1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <linux/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(unsigned int hash) 108 { 109 return dentry_hashtable + (hash >> (32 - d_hash_shift)); 110 } 111 112 #define IN_LOOKUP_SHIFT 10 113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 114 115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 116 unsigned int hash) 117 { 118 hash += (unsigned long) parent / L1_CACHE_BYTES; 119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 120 } 121 122 123 /* Statistics gathering. */ 124 struct dentry_stat_t dentry_stat = { 125 .age_limit = 45, 126 }; 127 128 static DEFINE_PER_CPU(long, nr_dentry); 129 static DEFINE_PER_CPU(long, nr_dentry_unused); 130 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 132 133 /* 134 * Here we resort to our own counters instead of using generic per-cpu counters 135 * for consistency with what the vfs inode code does. We are expected to harvest 136 * better code and performance by having our own specialized counters. 137 * 138 * Please note that the loop is done over all possible CPUs, not over all online 139 * CPUs. The reason for this is that we don't want to play games with CPUs going 140 * on and off. If one of them goes off, we will just keep their counters. 141 * 142 * glommer: See cffbc8a for details, and if you ever intend to change this, 143 * please update all vfs counters to match. 144 */ 145 static long get_nr_dentry(void) 146 { 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry, i); 151 return sum < 0 ? 0 : sum; 152 } 153 154 static long get_nr_dentry_unused(void) 155 { 156 int i; 157 long sum = 0; 158 for_each_possible_cpu(i) 159 sum += per_cpu(nr_dentry_unused, i); 160 return sum < 0 ? 0 : sum; 161 } 162 163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 164 size_t *lenp, loff_t *ppos) 165 { 166 dentry_stat.nr_dentry = get_nr_dentry(); 167 dentry_stat.nr_unused = get_nr_dentry_unused(); 168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 169 } 170 #endif 171 172 /* 173 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 174 * The strings are both count bytes long, and count is non-zero. 175 */ 176 #ifdef CONFIG_DCACHE_WORD_ACCESS 177 178 #include <asm/word-at-a-time.h> 179 /* 180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 181 * aligned allocation for this particular component. We don't 182 * strictly need the load_unaligned_zeropad() safety, but it 183 * doesn't hurt either. 184 * 185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 186 * need the careful unaligned handling. 187 */ 188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 189 { 190 unsigned long a,b,mask; 191 192 for (;;) { 193 a = *(unsigned long *)cs; 194 b = load_unaligned_zeropad(ct); 195 if (tcount < sizeof(unsigned long)) 196 break; 197 if (unlikely(a != b)) 198 return 1; 199 cs += sizeof(unsigned long); 200 ct += sizeof(unsigned long); 201 tcount -= sizeof(unsigned long); 202 if (!tcount) 203 return 0; 204 } 205 mask = bytemask_from_count(tcount); 206 return unlikely(!!((a ^ b) & mask)); 207 } 208 209 #else 210 211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 212 { 213 do { 214 if (*cs != *ct) 215 return 1; 216 cs++; 217 ct++; 218 tcount--; 219 } while (tcount); 220 return 0; 221 } 222 223 #endif 224 225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 226 { 227 /* 228 * Be careful about RCU walk racing with rename: 229 * use 'lockless_dereference' to fetch the name pointer. 230 * 231 * NOTE! Even if a rename will mean that the length 232 * was not loaded atomically, we don't care. The 233 * RCU walk will check the sequence count eventually, 234 * and catch it. And we won't overrun the buffer, 235 * because we're reading the name pointer atomically, 236 * and a dentry name is guaranteed to be properly 237 * terminated with a NUL byte. 238 * 239 * End result: even if 'len' is wrong, we'll exit 240 * early because the data cannot match (there can 241 * be no NUL in the ct/tcount data) 242 */ 243 const unsigned char *cs = lockless_dereference(dentry->d_name.name); 244 245 return dentry_string_cmp(cs, ct, tcount); 246 } 247 248 struct external_name { 249 union { 250 atomic_t count; 251 struct rcu_head head; 252 } u; 253 unsigned char name[]; 254 }; 255 256 static inline struct external_name *external_name(struct dentry *dentry) 257 { 258 return container_of(dentry->d_name.name, struct external_name, name[0]); 259 } 260 261 static void __d_free(struct rcu_head *head) 262 { 263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 264 265 kmem_cache_free(dentry_cache, dentry); 266 } 267 268 static void __d_free_external(struct rcu_head *head) 269 { 270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 271 kfree(external_name(dentry)); 272 kmem_cache_free(dentry_cache, dentry); 273 } 274 275 static inline int dname_external(const struct dentry *dentry) 276 { 277 return dentry->d_name.name != dentry->d_iname; 278 } 279 280 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 281 { 282 spin_lock(&dentry->d_lock); 283 if (unlikely(dname_external(dentry))) { 284 struct external_name *p = external_name(dentry); 285 atomic_inc(&p->u.count); 286 spin_unlock(&dentry->d_lock); 287 name->name = p->name; 288 } else { 289 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 290 spin_unlock(&dentry->d_lock); 291 name->name = name->inline_name; 292 } 293 } 294 EXPORT_SYMBOL(take_dentry_name_snapshot); 295 296 void release_dentry_name_snapshot(struct name_snapshot *name) 297 { 298 if (unlikely(name->name != name->inline_name)) { 299 struct external_name *p; 300 p = container_of(name->name, struct external_name, name[0]); 301 if (unlikely(atomic_dec_and_test(&p->u.count))) 302 kfree_rcu(p, u.head); 303 } 304 } 305 EXPORT_SYMBOL(release_dentry_name_snapshot); 306 307 static inline void __d_set_inode_and_type(struct dentry *dentry, 308 struct inode *inode, 309 unsigned type_flags) 310 { 311 unsigned flags; 312 313 dentry->d_inode = inode; 314 flags = READ_ONCE(dentry->d_flags); 315 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 316 flags |= type_flags; 317 WRITE_ONCE(dentry->d_flags, flags); 318 } 319 320 static inline void __d_clear_type_and_inode(struct dentry *dentry) 321 { 322 unsigned flags = READ_ONCE(dentry->d_flags); 323 324 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 325 WRITE_ONCE(dentry->d_flags, flags); 326 dentry->d_inode = NULL; 327 } 328 329 static void dentry_free(struct dentry *dentry) 330 { 331 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 332 if (unlikely(dname_external(dentry))) { 333 struct external_name *p = external_name(dentry); 334 if (likely(atomic_dec_and_test(&p->u.count))) { 335 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 336 return; 337 } 338 } 339 /* if dentry was never visible to RCU, immediate free is OK */ 340 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 341 __d_free(&dentry->d_u.d_rcu); 342 else 343 call_rcu(&dentry->d_u.d_rcu, __d_free); 344 } 345 346 /* 347 * Release the dentry's inode, using the filesystem 348 * d_iput() operation if defined. 349 */ 350 static void dentry_unlink_inode(struct dentry * dentry) 351 __releases(dentry->d_lock) 352 __releases(dentry->d_inode->i_lock) 353 { 354 struct inode *inode = dentry->d_inode; 355 bool hashed = !d_unhashed(dentry); 356 357 if (hashed) 358 raw_write_seqcount_begin(&dentry->d_seq); 359 __d_clear_type_and_inode(dentry); 360 hlist_del_init(&dentry->d_u.d_alias); 361 if (hashed) 362 raw_write_seqcount_end(&dentry->d_seq); 363 spin_unlock(&dentry->d_lock); 364 spin_unlock(&inode->i_lock); 365 if (!inode->i_nlink) 366 fsnotify_inoderemove(inode); 367 if (dentry->d_op && dentry->d_op->d_iput) 368 dentry->d_op->d_iput(dentry, inode); 369 else 370 iput(inode); 371 } 372 373 /* 374 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 375 * is in use - which includes both the "real" per-superblock 376 * LRU list _and_ the DCACHE_SHRINK_LIST use. 377 * 378 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 379 * on the shrink list (ie not on the superblock LRU list). 380 * 381 * The per-cpu "nr_dentry_unused" counters are updated with 382 * the DCACHE_LRU_LIST bit. 383 * 384 * These helper functions make sure we always follow the 385 * rules. d_lock must be held by the caller. 386 */ 387 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 388 static void d_lru_add(struct dentry *dentry) 389 { 390 D_FLAG_VERIFY(dentry, 0); 391 dentry->d_flags |= DCACHE_LRU_LIST; 392 this_cpu_inc(nr_dentry_unused); 393 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 394 } 395 396 static void d_lru_del(struct dentry *dentry) 397 { 398 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 399 dentry->d_flags &= ~DCACHE_LRU_LIST; 400 this_cpu_dec(nr_dentry_unused); 401 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 402 } 403 404 static void d_shrink_del(struct dentry *dentry) 405 { 406 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 407 list_del_init(&dentry->d_lru); 408 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 409 this_cpu_dec(nr_dentry_unused); 410 } 411 412 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 413 { 414 D_FLAG_VERIFY(dentry, 0); 415 list_add(&dentry->d_lru, list); 416 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 417 this_cpu_inc(nr_dentry_unused); 418 } 419 420 /* 421 * These can only be called under the global LRU lock, ie during the 422 * callback for freeing the LRU list. "isolate" removes it from the 423 * LRU lists entirely, while shrink_move moves it to the indicated 424 * private list. 425 */ 426 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 427 { 428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 429 dentry->d_flags &= ~DCACHE_LRU_LIST; 430 this_cpu_dec(nr_dentry_unused); 431 list_lru_isolate(lru, &dentry->d_lru); 432 } 433 434 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 435 struct list_head *list) 436 { 437 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 438 dentry->d_flags |= DCACHE_SHRINK_LIST; 439 list_lru_isolate_move(lru, &dentry->d_lru, list); 440 } 441 442 /* 443 * dentry_lru_(add|del)_list) must be called with d_lock held. 444 */ 445 static void dentry_lru_add(struct dentry *dentry) 446 { 447 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 448 d_lru_add(dentry); 449 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 450 dentry->d_flags |= DCACHE_REFERENCED; 451 } 452 453 /** 454 * d_drop - drop a dentry 455 * @dentry: dentry to drop 456 * 457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 458 * be found through a VFS lookup any more. Note that this is different from 459 * deleting the dentry - d_delete will try to mark the dentry negative if 460 * possible, giving a successful _negative_ lookup, while d_drop will 461 * just make the cache lookup fail. 462 * 463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 464 * reason (NFS timeouts or autofs deletes). 465 * 466 * __d_drop requires dentry->d_lock. 467 */ 468 void __d_drop(struct dentry *dentry) 469 { 470 if (!d_unhashed(dentry)) { 471 struct hlist_bl_head *b; 472 /* 473 * Hashed dentries are normally on the dentry hashtable, 474 * with the exception of those newly allocated by 475 * d_obtain_alias, which are always IS_ROOT: 476 */ 477 if (unlikely(IS_ROOT(dentry))) 478 b = &dentry->d_sb->s_anon; 479 else 480 b = d_hash(dentry->d_name.hash); 481 482 hlist_bl_lock(b); 483 __hlist_bl_del(&dentry->d_hash); 484 dentry->d_hash.pprev = NULL; 485 hlist_bl_unlock(b); 486 /* After this call, in-progress rcu-walk path lookup will fail. */ 487 write_seqcount_invalidate(&dentry->d_seq); 488 } 489 } 490 EXPORT_SYMBOL(__d_drop); 491 492 void d_drop(struct dentry *dentry) 493 { 494 spin_lock(&dentry->d_lock); 495 __d_drop(dentry); 496 spin_unlock(&dentry->d_lock); 497 } 498 EXPORT_SYMBOL(d_drop); 499 500 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 501 { 502 struct dentry *next; 503 /* 504 * Inform d_walk() and shrink_dentry_list() that we are no longer 505 * attached to the dentry tree 506 */ 507 dentry->d_flags |= DCACHE_DENTRY_KILLED; 508 if (unlikely(list_empty(&dentry->d_child))) 509 return; 510 __list_del_entry(&dentry->d_child); 511 /* 512 * Cursors can move around the list of children. While we'd been 513 * a normal list member, it didn't matter - ->d_child.next would've 514 * been updated. However, from now on it won't be and for the 515 * things like d_walk() it might end up with a nasty surprise. 516 * Normally d_walk() doesn't care about cursors moving around - 517 * ->d_lock on parent prevents that and since a cursor has no children 518 * of its own, we get through it without ever unlocking the parent. 519 * There is one exception, though - if we ascend from a child that 520 * gets killed as soon as we unlock it, the next sibling is found 521 * using the value left in its ->d_child.next. And if _that_ 522 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 523 * before d_walk() regains parent->d_lock, we'll end up skipping 524 * everything the cursor had been moved past. 525 * 526 * Solution: make sure that the pointer left behind in ->d_child.next 527 * points to something that won't be moving around. I.e. skip the 528 * cursors. 529 */ 530 while (dentry->d_child.next != &parent->d_subdirs) { 531 next = list_entry(dentry->d_child.next, struct dentry, d_child); 532 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 533 break; 534 dentry->d_child.next = next->d_child.next; 535 } 536 } 537 538 static void __dentry_kill(struct dentry *dentry) 539 { 540 struct dentry *parent = NULL; 541 bool can_free = true; 542 if (!IS_ROOT(dentry)) 543 parent = dentry->d_parent; 544 545 /* 546 * The dentry is now unrecoverably dead to the world. 547 */ 548 lockref_mark_dead(&dentry->d_lockref); 549 550 /* 551 * inform the fs via d_prune that this dentry is about to be 552 * unhashed and destroyed. 553 */ 554 if (dentry->d_flags & DCACHE_OP_PRUNE) 555 dentry->d_op->d_prune(dentry); 556 557 if (dentry->d_flags & DCACHE_LRU_LIST) { 558 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 559 d_lru_del(dentry); 560 } 561 /* if it was on the hash then remove it */ 562 __d_drop(dentry); 563 dentry_unlist(dentry, parent); 564 if (parent) 565 spin_unlock(&parent->d_lock); 566 if (dentry->d_inode) 567 dentry_unlink_inode(dentry); 568 else 569 spin_unlock(&dentry->d_lock); 570 this_cpu_dec(nr_dentry); 571 if (dentry->d_op && dentry->d_op->d_release) 572 dentry->d_op->d_release(dentry); 573 574 spin_lock(&dentry->d_lock); 575 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 576 dentry->d_flags |= DCACHE_MAY_FREE; 577 can_free = false; 578 } 579 spin_unlock(&dentry->d_lock); 580 if (likely(can_free)) 581 dentry_free(dentry); 582 } 583 584 /* 585 * Finish off a dentry we've decided to kill. 586 * dentry->d_lock must be held, returns with it unlocked. 587 * If ref is non-zero, then decrement the refcount too. 588 * Returns dentry requiring refcount drop, or NULL if we're done. 589 */ 590 static struct dentry *dentry_kill(struct dentry *dentry) 591 __releases(dentry->d_lock) 592 { 593 struct inode *inode = dentry->d_inode; 594 struct dentry *parent = NULL; 595 596 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 597 goto failed; 598 599 if (!IS_ROOT(dentry)) { 600 parent = dentry->d_parent; 601 if (unlikely(!spin_trylock(&parent->d_lock))) { 602 if (inode) 603 spin_unlock(&inode->i_lock); 604 goto failed; 605 } 606 } 607 608 __dentry_kill(dentry); 609 return parent; 610 611 failed: 612 spin_unlock(&dentry->d_lock); 613 return dentry; /* try again with same dentry */ 614 } 615 616 static inline struct dentry *lock_parent(struct dentry *dentry) 617 { 618 struct dentry *parent = dentry->d_parent; 619 if (IS_ROOT(dentry)) 620 return NULL; 621 if (unlikely(dentry->d_lockref.count < 0)) 622 return NULL; 623 if (likely(spin_trylock(&parent->d_lock))) 624 return parent; 625 rcu_read_lock(); 626 spin_unlock(&dentry->d_lock); 627 again: 628 parent = ACCESS_ONCE(dentry->d_parent); 629 spin_lock(&parent->d_lock); 630 /* 631 * We can't blindly lock dentry until we are sure 632 * that we won't violate the locking order. 633 * Any changes of dentry->d_parent must have 634 * been done with parent->d_lock held, so 635 * spin_lock() above is enough of a barrier 636 * for checking if it's still our child. 637 */ 638 if (unlikely(parent != dentry->d_parent)) { 639 spin_unlock(&parent->d_lock); 640 goto again; 641 } 642 rcu_read_unlock(); 643 if (parent != dentry) 644 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 645 else 646 parent = NULL; 647 return parent; 648 } 649 650 /* 651 * Try to do a lockless dput(), and return whether that was successful. 652 * 653 * If unsuccessful, we return false, having already taken the dentry lock. 654 * 655 * The caller needs to hold the RCU read lock, so that the dentry is 656 * guaranteed to stay around even if the refcount goes down to zero! 657 */ 658 static inline bool fast_dput(struct dentry *dentry) 659 { 660 int ret; 661 unsigned int d_flags; 662 663 /* 664 * If we have a d_op->d_delete() operation, we sould not 665 * let the dentry count go to zero, so use "put_or_lock". 666 */ 667 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 668 return lockref_put_or_lock(&dentry->d_lockref); 669 670 /* 671 * .. otherwise, we can try to just decrement the 672 * lockref optimistically. 673 */ 674 ret = lockref_put_return(&dentry->d_lockref); 675 676 /* 677 * If the lockref_put_return() failed due to the lock being held 678 * by somebody else, the fast path has failed. We will need to 679 * get the lock, and then check the count again. 680 */ 681 if (unlikely(ret < 0)) { 682 spin_lock(&dentry->d_lock); 683 if (dentry->d_lockref.count > 1) { 684 dentry->d_lockref.count--; 685 spin_unlock(&dentry->d_lock); 686 return 1; 687 } 688 return 0; 689 } 690 691 /* 692 * If we weren't the last ref, we're done. 693 */ 694 if (ret) 695 return 1; 696 697 /* 698 * Careful, careful. The reference count went down 699 * to zero, but we don't hold the dentry lock, so 700 * somebody else could get it again, and do another 701 * dput(), and we need to not race with that. 702 * 703 * However, there is a very special and common case 704 * where we don't care, because there is nothing to 705 * do: the dentry is still hashed, it does not have 706 * a 'delete' op, and it's referenced and already on 707 * the LRU list. 708 * 709 * NOTE! Since we aren't locked, these values are 710 * not "stable". However, it is sufficient that at 711 * some point after we dropped the reference the 712 * dentry was hashed and the flags had the proper 713 * value. Other dentry users may have re-gotten 714 * a reference to the dentry and change that, but 715 * our work is done - we can leave the dentry 716 * around with a zero refcount. 717 */ 718 smp_rmb(); 719 d_flags = ACCESS_ONCE(dentry->d_flags); 720 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 721 722 /* Nothing to do? Dropping the reference was all we needed? */ 723 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 724 return 1; 725 726 /* 727 * Not the fast normal case? Get the lock. We've already decremented 728 * the refcount, but we'll need to re-check the situation after 729 * getting the lock. 730 */ 731 spin_lock(&dentry->d_lock); 732 733 /* 734 * Did somebody else grab a reference to it in the meantime, and 735 * we're no longer the last user after all? Alternatively, somebody 736 * else could have killed it and marked it dead. Either way, we 737 * don't need to do anything else. 738 */ 739 if (dentry->d_lockref.count) { 740 spin_unlock(&dentry->d_lock); 741 return 1; 742 } 743 744 /* 745 * Re-get the reference we optimistically dropped. We hold the 746 * lock, and we just tested that it was zero, so we can just 747 * set it to 1. 748 */ 749 dentry->d_lockref.count = 1; 750 return 0; 751 } 752 753 754 /* 755 * This is dput 756 * 757 * This is complicated by the fact that we do not want to put 758 * dentries that are no longer on any hash chain on the unused 759 * list: we'd much rather just get rid of them immediately. 760 * 761 * However, that implies that we have to traverse the dentry 762 * tree upwards to the parents which might _also_ now be 763 * scheduled for deletion (it may have been only waiting for 764 * its last child to go away). 765 * 766 * This tail recursion is done by hand as we don't want to depend 767 * on the compiler to always get this right (gcc generally doesn't). 768 * Real recursion would eat up our stack space. 769 */ 770 771 /* 772 * dput - release a dentry 773 * @dentry: dentry to release 774 * 775 * Release a dentry. This will drop the usage count and if appropriate 776 * call the dentry unlink method as well as removing it from the queues and 777 * releasing its resources. If the parent dentries were scheduled for release 778 * they too may now get deleted. 779 */ 780 void dput(struct dentry *dentry) 781 { 782 if (unlikely(!dentry)) 783 return; 784 785 repeat: 786 might_sleep(); 787 788 rcu_read_lock(); 789 if (likely(fast_dput(dentry))) { 790 rcu_read_unlock(); 791 return; 792 } 793 794 /* Slow case: now with the dentry lock held */ 795 rcu_read_unlock(); 796 797 WARN_ON(d_in_lookup(dentry)); 798 799 /* Unreachable? Get rid of it */ 800 if (unlikely(d_unhashed(dentry))) 801 goto kill_it; 802 803 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 804 goto kill_it; 805 806 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 807 if (dentry->d_op->d_delete(dentry)) 808 goto kill_it; 809 } 810 811 dentry_lru_add(dentry); 812 813 dentry->d_lockref.count--; 814 spin_unlock(&dentry->d_lock); 815 return; 816 817 kill_it: 818 dentry = dentry_kill(dentry); 819 if (dentry) { 820 cond_resched(); 821 goto repeat; 822 } 823 } 824 EXPORT_SYMBOL(dput); 825 826 827 /* This must be called with d_lock held */ 828 static inline void __dget_dlock(struct dentry *dentry) 829 { 830 dentry->d_lockref.count++; 831 } 832 833 static inline void __dget(struct dentry *dentry) 834 { 835 lockref_get(&dentry->d_lockref); 836 } 837 838 struct dentry *dget_parent(struct dentry *dentry) 839 { 840 int gotref; 841 struct dentry *ret; 842 843 /* 844 * Do optimistic parent lookup without any 845 * locking. 846 */ 847 rcu_read_lock(); 848 ret = ACCESS_ONCE(dentry->d_parent); 849 gotref = lockref_get_not_zero(&ret->d_lockref); 850 rcu_read_unlock(); 851 if (likely(gotref)) { 852 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 853 return ret; 854 dput(ret); 855 } 856 857 repeat: 858 /* 859 * Don't need rcu_dereference because we re-check it was correct under 860 * the lock. 861 */ 862 rcu_read_lock(); 863 ret = dentry->d_parent; 864 spin_lock(&ret->d_lock); 865 if (unlikely(ret != dentry->d_parent)) { 866 spin_unlock(&ret->d_lock); 867 rcu_read_unlock(); 868 goto repeat; 869 } 870 rcu_read_unlock(); 871 BUG_ON(!ret->d_lockref.count); 872 ret->d_lockref.count++; 873 spin_unlock(&ret->d_lock); 874 return ret; 875 } 876 EXPORT_SYMBOL(dget_parent); 877 878 /** 879 * d_find_alias - grab a hashed alias of inode 880 * @inode: inode in question 881 * 882 * If inode has a hashed alias, or is a directory and has any alias, 883 * acquire the reference to alias and return it. Otherwise return NULL. 884 * Notice that if inode is a directory there can be only one alias and 885 * it can be unhashed only if it has no children, or if it is the root 886 * of a filesystem, or if the directory was renamed and d_revalidate 887 * was the first vfs operation to notice. 888 * 889 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 890 * any other hashed alias over that one. 891 */ 892 static struct dentry *__d_find_alias(struct inode *inode) 893 { 894 struct dentry *alias, *discon_alias; 895 896 again: 897 discon_alias = NULL; 898 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 899 spin_lock(&alias->d_lock); 900 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 901 if (IS_ROOT(alias) && 902 (alias->d_flags & DCACHE_DISCONNECTED)) { 903 discon_alias = alias; 904 } else { 905 __dget_dlock(alias); 906 spin_unlock(&alias->d_lock); 907 return alias; 908 } 909 } 910 spin_unlock(&alias->d_lock); 911 } 912 if (discon_alias) { 913 alias = discon_alias; 914 spin_lock(&alias->d_lock); 915 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 916 __dget_dlock(alias); 917 spin_unlock(&alias->d_lock); 918 return alias; 919 } 920 spin_unlock(&alias->d_lock); 921 goto again; 922 } 923 return NULL; 924 } 925 926 struct dentry *d_find_alias(struct inode *inode) 927 { 928 struct dentry *de = NULL; 929 930 if (!hlist_empty(&inode->i_dentry)) { 931 spin_lock(&inode->i_lock); 932 de = __d_find_alias(inode); 933 spin_unlock(&inode->i_lock); 934 } 935 return de; 936 } 937 EXPORT_SYMBOL(d_find_alias); 938 939 /* 940 * Try to kill dentries associated with this inode. 941 * WARNING: you must own a reference to inode. 942 */ 943 void d_prune_aliases(struct inode *inode) 944 { 945 struct dentry *dentry; 946 restart: 947 spin_lock(&inode->i_lock); 948 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 949 spin_lock(&dentry->d_lock); 950 if (!dentry->d_lockref.count) { 951 struct dentry *parent = lock_parent(dentry); 952 if (likely(!dentry->d_lockref.count)) { 953 __dentry_kill(dentry); 954 dput(parent); 955 goto restart; 956 } 957 if (parent) 958 spin_unlock(&parent->d_lock); 959 } 960 spin_unlock(&dentry->d_lock); 961 } 962 spin_unlock(&inode->i_lock); 963 } 964 EXPORT_SYMBOL(d_prune_aliases); 965 966 static void shrink_dentry_list(struct list_head *list) 967 { 968 struct dentry *dentry, *parent; 969 970 while (!list_empty(list)) { 971 struct inode *inode; 972 dentry = list_entry(list->prev, struct dentry, d_lru); 973 spin_lock(&dentry->d_lock); 974 parent = lock_parent(dentry); 975 976 /* 977 * The dispose list is isolated and dentries are not accounted 978 * to the LRU here, so we can simply remove it from the list 979 * here regardless of whether it is referenced or not. 980 */ 981 d_shrink_del(dentry); 982 983 /* 984 * We found an inuse dentry which was not removed from 985 * the LRU because of laziness during lookup. Do not free it. 986 */ 987 if (dentry->d_lockref.count > 0) { 988 spin_unlock(&dentry->d_lock); 989 if (parent) 990 spin_unlock(&parent->d_lock); 991 continue; 992 } 993 994 995 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 996 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 997 spin_unlock(&dentry->d_lock); 998 if (parent) 999 spin_unlock(&parent->d_lock); 1000 if (can_free) 1001 dentry_free(dentry); 1002 continue; 1003 } 1004 1005 inode = dentry->d_inode; 1006 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1007 d_shrink_add(dentry, list); 1008 spin_unlock(&dentry->d_lock); 1009 if (parent) 1010 spin_unlock(&parent->d_lock); 1011 continue; 1012 } 1013 1014 __dentry_kill(dentry); 1015 1016 /* 1017 * We need to prune ancestors too. This is necessary to prevent 1018 * quadratic behavior of shrink_dcache_parent(), but is also 1019 * expected to be beneficial in reducing dentry cache 1020 * fragmentation. 1021 */ 1022 dentry = parent; 1023 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 1024 parent = lock_parent(dentry); 1025 if (dentry->d_lockref.count != 1) { 1026 dentry->d_lockref.count--; 1027 spin_unlock(&dentry->d_lock); 1028 if (parent) 1029 spin_unlock(&parent->d_lock); 1030 break; 1031 } 1032 inode = dentry->d_inode; /* can't be NULL */ 1033 if (unlikely(!spin_trylock(&inode->i_lock))) { 1034 spin_unlock(&dentry->d_lock); 1035 if (parent) 1036 spin_unlock(&parent->d_lock); 1037 cpu_relax(); 1038 continue; 1039 } 1040 __dentry_kill(dentry); 1041 dentry = parent; 1042 } 1043 } 1044 } 1045 1046 static enum lru_status dentry_lru_isolate(struct list_head *item, 1047 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1048 { 1049 struct list_head *freeable = arg; 1050 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1051 1052 1053 /* 1054 * we are inverting the lru lock/dentry->d_lock here, 1055 * so use a trylock. If we fail to get the lock, just skip 1056 * it 1057 */ 1058 if (!spin_trylock(&dentry->d_lock)) 1059 return LRU_SKIP; 1060 1061 /* 1062 * Referenced dentries are still in use. If they have active 1063 * counts, just remove them from the LRU. Otherwise give them 1064 * another pass through the LRU. 1065 */ 1066 if (dentry->d_lockref.count) { 1067 d_lru_isolate(lru, dentry); 1068 spin_unlock(&dentry->d_lock); 1069 return LRU_REMOVED; 1070 } 1071 1072 if (dentry->d_flags & DCACHE_REFERENCED) { 1073 dentry->d_flags &= ~DCACHE_REFERENCED; 1074 spin_unlock(&dentry->d_lock); 1075 1076 /* 1077 * The list move itself will be made by the common LRU code. At 1078 * this point, we've dropped the dentry->d_lock but keep the 1079 * lru lock. This is safe to do, since every list movement is 1080 * protected by the lru lock even if both locks are held. 1081 * 1082 * This is guaranteed by the fact that all LRU management 1083 * functions are intermediated by the LRU API calls like 1084 * list_lru_add and list_lru_del. List movement in this file 1085 * only ever occur through this functions or through callbacks 1086 * like this one, that are called from the LRU API. 1087 * 1088 * The only exceptions to this are functions like 1089 * shrink_dentry_list, and code that first checks for the 1090 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1091 * operating only with stack provided lists after they are 1092 * properly isolated from the main list. It is thus, always a 1093 * local access. 1094 */ 1095 return LRU_ROTATE; 1096 } 1097 1098 d_lru_shrink_move(lru, dentry, freeable); 1099 spin_unlock(&dentry->d_lock); 1100 1101 return LRU_REMOVED; 1102 } 1103 1104 /** 1105 * prune_dcache_sb - shrink the dcache 1106 * @sb: superblock 1107 * @sc: shrink control, passed to list_lru_shrink_walk() 1108 * 1109 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1110 * is done when we need more memory and called from the superblock shrinker 1111 * function. 1112 * 1113 * This function may fail to free any resources if all the dentries are in 1114 * use. 1115 */ 1116 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1117 { 1118 LIST_HEAD(dispose); 1119 long freed; 1120 1121 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1122 dentry_lru_isolate, &dispose); 1123 shrink_dentry_list(&dispose); 1124 return freed; 1125 } 1126 1127 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1128 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1129 { 1130 struct list_head *freeable = arg; 1131 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1132 1133 /* 1134 * we are inverting the lru lock/dentry->d_lock here, 1135 * so use a trylock. If we fail to get the lock, just skip 1136 * it 1137 */ 1138 if (!spin_trylock(&dentry->d_lock)) 1139 return LRU_SKIP; 1140 1141 d_lru_shrink_move(lru, dentry, freeable); 1142 spin_unlock(&dentry->d_lock); 1143 1144 return LRU_REMOVED; 1145 } 1146 1147 1148 /** 1149 * shrink_dcache_sb - shrink dcache for a superblock 1150 * @sb: superblock 1151 * 1152 * Shrink the dcache for the specified super block. This is used to free 1153 * the dcache before unmounting a file system. 1154 */ 1155 void shrink_dcache_sb(struct super_block *sb) 1156 { 1157 long freed; 1158 1159 do { 1160 LIST_HEAD(dispose); 1161 1162 freed = list_lru_walk(&sb->s_dentry_lru, 1163 dentry_lru_isolate_shrink, &dispose, 1024); 1164 1165 this_cpu_sub(nr_dentry_unused, freed); 1166 shrink_dentry_list(&dispose); 1167 cond_resched(); 1168 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1169 } 1170 EXPORT_SYMBOL(shrink_dcache_sb); 1171 1172 /** 1173 * enum d_walk_ret - action to talke during tree walk 1174 * @D_WALK_CONTINUE: contrinue walk 1175 * @D_WALK_QUIT: quit walk 1176 * @D_WALK_NORETRY: quit when retry is needed 1177 * @D_WALK_SKIP: skip this dentry and its children 1178 */ 1179 enum d_walk_ret { 1180 D_WALK_CONTINUE, 1181 D_WALK_QUIT, 1182 D_WALK_NORETRY, 1183 D_WALK_SKIP, 1184 }; 1185 1186 /** 1187 * d_walk - walk the dentry tree 1188 * @parent: start of walk 1189 * @data: data passed to @enter() and @finish() 1190 * @enter: callback when first entering the dentry 1191 * @finish: callback when successfully finished the walk 1192 * 1193 * The @enter() and @finish() callbacks are called with d_lock held. 1194 */ 1195 static void d_walk(struct dentry *parent, void *data, 1196 enum d_walk_ret (*enter)(void *, struct dentry *), 1197 void (*finish)(void *)) 1198 { 1199 struct dentry *this_parent; 1200 struct list_head *next; 1201 unsigned seq = 0; 1202 enum d_walk_ret ret; 1203 bool retry = true; 1204 1205 again: 1206 read_seqbegin_or_lock(&rename_lock, &seq); 1207 this_parent = parent; 1208 spin_lock(&this_parent->d_lock); 1209 1210 ret = enter(data, this_parent); 1211 switch (ret) { 1212 case D_WALK_CONTINUE: 1213 break; 1214 case D_WALK_QUIT: 1215 case D_WALK_SKIP: 1216 goto out_unlock; 1217 case D_WALK_NORETRY: 1218 retry = false; 1219 break; 1220 } 1221 repeat: 1222 next = this_parent->d_subdirs.next; 1223 resume: 1224 while (next != &this_parent->d_subdirs) { 1225 struct list_head *tmp = next; 1226 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1227 next = tmp->next; 1228 1229 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1230 continue; 1231 1232 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1233 1234 ret = enter(data, dentry); 1235 switch (ret) { 1236 case D_WALK_CONTINUE: 1237 break; 1238 case D_WALK_QUIT: 1239 spin_unlock(&dentry->d_lock); 1240 goto out_unlock; 1241 case D_WALK_NORETRY: 1242 retry = false; 1243 break; 1244 case D_WALK_SKIP: 1245 spin_unlock(&dentry->d_lock); 1246 continue; 1247 } 1248 1249 if (!list_empty(&dentry->d_subdirs)) { 1250 spin_unlock(&this_parent->d_lock); 1251 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1252 this_parent = dentry; 1253 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1254 goto repeat; 1255 } 1256 spin_unlock(&dentry->d_lock); 1257 } 1258 /* 1259 * All done at this level ... ascend and resume the search. 1260 */ 1261 rcu_read_lock(); 1262 ascend: 1263 if (this_parent != parent) { 1264 struct dentry *child = this_parent; 1265 this_parent = child->d_parent; 1266 1267 spin_unlock(&child->d_lock); 1268 spin_lock(&this_parent->d_lock); 1269 1270 /* might go back up the wrong parent if we have had a rename. */ 1271 if (need_seqretry(&rename_lock, seq)) 1272 goto rename_retry; 1273 /* go into the first sibling still alive */ 1274 do { 1275 next = child->d_child.next; 1276 if (next == &this_parent->d_subdirs) 1277 goto ascend; 1278 child = list_entry(next, struct dentry, d_child); 1279 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1280 rcu_read_unlock(); 1281 goto resume; 1282 } 1283 if (need_seqretry(&rename_lock, seq)) 1284 goto rename_retry; 1285 rcu_read_unlock(); 1286 if (finish) 1287 finish(data); 1288 1289 out_unlock: 1290 spin_unlock(&this_parent->d_lock); 1291 done_seqretry(&rename_lock, seq); 1292 return; 1293 1294 rename_retry: 1295 spin_unlock(&this_parent->d_lock); 1296 rcu_read_unlock(); 1297 BUG_ON(seq & 1); 1298 if (!retry) 1299 return; 1300 seq = 1; 1301 goto again; 1302 } 1303 1304 struct check_mount { 1305 struct vfsmount *mnt; 1306 unsigned int mounted; 1307 }; 1308 1309 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1310 { 1311 struct check_mount *info = data; 1312 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1313 1314 if (likely(!d_mountpoint(dentry))) 1315 return D_WALK_CONTINUE; 1316 if (__path_is_mountpoint(&path)) { 1317 info->mounted = 1; 1318 return D_WALK_QUIT; 1319 } 1320 return D_WALK_CONTINUE; 1321 } 1322 1323 /** 1324 * path_has_submounts - check for mounts over a dentry in the 1325 * current namespace. 1326 * @parent: path to check. 1327 * 1328 * Return true if the parent or its subdirectories contain 1329 * a mount point in the current namespace. 1330 */ 1331 int path_has_submounts(const struct path *parent) 1332 { 1333 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1334 1335 read_seqlock_excl(&mount_lock); 1336 d_walk(parent->dentry, &data, path_check_mount, NULL); 1337 read_sequnlock_excl(&mount_lock); 1338 1339 return data.mounted; 1340 } 1341 EXPORT_SYMBOL(path_has_submounts); 1342 1343 /* 1344 * Called by mount code to set a mountpoint and check if the mountpoint is 1345 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1346 * subtree can become unreachable). 1347 * 1348 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1349 * this reason take rename_lock and d_lock on dentry and ancestors. 1350 */ 1351 int d_set_mounted(struct dentry *dentry) 1352 { 1353 struct dentry *p; 1354 int ret = -ENOENT; 1355 write_seqlock(&rename_lock); 1356 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1357 /* Need exclusion wrt. d_invalidate() */ 1358 spin_lock(&p->d_lock); 1359 if (unlikely(d_unhashed(p))) { 1360 spin_unlock(&p->d_lock); 1361 goto out; 1362 } 1363 spin_unlock(&p->d_lock); 1364 } 1365 spin_lock(&dentry->d_lock); 1366 if (!d_unlinked(dentry)) { 1367 ret = -EBUSY; 1368 if (!d_mountpoint(dentry)) { 1369 dentry->d_flags |= DCACHE_MOUNTED; 1370 ret = 0; 1371 } 1372 } 1373 spin_unlock(&dentry->d_lock); 1374 out: 1375 write_sequnlock(&rename_lock); 1376 return ret; 1377 } 1378 1379 /* 1380 * Search the dentry child list of the specified parent, 1381 * and move any unused dentries to the end of the unused 1382 * list for prune_dcache(). We descend to the next level 1383 * whenever the d_subdirs list is non-empty and continue 1384 * searching. 1385 * 1386 * It returns zero iff there are no unused children, 1387 * otherwise it returns the number of children moved to 1388 * the end of the unused list. This may not be the total 1389 * number of unused children, because select_parent can 1390 * drop the lock and return early due to latency 1391 * constraints. 1392 */ 1393 1394 struct select_data { 1395 struct dentry *start; 1396 struct list_head dispose; 1397 int found; 1398 }; 1399 1400 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1401 { 1402 struct select_data *data = _data; 1403 enum d_walk_ret ret = D_WALK_CONTINUE; 1404 1405 if (data->start == dentry) 1406 goto out; 1407 1408 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1409 data->found++; 1410 } else { 1411 if (dentry->d_flags & DCACHE_LRU_LIST) 1412 d_lru_del(dentry); 1413 if (!dentry->d_lockref.count) { 1414 d_shrink_add(dentry, &data->dispose); 1415 data->found++; 1416 } 1417 } 1418 /* 1419 * We can return to the caller if we have found some (this 1420 * ensures forward progress). We'll be coming back to find 1421 * the rest. 1422 */ 1423 if (!list_empty(&data->dispose)) 1424 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1425 out: 1426 return ret; 1427 } 1428 1429 /** 1430 * shrink_dcache_parent - prune dcache 1431 * @parent: parent of entries to prune 1432 * 1433 * Prune the dcache to remove unused children of the parent dentry. 1434 */ 1435 void shrink_dcache_parent(struct dentry *parent) 1436 { 1437 for (;;) { 1438 struct select_data data; 1439 1440 INIT_LIST_HEAD(&data.dispose); 1441 data.start = parent; 1442 data.found = 0; 1443 1444 d_walk(parent, &data, select_collect, NULL); 1445 if (!data.found) 1446 break; 1447 1448 shrink_dentry_list(&data.dispose); 1449 cond_resched(); 1450 } 1451 } 1452 EXPORT_SYMBOL(shrink_dcache_parent); 1453 1454 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1455 { 1456 /* it has busy descendents; complain about those instead */ 1457 if (!list_empty(&dentry->d_subdirs)) 1458 return D_WALK_CONTINUE; 1459 1460 /* root with refcount 1 is fine */ 1461 if (dentry == _data && dentry->d_lockref.count == 1) 1462 return D_WALK_CONTINUE; 1463 1464 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1465 " still in use (%d) [unmount of %s %s]\n", 1466 dentry, 1467 dentry->d_inode ? 1468 dentry->d_inode->i_ino : 0UL, 1469 dentry, 1470 dentry->d_lockref.count, 1471 dentry->d_sb->s_type->name, 1472 dentry->d_sb->s_id); 1473 WARN_ON(1); 1474 return D_WALK_CONTINUE; 1475 } 1476 1477 static void do_one_tree(struct dentry *dentry) 1478 { 1479 shrink_dcache_parent(dentry); 1480 d_walk(dentry, dentry, umount_check, NULL); 1481 d_drop(dentry); 1482 dput(dentry); 1483 } 1484 1485 /* 1486 * destroy the dentries attached to a superblock on unmounting 1487 */ 1488 void shrink_dcache_for_umount(struct super_block *sb) 1489 { 1490 struct dentry *dentry; 1491 1492 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1493 1494 dentry = sb->s_root; 1495 sb->s_root = NULL; 1496 do_one_tree(dentry); 1497 1498 while (!hlist_bl_empty(&sb->s_anon)) { 1499 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1500 do_one_tree(dentry); 1501 } 1502 } 1503 1504 struct detach_data { 1505 struct select_data select; 1506 struct dentry *mountpoint; 1507 }; 1508 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1509 { 1510 struct detach_data *data = _data; 1511 1512 if (d_mountpoint(dentry)) { 1513 __dget_dlock(dentry); 1514 data->mountpoint = dentry; 1515 return D_WALK_QUIT; 1516 } 1517 1518 return select_collect(&data->select, dentry); 1519 } 1520 1521 static void check_and_drop(void *_data) 1522 { 1523 struct detach_data *data = _data; 1524 1525 if (!data->mountpoint && list_empty(&data->select.dispose)) 1526 __d_drop(data->select.start); 1527 } 1528 1529 /** 1530 * d_invalidate - detach submounts, prune dcache, and drop 1531 * @dentry: dentry to invalidate (aka detach, prune and drop) 1532 * 1533 * no dcache lock. 1534 * 1535 * The final d_drop is done as an atomic operation relative to 1536 * rename_lock ensuring there are no races with d_set_mounted. This 1537 * ensures there are no unhashed dentries on the path to a mountpoint. 1538 */ 1539 void d_invalidate(struct dentry *dentry) 1540 { 1541 /* 1542 * If it's already been dropped, return OK. 1543 */ 1544 spin_lock(&dentry->d_lock); 1545 if (d_unhashed(dentry)) { 1546 spin_unlock(&dentry->d_lock); 1547 return; 1548 } 1549 spin_unlock(&dentry->d_lock); 1550 1551 /* Negative dentries can be dropped without further checks */ 1552 if (!dentry->d_inode) { 1553 d_drop(dentry); 1554 return; 1555 } 1556 1557 for (;;) { 1558 struct detach_data data; 1559 1560 data.mountpoint = NULL; 1561 INIT_LIST_HEAD(&data.select.dispose); 1562 data.select.start = dentry; 1563 data.select.found = 0; 1564 1565 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1566 1567 if (!list_empty(&data.select.dispose)) 1568 shrink_dentry_list(&data.select.dispose); 1569 else if (!data.mountpoint) 1570 return; 1571 1572 if (data.mountpoint) { 1573 detach_mounts(data.mountpoint); 1574 dput(data.mountpoint); 1575 } 1576 cond_resched(); 1577 } 1578 } 1579 EXPORT_SYMBOL(d_invalidate); 1580 1581 /** 1582 * __d_alloc - allocate a dcache entry 1583 * @sb: filesystem it will belong to 1584 * @name: qstr of the name 1585 * 1586 * Allocates a dentry. It returns %NULL if there is insufficient memory 1587 * available. On a success the dentry is returned. The name passed in is 1588 * copied and the copy passed in may be reused after this call. 1589 */ 1590 1591 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1592 { 1593 struct dentry *dentry; 1594 char *dname; 1595 int err; 1596 1597 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1598 if (!dentry) 1599 return NULL; 1600 1601 /* 1602 * We guarantee that the inline name is always NUL-terminated. 1603 * This way the memcpy() done by the name switching in rename 1604 * will still always have a NUL at the end, even if we might 1605 * be overwriting an internal NUL character 1606 */ 1607 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1608 if (unlikely(!name)) { 1609 static const struct qstr anon = QSTR_INIT("/", 1); 1610 name = &anon; 1611 dname = dentry->d_iname; 1612 } else if (name->len > DNAME_INLINE_LEN-1) { 1613 size_t size = offsetof(struct external_name, name[1]); 1614 struct external_name *p = kmalloc(size + name->len, 1615 GFP_KERNEL_ACCOUNT); 1616 if (!p) { 1617 kmem_cache_free(dentry_cache, dentry); 1618 return NULL; 1619 } 1620 atomic_set(&p->u.count, 1); 1621 dname = p->name; 1622 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1623 kasan_unpoison_shadow(dname, 1624 round_up(name->len + 1, sizeof(unsigned long))); 1625 } else { 1626 dname = dentry->d_iname; 1627 } 1628 1629 dentry->d_name.len = name->len; 1630 dentry->d_name.hash = name->hash; 1631 memcpy(dname, name->name, name->len); 1632 dname[name->len] = 0; 1633 1634 /* Make sure we always see the terminating NUL character */ 1635 smp_wmb(); 1636 dentry->d_name.name = dname; 1637 1638 dentry->d_lockref.count = 1; 1639 dentry->d_flags = 0; 1640 spin_lock_init(&dentry->d_lock); 1641 seqcount_init(&dentry->d_seq); 1642 dentry->d_inode = NULL; 1643 dentry->d_parent = dentry; 1644 dentry->d_sb = sb; 1645 dentry->d_op = NULL; 1646 dentry->d_fsdata = NULL; 1647 INIT_HLIST_BL_NODE(&dentry->d_hash); 1648 INIT_LIST_HEAD(&dentry->d_lru); 1649 INIT_LIST_HEAD(&dentry->d_subdirs); 1650 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1651 INIT_LIST_HEAD(&dentry->d_child); 1652 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1653 1654 if (dentry->d_op && dentry->d_op->d_init) { 1655 err = dentry->d_op->d_init(dentry); 1656 if (err) { 1657 if (dname_external(dentry)) 1658 kfree(external_name(dentry)); 1659 kmem_cache_free(dentry_cache, dentry); 1660 return NULL; 1661 } 1662 } 1663 1664 this_cpu_inc(nr_dentry); 1665 1666 return dentry; 1667 } 1668 1669 /** 1670 * d_alloc - allocate a dcache entry 1671 * @parent: parent of entry to allocate 1672 * @name: qstr of the name 1673 * 1674 * Allocates a dentry. It returns %NULL if there is insufficient memory 1675 * available. On a success the dentry is returned. The name passed in is 1676 * copied and the copy passed in may be reused after this call. 1677 */ 1678 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1679 { 1680 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1681 if (!dentry) 1682 return NULL; 1683 dentry->d_flags |= DCACHE_RCUACCESS; 1684 spin_lock(&parent->d_lock); 1685 /* 1686 * don't need child lock because it is not subject 1687 * to concurrency here 1688 */ 1689 __dget_dlock(parent); 1690 dentry->d_parent = parent; 1691 list_add(&dentry->d_child, &parent->d_subdirs); 1692 spin_unlock(&parent->d_lock); 1693 1694 return dentry; 1695 } 1696 EXPORT_SYMBOL(d_alloc); 1697 1698 struct dentry *d_alloc_cursor(struct dentry * parent) 1699 { 1700 struct dentry *dentry = __d_alloc(parent->d_sb, NULL); 1701 if (dentry) { 1702 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1703 dentry->d_parent = dget(parent); 1704 } 1705 return dentry; 1706 } 1707 1708 /** 1709 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1710 * @sb: the superblock 1711 * @name: qstr of the name 1712 * 1713 * For a filesystem that just pins its dentries in memory and never 1714 * performs lookups at all, return an unhashed IS_ROOT dentry. 1715 */ 1716 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1717 { 1718 return __d_alloc(sb, name); 1719 } 1720 EXPORT_SYMBOL(d_alloc_pseudo); 1721 1722 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1723 { 1724 struct qstr q; 1725 1726 q.name = name; 1727 q.hash_len = hashlen_string(parent, name); 1728 return d_alloc(parent, &q); 1729 } 1730 EXPORT_SYMBOL(d_alloc_name); 1731 1732 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1733 { 1734 WARN_ON_ONCE(dentry->d_op); 1735 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1736 DCACHE_OP_COMPARE | 1737 DCACHE_OP_REVALIDATE | 1738 DCACHE_OP_WEAK_REVALIDATE | 1739 DCACHE_OP_DELETE | 1740 DCACHE_OP_REAL)); 1741 dentry->d_op = op; 1742 if (!op) 1743 return; 1744 if (op->d_hash) 1745 dentry->d_flags |= DCACHE_OP_HASH; 1746 if (op->d_compare) 1747 dentry->d_flags |= DCACHE_OP_COMPARE; 1748 if (op->d_revalidate) 1749 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1750 if (op->d_weak_revalidate) 1751 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1752 if (op->d_delete) 1753 dentry->d_flags |= DCACHE_OP_DELETE; 1754 if (op->d_prune) 1755 dentry->d_flags |= DCACHE_OP_PRUNE; 1756 if (op->d_real) 1757 dentry->d_flags |= DCACHE_OP_REAL; 1758 1759 } 1760 EXPORT_SYMBOL(d_set_d_op); 1761 1762 1763 /* 1764 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1765 * @dentry - The dentry to mark 1766 * 1767 * Mark a dentry as falling through to the lower layer (as set with 1768 * d_pin_lower()). This flag may be recorded on the medium. 1769 */ 1770 void d_set_fallthru(struct dentry *dentry) 1771 { 1772 spin_lock(&dentry->d_lock); 1773 dentry->d_flags |= DCACHE_FALLTHRU; 1774 spin_unlock(&dentry->d_lock); 1775 } 1776 EXPORT_SYMBOL(d_set_fallthru); 1777 1778 static unsigned d_flags_for_inode(struct inode *inode) 1779 { 1780 unsigned add_flags = DCACHE_REGULAR_TYPE; 1781 1782 if (!inode) 1783 return DCACHE_MISS_TYPE; 1784 1785 if (S_ISDIR(inode->i_mode)) { 1786 add_flags = DCACHE_DIRECTORY_TYPE; 1787 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1788 if (unlikely(!inode->i_op->lookup)) 1789 add_flags = DCACHE_AUTODIR_TYPE; 1790 else 1791 inode->i_opflags |= IOP_LOOKUP; 1792 } 1793 goto type_determined; 1794 } 1795 1796 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1797 if (unlikely(inode->i_op->get_link)) { 1798 add_flags = DCACHE_SYMLINK_TYPE; 1799 goto type_determined; 1800 } 1801 inode->i_opflags |= IOP_NOFOLLOW; 1802 } 1803 1804 if (unlikely(!S_ISREG(inode->i_mode))) 1805 add_flags = DCACHE_SPECIAL_TYPE; 1806 1807 type_determined: 1808 if (unlikely(IS_AUTOMOUNT(inode))) 1809 add_flags |= DCACHE_NEED_AUTOMOUNT; 1810 return add_flags; 1811 } 1812 1813 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1814 { 1815 unsigned add_flags = d_flags_for_inode(inode); 1816 WARN_ON(d_in_lookup(dentry)); 1817 1818 spin_lock(&dentry->d_lock); 1819 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1820 raw_write_seqcount_begin(&dentry->d_seq); 1821 __d_set_inode_and_type(dentry, inode, add_flags); 1822 raw_write_seqcount_end(&dentry->d_seq); 1823 fsnotify_update_flags(dentry); 1824 spin_unlock(&dentry->d_lock); 1825 } 1826 1827 /** 1828 * d_instantiate - fill in inode information for a dentry 1829 * @entry: dentry to complete 1830 * @inode: inode to attach to this dentry 1831 * 1832 * Fill in inode information in the entry. 1833 * 1834 * This turns negative dentries into productive full members 1835 * of society. 1836 * 1837 * NOTE! This assumes that the inode count has been incremented 1838 * (or otherwise set) by the caller to indicate that it is now 1839 * in use by the dcache. 1840 */ 1841 1842 void d_instantiate(struct dentry *entry, struct inode * inode) 1843 { 1844 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1845 if (inode) { 1846 security_d_instantiate(entry, inode); 1847 spin_lock(&inode->i_lock); 1848 __d_instantiate(entry, inode); 1849 spin_unlock(&inode->i_lock); 1850 } 1851 } 1852 EXPORT_SYMBOL(d_instantiate); 1853 1854 /** 1855 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1856 * @entry: dentry to complete 1857 * @inode: inode to attach to this dentry 1858 * 1859 * Fill in inode information in the entry. If a directory alias is found, then 1860 * return an error (and drop inode). Together with d_materialise_unique() this 1861 * guarantees that a directory inode may never have more than one alias. 1862 */ 1863 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1864 { 1865 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1866 1867 security_d_instantiate(entry, inode); 1868 spin_lock(&inode->i_lock); 1869 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1870 spin_unlock(&inode->i_lock); 1871 iput(inode); 1872 return -EBUSY; 1873 } 1874 __d_instantiate(entry, inode); 1875 spin_unlock(&inode->i_lock); 1876 1877 return 0; 1878 } 1879 EXPORT_SYMBOL(d_instantiate_no_diralias); 1880 1881 struct dentry *d_make_root(struct inode *root_inode) 1882 { 1883 struct dentry *res = NULL; 1884 1885 if (root_inode) { 1886 res = __d_alloc(root_inode->i_sb, NULL); 1887 if (res) 1888 d_instantiate(res, root_inode); 1889 else 1890 iput(root_inode); 1891 } 1892 return res; 1893 } 1894 EXPORT_SYMBOL(d_make_root); 1895 1896 static struct dentry * __d_find_any_alias(struct inode *inode) 1897 { 1898 struct dentry *alias; 1899 1900 if (hlist_empty(&inode->i_dentry)) 1901 return NULL; 1902 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1903 __dget(alias); 1904 return alias; 1905 } 1906 1907 /** 1908 * d_find_any_alias - find any alias for a given inode 1909 * @inode: inode to find an alias for 1910 * 1911 * If any aliases exist for the given inode, take and return a 1912 * reference for one of them. If no aliases exist, return %NULL. 1913 */ 1914 struct dentry *d_find_any_alias(struct inode *inode) 1915 { 1916 struct dentry *de; 1917 1918 spin_lock(&inode->i_lock); 1919 de = __d_find_any_alias(inode); 1920 spin_unlock(&inode->i_lock); 1921 return de; 1922 } 1923 EXPORT_SYMBOL(d_find_any_alias); 1924 1925 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1926 { 1927 struct dentry *tmp; 1928 struct dentry *res; 1929 unsigned add_flags; 1930 1931 if (!inode) 1932 return ERR_PTR(-ESTALE); 1933 if (IS_ERR(inode)) 1934 return ERR_CAST(inode); 1935 1936 res = d_find_any_alias(inode); 1937 if (res) 1938 goto out_iput; 1939 1940 tmp = __d_alloc(inode->i_sb, NULL); 1941 if (!tmp) { 1942 res = ERR_PTR(-ENOMEM); 1943 goto out_iput; 1944 } 1945 1946 security_d_instantiate(tmp, inode); 1947 spin_lock(&inode->i_lock); 1948 res = __d_find_any_alias(inode); 1949 if (res) { 1950 spin_unlock(&inode->i_lock); 1951 dput(tmp); 1952 goto out_iput; 1953 } 1954 1955 /* attach a disconnected dentry */ 1956 add_flags = d_flags_for_inode(inode); 1957 1958 if (disconnected) 1959 add_flags |= DCACHE_DISCONNECTED; 1960 1961 spin_lock(&tmp->d_lock); 1962 __d_set_inode_and_type(tmp, inode, add_flags); 1963 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1964 hlist_bl_lock(&tmp->d_sb->s_anon); 1965 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1966 hlist_bl_unlock(&tmp->d_sb->s_anon); 1967 spin_unlock(&tmp->d_lock); 1968 spin_unlock(&inode->i_lock); 1969 1970 return tmp; 1971 1972 out_iput: 1973 iput(inode); 1974 return res; 1975 } 1976 1977 /** 1978 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1979 * @inode: inode to allocate the dentry for 1980 * 1981 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1982 * similar open by handle operations. The returned dentry may be anonymous, 1983 * or may have a full name (if the inode was already in the cache). 1984 * 1985 * When called on a directory inode, we must ensure that the inode only ever 1986 * has one dentry. If a dentry is found, that is returned instead of 1987 * allocating a new one. 1988 * 1989 * On successful return, the reference to the inode has been transferred 1990 * to the dentry. In case of an error the reference on the inode is released. 1991 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1992 * be passed in and the error will be propagated to the return value, 1993 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1994 */ 1995 struct dentry *d_obtain_alias(struct inode *inode) 1996 { 1997 return __d_obtain_alias(inode, 1); 1998 } 1999 EXPORT_SYMBOL(d_obtain_alias); 2000 2001 /** 2002 * d_obtain_root - find or allocate a dentry for a given inode 2003 * @inode: inode to allocate the dentry for 2004 * 2005 * Obtain an IS_ROOT dentry for the root of a filesystem. 2006 * 2007 * We must ensure that directory inodes only ever have one dentry. If a 2008 * dentry is found, that is returned instead of allocating a new one. 2009 * 2010 * On successful return, the reference to the inode has been transferred 2011 * to the dentry. In case of an error the reference on the inode is 2012 * released. A %NULL or IS_ERR inode may be passed in and will be the 2013 * error will be propagate to the return value, with a %NULL @inode 2014 * replaced by ERR_PTR(-ESTALE). 2015 */ 2016 struct dentry *d_obtain_root(struct inode *inode) 2017 { 2018 return __d_obtain_alias(inode, 0); 2019 } 2020 EXPORT_SYMBOL(d_obtain_root); 2021 2022 /** 2023 * d_add_ci - lookup or allocate new dentry with case-exact name 2024 * @inode: the inode case-insensitive lookup has found 2025 * @dentry: the negative dentry that was passed to the parent's lookup func 2026 * @name: the case-exact name to be associated with the returned dentry 2027 * 2028 * This is to avoid filling the dcache with case-insensitive names to the 2029 * same inode, only the actual correct case is stored in the dcache for 2030 * case-insensitive filesystems. 2031 * 2032 * For a case-insensitive lookup match and if the the case-exact dentry 2033 * already exists in in the dcache, use it and return it. 2034 * 2035 * If no entry exists with the exact case name, allocate new dentry with 2036 * the exact case, and return the spliced entry. 2037 */ 2038 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2039 struct qstr *name) 2040 { 2041 struct dentry *found, *res; 2042 2043 /* 2044 * First check if a dentry matching the name already exists, 2045 * if not go ahead and create it now. 2046 */ 2047 found = d_hash_and_lookup(dentry->d_parent, name); 2048 if (found) { 2049 iput(inode); 2050 return found; 2051 } 2052 if (d_in_lookup(dentry)) { 2053 found = d_alloc_parallel(dentry->d_parent, name, 2054 dentry->d_wait); 2055 if (IS_ERR(found) || !d_in_lookup(found)) { 2056 iput(inode); 2057 return found; 2058 } 2059 } else { 2060 found = d_alloc(dentry->d_parent, name); 2061 if (!found) { 2062 iput(inode); 2063 return ERR_PTR(-ENOMEM); 2064 } 2065 } 2066 res = d_splice_alias(inode, found); 2067 if (res) { 2068 dput(found); 2069 return res; 2070 } 2071 return found; 2072 } 2073 EXPORT_SYMBOL(d_add_ci); 2074 2075 2076 static inline bool d_same_name(const struct dentry *dentry, 2077 const struct dentry *parent, 2078 const struct qstr *name) 2079 { 2080 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2081 if (dentry->d_name.len != name->len) 2082 return false; 2083 return dentry_cmp(dentry, name->name, name->len) == 0; 2084 } 2085 return parent->d_op->d_compare(dentry, 2086 dentry->d_name.len, dentry->d_name.name, 2087 name) == 0; 2088 } 2089 2090 /** 2091 * __d_lookup_rcu - search for a dentry (racy, store-free) 2092 * @parent: parent dentry 2093 * @name: qstr of name we wish to find 2094 * @seqp: returns d_seq value at the point where the dentry was found 2095 * Returns: dentry, or NULL 2096 * 2097 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2098 * resolution (store-free path walking) design described in 2099 * Documentation/filesystems/path-lookup.txt. 2100 * 2101 * This is not to be used outside core vfs. 2102 * 2103 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2104 * held, and rcu_read_lock held. The returned dentry must not be stored into 2105 * without taking d_lock and checking d_seq sequence count against @seq 2106 * returned here. 2107 * 2108 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2109 * function. 2110 * 2111 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2112 * the returned dentry, so long as its parent's seqlock is checked after the 2113 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2114 * is formed, giving integrity down the path walk. 2115 * 2116 * NOTE! The caller *has* to check the resulting dentry against the sequence 2117 * number we've returned before using any of the resulting dentry state! 2118 */ 2119 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2120 const struct qstr *name, 2121 unsigned *seqp) 2122 { 2123 u64 hashlen = name->hash_len; 2124 const unsigned char *str = name->name; 2125 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2126 struct hlist_bl_node *node; 2127 struct dentry *dentry; 2128 2129 /* 2130 * Note: There is significant duplication with __d_lookup_rcu which is 2131 * required to prevent single threaded performance regressions 2132 * especially on architectures where smp_rmb (in seqcounts) are costly. 2133 * Keep the two functions in sync. 2134 */ 2135 2136 /* 2137 * The hash list is protected using RCU. 2138 * 2139 * Carefully use d_seq when comparing a candidate dentry, to avoid 2140 * races with d_move(). 2141 * 2142 * It is possible that concurrent renames can mess up our list 2143 * walk here and result in missing our dentry, resulting in the 2144 * false-negative result. d_lookup() protects against concurrent 2145 * renames using rename_lock seqlock. 2146 * 2147 * See Documentation/filesystems/path-lookup.txt for more details. 2148 */ 2149 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2150 unsigned seq; 2151 2152 seqretry: 2153 /* 2154 * The dentry sequence count protects us from concurrent 2155 * renames, and thus protects parent and name fields. 2156 * 2157 * The caller must perform a seqcount check in order 2158 * to do anything useful with the returned dentry. 2159 * 2160 * NOTE! We do a "raw" seqcount_begin here. That means that 2161 * we don't wait for the sequence count to stabilize if it 2162 * is in the middle of a sequence change. If we do the slow 2163 * dentry compare, we will do seqretries until it is stable, 2164 * and if we end up with a successful lookup, we actually 2165 * want to exit RCU lookup anyway. 2166 * 2167 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2168 * we are still guaranteed NUL-termination of ->d_name.name. 2169 */ 2170 seq = raw_seqcount_begin(&dentry->d_seq); 2171 if (dentry->d_parent != parent) 2172 continue; 2173 if (d_unhashed(dentry)) 2174 continue; 2175 2176 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2177 int tlen; 2178 const char *tname; 2179 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2180 continue; 2181 tlen = dentry->d_name.len; 2182 tname = dentry->d_name.name; 2183 /* we want a consistent (name,len) pair */ 2184 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2185 cpu_relax(); 2186 goto seqretry; 2187 } 2188 if (parent->d_op->d_compare(dentry, 2189 tlen, tname, name) != 0) 2190 continue; 2191 } else { 2192 if (dentry->d_name.hash_len != hashlen) 2193 continue; 2194 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2195 continue; 2196 } 2197 *seqp = seq; 2198 return dentry; 2199 } 2200 return NULL; 2201 } 2202 2203 /** 2204 * d_lookup - search for a dentry 2205 * @parent: parent dentry 2206 * @name: qstr of name we wish to find 2207 * Returns: dentry, or NULL 2208 * 2209 * d_lookup searches the children of the parent dentry for the name in 2210 * question. If the dentry is found its reference count is incremented and the 2211 * dentry is returned. The caller must use dput to free the entry when it has 2212 * finished using it. %NULL is returned if the dentry does not exist. 2213 */ 2214 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2215 { 2216 struct dentry *dentry; 2217 unsigned seq; 2218 2219 do { 2220 seq = read_seqbegin(&rename_lock); 2221 dentry = __d_lookup(parent, name); 2222 if (dentry) 2223 break; 2224 } while (read_seqretry(&rename_lock, seq)); 2225 return dentry; 2226 } 2227 EXPORT_SYMBOL(d_lookup); 2228 2229 /** 2230 * __d_lookup - search for a dentry (racy) 2231 * @parent: parent dentry 2232 * @name: qstr of name we wish to find 2233 * Returns: dentry, or NULL 2234 * 2235 * __d_lookup is like d_lookup, however it may (rarely) return a 2236 * false-negative result due to unrelated rename activity. 2237 * 2238 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2239 * however it must be used carefully, eg. with a following d_lookup in 2240 * the case of failure. 2241 * 2242 * __d_lookup callers must be commented. 2243 */ 2244 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2245 { 2246 unsigned int hash = name->hash; 2247 struct hlist_bl_head *b = d_hash(hash); 2248 struct hlist_bl_node *node; 2249 struct dentry *found = NULL; 2250 struct dentry *dentry; 2251 2252 /* 2253 * Note: There is significant duplication with __d_lookup_rcu which is 2254 * required to prevent single threaded performance regressions 2255 * especially on architectures where smp_rmb (in seqcounts) are costly. 2256 * Keep the two functions in sync. 2257 */ 2258 2259 /* 2260 * The hash list is protected using RCU. 2261 * 2262 * Take d_lock when comparing a candidate dentry, to avoid races 2263 * with d_move(). 2264 * 2265 * It is possible that concurrent renames can mess up our list 2266 * walk here and result in missing our dentry, resulting in the 2267 * false-negative result. d_lookup() protects against concurrent 2268 * renames using rename_lock seqlock. 2269 * 2270 * See Documentation/filesystems/path-lookup.txt for more details. 2271 */ 2272 rcu_read_lock(); 2273 2274 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2275 2276 if (dentry->d_name.hash != hash) 2277 continue; 2278 2279 spin_lock(&dentry->d_lock); 2280 if (dentry->d_parent != parent) 2281 goto next; 2282 if (d_unhashed(dentry)) 2283 goto next; 2284 2285 if (!d_same_name(dentry, parent, name)) 2286 goto next; 2287 2288 dentry->d_lockref.count++; 2289 found = dentry; 2290 spin_unlock(&dentry->d_lock); 2291 break; 2292 next: 2293 spin_unlock(&dentry->d_lock); 2294 } 2295 rcu_read_unlock(); 2296 2297 return found; 2298 } 2299 2300 /** 2301 * d_hash_and_lookup - hash the qstr then search for a dentry 2302 * @dir: Directory to search in 2303 * @name: qstr of name we wish to find 2304 * 2305 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2306 */ 2307 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2308 { 2309 /* 2310 * Check for a fs-specific hash function. Note that we must 2311 * calculate the standard hash first, as the d_op->d_hash() 2312 * routine may choose to leave the hash value unchanged. 2313 */ 2314 name->hash = full_name_hash(dir, name->name, name->len); 2315 if (dir->d_flags & DCACHE_OP_HASH) { 2316 int err = dir->d_op->d_hash(dir, name); 2317 if (unlikely(err < 0)) 2318 return ERR_PTR(err); 2319 } 2320 return d_lookup(dir, name); 2321 } 2322 EXPORT_SYMBOL(d_hash_and_lookup); 2323 2324 /* 2325 * When a file is deleted, we have two options: 2326 * - turn this dentry into a negative dentry 2327 * - unhash this dentry and free it. 2328 * 2329 * Usually, we want to just turn this into 2330 * a negative dentry, but if anybody else is 2331 * currently using the dentry or the inode 2332 * we can't do that and we fall back on removing 2333 * it from the hash queues and waiting for 2334 * it to be deleted later when it has no users 2335 */ 2336 2337 /** 2338 * d_delete - delete a dentry 2339 * @dentry: The dentry to delete 2340 * 2341 * Turn the dentry into a negative dentry if possible, otherwise 2342 * remove it from the hash queues so it can be deleted later 2343 */ 2344 2345 void d_delete(struct dentry * dentry) 2346 { 2347 struct inode *inode; 2348 int isdir = 0; 2349 /* 2350 * Are we the only user? 2351 */ 2352 again: 2353 spin_lock(&dentry->d_lock); 2354 inode = dentry->d_inode; 2355 isdir = S_ISDIR(inode->i_mode); 2356 if (dentry->d_lockref.count == 1) { 2357 if (!spin_trylock(&inode->i_lock)) { 2358 spin_unlock(&dentry->d_lock); 2359 cpu_relax(); 2360 goto again; 2361 } 2362 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2363 dentry_unlink_inode(dentry); 2364 fsnotify_nameremove(dentry, isdir); 2365 return; 2366 } 2367 2368 if (!d_unhashed(dentry)) 2369 __d_drop(dentry); 2370 2371 spin_unlock(&dentry->d_lock); 2372 2373 fsnotify_nameremove(dentry, isdir); 2374 } 2375 EXPORT_SYMBOL(d_delete); 2376 2377 static void __d_rehash(struct dentry *entry) 2378 { 2379 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2380 BUG_ON(!d_unhashed(entry)); 2381 hlist_bl_lock(b); 2382 hlist_bl_add_head_rcu(&entry->d_hash, b); 2383 hlist_bl_unlock(b); 2384 } 2385 2386 /** 2387 * d_rehash - add an entry back to the hash 2388 * @entry: dentry to add to the hash 2389 * 2390 * Adds a dentry to the hash according to its name. 2391 */ 2392 2393 void d_rehash(struct dentry * entry) 2394 { 2395 spin_lock(&entry->d_lock); 2396 __d_rehash(entry); 2397 spin_unlock(&entry->d_lock); 2398 } 2399 EXPORT_SYMBOL(d_rehash); 2400 2401 static inline unsigned start_dir_add(struct inode *dir) 2402 { 2403 2404 for (;;) { 2405 unsigned n = dir->i_dir_seq; 2406 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2407 return n; 2408 cpu_relax(); 2409 } 2410 } 2411 2412 static inline void end_dir_add(struct inode *dir, unsigned n) 2413 { 2414 smp_store_release(&dir->i_dir_seq, n + 2); 2415 } 2416 2417 static void d_wait_lookup(struct dentry *dentry) 2418 { 2419 if (d_in_lookup(dentry)) { 2420 DECLARE_WAITQUEUE(wait, current); 2421 add_wait_queue(dentry->d_wait, &wait); 2422 do { 2423 set_current_state(TASK_UNINTERRUPTIBLE); 2424 spin_unlock(&dentry->d_lock); 2425 schedule(); 2426 spin_lock(&dentry->d_lock); 2427 } while (d_in_lookup(dentry)); 2428 } 2429 } 2430 2431 struct dentry *d_alloc_parallel(struct dentry *parent, 2432 const struct qstr *name, 2433 wait_queue_head_t *wq) 2434 { 2435 unsigned int hash = name->hash; 2436 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2437 struct hlist_bl_node *node; 2438 struct dentry *new = d_alloc(parent, name); 2439 struct dentry *dentry; 2440 unsigned seq, r_seq, d_seq; 2441 2442 if (unlikely(!new)) 2443 return ERR_PTR(-ENOMEM); 2444 2445 retry: 2446 rcu_read_lock(); 2447 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2448 r_seq = read_seqbegin(&rename_lock); 2449 dentry = __d_lookup_rcu(parent, name, &d_seq); 2450 if (unlikely(dentry)) { 2451 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2452 rcu_read_unlock(); 2453 goto retry; 2454 } 2455 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2456 rcu_read_unlock(); 2457 dput(dentry); 2458 goto retry; 2459 } 2460 rcu_read_unlock(); 2461 dput(new); 2462 return dentry; 2463 } 2464 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2465 rcu_read_unlock(); 2466 goto retry; 2467 } 2468 hlist_bl_lock(b); 2469 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2470 hlist_bl_unlock(b); 2471 rcu_read_unlock(); 2472 goto retry; 2473 } 2474 /* 2475 * No changes for the parent since the beginning of d_lookup(). 2476 * Since all removals from the chain happen with hlist_bl_lock(), 2477 * any potential in-lookup matches are going to stay here until 2478 * we unlock the chain. All fields are stable in everything 2479 * we encounter. 2480 */ 2481 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2482 if (dentry->d_name.hash != hash) 2483 continue; 2484 if (dentry->d_parent != parent) 2485 continue; 2486 if (!d_same_name(dentry, parent, name)) 2487 continue; 2488 hlist_bl_unlock(b); 2489 /* now we can try to grab a reference */ 2490 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2491 rcu_read_unlock(); 2492 goto retry; 2493 } 2494 2495 rcu_read_unlock(); 2496 /* 2497 * somebody is likely to be still doing lookup for it; 2498 * wait for them to finish 2499 */ 2500 spin_lock(&dentry->d_lock); 2501 d_wait_lookup(dentry); 2502 /* 2503 * it's not in-lookup anymore; in principle we should repeat 2504 * everything from dcache lookup, but it's likely to be what 2505 * d_lookup() would've found anyway. If it is, just return it; 2506 * otherwise we really have to repeat the whole thing. 2507 */ 2508 if (unlikely(dentry->d_name.hash != hash)) 2509 goto mismatch; 2510 if (unlikely(dentry->d_parent != parent)) 2511 goto mismatch; 2512 if (unlikely(d_unhashed(dentry))) 2513 goto mismatch; 2514 if (unlikely(!d_same_name(dentry, parent, name))) 2515 goto mismatch; 2516 /* OK, it *is* a hashed match; return it */ 2517 spin_unlock(&dentry->d_lock); 2518 dput(new); 2519 return dentry; 2520 } 2521 rcu_read_unlock(); 2522 /* we can't take ->d_lock here; it's OK, though. */ 2523 new->d_flags |= DCACHE_PAR_LOOKUP; 2524 new->d_wait = wq; 2525 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2526 hlist_bl_unlock(b); 2527 return new; 2528 mismatch: 2529 spin_unlock(&dentry->d_lock); 2530 dput(dentry); 2531 goto retry; 2532 } 2533 EXPORT_SYMBOL(d_alloc_parallel); 2534 2535 void __d_lookup_done(struct dentry *dentry) 2536 { 2537 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2538 dentry->d_name.hash); 2539 hlist_bl_lock(b); 2540 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2541 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2542 wake_up_all(dentry->d_wait); 2543 dentry->d_wait = NULL; 2544 hlist_bl_unlock(b); 2545 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2546 INIT_LIST_HEAD(&dentry->d_lru); 2547 } 2548 EXPORT_SYMBOL(__d_lookup_done); 2549 2550 /* inode->i_lock held if inode is non-NULL */ 2551 2552 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2553 { 2554 struct inode *dir = NULL; 2555 unsigned n; 2556 spin_lock(&dentry->d_lock); 2557 if (unlikely(d_in_lookup(dentry))) { 2558 dir = dentry->d_parent->d_inode; 2559 n = start_dir_add(dir); 2560 __d_lookup_done(dentry); 2561 } 2562 if (inode) { 2563 unsigned add_flags = d_flags_for_inode(inode); 2564 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2565 raw_write_seqcount_begin(&dentry->d_seq); 2566 __d_set_inode_and_type(dentry, inode, add_flags); 2567 raw_write_seqcount_end(&dentry->d_seq); 2568 fsnotify_update_flags(dentry); 2569 } 2570 __d_rehash(dentry); 2571 if (dir) 2572 end_dir_add(dir, n); 2573 spin_unlock(&dentry->d_lock); 2574 if (inode) 2575 spin_unlock(&inode->i_lock); 2576 } 2577 2578 /** 2579 * d_add - add dentry to hash queues 2580 * @entry: dentry to add 2581 * @inode: The inode to attach to this dentry 2582 * 2583 * This adds the entry to the hash queues and initializes @inode. 2584 * The entry was actually filled in earlier during d_alloc(). 2585 */ 2586 2587 void d_add(struct dentry *entry, struct inode *inode) 2588 { 2589 if (inode) { 2590 security_d_instantiate(entry, inode); 2591 spin_lock(&inode->i_lock); 2592 } 2593 __d_add(entry, inode); 2594 } 2595 EXPORT_SYMBOL(d_add); 2596 2597 /** 2598 * d_exact_alias - find and hash an exact unhashed alias 2599 * @entry: dentry to add 2600 * @inode: The inode to go with this dentry 2601 * 2602 * If an unhashed dentry with the same name/parent and desired 2603 * inode already exists, hash and return it. Otherwise, return 2604 * NULL. 2605 * 2606 * Parent directory should be locked. 2607 */ 2608 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2609 { 2610 struct dentry *alias; 2611 unsigned int hash = entry->d_name.hash; 2612 2613 spin_lock(&inode->i_lock); 2614 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2615 /* 2616 * Don't need alias->d_lock here, because aliases with 2617 * d_parent == entry->d_parent are not subject to name or 2618 * parent changes, because the parent inode i_mutex is held. 2619 */ 2620 if (alias->d_name.hash != hash) 2621 continue; 2622 if (alias->d_parent != entry->d_parent) 2623 continue; 2624 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2625 continue; 2626 spin_lock(&alias->d_lock); 2627 if (!d_unhashed(alias)) { 2628 spin_unlock(&alias->d_lock); 2629 alias = NULL; 2630 } else { 2631 __dget_dlock(alias); 2632 __d_rehash(alias); 2633 spin_unlock(&alias->d_lock); 2634 } 2635 spin_unlock(&inode->i_lock); 2636 return alias; 2637 } 2638 spin_unlock(&inode->i_lock); 2639 return NULL; 2640 } 2641 EXPORT_SYMBOL(d_exact_alias); 2642 2643 /** 2644 * dentry_update_name_case - update case insensitive dentry with a new name 2645 * @dentry: dentry to be updated 2646 * @name: new name 2647 * 2648 * Update a case insensitive dentry with new case of name. 2649 * 2650 * dentry must have been returned by d_lookup with name @name. Old and new 2651 * name lengths must match (ie. no d_compare which allows mismatched name 2652 * lengths). 2653 * 2654 * Parent inode i_mutex must be held over d_lookup and into this call (to 2655 * keep renames and concurrent inserts, and readdir(2) away). 2656 */ 2657 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2658 { 2659 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2660 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2661 2662 spin_lock(&dentry->d_lock); 2663 write_seqcount_begin(&dentry->d_seq); 2664 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2665 write_seqcount_end(&dentry->d_seq); 2666 spin_unlock(&dentry->d_lock); 2667 } 2668 EXPORT_SYMBOL(dentry_update_name_case); 2669 2670 static void swap_names(struct dentry *dentry, struct dentry *target) 2671 { 2672 if (unlikely(dname_external(target))) { 2673 if (unlikely(dname_external(dentry))) { 2674 /* 2675 * Both external: swap the pointers 2676 */ 2677 swap(target->d_name.name, dentry->d_name.name); 2678 } else { 2679 /* 2680 * dentry:internal, target:external. Steal target's 2681 * storage and make target internal. 2682 */ 2683 memcpy(target->d_iname, dentry->d_name.name, 2684 dentry->d_name.len + 1); 2685 dentry->d_name.name = target->d_name.name; 2686 target->d_name.name = target->d_iname; 2687 } 2688 } else { 2689 if (unlikely(dname_external(dentry))) { 2690 /* 2691 * dentry:external, target:internal. Give dentry's 2692 * storage to target and make dentry internal 2693 */ 2694 memcpy(dentry->d_iname, target->d_name.name, 2695 target->d_name.len + 1); 2696 target->d_name.name = dentry->d_name.name; 2697 dentry->d_name.name = dentry->d_iname; 2698 } else { 2699 /* 2700 * Both are internal. 2701 */ 2702 unsigned int i; 2703 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2704 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2705 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2706 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2707 swap(((long *) &dentry->d_iname)[i], 2708 ((long *) &target->d_iname)[i]); 2709 } 2710 } 2711 } 2712 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2713 } 2714 2715 static void copy_name(struct dentry *dentry, struct dentry *target) 2716 { 2717 struct external_name *old_name = NULL; 2718 if (unlikely(dname_external(dentry))) 2719 old_name = external_name(dentry); 2720 if (unlikely(dname_external(target))) { 2721 atomic_inc(&external_name(target)->u.count); 2722 dentry->d_name = target->d_name; 2723 } else { 2724 memcpy(dentry->d_iname, target->d_name.name, 2725 target->d_name.len + 1); 2726 dentry->d_name.name = dentry->d_iname; 2727 dentry->d_name.hash_len = target->d_name.hash_len; 2728 } 2729 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2730 kfree_rcu(old_name, u.head); 2731 } 2732 2733 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2734 { 2735 /* 2736 * XXXX: do we really need to take target->d_lock? 2737 */ 2738 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2739 spin_lock(&target->d_parent->d_lock); 2740 else { 2741 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2742 spin_lock(&dentry->d_parent->d_lock); 2743 spin_lock_nested(&target->d_parent->d_lock, 2744 DENTRY_D_LOCK_NESTED); 2745 } else { 2746 spin_lock(&target->d_parent->d_lock); 2747 spin_lock_nested(&dentry->d_parent->d_lock, 2748 DENTRY_D_LOCK_NESTED); 2749 } 2750 } 2751 if (target < dentry) { 2752 spin_lock_nested(&target->d_lock, 2); 2753 spin_lock_nested(&dentry->d_lock, 3); 2754 } else { 2755 spin_lock_nested(&dentry->d_lock, 2); 2756 spin_lock_nested(&target->d_lock, 3); 2757 } 2758 } 2759 2760 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2761 { 2762 if (target->d_parent != dentry->d_parent) 2763 spin_unlock(&dentry->d_parent->d_lock); 2764 if (target->d_parent != target) 2765 spin_unlock(&target->d_parent->d_lock); 2766 spin_unlock(&target->d_lock); 2767 spin_unlock(&dentry->d_lock); 2768 } 2769 2770 /* 2771 * When switching names, the actual string doesn't strictly have to 2772 * be preserved in the target - because we're dropping the target 2773 * anyway. As such, we can just do a simple memcpy() to copy over 2774 * the new name before we switch, unless we are going to rehash 2775 * it. Note that if we *do* unhash the target, we are not allowed 2776 * to rehash it without giving it a new name/hash key - whether 2777 * we swap or overwrite the names here, resulting name won't match 2778 * the reality in filesystem; it's only there for d_path() purposes. 2779 * Note that all of this is happening under rename_lock, so the 2780 * any hash lookup seeing it in the middle of manipulations will 2781 * be discarded anyway. So we do not care what happens to the hash 2782 * key in that case. 2783 */ 2784 /* 2785 * __d_move - move a dentry 2786 * @dentry: entry to move 2787 * @target: new dentry 2788 * @exchange: exchange the two dentries 2789 * 2790 * Update the dcache to reflect the move of a file name. Negative 2791 * dcache entries should not be moved in this way. Caller must hold 2792 * rename_lock, the i_mutex of the source and target directories, 2793 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2794 */ 2795 static void __d_move(struct dentry *dentry, struct dentry *target, 2796 bool exchange) 2797 { 2798 struct inode *dir = NULL; 2799 unsigned n; 2800 if (!dentry->d_inode) 2801 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2802 2803 BUG_ON(d_ancestor(dentry, target)); 2804 BUG_ON(d_ancestor(target, dentry)); 2805 2806 dentry_lock_for_move(dentry, target); 2807 if (unlikely(d_in_lookup(target))) { 2808 dir = target->d_parent->d_inode; 2809 n = start_dir_add(dir); 2810 __d_lookup_done(target); 2811 } 2812 2813 write_seqcount_begin(&dentry->d_seq); 2814 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2815 2816 /* unhash both */ 2817 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2818 __d_drop(dentry); 2819 __d_drop(target); 2820 2821 /* Switch the names.. */ 2822 if (exchange) 2823 swap_names(dentry, target); 2824 else 2825 copy_name(dentry, target); 2826 2827 /* rehash in new place(s) */ 2828 __d_rehash(dentry); 2829 if (exchange) 2830 __d_rehash(target); 2831 2832 /* ... and switch them in the tree */ 2833 if (IS_ROOT(dentry)) { 2834 /* splicing a tree */ 2835 dentry->d_flags |= DCACHE_RCUACCESS; 2836 dentry->d_parent = target->d_parent; 2837 target->d_parent = target; 2838 list_del_init(&target->d_child); 2839 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2840 } else { 2841 /* swapping two dentries */ 2842 swap(dentry->d_parent, target->d_parent); 2843 list_move(&target->d_child, &target->d_parent->d_subdirs); 2844 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2845 if (exchange) 2846 fsnotify_update_flags(target); 2847 fsnotify_update_flags(dentry); 2848 } 2849 2850 write_seqcount_end(&target->d_seq); 2851 write_seqcount_end(&dentry->d_seq); 2852 2853 if (dir) 2854 end_dir_add(dir, n); 2855 dentry_unlock_for_move(dentry, target); 2856 } 2857 2858 /* 2859 * d_move - move a dentry 2860 * @dentry: entry to move 2861 * @target: new dentry 2862 * 2863 * Update the dcache to reflect the move of a file name. Negative 2864 * dcache entries should not be moved in this way. See the locking 2865 * requirements for __d_move. 2866 */ 2867 void d_move(struct dentry *dentry, struct dentry *target) 2868 { 2869 write_seqlock(&rename_lock); 2870 __d_move(dentry, target, false); 2871 write_sequnlock(&rename_lock); 2872 } 2873 EXPORT_SYMBOL(d_move); 2874 2875 /* 2876 * d_exchange - exchange two dentries 2877 * @dentry1: first dentry 2878 * @dentry2: second dentry 2879 */ 2880 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2881 { 2882 write_seqlock(&rename_lock); 2883 2884 WARN_ON(!dentry1->d_inode); 2885 WARN_ON(!dentry2->d_inode); 2886 WARN_ON(IS_ROOT(dentry1)); 2887 WARN_ON(IS_ROOT(dentry2)); 2888 2889 __d_move(dentry1, dentry2, true); 2890 2891 write_sequnlock(&rename_lock); 2892 } 2893 2894 /** 2895 * d_ancestor - search for an ancestor 2896 * @p1: ancestor dentry 2897 * @p2: child dentry 2898 * 2899 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2900 * an ancestor of p2, else NULL. 2901 */ 2902 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2903 { 2904 struct dentry *p; 2905 2906 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2907 if (p->d_parent == p1) 2908 return p; 2909 } 2910 return NULL; 2911 } 2912 2913 /* 2914 * This helper attempts to cope with remotely renamed directories 2915 * 2916 * It assumes that the caller is already holding 2917 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2918 * 2919 * Note: If ever the locking in lock_rename() changes, then please 2920 * remember to update this too... 2921 */ 2922 static int __d_unalias(struct inode *inode, 2923 struct dentry *dentry, struct dentry *alias) 2924 { 2925 struct mutex *m1 = NULL; 2926 struct rw_semaphore *m2 = NULL; 2927 int ret = -ESTALE; 2928 2929 /* If alias and dentry share a parent, then no extra locks required */ 2930 if (alias->d_parent == dentry->d_parent) 2931 goto out_unalias; 2932 2933 /* See lock_rename() */ 2934 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2935 goto out_err; 2936 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2937 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2938 goto out_err; 2939 m2 = &alias->d_parent->d_inode->i_rwsem; 2940 out_unalias: 2941 __d_move(alias, dentry, false); 2942 ret = 0; 2943 out_err: 2944 if (m2) 2945 up_read(m2); 2946 if (m1) 2947 mutex_unlock(m1); 2948 return ret; 2949 } 2950 2951 /** 2952 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2953 * @inode: the inode which may have a disconnected dentry 2954 * @dentry: a negative dentry which we want to point to the inode. 2955 * 2956 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2957 * place of the given dentry and return it, else simply d_add the inode 2958 * to the dentry and return NULL. 2959 * 2960 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2961 * we should error out: directories can't have multiple aliases. 2962 * 2963 * This is needed in the lookup routine of any filesystem that is exportable 2964 * (via knfsd) so that we can build dcache paths to directories effectively. 2965 * 2966 * If a dentry was found and moved, then it is returned. Otherwise NULL 2967 * is returned. This matches the expected return value of ->lookup. 2968 * 2969 * Cluster filesystems may call this function with a negative, hashed dentry. 2970 * In that case, we know that the inode will be a regular file, and also this 2971 * will only occur during atomic_open. So we need to check for the dentry 2972 * being already hashed only in the final case. 2973 */ 2974 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2975 { 2976 if (IS_ERR(inode)) 2977 return ERR_CAST(inode); 2978 2979 BUG_ON(!d_unhashed(dentry)); 2980 2981 if (!inode) 2982 goto out; 2983 2984 security_d_instantiate(dentry, inode); 2985 spin_lock(&inode->i_lock); 2986 if (S_ISDIR(inode->i_mode)) { 2987 struct dentry *new = __d_find_any_alias(inode); 2988 if (unlikely(new)) { 2989 /* The reference to new ensures it remains an alias */ 2990 spin_unlock(&inode->i_lock); 2991 write_seqlock(&rename_lock); 2992 if (unlikely(d_ancestor(new, dentry))) { 2993 write_sequnlock(&rename_lock); 2994 dput(new); 2995 new = ERR_PTR(-ELOOP); 2996 pr_warn_ratelimited( 2997 "VFS: Lookup of '%s' in %s %s" 2998 " would have caused loop\n", 2999 dentry->d_name.name, 3000 inode->i_sb->s_type->name, 3001 inode->i_sb->s_id); 3002 } else if (!IS_ROOT(new)) { 3003 int err = __d_unalias(inode, dentry, new); 3004 write_sequnlock(&rename_lock); 3005 if (err) { 3006 dput(new); 3007 new = ERR_PTR(err); 3008 } 3009 } else { 3010 __d_move(new, dentry, false); 3011 write_sequnlock(&rename_lock); 3012 } 3013 iput(inode); 3014 return new; 3015 } 3016 } 3017 out: 3018 __d_add(dentry, inode); 3019 return NULL; 3020 } 3021 EXPORT_SYMBOL(d_splice_alias); 3022 3023 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 3024 { 3025 *buflen -= namelen; 3026 if (*buflen < 0) 3027 return -ENAMETOOLONG; 3028 *buffer -= namelen; 3029 memcpy(*buffer, str, namelen); 3030 return 0; 3031 } 3032 3033 /** 3034 * prepend_name - prepend a pathname in front of current buffer pointer 3035 * @buffer: buffer pointer 3036 * @buflen: allocated length of the buffer 3037 * @name: name string and length qstr structure 3038 * 3039 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 3040 * make sure that either the old or the new name pointer and length are 3041 * fetched. However, there may be mismatch between length and pointer. 3042 * The length cannot be trusted, we need to copy it byte-by-byte until 3043 * the length is reached or a null byte is found. It also prepends "/" at 3044 * the beginning of the name. The sequence number check at the caller will 3045 * retry it again when a d_move() does happen. So any garbage in the buffer 3046 * due to mismatched pointer and length will be discarded. 3047 * 3048 * Data dependency barrier is needed to make sure that we see that terminating 3049 * NUL. Alpha strikes again, film at 11... 3050 */ 3051 static int prepend_name(char **buffer, int *buflen, const struct qstr *name) 3052 { 3053 const char *dname = ACCESS_ONCE(name->name); 3054 u32 dlen = ACCESS_ONCE(name->len); 3055 char *p; 3056 3057 smp_read_barrier_depends(); 3058 3059 *buflen -= dlen + 1; 3060 if (*buflen < 0) 3061 return -ENAMETOOLONG; 3062 p = *buffer -= dlen + 1; 3063 *p++ = '/'; 3064 while (dlen--) { 3065 char c = *dname++; 3066 if (!c) 3067 break; 3068 *p++ = c; 3069 } 3070 return 0; 3071 } 3072 3073 /** 3074 * prepend_path - Prepend path string to a buffer 3075 * @path: the dentry/vfsmount to report 3076 * @root: root vfsmnt/dentry 3077 * @buffer: pointer to the end of the buffer 3078 * @buflen: pointer to buffer length 3079 * 3080 * The function will first try to write out the pathname without taking any 3081 * lock other than the RCU read lock to make sure that dentries won't go away. 3082 * It only checks the sequence number of the global rename_lock as any change 3083 * in the dentry's d_seq will be preceded by changes in the rename_lock 3084 * sequence number. If the sequence number had been changed, it will restart 3085 * the whole pathname back-tracing sequence again by taking the rename_lock. 3086 * In this case, there is no need to take the RCU read lock as the recursive 3087 * parent pointer references will keep the dentry chain alive as long as no 3088 * rename operation is performed. 3089 */ 3090 static int prepend_path(const struct path *path, 3091 const struct path *root, 3092 char **buffer, int *buflen) 3093 { 3094 struct dentry *dentry; 3095 struct vfsmount *vfsmnt; 3096 struct mount *mnt; 3097 int error = 0; 3098 unsigned seq, m_seq = 0; 3099 char *bptr; 3100 int blen; 3101 3102 rcu_read_lock(); 3103 restart_mnt: 3104 read_seqbegin_or_lock(&mount_lock, &m_seq); 3105 seq = 0; 3106 rcu_read_lock(); 3107 restart: 3108 bptr = *buffer; 3109 blen = *buflen; 3110 error = 0; 3111 dentry = path->dentry; 3112 vfsmnt = path->mnt; 3113 mnt = real_mount(vfsmnt); 3114 read_seqbegin_or_lock(&rename_lock, &seq); 3115 while (dentry != root->dentry || vfsmnt != root->mnt) { 3116 struct dentry * parent; 3117 3118 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3119 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 3120 /* Escaped? */ 3121 if (dentry != vfsmnt->mnt_root) { 3122 bptr = *buffer; 3123 blen = *buflen; 3124 error = 3; 3125 break; 3126 } 3127 /* Global root? */ 3128 if (mnt != parent) { 3129 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 3130 mnt = parent; 3131 vfsmnt = &mnt->mnt; 3132 continue; 3133 } 3134 if (!error) 3135 error = is_mounted(vfsmnt) ? 1 : 2; 3136 break; 3137 } 3138 parent = dentry->d_parent; 3139 prefetch(parent); 3140 error = prepend_name(&bptr, &blen, &dentry->d_name); 3141 if (error) 3142 break; 3143 3144 dentry = parent; 3145 } 3146 if (!(seq & 1)) 3147 rcu_read_unlock(); 3148 if (need_seqretry(&rename_lock, seq)) { 3149 seq = 1; 3150 goto restart; 3151 } 3152 done_seqretry(&rename_lock, seq); 3153 3154 if (!(m_seq & 1)) 3155 rcu_read_unlock(); 3156 if (need_seqretry(&mount_lock, m_seq)) { 3157 m_seq = 1; 3158 goto restart_mnt; 3159 } 3160 done_seqretry(&mount_lock, m_seq); 3161 3162 if (error >= 0 && bptr == *buffer) { 3163 if (--blen < 0) 3164 error = -ENAMETOOLONG; 3165 else 3166 *--bptr = '/'; 3167 } 3168 *buffer = bptr; 3169 *buflen = blen; 3170 return error; 3171 } 3172 3173 /** 3174 * __d_path - return the path of a dentry 3175 * @path: the dentry/vfsmount to report 3176 * @root: root vfsmnt/dentry 3177 * @buf: buffer to return value in 3178 * @buflen: buffer length 3179 * 3180 * Convert a dentry into an ASCII path name. 3181 * 3182 * Returns a pointer into the buffer or an error code if the 3183 * path was too long. 3184 * 3185 * "buflen" should be positive. 3186 * 3187 * If the path is not reachable from the supplied root, return %NULL. 3188 */ 3189 char *__d_path(const struct path *path, 3190 const struct path *root, 3191 char *buf, int buflen) 3192 { 3193 char *res = buf + buflen; 3194 int error; 3195 3196 prepend(&res, &buflen, "\0", 1); 3197 error = prepend_path(path, root, &res, &buflen); 3198 3199 if (error < 0) 3200 return ERR_PTR(error); 3201 if (error > 0) 3202 return NULL; 3203 return res; 3204 } 3205 3206 char *d_absolute_path(const struct path *path, 3207 char *buf, int buflen) 3208 { 3209 struct path root = {}; 3210 char *res = buf + buflen; 3211 int error; 3212 3213 prepend(&res, &buflen, "\0", 1); 3214 error = prepend_path(path, &root, &res, &buflen); 3215 3216 if (error > 1) 3217 error = -EINVAL; 3218 if (error < 0) 3219 return ERR_PTR(error); 3220 return res; 3221 } 3222 3223 /* 3224 * same as __d_path but appends "(deleted)" for unlinked files. 3225 */ 3226 static int path_with_deleted(const struct path *path, 3227 const struct path *root, 3228 char **buf, int *buflen) 3229 { 3230 prepend(buf, buflen, "\0", 1); 3231 if (d_unlinked(path->dentry)) { 3232 int error = prepend(buf, buflen, " (deleted)", 10); 3233 if (error) 3234 return error; 3235 } 3236 3237 return prepend_path(path, root, buf, buflen); 3238 } 3239 3240 static int prepend_unreachable(char **buffer, int *buflen) 3241 { 3242 return prepend(buffer, buflen, "(unreachable)", 13); 3243 } 3244 3245 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3246 { 3247 unsigned seq; 3248 3249 do { 3250 seq = read_seqcount_begin(&fs->seq); 3251 *root = fs->root; 3252 } while (read_seqcount_retry(&fs->seq, seq)); 3253 } 3254 3255 /** 3256 * d_path - return the path of a dentry 3257 * @path: path to report 3258 * @buf: buffer to return value in 3259 * @buflen: buffer length 3260 * 3261 * Convert a dentry into an ASCII path name. If the entry has been deleted 3262 * the string " (deleted)" is appended. Note that this is ambiguous. 3263 * 3264 * Returns a pointer into the buffer or an error code if the path was 3265 * too long. Note: Callers should use the returned pointer, not the passed 3266 * in buffer, to use the name! The implementation often starts at an offset 3267 * into the buffer, and may leave 0 bytes at the start. 3268 * 3269 * "buflen" should be positive. 3270 */ 3271 char *d_path(const struct path *path, char *buf, int buflen) 3272 { 3273 char *res = buf + buflen; 3274 struct path root; 3275 int error; 3276 3277 /* 3278 * We have various synthetic filesystems that never get mounted. On 3279 * these filesystems dentries are never used for lookup purposes, and 3280 * thus don't need to be hashed. They also don't need a name until a 3281 * user wants to identify the object in /proc/pid/fd/. The little hack 3282 * below allows us to generate a name for these objects on demand: 3283 * 3284 * Some pseudo inodes are mountable. When they are mounted 3285 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3286 * and instead have d_path return the mounted path. 3287 */ 3288 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3289 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3290 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3291 3292 rcu_read_lock(); 3293 get_fs_root_rcu(current->fs, &root); 3294 error = path_with_deleted(path, &root, &res, &buflen); 3295 rcu_read_unlock(); 3296 3297 if (error < 0) 3298 res = ERR_PTR(error); 3299 return res; 3300 } 3301 EXPORT_SYMBOL(d_path); 3302 3303 /* 3304 * Helper function for dentry_operations.d_dname() members 3305 */ 3306 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3307 const char *fmt, ...) 3308 { 3309 va_list args; 3310 char temp[64]; 3311 int sz; 3312 3313 va_start(args, fmt); 3314 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3315 va_end(args); 3316 3317 if (sz > sizeof(temp) || sz > buflen) 3318 return ERR_PTR(-ENAMETOOLONG); 3319 3320 buffer += buflen - sz; 3321 return memcpy(buffer, temp, sz); 3322 } 3323 3324 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3325 { 3326 char *end = buffer + buflen; 3327 /* these dentries are never renamed, so d_lock is not needed */ 3328 if (prepend(&end, &buflen, " (deleted)", 11) || 3329 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3330 prepend(&end, &buflen, "/", 1)) 3331 end = ERR_PTR(-ENAMETOOLONG); 3332 return end; 3333 } 3334 EXPORT_SYMBOL(simple_dname); 3335 3336 /* 3337 * Write full pathname from the root of the filesystem into the buffer. 3338 */ 3339 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3340 { 3341 struct dentry *dentry; 3342 char *end, *retval; 3343 int len, seq = 0; 3344 int error = 0; 3345 3346 if (buflen < 2) 3347 goto Elong; 3348 3349 rcu_read_lock(); 3350 restart: 3351 dentry = d; 3352 end = buf + buflen; 3353 len = buflen; 3354 prepend(&end, &len, "\0", 1); 3355 /* Get '/' right */ 3356 retval = end-1; 3357 *retval = '/'; 3358 read_seqbegin_or_lock(&rename_lock, &seq); 3359 while (!IS_ROOT(dentry)) { 3360 struct dentry *parent = dentry->d_parent; 3361 3362 prefetch(parent); 3363 error = prepend_name(&end, &len, &dentry->d_name); 3364 if (error) 3365 break; 3366 3367 retval = end; 3368 dentry = parent; 3369 } 3370 if (!(seq & 1)) 3371 rcu_read_unlock(); 3372 if (need_seqretry(&rename_lock, seq)) { 3373 seq = 1; 3374 goto restart; 3375 } 3376 done_seqretry(&rename_lock, seq); 3377 if (error) 3378 goto Elong; 3379 return retval; 3380 Elong: 3381 return ERR_PTR(-ENAMETOOLONG); 3382 } 3383 3384 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3385 { 3386 return __dentry_path(dentry, buf, buflen); 3387 } 3388 EXPORT_SYMBOL(dentry_path_raw); 3389 3390 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3391 { 3392 char *p = NULL; 3393 char *retval; 3394 3395 if (d_unlinked(dentry)) { 3396 p = buf + buflen; 3397 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3398 goto Elong; 3399 buflen++; 3400 } 3401 retval = __dentry_path(dentry, buf, buflen); 3402 if (!IS_ERR(retval) && p) 3403 *p = '/'; /* restore '/' overriden with '\0' */ 3404 return retval; 3405 Elong: 3406 return ERR_PTR(-ENAMETOOLONG); 3407 } 3408 3409 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3410 struct path *pwd) 3411 { 3412 unsigned seq; 3413 3414 do { 3415 seq = read_seqcount_begin(&fs->seq); 3416 *root = fs->root; 3417 *pwd = fs->pwd; 3418 } while (read_seqcount_retry(&fs->seq, seq)); 3419 } 3420 3421 /* 3422 * NOTE! The user-level library version returns a 3423 * character pointer. The kernel system call just 3424 * returns the length of the buffer filled (which 3425 * includes the ending '\0' character), or a negative 3426 * error value. So libc would do something like 3427 * 3428 * char *getcwd(char * buf, size_t size) 3429 * { 3430 * int retval; 3431 * 3432 * retval = sys_getcwd(buf, size); 3433 * if (retval >= 0) 3434 * return buf; 3435 * errno = -retval; 3436 * return NULL; 3437 * } 3438 */ 3439 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3440 { 3441 int error; 3442 struct path pwd, root; 3443 char *page = __getname(); 3444 3445 if (!page) 3446 return -ENOMEM; 3447 3448 rcu_read_lock(); 3449 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3450 3451 error = -ENOENT; 3452 if (!d_unlinked(pwd.dentry)) { 3453 unsigned long len; 3454 char *cwd = page + PATH_MAX; 3455 int buflen = PATH_MAX; 3456 3457 prepend(&cwd, &buflen, "\0", 1); 3458 error = prepend_path(&pwd, &root, &cwd, &buflen); 3459 rcu_read_unlock(); 3460 3461 if (error < 0) 3462 goto out; 3463 3464 /* Unreachable from current root */ 3465 if (error > 0) { 3466 error = prepend_unreachable(&cwd, &buflen); 3467 if (error) 3468 goto out; 3469 } 3470 3471 error = -ERANGE; 3472 len = PATH_MAX + page - cwd; 3473 if (len <= size) { 3474 error = len; 3475 if (copy_to_user(buf, cwd, len)) 3476 error = -EFAULT; 3477 } 3478 } else { 3479 rcu_read_unlock(); 3480 } 3481 3482 out: 3483 __putname(page); 3484 return error; 3485 } 3486 3487 /* 3488 * Test whether new_dentry is a subdirectory of old_dentry. 3489 * 3490 * Trivially implemented using the dcache structure 3491 */ 3492 3493 /** 3494 * is_subdir - is new dentry a subdirectory of old_dentry 3495 * @new_dentry: new dentry 3496 * @old_dentry: old dentry 3497 * 3498 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3499 * Returns false otherwise. 3500 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3501 */ 3502 3503 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3504 { 3505 bool result; 3506 unsigned seq; 3507 3508 if (new_dentry == old_dentry) 3509 return true; 3510 3511 do { 3512 /* for restarting inner loop in case of seq retry */ 3513 seq = read_seqbegin(&rename_lock); 3514 /* 3515 * Need rcu_readlock to protect against the d_parent trashing 3516 * due to d_move 3517 */ 3518 rcu_read_lock(); 3519 if (d_ancestor(old_dentry, new_dentry)) 3520 result = true; 3521 else 3522 result = false; 3523 rcu_read_unlock(); 3524 } while (read_seqretry(&rename_lock, seq)); 3525 3526 return result; 3527 } 3528 3529 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3530 { 3531 struct dentry *root = data; 3532 if (dentry != root) { 3533 if (d_unhashed(dentry) || !dentry->d_inode) 3534 return D_WALK_SKIP; 3535 3536 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3537 dentry->d_flags |= DCACHE_GENOCIDE; 3538 dentry->d_lockref.count--; 3539 } 3540 } 3541 return D_WALK_CONTINUE; 3542 } 3543 3544 void d_genocide(struct dentry *parent) 3545 { 3546 d_walk(parent, parent, d_genocide_kill, NULL); 3547 } 3548 3549 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3550 { 3551 inode_dec_link_count(inode); 3552 BUG_ON(dentry->d_name.name != dentry->d_iname || 3553 !hlist_unhashed(&dentry->d_u.d_alias) || 3554 !d_unlinked(dentry)); 3555 spin_lock(&dentry->d_parent->d_lock); 3556 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3557 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3558 (unsigned long long)inode->i_ino); 3559 spin_unlock(&dentry->d_lock); 3560 spin_unlock(&dentry->d_parent->d_lock); 3561 d_instantiate(dentry, inode); 3562 } 3563 EXPORT_SYMBOL(d_tmpfile); 3564 3565 static __initdata unsigned long dhash_entries; 3566 static int __init set_dhash_entries(char *str) 3567 { 3568 if (!str) 3569 return 0; 3570 dhash_entries = simple_strtoul(str, &str, 0); 3571 return 1; 3572 } 3573 __setup("dhash_entries=", set_dhash_entries); 3574 3575 static void __init dcache_init_early(void) 3576 { 3577 /* If hashes are distributed across NUMA nodes, defer 3578 * hash allocation until vmalloc space is available. 3579 */ 3580 if (hashdist) 3581 return; 3582 3583 dentry_hashtable = 3584 alloc_large_system_hash("Dentry cache", 3585 sizeof(struct hlist_bl_head), 3586 dhash_entries, 3587 13, 3588 HASH_EARLY | HASH_ZERO, 3589 &d_hash_shift, 3590 &d_hash_mask, 3591 0, 3592 0); 3593 } 3594 3595 static void __init dcache_init(void) 3596 { 3597 /* 3598 * A constructor could be added for stable state like the lists, 3599 * but it is probably not worth it because of the cache nature 3600 * of the dcache. 3601 */ 3602 dentry_cache = KMEM_CACHE(dentry, 3603 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3604 3605 /* Hash may have been set up in dcache_init_early */ 3606 if (!hashdist) 3607 return; 3608 3609 dentry_hashtable = 3610 alloc_large_system_hash("Dentry cache", 3611 sizeof(struct hlist_bl_head), 3612 dhash_entries, 3613 13, 3614 HASH_ZERO, 3615 &d_hash_shift, 3616 &d_hash_mask, 3617 0, 3618 0); 3619 } 3620 3621 /* SLAB cache for __getname() consumers */ 3622 struct kmem_cache *names_cachep __read_mostly; 3623 EXPORT_SYMBOL(names_cachep); 3624 3625 EXPORT_SYMBOL(d_genocide); 3626 3627 void __init vfs_caches_init_early(void) 3628 { 3629 int i; 3630 3631 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3632 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3633 3634 dcache_init_early(); 3635 inode_init_early(); 3636 } 3637 3638 void __init vfs_caches_init(void) 3639 { 3640 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3641 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3642 3643 dcache_init(); 3644 inode_init(); 3645 files_init(); 3646 files_maxfiles_init(); 3647 mnt_init(); 3648 bdev_cache_init(); 3649 chrdev_init(); 3650 } 3651