 329 if (unlikely(name->name.name != name->inline_name)) { 330 struct external_name *p; 331 p = container_of(name->name.name, struct external_name, name[0]); 332 if (unlikely(atomic_dec_and_test(&p->u.count))) 333 kfree_rcu(p, u.head); 334 } 335 } 336 EXPORT_SYMBOL(release_dentry_name_snapshot); 337 338 static inline void __d_set_inode_and_type(struct dentry *dentry, 339 struct inode *inode, 340 unsigned type_flags) 341 { 342 unsigned flags; 343 344 dentry->d_inode = inode; 345 flags = READ_ONCE(dentry->d_flags); 346 flags &= ~DCACHE_ENTRY_TYPE; 347 flags |= type_flags; 348 smp_store_release(&dentry->d_flags, flags); 349 } 350 351 static inline void __d_clear_type_and_inode(struct dentry *dentry) 352 { 353 unsigned flags = READ_ONCE(dentry->d_flags); 354 355 flags &= ~DCACHE_ENTRY_TYPE; 356 WRITE_ONCE(dentry->d_flags, flags); 357 dentry->d_inode = NULL; 358 if (dentry->d_flags & DCACHE_LRU_LIST) 359 this_cpu_inc(nr_dentry_negative); 360 } 361 362 static void dentry_free(struct dentry *dentry) 363 { 364 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 365 if (unlikely(dname_external(dentry))) { 366 struct external_name *p = external_name(dentry); 367 if (likely(atomic_dec_and_test(&p->u.count))) { 368 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 369 return; 370 } 371 } 372 /* if dentry was never visible to RCU, immediate free is OK */ 373 if (dentry->d_flags & DCACHE_NORCU) 374 __d_free(&dentry->d_u.d_rcu); 375 else 376 call_rcu(&dentry->d_u.d_rcu, __d_free); 377 } 378 379 /* 380 * Release the dentry's inode, using the filesystem 381 * d_iput() operation if defined. 382 */ 383 static void dentry_unlink_inode(struct dentry * dentry) 384 __releases(dentry->d_lock) 385 __releases(dentry->d_inode->i_lock) 386 { 387 struct inode *inode = dentry->d_inode; 388 389 raw_write_seqcount_begin(&dentry->d_seq); 390 __d_clear_type_and_inode(dentry); 391 hlist_del_init(&dentry->d_u.d_alias); 392 raw_write_seqcount_end(&dentry->d_seq); 393 spin_unlock(&dentry->d_lock); 394 spin_unlock(&inode->i_lock); 395 if (!inode->i_nlink) 396 fsnotify_inoderemove(inode); 397 if (dentry->d_op && dentry->d_op->d_iput) 398 dentry->d_op->d_iput(dentry, inode); 399 else 400 iput(inode); 401 } 402 403 /* 404 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 405 * is in use - which includes both the "real" per-superblock 406 * LRU list _and_ the DCACHE_SHRINK_LIST use. 407 * 408 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 409 * on the shrink list (ie not on the superblock LRU list). 410 * 411 * The per-cpu "nr_dentry_unused" counters are updated with 412 * the DCACHE_LRU_LIST bit. 413 * 414 * The per-cpu "nr_dentry_negative" counters are only updated 415 * when deleted from or added to the per-superblock LRU list, not 416 * from/to the shrink list. That is to avoid an unneeded dec/inc 417 * pair when moving from LRU to shrink list in select_collect(). 418 * 419 * These helper functions make sure we always follow the 420 * rules. d_lock must be held by the caller. 421 */ 422 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 423 static void d_lru_add(struct dentry *dentry) 424 { 425 D_FLAG_VERIFY(dentry, 0); 426 dentry->d_flags |= DCACHE_LRU_LIST; 427 this_cpu_inc(nr_dentry_unused); 428 if (d_is_negative(dentry)) 429 this_cpu_inc(nr_dentry_negative); 430 WARN_ON_ONCE(!list_lru_add_obj( 431 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 432 } 433 434 static void d_lru_del(struct dentry *dentry) 435 { 436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 437 dentry->d_flags &= ~DCACHE_LRU_LIST; 438 this_cpu_dec(nr_dentry_unused); 439 if (d_is_negative(dentry)) 440 this_cpu_dec(nr_dentry_negative); 441 WARN_ON_ONCE(!list_lru_del_obj( 442 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 443 } 444 445 static void d_shrink_del(struct dentry *dentry) 446 { 447 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 448 list_del_init(&dentry->d_lru); 449 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 450 this_cpu_dec(nr_dentry_unused); 451 } 452 453 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 454 { 455 D_FLAG_VERIFY(dentry, 0); 456 list_add(&dentry->d_lru, list); 457 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 458 this_cpu_inc(nr_dentry_unused); 459 } 460 461 /* 462 * These can only be called under the global LRU lock, ie during the 463 * callback for freeing the LRU list. "isolate" removes it from the 464 * LRU lists entirely, while shrink_move moves it to the indicated 465 * private list. 466 */ 467 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 468 { 469 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 470 dentry->d_flags &= ~DCACHE_LRU_LIST; 471 this_cpu_dec(nr_dentry_unused); 472 if (d_is_negative(dentry)) 473 this_cpu_dec(nr_dentry_negative); 474 list_lru_isolate(lru, &dentry->d_lru); 475 } 476 477 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 478 struct list_head *list) 479 { 480 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 481 dentry->d_flags |= DCACHE_SHRINK_LIST; 482 if (d_is_negative(dentry)) 483 this_cpu_dec(nr_dentry_negative); 484 list_lru_isolate_move(lru, &dentry->d_lru, list); 485 } 486 487 static void ___d_drop(struct dentry *dentry) 488 { 489 struct hlist_bl_head *b; 490 /* 491 * Hashed dentries are normally on the dentry hashtable, 492 * with the exception of those newly allocated by 493 * d_obtain_root, which are always IS_ROOT: 494 */ 495 if (unlikely(IS_ROOT(dentry))) 496 b = &dentry->d_sb->s_roots; 497 else 498 b = d_hash(dentry->d_name.hash); 499 500 hlist_bl_lock(b); 501 __hlist_bl_del(&dentry->d_hash); 502 hlist_bl_unlock(b); 503 } 504 505 void __d_drop(struct dentry *dentry) 506 { 507 if (!d_unhashed(dentry)) { 508 ___d_drop(dentry); 509 dentry->d_hash.pprev = NULL; 510 write_seqcount_invalidate(&dentry->d_seq); 511 } 512 } 513 EXPORT_SYMBOL(__d_drop); 514 515 /** 516 * d_drop - drop a dentry 517 * @dentry: dentry to drop 518 * 519 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 520 * be found through a VFS lookup any more. Note that this is different from 521 * deleting the dentry - d_delete will try to mark the dentry negative if 522 * possible, giving a successful _negative_ lookup, while d_drop will 523 * just make the cache lookup fail. 524 * 525 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 526 * reason (NFS timeouts or autofs deletes). 527 * 528 * __d_drop requires dentry->d_lock 529 * 530 * ___d_drop doesn't mark dentry as "unhashed" 531 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 532 */ 533 void d_drop(struct dentry *dentry) 534 { 535 spin_lock(&dentry->d_lock); 536 __d_drop(dentry); 537 spin_unlock(&dentry->d_lock); 538 } 539 EXPORT_SYMBOL(d_drop); 540 541 static inline void dentry_unlist(struct dentry *dentry) 542 { 543 struct dentry *next; 544 /* 545 * Inform d_walk() and shrink_dentry_list() that we are no longer 546 * attached to the dentry tree 547 */ 548 dentry->d_flags |= DCACHE_DENTRY_KILLED; 549 if (unlikely(hlist_unhashed(&dentry->d_sib))) 550 return; 551 __hlist_del(&dentry->d_sib); 552 /* 553 * Cursors can move around the list of children. While we'd been 554 * a normal list member, it didn't matter - ->d_sib.next would've 555 * been updated. However, from now on it won't be and for the 556 * things like d_walk() it might end up with a nasty surprise. 557 * Normally d_walk() doesn't care about cursors moving around - 558 * ->d_lock on parent prevents that and since a cursor has no children 559 * of its own, we get through it without ever unlocking the parent. 560 * There is one exception, though - if we ascend from a child that 561 * gets killed as soon as we unlock it, the next sibling is found 562 * using the value left in its ->d_sib.next. And if _that_ 563 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 564 * before d_walk() regains parent->d_lock, we'll end up skipping 565 * everything the cursor had been moved past. 566 * 567 * Solution: make sure that the pointer left behind in ->d_sib.next 568 * points to something that won't be moving around. I.e. skip the 569 * cursors. 570 */ 571 while (dentry->d_sib.next) { 572 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib); 573 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 574 break; 575 dentry->d_sib.next = next->d_sib.next; 576 } 577 } 578 579 static struct dentry *__dentry_kill(struct dentry *dentry) 580 { 581 struct dentry *parent = NULL; 582 bool can_free = true; 583 584 /* 585 * The dentry is now unrecoverably dead to the world. 586 */ 587 lockref_mark_dead(&dentry->d_lockref); 588 589 /* 590 * inform the fs via d_prune that this dentry is about to be 591 * unhashed and destroyed. 592 */ 593 if (dentry->d_flags & DCACHE_OP_PRUNE) 594 dentry->d_op->d_prune(dentry); 595 596 if (dentry->d_flags & DCACHE_LRU_LIST) { 597 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 598 d_lru_del(dentry); 599 } 600 /* if it was on the hash then remove it */ 601 __d_drop(dentry); 602 if (dentry->d_inode) 603 dentry_unlink_inode(dentry); 604 else 605 spin_unlock(&dentry->d_lock); 606 this_cpu_dec(nr_dentry); 607 if (dentry->d_op && dentry->d_op->d_release) 608 dentry->d_op->d_release(dentry); 609 610 cond_resched(); 611 /* now that it's negative, ->d_parent is stable */ 612 if (!IS_ROOT(dentry)) { 613 parent = dentry->d_parent; 614 spin_lock(&parent->d_lock); 615 } 616 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 617 dentry_unlist(dentry); 618 if (dentry->d_flags & DCACHE_SHRINK_LIST) 619 can_free = false; 620 spin_unlock(&dentry->d_lock); 621 if (likely(can_free)) 622 dentry_free(dentry); 623 if (parent && --parent->d_lockref.count) { 624 spin_unlock(&parent->d_lock); 625 return NULL; 626 } 627 return parent; 628 } 629 630 /* 631 * Lock a dentry for feeding it to __dentry_kill(). 632 * Called under rcu_read_lock() and dentry->d_lock; the former 633 * guarantees that nothing we access will be freed under us. 634 * Note that dentry is *not* protected from concurrent dentry_kill(), 635 * d_delete(), etc. 636 * 637 * Return false if dentry is busy. Otherwise, return true and have 638 * that dentry's inode locked. 639 */ 640 641 static bool lock_for_kill(struct dentry *dentry) 642 { 643 struct inode *inode = dentry->d_inode; 644 645 if (unlikely(dentry->d_lockref.count)) 646 return false; 647 648 if (!inode || likely(spin_trylock(&inode->i_lock))) 649 return true; 650 651 do { 652 spin_unlock(&dentry->d_lock); 653 spin_lock(&inode->i_lock); 654 spin_lock(&dentry->d_lock); 655 if (likely(inode == dentry->d_inode)) 656 break; 657 spin_unlock(&inode->i_lock); 658 inode = dentry->d_inode; 659 } while (inode); 660 if (likely(!dentry->d_lockref.count)) 661 return true; 662 if (inode) 663 spin_unlock(&inode->i_lock); 664 return false; 665 } 666 667 /* 668 * Decide if dentry is worth retaining. Usually this is called with dentry 669 * locked; if not locked, we are more limited and might not be able to tell 670 * without a lock. False in this case means "punt to locked path and recheck". 671 * 672 * In case we aren't locked, these predicates are not "stable". However, it is 673 * sufficient that at some point after we dropped the reference the dentry was 674 * hashed and the flags had the proper value. Other dentry users may have 675 * re-gotten a reference to the dentry and change that, but our work is done - 676 * we can leave the dentry around with a zero refcount. 677 */ 678 static inline bool retain_dentry(struct dentry *dentry, bool locked) 679 { 680 unsigned int d_flags; 681 682 smp_rmb(); 683 d_flags = READ_ONCE(dentry->d_flags); 684 685 // Unreachable? Nobody would be able to look it up, no point retaining 686 if (unlikely(d_unhashed(dentry))) 687 return false; 688 689 // Same if it's disconnected 690 if (unlikely(d_flags & DCACHE_DISCONNECTED)) 691 return false; 692 693 // ->d_delete() might tell us not to bother, but that requires 694 // ->d_lock; can't decide without it 695 if (unlikely(d_flags & DCACHE_OP_DELETE)) { 696 if (!locked || dentry->d_op->d_delete(dentry)) 697 return false; 698 } 699 700 // Explicitly told not to bother 701 if (unlikely(d_flags & DCACHE_DONTCACHE)) 702 return false; 703 704 // At this point it looks like we ought to keep it. We also might 705 // need to do something - put it on LRU if it wasn't there already 706 // and mark it referenced if it was on LRU, but not marked yet. 707 // Unfortunately, both actions require ->d_lock, so in lockless 708 // case we'd have to punt rather than doing those. 709 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) { 710 if (!locked) 711 return false; 712 d_lru_add(dentry); 713 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) { 714 if (!locked) 715 return false; 716 dentry->d_flags |= DCACHE_REFERENCED; 717 } 718 return true; 719 } 720 721 void d_mark_dontcache(struct inode *inode) 722 { 723 struct dentry *de; 724 725 spin_lock(&inode->i_lock); 726 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 727 spin_lock(&de->d_lock); 728 de->d_flags |= DCACHE_DONTCACHE; 729 spin_unlock(&de->d_lock); 730 } 731 inode->i_state |= I_DONTCACHE; 732 spin_unlock(&inode->i_lock); 733 } 734 EXPORT_SYMBOL(d_mark_dontcache); 735 736 /* 737 * Try to do a lockless dput(), and return whether that was successful. 738 * 739 * If unsuccessful, we return false, having already taken the dentry lock. 740 * In that case refcount is guaranteed to be zero and we have already 741 * decided that it's not worth keeping around. 742 * 743 * The caller needs to hold the RCU read lock, so that the dentry is 744 * guaranteed to stay around even if the refcount goes down to zero! 745 */ 746 static inline bool fast_dput(struct dentry *dentry) 747 { 748 int ret; 749 750 /* 751 * try to decrement the lockref optimistically. 752 */ 753 ret = lockref_put_return(&dentry->d_lockref); 754 755 /* 756 * If the lockref_put_return() failed due to the lock being held 757 * by somebody else, the fast path has failed. We will need to 758 * get the lock, and then check the count again. 759 */ 760 if (unlikely(ret < 0)) { 761 spin_lock(&dentry->d_lock); 762 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { 763 spin_unlock(&dentry->d_lock); 764 return true; 765 } 766 dentry->d_lockref.count--; 767 goto locked; 768 } 769 770 /* 771 * If we weren't the last ref, we're done. 772 */ 773 if (ret) 774 return true; 775 776 /* 777 * Can we decide that decrement of refcount is all we needed without 778 * taking the lock? There's a very common case when it's all we need - 779 * dentry looks like it ought to be retained and there's nothing else 780 * to do. 781 */ 782 if (retain_dentry(dentry, false)) 783 return true; 784 785 /* 786 * Either not worth retaining or we can't tell without the lock. 787 * Get the lock, then. We've already decremented the refcount to 0, 788 * but we'll need to re-check the situation after getting the lock. 789 */ 790 spin_lock(&dentry->d_lock); 791 792 /* 793 * Did somebody else grab a reference to it in the meantime, and 794 * we're no longer the last user after all? Alternatively, somebody 795 * else could have killed it and marked it dead. Either way, we 796 * don't need to do anything else. 797 */ 798 locked: 799 if (dentry->d_lockref.count || retain_dentry(dentry, true)) { 800 spin_unlock(&dentry->d_lock); 801 return true; 802 } 803 return false; 804 } 805 806 807 /* 808 * This is dput 809 * 810 * This is complicated by the fact that we do not want to put 811 * dentries that are no longer on any hash chain on the unused 812 * list: we'd much rather just get rid of them immediately. 813 * 814 * However, that implies that we have to traverse the dentry 815 * tree upwards to the parents which might _also_ now be 816 * scheduled for deletion (it may have been only waiting for 817 * its last child to go away). 818 * 819 * This tail recursion is done by hand as we don't want to depend 820 * on the compiler to always get this right (gcc generally doesn't). 821 * Real recursion would eat up our stack space. 822 */ 823 824 /* 825 * dput - release a dentry 826 * @dentry: dentry to release 827 * 828 * Release a dentry. This will drop the usage count and if appropriate 829 * call the dentry unlink method as well as removing it from the queues and 830 * releasing its resources. If the parent dentries were scheduled for release 831 * they too may now get deleted. 832 */ 833 void dput(struct dentry *dentry) 834 { 835 if (!dentry) 836 return; 837 might_sleep(); 838 rcu_read_lock(); 839 if (likely(fast_dput(dentry))) { 840 rcu_read_unlock(); 841 return; 842 } 843 while (lock_for_kill(dentry)) { 844 rcu_read_unlock(); 845 dentry = __dentry_kill(dentry); 846 if (!dentry) 847 return; 848 if (retain_dentry(dentry, true)) { 849 spin_unlock(&dentry->d_lock); 850 return; 851 } 852 rcu_read_lock(); 853 } 854 rcu_read_unlock(); 855 spin_unlock(&dentry->d_lock); 856 } 857 EXPORT_SYMBOL(dput); 858 859 static void to_shrink_list(struct dentry *dentry, struct list_head *list) 860 __must_hold(&dentry->d_lock) 861 { 862 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 863 if (dentry->d_flags & DCACHE_LRU_LIST) 864 d_lru_del(dentry); 865 d_shrink_add(dentry, list); 866 } 867 } 868 869 void dput_to_list(struct dentry *dentry, struct list_head *list) 870 { 871 rcu_read_lock(); 872 if (likely(fast_dput(dentry))) { 873 rcu_read_unlock(); 874 return; 875 } 876 rcu_read_unlock(); 877 to_shrink_list(dentry, list); 878 spin_unlock(&dentry->d_lock); 879 } 880 881 struct dentry *dget_parent(struct dentry *dentry) 882 { 883 int gotref; 884 struct dentry *ret; 885 unsigned seq; 886 887 /* 888 * Do optimistic parent lookup without any 889 * locking. 890 */ 891 rcu_read_lock(); 892 seq = raw_seqcount_begin(&dentry->d_seq); 893 ret = READ_ONCE(dentry->d_parent); 894 gotref = lockref_get_not_zero(&ret->d_lockref); 895 rcu_read_unlock(); 896 if (likely(gotref)) { 897 if (!read_seqcount_retry(&dentry->d_seq, seq)) 898 return ret; 899 dput(ret); 900 } 901 902 repeat: 903 /* 904 * Don't need rcu_dereference because we re-check it was correct under 905 * the lock. 906 */ 907 rcu_read_lock(); 908 ret = dentry->d_parent; 909 spin_lock(&ret->d_lock); 910 if (unlikely(ret != dentry->d_parent)) { 911 spin_unlock(&ret->d_lock); 912 rcu_read_unlock(); 913 goto repeat; 914 } 915 rcu_read_unlock(); 916 BUG_ON(!ret->d_lockref.count); 917 ret->d_lockref.count++; 918 spin_unlock(&ret->d_lock); 919 return ret; 920 } 921 EXPORT_SYMBOL(dget_parent); 922 923 static struct dentry * __d_find_any_alias(struct inode *inode) 924 { 925 struct dentry *alias; 926 927 if (hlist_empty(&inode->i_dentry)) 928 return NULL; 929 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 930 lockref_get(&alias->d_lockref); 931 return alias; 932 } 933 934 /** 935 * d_find_any_alias - find any alias for a given inode 936 * @inode: inode to find an alias for 937 * 938 * If any aliases exist for the given inode, take and return a 939 * reference for one of them. If no aliases exist, return %NULL. 940 */ 941 struct dentry *d_find_any_alias(struct inode *inode) 942 { 943 struct dentry *de; 944 945 spin_lock(&inode->i_lock); 946 de = __d_find_any_alias(inode); 947 spin_unlock(&inode->i_lock); 948 return de; 949 } 950 EXPORT_SYMBOL(d_find_any_alias); 951 952 static struct dentry *__d_find_alias(struct inode *inode) 953 { 954 struct dentry *alias; 955 956 if (S_ISDIR(inode->i_mode)) 957 return __d_find_any_alias(inode); 958 959 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 960 spin_lock(&alias->d_lock); 961 if (!d_unhashed(alias)) { 962 dget_dlock(alias); 963 spin_unlock(&alias->d_lock); 964 return alias; 965 } 966 spin_unlock(&alias->d_lock); 967 } 968 return NULL; 969 } 970 971 /** 972 * d_find_alias - grab a hashed alias of inode 973 * @inode: inode in question 974 * 975 * If inode has a hashed alias, or is a directory and has any alias, 976 * acquire the reference to alias and return it. Otherwise return NULL. 977 * Notice that if inode is a directory there can be only one alias and 978 * it can be unhashed only if it has no children, or if it is the root 979 * of a filesystem, or if the directory was renamed and d_revalidate 980 * was the first vfs operation to notice. 981 * 982 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 983 * any other hashed alias over that one. 984 */ 985 struct dentry *d_find_alias(struct inode *inode) 986 { 987 struct dentry *de = NULL; 988 989 if (!hlist_empty(&inode->i_dentry)) { 990 spin_lock(&inode->i_lock); 991 de = __d_find_alias(inode); 992 spin_unlock(&inode->i_lock); 993 } 994 return de; 995 } 996 EXPORT_SYMBOL(d_find_alias); 997 998 /* 999 * Caller MUST be holding rcu_read_lock() and be guaranteed 1000 * that inode won't get freed until rcu_read_unlock(). 1001 */ 1002 struct dentry *d_find_alias_rcu(struct inode *inode) 1003 { 1004 struct hlist_head *l = &inode->i_dentry; 1005 struct dentry *de = NULL; 1006 1007 spin_lock(&inode->i_lock); 1008 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1009 // used without having I_FREEING set, which means no aliases left 1010 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1011 if (S_ISDIR(inode->i_mode)) { 1012 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1013 } else { 1014 hlist_for_each_entry(de, l, d_u.d_alias) 1015 if (!d_unhashed(de)) 1016 break; 1017 } 1018 } 1019 spin_unlock(&inode->i_lock); 1020 return de; 1021 } 1022 1023 /* 1024 * Try to kill dentries associated with this inode. 1025 * WARNING: you must own a reference to inode. 1026 */ 1027 void d_prune_aliases(struct inode *inode) 1028 { 1029 LIST_HEAD(dispose); 1030 struct dentry *dentry; 1031 1032 spin_lock(&inode->i_lock); 1033 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1034 spin_lock(&dentry->d_lock); 1035 if (!dentry->d_lockref.count) 1036 to_shrink_list(dentry, &dispose); 1037 spin_unlock(&dentry->d_lock); 1038 } 1039 spin_unlock(&inode->i_lock); 1040 shrink_dentry_list(&dispose); 1041 } 1042 EXPORT_SYMBOL(d_prune_aliases); 1043 1044 static inline void shrink_kill(struct dentry *victim) 1045 { 1046 do { 1047 rcu_read_unlock(); 1048 victim = __dentry_kill(victim); 1049 rcu_read_lock(); 1050 } while (victim && lock_for_kill(victim)); 1051 rcu_read_unlock(); 1052 if (victim) 1053 spin_unlock(&victim->d_lock); 1054 } 1055 1056 void shrink_dentry_list(struct list_head *list) 1057 { 1058 while (!list_empty(list)) { 1059 struct dentry *dentry; 1060 1061 dentry = list_entry(list->prev, struct dentry, d_lru); 1062 spin_lock(&dentry->d_lock); 1063 rcu_read_lock(); 1064 if (!lock_for_kill(dentry)) { 1065 bool can_free; 1066 rcu_read_unlock(); 1067 d_shrink_del(dentry); 1068 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED; 1069 spin_unlock(&dentry->d_lock); 1070 if (can_free) 1071 dentry_free(dentry); 1072 continue; 1073 } 1074 d_shrink_del(dentry); 1075 shrink_kill(dentry); 1076 } 1077 } 1078 1079 static enum lru_status dentry_lru_isolate(struct list_head *item, 1080 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1081 { 1082 struct list_head *freeable = arg; 1083 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1084 1085 1086 /* 1087 * we are inverting the lru lock/dentry->d_lock here, 1088 * so use a trylock. If we fail to get the lock, just skip 1089 * it 1090 */ 1091 if (!spin_trylock(&dentry->d_lock)) 1092 return LRU_SKIP; 1093 1094 /* 1095 * Referenced dentries are still in use. If they have active 1096 * counts, just remove them from the LRU. Otherwise give them 1097 * another pass through the LRU. 1098 */ 1099 if (dentry->d_lockref.count) { 1100 d_lru_isolate(lru, dentry); 1101 spin_unlock(&dentry->d_lock); 1102 return LRU_REMOVED; 1103 } 1104 1105 if (dentry->d_flags & DCACHE_REFERENCED) { 1106 dentry->d_flags &= ~DCACHE_REFERENCED; 1107 spin_unlock(&dentry->d_lock); 1108 1109 /* 1110 * The list move itself will be made by the common LRU code. At 1111 * this point, we've dropped the dentry->d_lock but keep the 1112 * lru lock. This is safe to do, since every list movement is 1113 * protected by the lru lock even if both locks are held. 1114 * 1115 * This is guaranteed by the fact that all LRU management 1116 * functions are intermediated by the LRU API calls like 1117 * list_lru_add_obj and list_lru_del_obj. List movement in this file 1118 * only ever occur through this functions or through callbacks 1119 * like this one, that are called from the LRU API. 1120 * 1121 * The only exceptions to this are functions like 1122 * shrink_dentry_list, and code that first checks for the 1123 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1124 * operating only with stack provided lists after they are 1125 * properly isolated from the main list. It is thus, always a 1126 * local access. 1127 */ 1128 return LRU_ROTATE; 1129 } 1130 1131 d_lru_shrink_move(lru, dentry, freeable); 1132 spin_unlock(&dentry->d_lock); 1133 1134 return LRU_REMOVED; 1135 } 1136 1137 /** 1138 * prune_dcache_sb - shrink the dcache 1139 * @sb: superblock 1140 * @sc: shrink control, passed to list_lru_shrink_walk() 1141 * 1142 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1143 * is done when we need more memory and called from the superblock shrinker 1144 * function. 1145 * 1146 * This function may fail to free any resources if all the dentries are in 1147 * use. 1148 */ 1149 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1150 { 1151 LIST_HEAD(dispose); 1152 long freed; 1153 1154 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1155 dentry_lru_isolate, &dispose); 1156 shrink_dentry_list(&dispose); 1157 return freed; 1158 } 1159 1160 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1161 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1162 { 1163 struct list_head *freeable = arg; 1164 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1165 1166 /* 1167 * we are inverting the lru lock/dentry->d_lock here, 1168 * so use a trylock. If we fail to get the lock, just skip 1169 * it 1170 */ 1171 if (!spin_trylock(&dentry->d_lock)) 1172 return LRU_SKIP; 1173 1174 d_lru_shrink_move(lru, dentry, freeable); 1175 spin_unlock(&dentry->d_lock); 1176 1177 return LRU_REMOVED; 1178 } 1179 1180 1181 /** 1182 * shrink_dcache_sb - shrink dcache for a superblock 1183 * @sb: superblock 1184 * 1185 * Shrink the dcache for the specified super block. This is used to free 1186 * the dcache before unmounting a file system. 1187 */ 1188 void shrink_dcache_sb(struct super_block *sb) 1189 { 1190 do { 1191 LIST_HEAD(dispose); 1192 1193 list_lru_walk(&sb->s_dentry_lru, 1194 dentry_lru_isolate_shrink, &dispose, 1024); 1195 shrink_dentry_list(&dispose); 1196 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1197 } 1198 EXPORT_SYMBOL(shrink_dcache_sb); 1199 1200 /** 1201 * enum d_walk_ret - action to talke during tree walk 1202 * @D_WALK_CONTINUE: contrinue walk 1203 * @D_WALK_QUIT: quit walk 1204 * @D_WALK_NORETRY: quit when retry is needed 1205 * @D_WALK_SKIP: skip this dentry and its children 1206 */ 1207 enum d_walk_ret { 1208 D_WALK_CONTINUE, 1209 D_WALK_QUIT, 1210 D_WALK_NORETRY, 1211 D_WALK_SKIP, 1212 }; 1213 1214 /** 1215 * d_walk - walk the dentry tree 1216 * @parent: start of walk 1217 * @data: data passed to @enter() and @finish() 1218 * @enter: callback when first entering the dentry 1219 * 1220 * The @enter() callbacks are called with d_lock held. 1221 */ 1222 static void d_walk(struct dentry *parent, void *data, 1223 enum d_walk_ret (*enter)(void *, struct dentry *)) 1224 { 1225 struct dentry *this_parent, *dentry; 1226 unsigned seq = 0; 1227 enum d_walk_ret ret; 1228 bool retry = true; 1229 1230 again: 1231 read_seqbegin_or_lock(&rename_lock, &seq); 1232 this_parent = parent; 1233 spin_lock(&this_parent->d_lock); 1234 1235 ret = enter(data, this_parent); 1236 switch (ret) { 1237 case D_WALK_CONTINUE: 1238 break; 1239 case D_WALK_QUIT: 1240 case D_WALK_SKIP: 1241 goto out_unlock; 1242 case D_WALK_NORETRY: 1243 retry = false; 1244 break; 1245 } 1246 repeat: 1247 dentry = d_first_child(this_parent); 1248 resume: 1249 hlist_for_each_entry_from(dentry, d_sib) { 1250 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1251 continue; 1252 1253 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1254 1255 ret = enter(data, dentry); 1256 switch (ret) { 1257 case D_WALK_CONTINUE: 1258 break; 1259 case D_WALK_QUIT: 1260 spin_unlock(&dentry->d_lock); 1261 goto out_unlock; 1262 case D_WALK_NORETRY: 1263 retry = false; 1264 break; 1265 case D_WALK_SKIP: 1266 spin_unlock(&dentry->d_lock); 1267 continue; 1268 } 1269 1270 if (!hlist_empty(&dentry->d_children)) { 1271 spin_unlock(&this_parent->d_lock); 1272 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1273 this_parent = dentry; 1274 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1275 goto repeat; 1276 } 1277 spin_unlock(&dentry->d_lock); 1278 } 1279 /* 1280 * All done at this level ... ascend and resume the search. 1281 */ 1282 rcu_read_lock(); 1283 ascend: 1284 if (this_parent != parent) { 1285 dentry = this_parent; 1286 this_parent = dentry->d_parent; 1287 1288 spin_unlock(&dentry->d_lock); 1289 spin_lock(&this_parent->d_lock); 1290 1291 /* might go back up the wrong parent if we have had a rename. */ 1292 if (need_seqretry(&rename_lock, seq)) 1293 goto rename_retry; 1294 /* go into the first sibling still alive */ 1295 hlist_for_each_entry_continue(dentry, d_sib) { 1296 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) { 1297 rcu_read_unlock(); 1298 goto resume; 1299 } 1300 } 1301 goto ascend; 1302 } 1303 if (need_seqretry(&rename_lock, seq)) 1304 goto rename_retry; 1305 rcu_read_unlock(); 1306 1307 out_unlock: 1308 spin_unlock(&this_parent->d_lock); 1309 done_seqretry(&rename_lock, seq); 1310 return; 1311 1312 rename_retry: 1313 spin_unlock(&this_parent->d_lock); 1314 rcu_read_unlock(); 1315 BUG_ON(seq & 1); 1316 if (!retry) 1317 return; 1318 seq = 1; 1319 goto again; 1320 } 1321 1322 struct check_mount { 1323 struct vfsmount *mnt; 1324 unsigned int mounted; 1325 }; 1326 1327 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1328 { 1329 struct check_mount *info = data; 1330 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1331 1332 if (likely(!d_mountpoint(dentry))) 1333 return D_WALK_CONTINUE; 1334 if (__path_is_mountpoint(&path)) { 1335 info->mounted = 1; 1336 return D_WALK_QUIT; 1337 } 1338 return D_WALK_CONTINUE; 1339 } 1340 1341 /** 1342 * path_has_submounts - check for mounts over a dentry in the 1343 * current namespace. 1344 * @parent: path to check. 1345 * 1346 * Return true if the parent or its subdirectories contain 1347 * a mount point in the current namespace. 1348 */ 1349 int path_has_submounts(const struct path *parent) 1350 { 1351 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1352 1353 read_seqlock_excl(&mount_lock); 1354 d_walk(parent->dentry, &data, path_check_mount); 1355 read_sequnlock_excl(&mount_lock); 1356 1357 return data.mounted; 1358 } 1359 EXPORT_SYMBOL(path_has_submounts); 1360 1361 /* 1362 * Called by mount code to set a mountpoint and check if the mountpoint is 1363 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1364 * subtree can become unreachable). 1365 * 1366 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1367 * this reason take rename_lock and d_lock on dentry and ancestors. 1368 */ 1369 int d_set_mounted(struct dentry *dentry) 1370 { 1371 struct dentry *p; 1372 int ret = -ENOENT; 1373 write_seqlock(&rename_lock); 1374 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1375 /* Need exclusion wrt. d_invalidate() */ 1376 spin_lock(&p->d_lock); 1377 if (unlikely(d_unhashed(p))) { 1378 spin_unlock(&p->d_lock); 1379 goto out; 1380 } 1381 spin_unlock(&p->d_lock); 1382 } 1383 spin_lock(&dentry->d_lock); 1384 if (!d_unlinked(dentry)) { 1385 ret = -EBUSY; 1386 if (!d_mountpoint(dentry)) { 1387 dentry->d_flags |= DCACHE_MOUNTED; 1388 ret = 0; 1389 } 1390 } 1391 spin_unlock(&dentry->d_lock); 1392 out: 1393 write_sequnlock(&rename_lock); 1394 return ret; 1395 } 1396 1397 /* 1398 * Search the dentry child list of the specified parent, 1399 * and move any unused dentries to the end of the unused 1400 * list for prune_dcache(). We descend to the next level 1401 * whenever the d_children list is non-empty and continue 1402 * searching. 1403 * 1404 * It returns zero iff there are no unused children, 1405 * otherwise it returns the number of children moved to 1406 * the end of the unused list. This may not be the total 1407 * number of unused children, because select_parent can 1408 * drop the lock and return early due to latency 1409 * constraints. 1410 */ 1411 1412 struct select_data { 1413 struct dentry *start; 1414 union { 1415 long found; 1416 struct dentry *victim; 1417 }; 1418 struct list_head dispose; 1419 }; 1420 1421 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1422 { 1423 struct select_data *data = _data; 1424 enum d_walk_ret ret = D_WALK_CONTINUE; 1425 1426 if (data->start == dentry) 1427 goto out; 1428 1429 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1430 data->found++; 1431 } else if (!dentry->d_lockref.count) { 1432 to_shrink_list(dentry, &data->dispose); 1433 data->found++; 1434 } else if (dentry->d_lockref.count < 0) { 1435 data->found++; 1436 } 1437 /* 1438 * We can return to the caller if we have found some (this 1439 * ensures forward progress). We'll be coming back to find 1440 * the rest. 1441 */ 1442 if (!list_empty(&data->dispose)) 1443 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1444 out: 1445 return ret; 1446 } 1447 1448 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1449 { 1450 struct select_data *data = _data; 1451 enum d_walk_ret ret = D_WALK_CONTINUE; 1452 1453 if (data->start == dentry) 1454 goto out; 1455 1456 if (!dentry->d_lockref.count) { 1457 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1458 rcu_read_lock(); 1459 data->victim = dentry; 1460 return D_WALK_QUIT; 1461 } 1462 to_shrink_list(dentry, &data->dispose); 1463 } 1464 /* 1465 * We can return to the caller if we have found some (this 1466 * ensures forward progress). We'll be coming back to find 1467 * the rest. 1468 */ 1469 if (!list_empty(&data->dispose)) 1470 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1471 out: 1472 return ret; 1473 } 1474 1475 /** 1476 * shrink_dcache_parent - prune dcache 1477 * @parent: parent of entries to prune 1478 * 1479 * Prune the dcache to remove unused children of the parent dentry. 1480 */ 1481 void shrink_dcache_parent(struct dentry *parent) 1482 { 1483 for (;;) { 1484 struct select_data data = {.start = parent}; 1485 1486 INIT_LIST_HEAD(&data.dispose); 1487 d_walk(parent, &data, select_collect); 1488 1489 if (!list_empty(&data.dispose)) { 1490 shrink_dentry_list(&data.dispose); 1491 continue; 1492 } 1493 1494 cond_resched(); 1495 if (!data.found) 1496 break; 1497 data.victim = NULL; 1498 d_walk(parent, &data, select_collect2); 1499 if (data.victim) { 1500 spin_lock(&data.victim->d_lock); 1501 if (!lock_for_kill(data.victim)) { 1502 spin_unlock(&data.victim->d_lock); 1503 rcu_read_unlock(); 1504 } else { 1505 shrink_kill(data.victim); 1506 } 1507 } 1508 if (!list_empty(&data.dispose)) 1509 shrink_dentry_list(&data.dispose); 1510 } 1511 } 1512 EXPORT_SYMBOL(shrink_dcache_parent); 1513 1514 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1515 { 1516 /* it has busy descendents; complain about those instead */ 1517 if (!hlist_empty(&dentry->d_children)) 1518 return D_WALK_CONTINUE; 1519 1520 /* root with refcount 1 is fine */ 1521 if (dentry == _data && dentry->d_lockref.count == 1) 1522 return D_WALK_CONTINUE; 1523 1524 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " 1525 " still in use (%d) [unmount of %s %s]\n", 1526 dentry, 1527 dentry->d_inode ? 1528 dentry->d_inode->i_ino : 0UL, 1529 dentry, 1530 dentry->d_lockref.count, 1531 dentry->d_sb->s_type->name, 1532 dentry->d_sb->s_id); 1533 return D_WALK_CONTINUE; 1534 } 1535 1536 static void do_one_tree(struct dentry *dentry) 1537 { 1538 shrink_dcache_parent(dentry); 1539 d_walk(dentry, dentry, umount_check); 1540 d_drop(dentry); 1541 dput(dentry); 1542 } 1543 1544 /* 1545 * destroy the dentries attached to a superblock on unmounting 1546 */ 1547 void shrink_dcache_for_umount(struct super_block *sb) 1548 { 1549 struct dentry *dentry; 1550 1551 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1552 1553 dentry = sb->s_root; 1554 sb->s_root = NULL; 1555 do_one_tree(dentry); 1556 1557 while (!hlist_bl_empty(&sb->s_roots)) { 1558 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1559 do_one_tree(dentry); 1560 } 1561 } 1562 1563 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1564 { 1565 struct dentry **victim = _data; 1566 if (d_mountpoint(dentry)) { 1567 *victim = dget_dlock(dentry); 1568 return D_WALK_QUIT; 1569 } 1570 return D_WALK_CONTINUE; 1571 } 1572 1573 /** 1574 * d_invalidate - detach submounts, prune dcache, and drop 1575 * @dentry: dentry to invalidate (aka detach, prune and drop) 1576 */ 1577 void d_invalidate(struct dentry *dentry) 1578 { 1579 bool had_submounts = false; 1580 spin_lock(&dentry->d_lock); 1581 if (d_unhashed(dentry)) { 1582 spin_unlock(&dentry->d_lock); 1583 return; 1584 } 1585 __d_drop(dentry); 1586 spin_unlock(&dentry->d_lock); 1587 1588 /* Negative dentries can be dropped without further checks */ 1589 if (!dentry->d_inode) 1590 return; 1591 1592 shrink_dcache_parent(dentry); 1593 for (;;) { 1594 struct dentry *victim = NULL; 1595 d_walk(dentry, &victim, find_submount); 1596 if (!victim) { 1597 if (had_submounts) 1598 shrink_dcache_parent(dentry); 1599 return; 1600 } 1601 had_submounts = true; 1602 detach_mounts(victim); 1603 dput(victim); 1604 } 1605 } 1606 EXPORT_SYMBOL(d_invalidate); 1607 1608 /** 1609 * __d_alloc - allocate a dcache entry 1610 * @sb: filesystem it will belong to 1611 * @name: qstr of the name 1612 * 1613 * Allocates a dentry. It returns %NULL if there is insufficient memory 1614 * available. On a success the dentry is returned. The name passed in is 1615 * copied and the copy passed in may be reused after this call. 1616 */ 1617 1618 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1619 { 1620 struct dentry *dentry; 1621 char *dname; 1622 int err; 1623 1624 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1625 GFP_KERNEL); 1626 if (!dentry) 1627 return NULL; 1628 1629 /* 1630 * We guarantee that the inline name is always NUL-terminated. 1631 * This way the memcpy() done by the name switching in rename 1632 * will still always have a NUL at the end, even if we might 1633 * be overwriting an internal NUL character 1634 */ 1635 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1636 if (unlikely(!name)) { 1637 name = &slash_name; 1638 dname = dentry->d_iname; 1639 } else if (name->len > DNAME_INLINE_LEN-1) { 1640 size_t size = offsetof(struct external_name, name[1]); 1641 struct external_name *p = kmalloc(size + name->len, 1642 GFP_KERNEL_ACCOUNT | 1643 __GFP_RECLAIMABLE); 1644 if (!p) { 1645 kmem_cache_free(dentry_cache, dentry); 1646 return NULL; 1647 } 1648 atomic_set(&p->u.count, 1); 1649 dname = p->name; 1650 } else { 1651 dname = dentry->d_iname; 1652 } 1653 1654 dentry->d_name.len = name->len; 1655 dentry->d_name.hash = name->hash; 1656 memcpy(dname, name->name, name->len); 1657 dname[name->len] = 0; 1658 1659 /* Make sure we always see the terminating NUL character */ 1660 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1661 1662 dentry->d_lockref.count = 1; 1663 dentry->d_flags = 0; 1664 spin_lock_init(&dentry->d_lock); 1665 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1666 dentry->d_inode = NULL; 1667 dentry->d_parent = dentry; 1668 dentry->d_sb = sb; 1669 dentry->d_op = NULL; 1670 dentry->d_fsdata = NULL; 1671 INIT_HLIST_BL_NODE(&dentry->d_hash); 1672 INIT_LIST_HEAD(&dentry->d_lru); 1673 INIT_HLIST_HEAD(&dentry->d_children); 1674 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1675 INIT_HLIST_NODE(&dentry->d_sib); 1676 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1677 1678 if (dentry->d_op && dentry->d_op->d_init) { 1679 err = dentry->d_op->d_init(dentry); 1680 if (err) { 1681 if (dname_external(dentry)) 1682 kfree(external_name(dentry)); 1683 kmem_cache_free(dentry_cache, dentry); 1684 return NULL; 1685 } 1686 } 1687 1688 this_cpu_inc(nr_dentry); 1689 1690 return dentry; 1691 } 1692 1693 /** 1694 * d_alloc - allocate a dcache entry 1695 * @parent: parent of entry to allocate 1696 * @name: qstr of the name 1697 * 1698 * Allocates a dentry. It returns %NULL if there is insufficient memory 1699 * available. On a success the dentry is returned. The name passed in is 1700 * copied and the copy passed in may be reused after this call. 1701 */ 1702 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1703 { 1704 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1705 if (!dentry) 1706 return NULL; 1707 spin_lock(&parent->d_lock); 1708 /* 1709 * don't need child lock because it is not subject 1710 * to concurrency here 1711 */ 1712 dentry->d_parent = dget_dlock(parent); 1713 hlist_add_head(&dentry->d_sib, &parent->d_children); 1714 spin_unlock(&parent->d_lock); 1715 1716 return dentry; 1717 } 1718 EXPORT_SYMBOL(d_alloc); 1719 1720 struct dentry *d_alloc_anon(struct super_block *sb) 1721 { 1722 return __d_alloc(sb, NULL); 1723 } 1724 EXPORT_SYMBOL(d_alloc_anon); 1725 1726 struct dentry *d_alloc_cursor(struct dentry * parent) 1727 { 1728 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1729 if (dentry) { 1730 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1731 dentry->d_parent = dget(parent); 1732 } 1733 return dentry; 1734 } 1735 1736 /** 1737 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1738 * @sb: the superblock 1739 * @name: qstr of the name 1740 * 1741 * For a filesystem that just pins its dentries in memory and never 1742 * performs lookups at all, return an unhashed IS_ROOT dentry. 1743 * This is used for pipes, sockets et.al. - the stuff that should 1744 * never be anyone's children or parents. Unlike all other 1745 * dentries, these will not have RCU delay between dropping the 1746 * last reference and freeing them. 1747 * 1748 * The only user is alloc_file_pseudo() and that's what should 1749 * be considered a public interface. Don't use directly. 1750 */ 1751 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1752 { 1753 static const struct dentry_operations anon_ops = { 1754 .d_dname = simple_dname 1755 }; 1756 struct dentry *dentry = __d_alloc(sb, name); 1757 if (likely(dentry)) { 1758 dentry->d_flags |= DCACHE_NORCU; 1759 if (!sb->s_d_op) 1760 d_set_d_op(dentry, &anon_ops); 1761 } 1762 return dentry; 1763 } 1764 1765 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1766 { 1767 struct qstr q; 1768 1769 q.name = name; 1770 q.hash_len = hashlen_string(parent, name); 1771 return d_alloc(parent, &q); 1772 } 1773 EXPORT_SYMBOL(d_alloc_name); 1774 1775 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1776 { 1777 WARN_ON_ONCE(dentry->d_op); 1778 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1779 DCACHE_OP_COMPARE | 1780 DCACHE_OP_REVALIDATE | 1781 DCACHE_OP_WEAK_REVALIDATE | 1782 DCACHE_OP_DELETE | 1783 DCACHE_OP_REAL)); 1784 dentry->d_op = op; 1785 if (!op) 1786 return; 1787 if (op->d_hash) 1788 dentry->d_flags |= DCACHE_OP_HASH; 1789 if (op->d_compare) 1790 dentry->d_flags |= DCACHE_OP_COMPARE; 1791 if (op->d_revalidate) 1792 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1793 if (op->d_weak_revalidate) 1794 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1795 if (op->d_delete) 1796 dentry->d_flags |= DCACHE_OP_DELETE; 1797 if (op->d_prune) 1798 dentry->d_flags |= DCACHE_OP_PRUNE; 1799 if (op->d_real) 1800 dentry->d_flags |= DCACHE_OP_REAL; 1801 1802 } 1803 EXPORT_SYMBOL(d_set_d_op); 1804 1805 static unsigned d_flags_for_inode(struct inode *inode) 1806 { 1807 unsigned add_flags = DCACHE_REGULAR_TYPE; 1808 1809 if (!inode) 1810 return DCACHE_MISS_TYPE; 1811 1812 if (S_ISDIR(inode->i_mode)) { 1813 add_flags = DCACHE_DIRECTORY_TYPE; 1814 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1815 if (unlikely(!inode->i_op->lookup)) 1816 add_flags = DCACHE_AUTODIR_TYPE; 1817 else 1818 inode->i_opflags |= IOP_LOOKUP; 1819 } 1820 goto type_determined; 1821 } 1822 1823 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1824 if (unlikely(inode->i_op->get_link)) { 1825 add_flags = DCACHE_SYMLINK_TYPE; 1826 goto type_determined; 1827 } 1828 inode->i_opflags |= IOP_NOFOLLOW; 1829 } 1830 1831 if (unlikely(!S_ISREG(inode->i_mode))) 1832 add_flags = DCACHE_SPECIAL_TYPE; 1833 1834 type_determined: 1835 if (unlikely(IS_AUTOMOUNT(inode))) 1836 add_flags |= DCACHE_NEED_AUTOMOUNT; 1837 return add_flags; 1838 } 1839 1840 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1841 { 1842 unsigned add_flags = d_flags_for_inode(inode); 1843 WARN_ON(d_in_lookup(dentry)); 1844 1845 spin_lock(&dentry->d_lock); 1846 /* 1847 * Decrement negative dentry count if it was in the LRU list. 1848 */ 1849 if (dentry->d_flags & DCACHE_LRU_LIST) 1850 this_cpu_dec(nr_dentry_negative); 1851 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1852 raw_write_seqcount_begin(&dentry->d_seq); 1853 __d_set_inode_and_type(dentry, inode, add_flags); 1854 raw_write_seqcount_end(&dentry->d_seq); 1855 fsnotify_update_flags(dentry); 1856 spin_unlock(&dentry->d_lock); 1857 } 1858 1859 /** 1860 * d_instantiate - fill in inode information for a dentry 1861 * @entry: dentry to complete 1862 * @inode: inode to attach to this dentry 1863 * 1864 * Fill in inode information in the entry. 1865 * 1866 * This turns negative dentries into productive full members 1867 * of society. 1868 * 1869 * NOTE! This assumes that the inode count has been incremented 1870 * (or otherwise set) by the caller to indicate that it is now 1871 * in use by the dcache. 1872 */ 1873 1874 void d_instantiate(struct dentry *entry, struct inode * inode) 1875 { 1876 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1877 if (inode) { 1878 security_d_instantiate(entry, inode); 1879 spin_lock(&inode->i_lock); 1880 __d_instantiate(entry, inode); 1881 spin_unlock(&inode->i_lock); 1882 } 1883 } 1884 EXPORT_SYMBOL(d_instantiate); 1885 1886 /* 1887 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1888 * with lockdep-related part of unlock_new_inode() done before 1889 * anything else. Use that instead of open-coding d_instantiate()/ 1890 * unlock_new_inode() combinations. 1891 */ 1892 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1893 { 1894 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1895 BUG_ON(!inode); 1896 lockdep_annotate_inode_mutex_key(inode); 1897 security_d_instantiate(entry, inode); 1898 spin_lock(&inode->i_lock); 1899 __d_instantiate(entry, inode); 1900 WARN_ON(!(inode->i_state & I_NEW)); 1901 inode->i_state &= ~I_NEW & ~I_CREATING; 1902 smp_mb(); 1903 wake_up_bit(&inode->i_state, __I_NEW); 1904 spin_unlock(&inode->i_lock); 1905 } 1906 EXPORT_SYMBOL(d_instantiate_new); 1907 1908 struct dentry *d_make_root(struct inode *root_inode) 1909 { 1910 struct dentry *res = NULL; 1911 1912 if (root_inode) { 1913 res = d_alloc_anon(root_inode->i_sb); 1914 if (res) 1915 d_instantiate(res, root_inode); 1916 else 1917 iput(root_inode); 1918 } 1919 return res; 1920 } 1921 EXPORT_SYMBOL(d_make_root); 1922 1923 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1924 { 1925 struct super_block *sb; 1926 struct dentry *new, *res; 1927 1928 if (!inode) 1929 return ERR_PTR(-ESTALE); 1930 if (IS_ERR(inode)) 1931 return ERR_CAST(inode); 1932 1933 sb = inode->i_sb; 1934 1935 res = d_find_any_alias(inode); /* existing alias? */ 1936 if (res) 1937 goto out; 1938 1939 new = d_alloc_anon(sb); 1940 if (!new) { 1941 res = ERR_PTR(-ENOMEM); 1942 goto out; 1943 } 1944 1945 security_d_instantiate(new, inode); 1946 spin_lock(&inode->i_lock); 1947 res = __d_find_any_alias(inode); /* recheck under lock */ 1948 if (likely(!res)) { /* still no alias, attach a disconnected dentry */ 1949 unsigned add_flags = d_flags_for_inode(inode); 1950 1951 if (disconnected) 1952 add_flags |= DCACHE_DISCONNECTED; 1953 1954 spin_lock(&new->d_lock); 1955 __d_set_inode_and_type(new, inode, add_flags); 1956 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry); 1957 if (!disconnected) { 1958 hlist_bl_lock(&sb->s_roots); 1959 hlist_bl_add_head(&new->d_hash, &sb->s_roots); 1960 hlist_bl_unlock(&sb->s_roots); 1961 } 1962 spin_unlock(&new->d_lock); 1963 spin_unlock(&inode->i_lock); 1964 inode = NULL; /* consumed by new->d_inode */ 1965 res = new; 1966 } else { 1967 spin_unlock(&inode->i_lock); 1968 dput(new); 1969 } 1970 1971 out: 1972 iput(inode); 1973 return res; 1974 } 1975 1976 /** 1977 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1978 * @inode: inode to allocate the dentry for 1979 * 1980 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1981 * similar open by handle operations. The returned dentry may be anonymous, 1982 * or may have a full name (if the inode was already in the cache). 1983 * 1984 * When called on a directory inode, we must ensure that the inode only ever 1985 * has one dentry. If a dentry is found, that is returned instead of 1986 * allocating a new one. 1987 * 1988 * On successful return, the reference to the inode has been transferred 1989 * to the dentry. In case of an error the reference on the inode is released. 1990 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1991 * be passed in and the error will be propagated to the return value, 1992 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1993 */ 1994 struct dentry *d_obtain_alias(struct inode *inode) 1995 { 1996 return __d_obtain_alias(inode, true); 1997 } 1998 EXPORT_SYMBOL(d_obtain_alias); 1999 2000 /** 2001 * d_obtain_root - find or allocate a dentry for a given inode 2002 * @inode: inode to allocate the dentry for 2003 * 2004 * Obtain an IS_ROOT dentry for the root of a filesystem. 2005 * 2006 * We must ensure that directory inodes only ever have one dentry. If a 2007 * dentry is found, that is returned instead of allocating a new one. 2008 * 2009 * On successful return, the reference to the inode has been transferred 2010 * to the dentry. In case of an error the reference on the inode is 2011 * released. A %NULL or IS_ERR inode may be passed in and will be the 2012 * error will be propagate to the return value, with a %NULL @inode 2013 * replaced by ERR_PTR(-ESTALE). 2014 */ 2015 struct dentry *d_obtain_root(struct inode *inode) 2016 { 2017 return __d_obtain_alias(inode, false); 2018 } 2019 EXPORT_SYMBOL(d_obtain_root); 2020 2021 /** 2022 * d_add_ci - lookup or allocate new dentry with case-exact name 2023 * @inode: the inode case-insensitive lookup has found 2024 * @dentry: the negative dentry that was passed to the parent's lookup func 2025 * @name: the case-exact name to be associated with the returned dentry 2026 * 2027 * This is to avoid filling the dcache with case-insensitive names to the 2028 * same inode, only the actual correct case is stored in the dcache for 2029 * case-insensitive filesystems. 2030 * 2031 * For a case-insensitive lookup match and if the case-exact dentry 2032 * already exists in the dcache, use it and return it. 2033 * 2034 * If no entry exists with the exact case name, allocate new dentry with 2035 * the exact case, and return the spliced entry. 2036 */ 2037 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2038 struct qstr *name) 2039 { 2040 struct dentry *found, *res; 2041 2042 /* 2043 * First check if a dentry matching the name already exists, 2044 * if not go ahead and create it now. 2045 */ 2046 found = d_hash_and_lookup(dentry->d_parent, name); 2047 if (found) { 2048 iput(inode); 2049 return found; 2050 } 2051 if (d_in_lookup(dentry)) { 2052 found = d_alloc_parallel(dentry->d_parent, name, 2053 dentry->d_wait); 2054 if (IS_ERR(found) || !d_in_lookup(found)) { 2055 iput(inode); 2056 return found; 2057 } 2058 } else { 2059 found = d_alloc(dentry->d_parent, name); 2060 if (!found) { 2061 iput(inode); 2062 return ERR_PTR(-ENOMEM); 2063 } 2064 } 2065 res = d_splice_alias(inode, found); 2066 if (res) { 2067 d_lookup_done(found); 2068 dput(found); 2069 return res; 2070 } 2071 return found; 2072 } 2073 EXPORT_SYMBOL(d_add_ci); 2074 2075 /** 2076 * d_same_name - compare dentry name with case-exact name 2077 * @parent: parent dentry 2078 * @dentry: the negative dentry that was passed to the parent's lookup func 2079 * @name: the case-exact name to be associated with the returned dentry 2080 * 2081 * Return: true if names are same, or false 2082 */ 2083 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2084 const struct qstr *name) 2085 { 2086 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2087 if (dentry->d_name.len != name->len) 2088 return false; 2089 return dentry_cmp(dentry, name->name, name->len) == 0; 2090 } 2091 return parent->d_op->d_compare(dentry, 2092 dentry->d_name.len, dentry->d_name.name, 2093 name) == 0; 2094 } 2095 EXPORT_SYMBOL_GPL(d_same_name); 2096 2097 /* 2098 * This is __d_lookup_rcu() when the parent dentry has 2099 * DCACHE_OP_COMPARE, which makes things much nastier. 2100 */ 2101 static noinline struct dentry *__d_lookup_rcu_op_compare( 2102 const struct dentry *parent, 2103 const struct qstr *name, 2104 unsigned *seqp) 2105 { 2106 u64 hashlen = name->hash_len; 2107 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2108 struct hlist_bl_node *node; 2109 struct dentry *dentry; 2110 2111 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2112 int tlen; 2113 const char *tname; 2114 unsigned seq; 2115 2116 seqretry: 2117 seq = raw_seqcount_begin(&dentry->d_seq); 2118 if (dentry->d_parent != parent) 2119 continue; 2120 if (d_unhashed(dentry)) 2121 continue; 2122 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2123 continue; 2124 tlen = dentry->d_name.len; 2125 tname = dentry->d_name.name; 2126 /* we want a consistent (name,len) pair */ 2127 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2128 cpu_relax(); 2129 goto seqretry; 2130 } 2131 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2132 continue; 2133 *seqp = seq; 2134 return dentry; 2135 } 2136 return NULL; 2137 } 2138 2139 /** 2140 * __d_lookup_rcu - search for a dentry (racy, store-free) 2141 * @parent: parent dentry 2142 * @name: qstr of name we wish to find 2143 * @seqp: returns d_seq value at the point where the dentry was found 2144 * Returns: dentry, or NULL 2145 * 2146 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2147 * resolution (store-free path walking) design described in 2148 * Documentation/filesystems/path-lookup.txt. 2149 * 2150 * This is not to be used outside core vfs. 2151 * 2152 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2153 * held, and rcu_read_lock held. The returned dentry must not be stored into 2154 * without taking d_lock and checking d_seq sequence count against @seq 2155 * returned here. 2156 * 2157 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2158 * function. 2159 * 2160 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2161 * the returned dentry, so long as its parent's seqlock is checked after the 2162 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2163 * is formed, giving integrity down the path walk. 2164 * 2165 * NOTE! The caller *has* to check the resulting dentry against the sequence 2166 * number we've returned before using any of the resulting dentry state! 2167 */ 2168 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2169 const struct qstr *name, 2170 unsigned *seqp) 2171 { 2172 u64 hashlen = name->hash_len; 2173 const unsigned char *str = name->name; 2174 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2175 struct hlist_bl_node *node; 2176 struct dentry *dentry; 2177 2178 /* 2179 * Note: There is significant duplication with __d_lookup_rcu which is 2180 * required to prevent single threaded performance regressions 2181 * especially on architectures where smp_rmb (in seqcounts) are costly. 2182 * Keep the two functions in sync. 2183 */ 2184 2185 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2186 return __d_lookup_rcu_op_compare(parent, name, seqp); 2187 2188 /* 2189 * The hash list is protected using RCU. 2190 * 2191 * Carefully use d_seq when comparing a candidate dentry, to avoid 2192 * races with d_move(). 2193 * 2194 * It is possible that concurrent renames can mess up our list 2195 * walk here and result in missing our dentry, resulting in the 2196 * false-negative result. d_lookup() protects against concurrent 2197 * renames using rename_lock seqlock. 2198 * 2199 * See Documentation/filesystems/path-lookup.txt for more details. 2200 */ 2201 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2202 unsigned seq; 2203 2204 /* 2205 * The dentry sequence count protects us from concurrent 2206 * renames, and thus protects parent and name fields. 2207 * 2208 * The caller must perform a seqcount check in order 2209 * to do anything useful with the returned dentry. 2210 * 2211 * NOTE! We do a "raw" seqcount_begin here. That means that 2212 * we don't wait for the sequence count to stabilize if it 2213 * is in the middle of a sequence change. If we do the slow 2214 * dentry compare, we will do seqretries until it is stable, 2215 * and if we end up with a successful lookup, we actually 2216 * want to exit RCU lookup anyway. 2217 * 2218 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2219 * we are still guaranteed NUL-termination of ->d_name.name. 2220 */ 2221 seq = raw_seqcount_begin(&dentry->d_seq); 2222 if (dentry->d_parent != parent) 2223 continue; 2224 if (d_unhashed(dentry)) 2225 continue; 2226 if (dentry->d_name.hash_len != hashlen) 2227 continue; 2228 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2229 continue; 2230 *seqp = seq; 2231 return dentry; 2232 } 2233 return NULL; 2234 } 2235 2236 /** 2237 * d_lookup - search for a dentry 2238 * @parent: parent dentry 2239 * @name: qstr of name we wish to find 2240 * Returns: dentry, or NULL 2241 * 2242 * d_lookup searches the children of the parent dentry for the name in 2243 * question. If the dentry is found its reference count is incremented and the 2244 * dentry is returned. The caller must use dput to free the entry when it has 2245 * finished using it. %NULL is returned if the dentry does not exist. 2246 */ 2247 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2248 { 2249 struct dentry *dentry; 2250 unsigned seq; 2251 2252 do { 2253 seq = read_seqbegin(&rename_lock); 2254 dentry = __d_lookup(parent, name); 2255 if (dentry) 2256 break; 2257 } while (read_seqretry(&rename_lock, seq)); 2258 return dentry; 2259 } 2260 EXPORT_SYMBOL(d_lookup); 2261 2262 /** 2263 * __d_lookup - search for a dentry (racy) 2264 * @parent: parent dentry 2265 * @name: qstr of name we wish to find 2266 * Returns: dentry, or NULL 2267 * 2268 * __d_lookup is like d_lookup, however it may (rarely) return a 2269 * false-negative result due to unrelated rename activity. 2270 * 2271 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2272 * however it must be used carefully, eg. with a following d_lookup in 2273 * the case of failure. 2274 * 2275 * __d_lookup callers must be commented. 2276 */ 2277 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2278 { 2279 unsigned int hash = name->hash; 2280 struct hlist_bl_head *b = d_hash(hash); 2281 struct hlist_bl_node *node; 2282 struct dentry *found = NULL; 2283 struct dentry *dentry; 2284 2285 /* 2286 * Note: There is significant duplication with __d_lookup_rcu which is 2287 * required to prevent single threaded performance regressions 2288 * especially on architectures where smp_rmb (in seqcounts) are costly. 2289 * Keep the two functions in sync. 2290 */ 2291 2292 /* 2293 * The hash list is protected using RCU. 2294 * 2295 * Take d_lock when comparing a candidate dentry, to avoid races 2296 * with d_move(). 2297 * 2298 * It is possible that concurrent renames can mess up our list 2299 * walk here and result in missing our dentry, resulting in the 2300 * false-negative result. d_lookup() protects against concurrent 2301 * renames using rename_lock seqlock. 2302 * 2303 * See Documentation/filesystems/path-lookup.txt for more details. 2304 */ 2305 rcu_read_lock(); 2306 2307 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2308 2309 if (dentry->d_name.hash != hash) 2310 continue; 2311 2312 spin_lock(&dentry->d_lock); 2313 if (dentry->d_parent != parent) 2314 goto next; 2315 if (d_unhashed(dentry)) 2316 goto next; 2317 2318 if (!d_same_name(dentry, parent, name)) 2319 goto next; 2320 2321 dentry->d_lockref.count++; 2322 found = dentry; 2323 spin_unlock(&dentry->d_lock); 2324 break; 2325 next: 2326 spin_unlock(&dentry->d_lock); 2327 } 2328 rcu_read_unlock(); 2329 2330 return found; 2331 } 2332 2333 /** 2334 * d_hash_and_lookup - hash the qstr then search for a dentry 2335 * @dir: Directory to search in 2336 * @name: qstr of name we wish to find 2337 * 2338 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2339 */ 2340 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2341 { 2342 /* 2343 * Check for a fs-specific hash function. Note that we must 2344 * calculate the standard hash first, as the d_op->d_hash() 2345 * routine may choose to leave the hash value unchanged. 2346 */ 2347 name->hash = full_name_hash(dir, name->name, name->len); 2348 if (dir->d_flags & DCACHE_OP_HASH) { 2349 int err = dir->d_op->d_hash(dir, name); 2350 if (unlikely(err < 0)) 2351 return ERR_PTR(err); 2352 } 2353 return d_lookup(dir, name); 2354 } 2355 EXPORT_SYMBOL(d_hash_and_lookup); 2356 2357 /* 2358 * When a file is deleted, we have two options: 2359 * - turn this dentry into a negative dentry 2360 * - unhash this dentry and free it. 2361 * 2362 * Usually, we want to just turn this into 2363 * a negative dentry, but if anybody else is 2364 * currently using the dentry or the inode 2365 * we can't do that and we fall back on removing 2366 * it from the hash queues and waiting for 2367 * it to be deleted later when it has no users 2368 */ 2369 2370 /** 2371 * d_delete - delete a dentry 2372 * @dentry: The dentry to delete 2373 * 2374 * Turn the dentry into a negative dentry if possible, otherwise 2375 * remove it from the hash queues so it can be deleted later 2376 */ 2377 2378 void d_delete(struct dentry * dentry) 2379 { 2380 struct inode *inode = dentry->d_inode; 2381 2382 spin_lock(&inode->i_lock); 2383 spin_lock(&dentry->d_lock); 2384 /* 2385 * Are we the only user? 2386 */ 2387 if (dentry->d_lockref.count == 1) { 2388 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2389 dentry_unlink_inode(dentry); 2390 } else { 2391 __d_drop(dentry); 2392 spin_unlock(&dentry->d_lock); 2393 spin_unlock(&inode->i_lock); 2394 } 2395 } 2396 EXPORT_SYMBOL(d_delete); 2397 2398 static void __d_rehash(struct dentry *entry) 2399 { 2400 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2401 2402 hlist_bl_lock(b); 2403 hlist_bl_add_head_rcu(&entry->d_hash, b); 2404 hlist_bl_unlock(b); 2405 } 2406 2407 /** 2408 * d_rehash - add an entry back to the hash 2409 * @entry: dentry to add to the hash 2410 * 2411 * Adds a dentry to the hash according to its name. 2412 */ 2413 2414 void d_rehash(struct dentry * entry) 2415 { 2416 spin_lock(&entry->d_lock); 2417 __d_rehash(entry); 2418 spin_unlock(&entry->d_lock); 2419 } 2420 EXPORT_SYMBOL(d_rehash); 2421 2422 static inline unsigned start_dir_add(struct inode *dir) 2423 { 2424 preempt_disable_nested(); 2425 for (;;) { 2426 unsigned n = dir->i_dir_seq; 2427 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2428 return n; 2429 cpu_relax(); 2430 } 2431 } 2432 2433 static inline void end_dir_add(struct inode *dir, unsigned int n, 2434 wait_queue_head_t *d_wait) 2435 { 2436 smp_store_release(&dir->i_dir_seq, n + 2); 2437 preempt_enable_nested(); 2438 wake_up_all(d_wait); 2439 } 2440 2441 static void d_wait_lookup(struct dentry *dentry) 2442 { 2443 if (d_in_lookup(dentry)) { 2444 DECLARE_WAITQUEUE(wait, current); 2445 add_wait_queue(dentry->d_wait, &wait); 2446 do { 2447 set_current_state(TASK_UNINTERRUPTIBLE); 2448 spin_unlock(&dentry->d_lock); 2449 schedule(); 2450 spin_lock(&dentry->d_lock); 2451 } while (d_in_lookup(dentry)); 2452 } 2453 } 2454 2455 struct dentry *d_alloc_parallel(struct dentry *parent, 2456 const struct qstr *name, 2457 wait_queue_head_t *wq) 2458 { 2459 unsigned int hash = name->hash; 2460 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2461 struct hlist_bl_node *node; 2462 struct dentry *new = d_alloc(parent, name); 2463 struct dentry *dentry; 2464 unsigned seq, r_seq, d_seq; 2465 2466 if (unlikely(!new)) 2467 return ERR_PTR(-ENOMEM); 2468 2469 retry: 2470 rcu_read_lock(); 2471 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2472 r_seq = read_seqbegin(&rename_lock); 2473 dentry = __d_lookup_rcu(parent, name, &d_seq); 2474 if (unlikely(dentry)) { 2475 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2476 rcu_read_unlock(); 2477 goto retry; 2478 } 2479 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2480 rcu_read_unlock(); 2481 dput(dentry); 2482 goto retry; 2483 } 2484 rcu_read_unlock(); 2485 dput(new); 2486 return dentry; 2487 } 2488 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2489 rcu_read_unlock(); 2490 goto retry; 2491 } 2492 2493 if (unlikely(seq & 1)) { 2494 rcu_read_unlock(); 2495 goto retry; 2496 } 2497 2498 hlist_bl_lock(b); 2499 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2500 hlist_bl_unlock(b); 2501 rcu_read_unlock(); 2502 goto retry; 2503 } 2504 /* 2505 * No changes for the parent since the beginning of d_lookup(). 2506 * Since all removals from the chain happen with hlist_bl_lock(), 2507 * any potential in-lookup matches are going to stay here until 2508 * we unlock the chain. All fields are stable in everything 2509 * we encounter. 2510 */ 2511 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2512 if (dentry->d_name.hash != hash) 2513 continue; 2514 if (dentry->d_parent != parent) 2515 continue; 2516 if (!d_same_name(dentry, parent, name)) 2517 continue; 2518 hlist_bl_unlock(b); 2519 /* now we can try to grab a reference */ 2520 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2521 rcu_read_unlock(); 2522 goto retry; 2523 } 2524 2525 rcu_read_unlock(); 2526 /* 2527 * somebody is likely to be still doing lookup for it; 2528 * wait for them to finish 2529 */ 2530 spin_lock(&dentry->d_lock); 2531 d_wait_lookup(dentry); 2532 /* 2533 * it's not in-lookup anymore; in principle we should repeat 2534 * everything from dcache lookup, but it's likely to be what 2535 * d_lookup() would've found anyway. If it is, just return it; 2536 * otherwise we really have to repeat the whole thing. 2537 */ 2538 if (unlikely(dentry->d_name.hash != hash)) 2539 goto mismatch; 2540 if (unlikely(dentry->d_parent != parent)) 2541 goto mismatch; 2542 if (unlikely(d_unhashed(dentry))) 2543 goto mismatch; 2544 if (unlikely(!d_same_name(dentry, parent, name))) 2545 goto mismatch; 2546 /* OK, it *is* a hashed match; return it */ 2547 spin_unlock(&dentry->d_lock); 2548 dput(new); 2549 return dentry; 2550 } 2551 rcu_read_unlock(); 2552 /* we can't take ->d_lock here; it's OK, though. */ 2553 new->d_flags |= DCACHE_PAR_LOOKUP; 2554 new->d_wait = wq; 2555 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b); 2556 hlist_bl_unlock(b); 2557 return new; 2558 mismatch: 2559 spin_unlock(&dentry->d_lock); 2560 dput(dentry); 2561 goto retry; 2562 } 2563 EXPORT_SYMBOL(d_alloc_parallel); 2564 2565 /* 2566 * - Unhash the dentry 2567 * - Retrieve and clear the waitqueue head in dentry 2568 * - Return the waitqueue head 2569 */ 2570 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2571 { 2572 wait_queue_head_t *d_wait; 2573 struct hlist_bl_head *b; 2574 2575 lockdep_assert_held(&dentry->d_lock); 2576 2577 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2578 hlist_bl_lock(b); 2579 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2580 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2581 d_wait = dentry->d_wait; 2582 dentry->d_wait = NULL; 2583 hlist_bl_unlock(b); 2584 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2585 INIT_LIST_HEAD(&dentry->d_lru); 2586 return d_wait; 2587 } 2588 2589 void __d_lookup_unhash_wake(struct dentry *dentry) 2590 { 2591 spin_lock(&dentry->d_lock); 2592 wake_up_all(__d_lookup_unhash(dentry)); 2593 spin_unlock(&dentry->d_lock); 2594 } 2595 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2596 2597 /* inode->i_lock held if inode is non-NULL */ 2598 2599 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2600 { 2601 wait_queue_head_t *d_wait; 2602 struct inode *dir = NULL; 2603 unsigned n; 2604 spin_lock(&dentry->d_lock); 2605 if (unlikely(d_in_lookup(dentry))) { 2606 dir = dentry->d_parent->d_inode; 2607 n = start_dir_add(dir); 2608 d_wait = __d_lookup_unhash(dentry); 2609 } 2610 if (inode) { 2611 unsigned add_flags = d_flags_for_inode(inode); 2612 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2613 raw_write_seqcount_begin(&dentry->d_seq); 2614 __d_set_inode_and_type(dentry, inode, add_flags); 2615 raw_write_seqcount_end(&dentry->d_seq); 2616 fsnotify_update_flags(dentry); 2617 } 2618 __d_rehash(dentry); 2619 if (dir) 2620 end_dir_add(dir, n, d_wait); 2621 spin_unlock(&dentry->d_lock); 2622 if (inode) 2623 spin_unlock(&inode->i_lock); 2624 } 2625 2626 /** 2627 * d_add - add dentry to hash queues 2628 * @entry: dentry to add 2629 * @inode: The inode to attach to this dentry 2630 * 2631 * This adds the entry to the hash queues and initializes @inode. 2632 * The entry was actually filled in earlier during d_alloc(). 2633 */ 2634 2635 void d_add(struct dentry *entry, struct inode *inode) 2636 { 2637 if (inode) { 2638 security_d_instantiate(entry, inode); 2639 spin_lock(&inode->i_lock); 2640 } 2641 __d_add(entry, inode); 2642 } 2643 EXPORT_SYMBOL(d_add); 2644 2645 /** 2646 * d_exact_alias - find and hash an exact unhashed alias 2647 * @entry: dentry to add 2648 * @inode: The inode to go with this dentry 2649 * 2650 * If an unhashed dentry with the same name/parent and desired 2651 * inode already exists, hash and return it. Otherwise, return 2652 * NULL. 2653 * 2654 * Parent directory should be locked. 2655 */ 2656 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2657 { 2658 struct dentry *alias; 2659 unsigned int hash = entry->d_name.hash; 2660 2661 spin_lock(&inode->i_lock); 2662 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2663 /* 2664 * Don't need alias->d_lock here, because aliases with 2665 * d_parent == entry->d_parent are not subject to name or 2666 * parent changes, because the parent inode i_mutex is held. 2667 */ 2668 if (alias->d_name.hash != hash) 2669 continue; 2670 if (alias->d_parent != entry->d_parent) 2671 continue; 2672 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2673 continue; 2674 spin_lock(&alias->d_lock); 2675 if (!d_unhashed(alias)) { 2676 spin_unlock(&alias->d_lock); 2677 alias = NULL; 2678 } else { 2679 dget_dlock(alias); 2680 __d_rehash(alias); 2681 spin_unlock(&alias->d_lock); 2682 } 2683 spin_unlock(&inode->i_lock); 2684 return alias; 2685 } 2686 spin_unlock(&inode->i_lock); 2687 return NULL; 2688 } 2689 EXPORT_SYMBOL(d_exact_alias); 2690 2691 static void swap_names(struct dentry *dentry, struct dentry *target) 2692 { 2693 if (unlikely(dname_external(target))) { 2694 if (unlikely(dname_external(dentry))) { 2695 /* 2696 * Both external: swap the pointers 2697 */ 2698 swap(target->d_name.name, dentry->d_name.name); 2699 } else { 2700 /* 2701 * dentry:internal, target:external. Steal target's 2702 * storage and make target internal. 2703 */ 2704 memcpy(target->d_iname, dentry->d_name.name, 2705 dentry->d_name.len + 1); 2706 dentry->d_name.name = target->d_name.name; 2707 target->d_name.name = target->d_iname; 2708 } 2709 } else { 2710 if (unlikely(dname_external(dentry))) { 2711 /* 2712 * dentry:external, target:internal. Give dentry's 2713 * storage to target and make dentry internal 2714 */ 2715 memcpy(dentry->d_iname, target->d_name.name, 2716 target->d_name.len + 1); 2717 target->d_name.name = dentry->d_name.name; 2718 dentry->d_name.name = dentry->d_iname; 2719 } else { 2720 /* 2721 * Both are internal. 2722 */ 2723 unsigned int i; 2724 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2725 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2726 swap(((long *) &dentry->d_iname)[i], 2727 ((long *) &target->d_iname)[i]); 2728 } 2729 } 2730 } 2731 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2732 } 2733 2734 static void copy_name(struct dentry *dentry, struct dentry *target) 2735 { 2736 struct external_name *old_name = NULL; 2737 if (unlikely(dname_external(dentry))) 2738 old_name = external_name(dentry); 2739 if (unlikely(dname_external(target))) { 2740 atomic_inc(&external_name(target)->u.count); 2741 dentry->d_name = target->d_name; 2742 } else { 2743 memcpy(dentry->d_iname, target->d_name.name, 2744 target->d_name.len + 1); 2745 dentry->d_name.name = dentry->d_iname; 2746 dentry->d_name.hash_len = target->d_name.hash_len; 2747 } 2748 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2749 kfree_rcu(old_name, u.head); 2750 } 2751 2752 /* 2753 * __d_move - move a dentry 2754 * @dentry: entry to move 2755 * @target: new dentry 2756 * @exchange: exchange the two dentries 2757 * 2758 * Update the dcache to reflect the move of a file name. Negative 2759 * dcache entries should not be moved in this way. Caller must hold 2760 * rename_lock, the i_mutex of the source and target directories, 2761 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2762 */ 2763 static void __d_move(struct dentry *dentry, struct dentry *target, 2764 bool exchange) 2765 { 2766 struct dentry *old_parent, *p; 2767 wait_queue_head_t *d_wait; 2768 struct inode *dir = NULL; 2769 unsigned n; 2770 2771 WARN_ON(!dentry->d_inode); 2772 if (WARN_ON(dentry == target)) 2773 return; 2774 2775 BUG_ON(d_ancestor(target, dentry)); 2776 old_parent = dentry->d_parent; 2777 p = d_ancestor(old_parent, target); 2778 if (IS_ROOT(dentry)) { 2779 BUG_ON(p); 2780 spin_lock(&target->d_parent->d_lock); 2781 } else if (!p) { 2782 /* target is not a descendent of dentry->d_parent */ 2783 spin_lock(&target->d_parent->d_lock); 2784 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2785 } else { 2786 BUG_ON(p == dentry); 2787 spin_lock(&old_parent->d_lock); 2788 if (p != target) 2789 spin_lock_nested(&target->d_parent->d_lock, 2790 DENTRY_D_LOCK_NESTED); 2791 } 2792 spin_lock_nested(&dentry->d_lock, 2); 2793 spin_lock_nested(&target->d_lock, 3); 2794 2795 if (unlikely(d_in_lookup(target))) { 2796 dir = target->d_parent->d_inode; 2797 n = start_dir_add(dir); 2798 d_wait = __d_lookup_unhash(target); 2799 } 2800 2801 write_seqcount_begin(&dentry->d_seq); 2802 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2803 2804 /* unhash both */ 2805 if (!d_unhashed(dentry)) 2806 ___d_drop(dentry); 2807 if (!d_unhashed(target)) 2808 ___d_drop(target); 2809 2810 /* ... and switch them in the tree */ 2811 dentry->d_parent = target->d_parent; 2812 if (!exchange) { 2813 copy_name(dentry, target); 2814 target->d_hash.pprev = NULL; 2815 dentry->d_parent->d_lockref.count++; 2816 if (dentry != old_parent) /* wasn't IS_ROOT */ 2817 WARN_ON(!--old_parent->d_lockref.count); 2818 } else { 2819 target->d_parent = old_parent; 2820 swap_names(dentry, target); 2821 if (!hlist_unhashed(&target->d_sib)) 2822 __hlist_del(&target->d_sib); 2823 hlist_add_head(&target->d_sib, &target->d_parent->d_children); 2824 __d_rehash(target); 2825 fsnotify_update_flags(target); 2826 } 2827 if (!hlist_unhashed(&dentry->d_sib)) 2828 __hlist_del(&dentry->d_sib); 2829 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children); 2830 __d_rehash(dentry); 2831 fsnotify_update_flags(dentry); 2832 fscrypt_handle_d_move(dentry); 2833 2834 write_seqcount_end(&target->d_seq); 2835 write_seqcount_end(&dentry->d_seq); 2836 2837 if (dir) 2838 end_dir_add(dir, n, d_wait); 2839 2840 if (dentry->d_parent != old_parent) 2841 spin_unlock(&dentry->d_parent->d_lock); 2842 if (dentry != old_parent) 2843 spin_unlock(&old_parent->d_lock); 2844 spin_unlock(&target->d_lock); 2845 spin_unlock(&dentry->d_lock); 2846 } 2847 2848 /* 2849 * d_move - move a dentry 2850 * @dentry: entry to move 2851 * @target: new dentry 2852 * 2853 * Update the dcache to reflect the move of a file name. Negative 2854 * dcache entries should not be moved in this way. See the locking 2855 * requirements for __d_move. 2856 */ 2857 void d_move(struct dentry *dentry, struct dentry *target) 2858 { 2859 write_seqlock(&rename_lock); 2860 __d_move(dentry, target, false); 2861 write_sequnlock(&rename_lock); 2862 } 2863 EXPORT_SYMBOL(d_move); 2864 2865 /* 2866 * d_exchange - exchange two dentries 2867 * @dentry1: first dentry 2868 * @dentry2: second dentry 2869 */ 2870 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2871 { 2872 write_seqlock(&rename_lock); 2873 2874 WARN_ON(!dentry1->d_inode); 2875 WARN_ON(!dentry2->d_inode); 2876 WARN_ON(IS_ROOT(dentry1)); 2877 WARN_ON(IS_ROOT(dentry2)); 2878 2879 __d_move(dentry1, dentry2, true); 2880 2881 write_sequnlock(&rename_lock); 2882 } 2883 2884 /** 2885 * d_ancestor - search for an ancestor 2886 * @p1: ancestor dentry 2887 * @p2: child dentry 2888 * 2889 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2890 * an ancestor of p2, else NULL. 2891 */ 2892 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2893 { 2894 struct dentry *p; 2895 2896 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2897 if (p->d_parent == p1) 2898 return p; 2899 } 2900 return NULL; 2901 } 2902 2903 /* 2904 * This helper attempts to cope with remotely renamed directories 2905 * 2906 * It assumes that the caller is already holding 2907 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2908 * 2909 * Note: If ever the locking in lock_rename() changes, then please 2910 * remember to update this too... 2911 */ 2912 static int __d_unalias(struct dentry *dentry, struct dentry *alias) 2913 { 2914 struct mutex *m1 = NULL; 2915 struct rw_semaphore *m2 = NULL; 2916 int ret = -ESTALE; 2917 2918 /* If alias and dentry share a parent, then no extra locks required */ 2919 if (alias->d_parent == dentry->d_parent) 2920 goto out_unalias; 2921 2922 /* See lock_rename() */ 2923 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2924 goto out_err; 2925 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2926 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2927 goto out_err; 2928 m2 = &alias->d_parent->d_inode->i_rwsem; 2929 out_unalias: 2930 __d_move(alias, dentry, false); 2931 ret = 0; 2932 out_err: 2933 if (m2) 2934 up_read(m2); 2935 if (m1) 2936 mutex_unlock(m1); 2937 return ret; 2938 } 2939 2940 /** 2941 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2942 * @inode: the inode which may have a disconnected dentry 2943 * @dentry: a negative dentry which we want to point to the inode. 2944 * 2945 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2946 * place of the given dentry and return it, else simply d_add the inode 2947 * to the dentry and return NULL. 2948 * 2949 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2950 * we should error out: directories can't have multiple aliases. 2951 * 2952 * This is needed in the lookup routine of any filesystem that is exportable 2953 * (via knfsd) so that we can build dcache paths to directories effectively. 2954 * 2955 * If a dentry was found and moved, then it is returned. Otherwise NULL 2956 * is returned. This matches the expected return value of ->lookup. 2957 * 2958 * Cluster filesystems may call this function with a negative, hashed dentry. 2959 * In that case, we know that the inode will be a regular file, and also this 2960 * will only occur during atomic_open. So we need to check for the dentry 2961 * being already hashed only in the final case. 2962 */ 2963 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2964 { 2965 if (IS_ERR(inode)) 2966 return ERR_CAST(inode); 2967 2968 BUG_ON(!d_unhashed(dentry)); 2969 2970 if (!inode) 2971 goto out; 2972 2973 security_d_instantiate(dentry, inode); 2974 spin_lock(&inode->i_lock); 2975 if (S_ISDIR(inode->i_mode)) { 2976 struct dentry *new = __d_find_any_alias(inode); 2977 if (unlikely(new)) { 2978 /* The reference to new ensures it remains an alias */ 2979 spin_unlock(&inode->i_lock); 2980 write_seqlock(&rename_lock); 2981 if (unlikely(d_ancestor(new, dentry))) { 2982 write_sequnlock(&rename_lock); 2983 dput(new); 2984 new = ERR_PTR(-ELOOP); 2985 pr_warn_ratelimited( 2986 "VFS: Lookup of '%s' in %s %s" 2987 " would have caused loop\n", 2988 dentry->d_name.name, 2989 inode->i_sb->s_type->name, 2990 inode->i_sb->s_id); 2991 } else if (!IS_ROOT(new)) { 2992 struct dentry *old_parent = dget(new->d_parent); 2993 int err = __d_unalias(dentry, new); 2994 write_sequnlock(&rename_lock); 2995 if (err) { 2996 dput(new); 2997 new = ERR_PTR(err); 2998 } 2999 dput(old_parent); 3000 } else { 3001 __d_move(new, dentry, false); 3002 write_sequnlock(&rename_lock); 3003 } 3004 iput(inode); 3005 return new; 3006 } 3007 } 3008 out: 3009 __d_add(dentry, inode); 3010 return NULL; 3011 } 3012 EXPORT_SYMBOL(d_splice_alias); 3013 3014 /* 3015 * Test whether new_dentry is a subdirectory of old_dentry. 3016 * 3017 * Trivially implemented using the dcache structure 3018 */ 3019 3020 /** 3021 * is_subdir - is new dentry a subdirectory of old_dentry 3022 * @new_dentry: new dentry 3023 * @old_dentry: old dentry 3024 * 3025 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3026 * Returns false otherwise. 3027 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3028 */ 3029 3030 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3031 { 3032 bool result; 3033 unsigned seq; 3034 3035 if (new_dentry == old_dentry) 3036 return true; 3037 3038 do { 3039 /* for restarting inner loop in case of seq retry */ 3040 seq = read_seqbegin(&rename_lock); 3041 /* 3042 * Need rcu_readlock to protect against the d_parent trashing 3043 * due to d_move 3044 */ 3045 rcu_read_lock(); 3046 if (d_ancestor(old_dentry, new_dentry)) 3047 result = true; 3048 else 3049 result = false; 3050 rcu_read_unlock(); 3051 } while (read_seqretry(&rename_lock, seq)); 3052 3053 return result; 3054 } 3055 EXPORT_SYMBOL(is_subdir); 3056 3057 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3058 { 3059 struct dentry *root = data; 3060 if (dentry != root) { 3061 if (d_unhashed(dentry) || !dentry->d_inode) 3062 return D_WALK_SKIP; 3063 3064 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3065 dentry->d_flags |= DCACHE_GENOCIDE; 3066 dentry->d_lockref.count--; 3067 } 3068 } 3069 return D_WALK_CONTINUE; 3070 } 3071 3072 void d_genocide(struct dentry *parent) 3073 { 3074 d_walk(parent, parent, d_genocide_kill); 3075 } 3076 3077 void d_mark_tmpfile(struct file *file, struct inode *inode) 3078 { 3079 struct dentry *dentry = file->f_path.dentry; 3080 3081 BUG_ON(dentry->d_name.name != dentry->d_iname || 3082 !hlist_unhashed(&dentry->d_u.d_alias) || 3083 !d_unlinked(dentry)); 3084 spin_lock(&dentry->d_parent->d_lock); 3085 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3086 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3087 (unsigned long long)inode->i_ino); 3088 spin_unlock(&dentry->d_lock); 3089 spin_unlock(&dentry->d_parent->d_lock); 3090 } 3091 EXPORT_SYMBOL(d_mark_tmpfile); 3092 3093 void d_tmpfile(struct file *file, struct inode *inode) 3094 { 3095 struct dentry *dentry = file->f_path.dentry; 3096 3097 inode_dec_link_count(inode); 3098 d_mark_tmpfile(file, inode); 3099 d_instantiate(dentry, inode); 3100 } 3101 EXPORT_SYMBOL(d_tmpfile); 3102 3103 static __initdata unsigned long dhash_entries; 3104 static int __init set_dhash_entries(char *str) 3105 { 3106 if (!str) 3107 return 0; 3108 dhash_entries = simple_strtoul(str, &str, 0); 3109 return 1; 3110 } 3111 __setup("dhash_entries=", set_dhash_entries); 3112 3113 static void __init dcache_init_early(void) 3114 { 3115 /* If hashes are distributed across NUMA nodes, defer 3116 * hash allocation until vmalloc space is available. 3117 */ 3118 if (hashdist) 3119 return; 3120 3121 dentry_hashtable = 3122 alloc_large_system_hash("Dentry cache", 3123 sizeof(struct hlist_bl_head), 3124 dhash_entries, 3125 13, 3126 HASH_EARLY | HASH_ZERO, 3127 &d_hash_shift, 3128 NULL, 3129 0, 3130 0); 3131 d_hash_shift = 32 - d_hash_shift; 3132 } 3133 3134 static void __init dcache_init(void) 3135 { 3136 /* 3137 * A constructor could be added for stable state like the lists, 3138 * but it is probably not worth it because of the cache nature 3139 * of the dcache. 3140 */ 3141 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3142 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT, 3143 d_iname); 3144 3145 /* Hash may have been set up in dcache_init_early */ 3146 if (!hashdist) 3147 return; 3148 3149 dentry_hashtable = 3150 alloc_large_system_hash("Dentry cache", 3151 sizeof(struct hlist_bl_head), 3152 dhash_entries, 3153 13, 3154 HASH_ZERO, 3155 &d_hash_shift, 3156 NULL, 3157 0, 3158 0); 3159 d_hash_shift = 32 - d_hash_shift; 3160 } 3161 3162 /* SLAB cache for __getname() consumers */ 3163 struct kmem_cache *names_cachep __ro_after_init; 3164 EXPORT_SYMBOL(names_cachep); 3165 3166 void __init vfs_caches_init_early(void) 3167 { 3168 int i; 3169 3170 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3171 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3172 3173 dcache_init_early(); 3174 inode_init_early(); 3175 } 3176 3177 void __init vfs_caches_init(void) 3178 { 3179 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3180 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3181 3182 dcache_init(); 3183 inode_init(); 3184 files_init(); 3185 files_maxfiles_init(); 3186 mnt_init(); 3187 bdev_cache_init(); 3188 chrdev_init(); 3189 } 3190