xref: /linux/fs/dcache.c (revision d9c6a72d6fa29d3a7999dda726577e5d1fccafa5)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 	return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111 
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114 
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 					unsigned int hash)
117 {
118 	hash += (unsigned long) parent / L1_CACHE_BYTES;
119 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121 
122 
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 	.age_limit = 45,
126 };
127 
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 
133 /*
134  * Here we resort to our own counters instead of using generic per-cpu counters
135  * for consistency with what the vfs inode code does. We are expected to harvest
136  * better code and performance by having our own specialized counters.
137  *
138  * Please note that the loop is done over all possible CPUs, not over all online
139  * CPUs. The reason for this is that we don't want to play games with CPUs going
140  * on and off. If one of them goes off, we will just keep their counters.
141  *
142  * glommer: See cffbc8a for details, and if you ever intend to change this,
143  * please update all vfs counters to match.
144  */
145 static long get_nr_dentry(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 static long get_nr_dentry_unused(void)
155 {
156 	int i;
157 	long sum = 0;
158 	for_each_possible_cpu(i)
159 		sum += per_cpu(nr_dentry_unused, i);
160 	return sum < 0 ? 0 : sum;
161 }
162 
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 		   size_t *lenp, loff_t *ppos)
165 {
166 	dentry_stat.nr_dentry = get_nr_dentry();
167 	dentry_stat.nr_unused = get_nr_dentry_unused();
168 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171 
172 /*
173  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174  * The strings are both count bytes long, and count is non-zero.
175  */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177 
178 #include <asm/word-at-a-time.h>
179 /*
180  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181  * aligned allocation for this particular component. We don't
182  * strictly need the load_unaligned_zeropad() safety, but it
183  * doesn't hurt either.
184  *
185  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186  * need the careful unaligned handling.
187  */
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 	unsigned long a,b,mask;
191 
192 	for (;;) {
193 		a = *(unsigned long *)cs;
194 		b = load_unaligned_zeropad(ct);
195 		if (tcount < sizeof(unsigned long))
196 			break;
197 		if (unlikely(a != b))
198 			return 1;
199 		cs += sizeof(unsigned long);
200 		ct += sizeof(unsigned long);
201 		tcount -= sizeof(unsigned long);
202 		if (!tcount)
203 			return 0;
204 	}
205 	mask = bytemask_from_count(tcount);
206 	return unlikely(!!((a ^ b) & mask));
207 }
208 
209 #else
210 
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 	do {
214 		if (*cs != *ct)
215 			return 1;
216 		cs++;
217 		ct++;
218 		tcount--;
219 	} while (tcount);
220 	return 0;
221 }
222 
223 #endif
224 
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 	/*
228 	 * Be careful about RCU walk racing with rename:
229 	 * use 'lockless_dereference' to fetch the name pointer.
230 	 *
231 	 * NOTE! Even if a rename will mean that the length
232 	 * was not loaded atomically, we don't care. The
233 	 * RCU walk will check the sequence count eventually,
234 	 * and catch it. And we won't overrun the buffer,
235 	 * because we're reading the name pointer atomically,
236 	 * and a dentry name is guaranteed to be properly
237 	 * terminated with a NUL byte.
238 	 *
239 	 * End result: even if 'len' is wrong, we'll exit
240 	 * early because the data cannot match (there can
241 	 * be no NUL in the ct/tcount data)
242 	 */
243 	const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244 
245 	return dentry_string_cmp(cs, ct, tcount);
246 }
247 
248 struct external_name {
249 	union {
250 		atomic_t count;
251 		struct rcu_head head;
252 	} u;
253 	unsigned char name[];
254 };
255 
256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 	return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260 
261 static void __d_free(struct rcu_head *head)
262 {
263 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264 
265 	kmem_cache_free(dentry_cache, dentry);
266 }
267 
268 static void __d_free_external(struct rcu_head *head)
269 {
270 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 	kfree(external_name(dentry));
272 	kmem_cache_free(dentry_cache, dentry);
273 }
274 
275 static inline int dname_external(const struct dentry *dentry)
276 {
277 	return dentry->d_name.name != dentry->d_iname;
278 }
279 
280 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
281 {
282 	spin_lock(&dentry->d_lock);
283 	if (unlikely(dname_external(dentry))) {
284 		struct external_name *p = external_name(dentry);
285 		atomic_inc(&p->u.count);
286 		spin_unlock(&dentry->d_lock);
287 		name->name = p->name;
288 	} else {
289 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
290 		spin_unlock(&dentry->d_lock);
291 		name->name = name->inline_name;
292 	}
293 }
294 EXPORT_SYMBOL(take_dentry_name_snapshot);
295 
296 void release_dentry_name_snapshot(struct name_snapshot *name)
297 {
298 	if (unlikely(name->name != name->inline_name)) {
299 		struct external_name *p;
300 		p = container_of(name->name, struct external_name, name[0]);
301 		if (unlikely(atomic_dec_and_test(&p->u.count)))
302 			kfree_rcu(p, u.head);
303 	}
304 }
305 EXPORT_SYMBOL(release_dentry_name_snapshot);
306 
307 static inline void __d_set_inode_and_type(struct dentry *dentry,
308 					  struct inode *inode,
309 					  unsigned type_flags)
310 {
311 	unsigned flags;
312 
313 	dentry->d_inode = inode;
314 	flags = READ_ONCE(dentry->d_flags);
315 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
316 	flags |= type_flags;
317 	WRITE_ONCE(dentry->d_flags, flags);
318 }
319 
320 static inline void __d_clear_type_and_inode(struct dentry *dentry)
321 {
322 	unsigned flags = READ_ONCE(dentry->d_flags);
323 
324 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
325 	WRITE_ONCE(dentry->d_flags, flags);
326 	dentry->d_inode = NULL;
327 }
328 
329 static void dentry_free(struct dentry *dentry)
330 {
331 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
332 	if (unlikely(dname_external(dentry))) {
333 		struct external_name *p = external_name(dentry);
334 		if (likely(atomic_dec_and_test(&p->u.count))) {
335 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
336 			return;
337 		}
338 	}
339 	/* if dentry was never visible to RCU, immediate free is OK */
340 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
341 		__d_free(&dentry->d_u.d_rcu);
342 	else
343 		call_rcu(&dentry->d_u.d_rcu, __d_free);
344 }
345 
346 /*
347  * Release the dentry's inode, using the filesystem
348  * d_iput() operation if defined.
349  */
350 static void dentry_unlink_inode(struct dentry * dentry)
351 	__releases(dentry->d_lock)
352 	__releases(dentry->d_inode->i_lock)
353 {
354 	struct inode *inode = dentry->d_inode;
355 	bool hashed = !d_unhashed(dentry);
356 
357 	if (hashed)
358 		raw_write_seqcount_begin(&dentry->d_seq);
359 	__d_clear_type_and_inode(dentry);
360 	hlist_del_init(&dentry->d_u.d_alias);
361 	if (hashed)
362 		raw_write_seqcount_end(&dentry->d_seq);
363 	spin_unlock(&dentry->d_lock);
364 	spin_unlock(&inode->i_lock);
365 	if (!inode->i_nlink)
366 		fsnotify_inoderemove(inode);
367 	if (dentry->d_op && dentry->d_op->d_iput)
368 		dentry->d_op->d_iput(dentry, inode);
369 	else
370 		iput(inode);
371 }
372 
373 /*
374  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
375  * is in use - which includes both the "real" per-superblock
376  * LRU list _and_ the DCACHE_SHRINK_LIST use.
377  *
378  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
379  * on the shrink list (ie not on the superblock LRU list).
380  *
381  * The per-cpu "nr_dentry_unused" counters are updated with
382  * the DCACHE_LRU_LIST bit.
383  *
384  * These helper functions make sure we always follow the
385  * rules. d_lock must be held by the caller.
386  */
387 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
388 static void d_lru_add(struct dentry *dentry)
389 {
390 	D_FLAG_VERIFY(dentry, 0);
391 	dentry->d_flags |= DCACHE_LRU_LIST;
392 	this_cpu_inc(nr_dentry_unused);
393 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394 }
395 
396 static void d_lru_del(struct dentry *dentry)
397 {
398 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
399 	dentry->d_flags &= ~DCACHE_LRU_LIST;
400 	this_cpu_dec(nr_dentry_unused);
401 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
402 }
403 
404 static void d_shrink_del(struct dentry *dentry)
405 {
406 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
407 	list_del_init(&dentry->d_lru);
408 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 	this_cpu_dec(nr_dentry_unused);
410 }
411 
412 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
413 {
414 	D_FLAG_VERIFY(dentry, 0);
415 	list_add(&dentry->d_lru, list);
416 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
417 	this_cpu_inc(nr_dentry_unused);
418 }
419 
420 /*
421  * These can only be called under the global LRU lock, ie during the
422  * callback for freeing the LRU list. "isolate" removes it from the
423  * LRU lists entirely, while shrink_move moves it to the indicated
424  * private list.
425  */
426 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
427 {
428 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 	dentry->d_flags &= ~DCACHE_LRU_LIST;
430 	this_cpu_dec(nr_dentry_unused);
431 	list_lru_isolate(lru, &dentry->d_lru);
432 }
433 
434 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
435 			      struct list_head *list)
436 {
437 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 	dentry->d_flags |= DCACHE_SHRINK_LIST;
439 	list_lru_isolate_move(lru, &dentry->d_lru, list);
440 }
441 
442 /*
443  * dentry_lru_(add|del)_list) must be called with d_lock held.
444  */
445 static void dentry_lru_add(struct dentry *dentry)
446 {
447 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
448 		d_lru_add(dentry);
449 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
450 		dentry->d_flags |= DCACHE_REFERENCED;
451 }
452 
453 /**
454  * d_drop - drop a dentry
455  * @dentry: dentry to drop
456  *
457  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458  * be found through a VFS lookup any more. Note that this is different from
459  * deleting the dentry - d_delete will try to mark the dentry negative if
460  * possible, giving a successful _negative_ lookup, while d_drop will
461  * just make the cache lookup fail.
462  *
463  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464  * reason (NFS timeouts or autofs deletes).
465  *
466  * __d_drop requires dentry->d_lock.
467  */
468 void __d_drop(struct dentry *dentry)
469 {
470 	if (!d_unhashed(dentry)) {
471 		struct hlist_bl_head *b;
472 		/*
473 		 * Hashed dentries are normally on the dentry hashtable,
474 		 * with the exception of those newly allocated by
475 		 * d_obtain_alias, which are always IS_ROOT:
476 		 */
477 		if (unlikely(IS_ROOT(dentry)))
478 			b = &dentry->d_sb->s_anon;
479 		else
480 			b = d_hash(dentry->d_name.hash);
481 
482 		hlist_bl_lock(b);
483 		__hlist_bl_del(&dentry->d_hash);
484 		dentry->d_hash.pprev = NULL;
485 		hlist_bl_unlock(b);
486 		/* After this call, in-progress rcu-walk path lookup will fail. */
487 		write_seqcount_invalidate(&dentry->d_seq);
488 	}
489 }
490 EXPORT_SYMBOL(__d_drop);
491 
492 void d_drop(struct dentry *dentry)
493 {
494 	spin_lock(&dentry->d_lock);
495 	__d_drop(dentry);
496 	spin_unlock(&dentry->d_lock);
497 }
498 EXPORT_SYMBOL(d_drop);
499 
500 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
501 {
502 	struct dentry *next;
503 	/*
504 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
505 	 * attached to the dentry tree
506 	 */
507 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
508 	if (unlikely(list_empty(&dentry->d_child)))
509 		return;
510 	__list_del_entry(&dentry->d_child);
511 	/*
512 	 * Cursors can move around the list of children.  While we'd been
513 	 * a normal list member, it didn't matter - ->d_child.next would've
514 	 * been updated.  However, from now on it won't be and for the
515 	 * things like d_walk() it might end up with a nasty surprise.
516 	 * Normally d_walk() doesn't care about cursors moving around -
517 	 * ->d_lock on parent prevents that and since a cursor has no children
518 	 * of its own, we get through it without ever unlocking the parent.
519 	 * There is one exception, though - if we ascend from a child that
520 	 * gets killed as soon as we unlock it, the next sibling is found
521 	 * using the value left in its ->d_child.next.  And if _that_
522 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
523 	 * before d_walk() regains parent->d_lock, we'll end up skipping
524 	 * everything the cursor had been moved past.
525 	 *
526 	 * Solution: make sure that the pointer left behind in ->d_child.next
527 	 * points to something that won't be moving around.  I.e. skip the
528 	 * cursors.
529 	 */
530 	while (dentry->d_child.next != &parent->d_subdirs) {
531 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
532 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
533 			break;
534 		dentry->d_child.next = next->d_child.next;
535 	}
536 }
537 
538 static void __dentry_kill(struct dentry *dentry)
539 {
540 	struct dentry *parent = NULL;
541 	bool can_free = true;
542 	if (!IS_ROOT(dentry))
543 		parent = dentry->d_parent;
544 
545 	/*
546 	 * The dentry is now unrecoverably dead to the world.
547 	 */
548 	lockref_mark_dead(&dentry->d_lockref);
549 
550 	/*
551 	 * inform the fs via d_prune that this dentry is about to be
552 	 * unhashed and destroyed.
553 	 */
554 	if (dentry->d_flags & DCACHE_OP_PRUNE)
555 		dentry->d_op->d_prune(dentry);
556 
557 	if (dentry->d_flags & DCACHE_LRU_LIST) {
558 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
559 			d_lru_del(dentry);
560 	}
561 	/* if it was on the hash then remove it */
562 	__d_drop(dentry);
563 	dentry_unlist(dentry, parent);
564 	if (parent)
565 		spin_unlock(&parent->d_lock);
566 	if (dentry->d_inode)
567 		dentry_unlink_inode(dentry);
568 	else
569 		spin_unlock(&dentry->d_lock);
570 	this_cpu_dec(nr_dentry);
571 	if (dentry->d_op && dentry->d_op->d_release)
572 		dentry->d_op->d_release(dentry);
573 
574 	spin_lock(&dentry->d_lock);
575 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
576 		dentry->d_flags |= DCACHE_MAY_FREE;
577 		can_free = false;
578 	}
579 	spin_unlock(&dentry->d_lock);
580 	if (likely(can_free))
581 		dentry_free(dentry);
582 }
583 
584 /*
585  * Finish off a dentry we've decided to kill.
586  * dentry->d_lock must be held, returns with it unlocked.
587  * If ref is non-zero, then decrement the refcount too.
588  * Returns dentry requiring refcount drop, or NULL if we're done.
589  */
590 static struct dentry *dentry_kill(struct dentry *dentry)
591 	__releases(dentry->d_lock)
592 {
593 	struct inode *inode = dentry->d_inode;
594 	struct dentry *parent = NULL;
595 
596 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
597 		goto failed;
598 
599 	if (!IS_ROOT(dentry)) {
600 		parent = dentry->d_parent;
601 		if (unlikely(!spin_trylock(&parent->d_lock))) {
602 			if (inode)
603 				spin_unlock(&inode->i_lock);
604 			goto failed;
605 		}
606 	}
607 
608 	__dentry_kill(dentry);
609 	return parent;
610 
611 failed:
612 	spin_unlock(&dentry->d_lock);
613 	return dentry; /* try again with same dentry */
614 }
615 
616 static inline struct dentry *lock_parent(struct dentry *dentry)
617 {
618 	struct dentry *parent = dentry->d_parent;
619 	if (IS_ROOT(dentry))
620 		return NULL;
621 	if (unlikely(dentry->d_lockref.count < 0))
622 		return NULL;
623 	if (likely(spin_trylock(&parent->d_lock)))
624 		return parent;
625 	rcu_read_lock();
626 	spin_unlock(&dentry->d_lock);
627 again:
628 	parent = ACCESS_ONCE(dentry->d_parent);
629 	spin_lock(&parent->d_lock);
630 	/*
631 	 * We can't blindly lock dentry until we are sure
632 	 * that we won't violate the locking order.
633 	 * Any changes of dentry->d_parent must have
634 	 * been done with parent->d_lock held, so
635 	 * spin_lock() above is enough of a barrier
636 	 * for checking if it's still our child.
637 	 */
638 	if (unlikely(parent != dentry->d_parent)) {
639 		spin_unlock(&parent->d_lock);
640 		goto again;
641 	}
642 	rcu_read_unlock();
643 	if (parent != dentry)
644 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
645 	else
646 		parent = NULL;
647 	return parent;
648 }
649 
650 /*
651  * Try to do a lockless dput(), and return whether that was successful.
652  *
653  * If unsuccessful, we return false, having already taken the dentry lock.
654  *
655  * The caller needs to hold the RCU read lock, so that the dentry is
656  * guaranteed to stay around even if the refcount goes down to zero!
657  */
658 static inline bool fast_dput(struct dentry *dentry)
659 {
660 	int ret;
661 	unsigned int d_flags;
662 
663 	/*
664 	 * If we have a d_op->d_delete() operation, we sould not
665 	 * let the dentry count go to zero, so use "put_or_lock".
666 	 */
667 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
668 		return lockref_put_or_lock(&dentry->d_lockref);
669 
670 	/*
671 	 * .. otherwise, we can try to just decrement the
672 	 * lockref optimistically.
673 	 */
674 	ret = lockref_put_return(&dentry->d_lockref);
675 
676 	/*
677 	 * If the lockref_put_return() failed due to the lock being held
678 	 * by somebody else, the fast path has failed. We will need to
679 	 * get the lock, and then check the count again.
680 	 */
681 	if (unlikely(ret < 0)) {
682 		spin_lock(&dentry->d_lock);
683 		if (dentry->d_lockref.count > 1) {
684 			dentry->d_lockref.count--;
685 			spin_unlock(&dentry->d_lock);
686 			return 1;
687 		}
688 		return 0;
689 	}
690 
691 	/*
692 	 * If we weren't the last ref, we're done.
693 	 */
694 	if (ret)
695 		return 1;
696 
697 	/*
698 	 * Careful, careful. The reference count went down
699 	 * to zero, but we don't hold the dentry lock, so
700 	 * somebody else could get it again, and do another
701 	 * dput(), and we need to not race with that.
702 	 *
703 	 * However, there is a very special and common case
704 	 * where we don't care, because there is nothing to
705 	 * do: the dentry is still hashed, it does not have
706 	 * a 'delete' op, and it's referenced and already on
707 	 * the LRU list.
708 	 *
709 	 * NOTE! Since we aren't locked, these values are
710 	 * not "stable". However, it is sufficient that at
711 	 * some point after we dropped the reference the
712 	 * dentry was hashed and the flags had the proper
713 	 * value. Other dentry users may have re-gotten
714 	 * a reference to the dentry and change that, but
715 	 * our work is done - we can leave the dentry
716 	 * around with a zero refcount.
717 	 */
718 	smp_rmb();
719 	d_flags = ACCESS_ONCE(dentry->d_flags);
720 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
721 
722 	/* Nothing to do? Dropping the reference was all we needed? */
723 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
724 		return 1;
725 
726 	/*
727 	 * Not the fast normal case? Get the lock. We've already decremented
728 	 * the refcount, but we'll need to re-check the situation after
729 	 * getting the lock.
730 	 */
731 	spin_lock(&dentry->d_lock);
732 
733 	/*
734 	 * Did somebody else grab a reference to it in the meantime, and
735 	 * we're no longer the last user after all? Alternatively, somebody
736 	 * else could have killed it and marked it dead. Either way, we
737 	 * don't need to do anything else.
738 	 */
739 	if (dentry->d_lockref.count) {
740 		spin_unlock(&dentry->d_lock);
741 		return 1;
742 	}
743 
744 	/*
745 	 * Re-get the reference we optimistically dropped. We hold the
746 	 * lock, and we just tested that it was zero, so we can just
747 	 * set it to 1.
748 	 */
749 	dentry->d_lockref.count = 1;
750 	return 0;
751 }
752 
753 
754 /*
755  * This is dput
756  *
757  * This is complicated by the fact that we do not want to put
758  * dentries that are no longer on any hash chain on the unused
759  * list: we'd much rather just get rid of them immediately.
760  *
761  * However, that implies that we have to traverse the dentry
762  * tree upwards to the parents which might _also_ now be
763  * scheduled for deletion (it may have been only waiting for
764  * its last child to go away).
765  *
766  * This tail recursion is done by hand as we don't want to depend
767  * on the compiler to always get this right (gcc generally doesn't).
768  * Real recursion would eat up our stack space.
769  */
770 
771 /*
772  * dput - release a dentry
773  * @dentry: dentry to release
774  *
775  * Release a dentry. This will drop the usage count and if appropriate
776  * call the dentry unlink method as well as removing it from the queues and
777  * releasing its resources. If the parent dentries were scheduled for release
778  * they too may now get deleted.
779  */
780 void dput(struct dentry *dentry)
781 {
782 	if (unlikely(!dentry))
783 		return;
784 
785 repeat:
786 	might_sleep();
787 
788 	rcu_read_lock();
789 	if (likely(fast_dput(dentry))) {
790 		rcu_read_unlock();
791 		return;
792 	}
793 
794 	/* Slow case: now with the dentry lock held */
795 	rcu_read_unlock();
796 
797 	WARN_ON(d_in_lookup(dentry));
798 
799 	/* Unreachable? Get rid of it */
800 	if (unlikely(d_unhashed(dentry)))
801 		goto kill_it;
802 
803 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
804 		goto kill_it;
805 
806 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
807 		if (dentry->d_op->d_delete(dentry))
808 			goto kill_it;
809 	}
810 
811 	dentry_lru_add(dentry);
812 
813 	dentry->d_lockref.count--;
814 	spin_unlock(&dentry->d_lock);
815 	return;
816 
817 kill_it:
818 	dentry = dentry_kill(dentry);
819 	if (dentry) {
820 		cond_resched();
821 		goto repeat;
822 	}
823 }
824 EXPORT_SYMBOL(dput);
825 
826 
827 /* This must be called with d_lock held */
828 static inline void __dget_dlock(struct dentry *dentry)
829 {
830 	dentry->d_lockref.count++;
831 }
832 
833 static inline void __dget(struct dentry *dentry)
834 {
835 	lockref_get(&dentry->d_lockref);
836 }
837 
838 struct dentry *dget_parent(struct dentry *dentry)
839 {
840 	int gotref;
841 	struct dentry *ret;
842 
843 	/*
844 	 * Do optimistic parent lookup without any
845 	 * locking.
846 	 */
847 	rcu_read_lock();
848 	ret = ACCESS_ONCE(dentry->d_parent);
849 	gotref = lockref_get_not_zero(&ret->d_lockref);
850 	rcu_read_unlock();
851 	if (likely(gotref)) {
852 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
853 			return ret;
854 		dput(ret);
855 	}
856 
857 repeat:
858 	/*
859 	 * Don't need rcu_dereference because we re-check it was correct under
860 	 * the lock.
861 	 */
862 	rcu_read_lock();
863 	ret = dentry->d_parent;
864 	spin_lock(&ret->d_lock);
865 	if (unlikely(ret != dentry->d_parent)) {
866 		spin_unlock(&ret->d_lock);
867 		rcu_read_unlock();
868 		goto repeat;
869 	}
870 	rcu_read_unlock();
871 	BUG_ON(!ret->d_lockref.count);
872 	ret->d_lockref.count++;
873 	spin_unlock(&ret->d_lock);
874 	return ret;
875 }
876 EXPORT_SYMBOL(dget_parent);
877 
878 /**
879  * d_find_alias - grab a hashed alias of inode
880  * @inode: inode in question
881  *
882  * If inode has a hashed alias, or is a directory and has any alias,
883  * acquire the reference to alias and return it. Otherwise return NULL.
884  * Notice that if inode is a directory there can be only one alias and
885  * it can be unhashed only if it has no children, or if it is the root
886  * of a filesystem, or if the directory was renamed and d_revalidate
887  * was the first vfs operation to notice.
888  *
889  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
890  * any other hashed alias over that one.
891  */
892 static struct dentry *__d_find_alias(struct inode *inode)
893 {
894 	struct dentry *alias, *discon_alias;
895 
896 again:
897 	discon_alias = NULL;
898 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
899 		spin_lock(&alias->d_lock);
900  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
901 			if (IS_ROOT(alias) &&
902 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
903 				discon_alias = alias;
904 			} else {
905 				__dget_dlock(alias);
906 				spin_unlock(&alias->d_lock);
907 				return alias;
908 			}
909 		}
910 		spin_unlock(&alias->d_lock);
911 	}
912 	if (discon_alias) {
913 		alias = discon_alias;
914 		spin_lock(&alias->d_lock);
915 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
916 			__dget_dlock(alias);
917 			spin_unlock(&alias->d_lock);
918 			return alias;
919 		}
920 		spin_unlock(&alias->d_lock);
921 		goto again;
922 	}
923 	return NULL;
924 }
925 
926 struct dentry *d_find_alias(struct inode *inode)
927 {
928 	struct dentry *de = NULL;
929 
930 	if (!hlist_empty(&inode->i_dentry)) {
931 		spin_lock(&inode->i_lock);
932 		de = __d_find_alias(inode);
933 		spin_unlock(&inode->i_lock);
934 	}
935 	return de;
936 }
937 EXPORT_SYMBOL(d_find_alias);
938 
939 /*
940  *	Try to kill dentries associated with this inode.
941  * WARNING: you must own a reference to inode.
942  */
943 void d_prune_aliases(struct inode *inode)
944 {
945 	struct dentry *dentry;
946 restart:
947 	spin_lock(&inode->i_lock);
948 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
949 		spin_lock(&dentry->d_lock);
950 		if (!dentry->d_lockref.count) {
951 			struct dentry *parent = lock_parent(dentry);
952 			if (likely(!dentry->d_lockref.count)) {
953 				__dentry_kill(dentry);
954 				dput(parent);
955 				goto restart;
956 			}
957 			if (parent)
958 				spin_unlock(&parent->d_lock);
959 		}
960 		spin_unlock(&dentry->d_lock);
961 	}
962 	spin_unlock(&inode->i_lock);
963 }
964 EXPORT_SYMBOL(d_prune_aliases);
965 
966 static void shrink_dentry_list(struct list_head *list)
967 {
968 	struct dentry *dentry, *parent;
969 
970 	while (!list_empty(list)) {
971 		struct inode *inode;
972 		dentry = list_entry(list->prev, struct dentry, d_lru);
973 		spin_lock(&dentry->d_lock);
974 		parent = lock_parent(dentry);
975 
976 		/*
977 		 * The dispose list is isolated and dentries are not accounted
978 		 * to the LRU here, so we can simply remove it from the list
979 		 * here regardless of whether it is referenced or not.
980 		 */
981 		d_shrink_del(dentry);
982 
983 		/*
984 		 * We found an inuse dentry which was not removed from
985 		 * the LRU because of laziness during lookup. Do not free it.
986 		 */
987 		if (dentry->d_lockref.count > 0) {
988 			spin_unlock(&dentry->d_lock);
989 			if (parent)
990 				spin_unlock(&parent->d_lock);
991 			continue;
992 		}
993 
994 
995 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
996 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
997 			spin_unlock(&dentry->d_lock);
998 			if (parent)
999 				spin_unlock(&parent->d_lock);
1000 			if (can_free)
1001 				dentry_free(dentry);
1002 			continue;
1003 		}
1004 
1005 		inode = dentry->d_inode;
1006 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1007 			d_shrink_add(dentry, list);
1008 			spin_unlock(&dentry->d_lock);
1009 			if (parent)
1010 				spin_unlock(&parent->d_lock);
1011 			continue;
1012 		}
1013 
1014 		__dentry_kill(dentry);
1015 
1016 		/*
1017 		 * We need to prune ancestors too. This is necessary to prevent
1018 		 * quadratic behavior of shrink_dcache_parent(), but is also
1019 		 * expected to be beneficial in reducing dentry cache
1020 		 * fragmentation.
1021 		 */
1022 		dentry = parent;
1023 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1024 			parent = lock_parent(dentry);
1025 			if (dentry->d_lockref.count != 1) {
1026 				dentry->d_lockref.count--;
1027 				spin_unlock(&dentry->d_lock);
1028 				if (parent)
1029 					spin_unlock(&parent->d_lock);
1030 				break;
1031 			}
1032 			inode = dentry->d_inode;	/* can't be NULL */
1033 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1034 				spin_unlock(&dentry->d_lock);
1035 				if (parent)
1036 					spin_unlock(&parent->d_lock);
1037 				cpu_relax();
1038 				continue;
1039 			}
1040 			__dentry_kill(dentry);
1041 			dentry = parent;
1042 		}
1043 	}
1044 }
1045 
1046 static enum lru_status dentry_lru_isolate(struct list_head *item,
1047 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1048 {
1049 	struct list_head *freeable = arg;
1050 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1051 
1052 
1053 	/*
1054 	 * we are inverting the lru lock/dentry->d_lock here,
1055 	 * so use a trylock. If we fail to get the lock, just skip
1056 	 * it
1057 	 */
1058 	if (!spin_trylock(&dentry->d_lock))
1059 		return LRU_SKIP;
1060 
1061 	/*
1062 	 * Referenced dentries are still in use. If they have active
1063 	 * counts, just remove them from the LRU. Otherwise give them
1064 	 * another pass through the LRU.
1065 	 */
1066 	if (dentry->d_lockref.count) {
1067 		d_lru_isolate(lru, dentry);
1068 		spin_unlock(&dentry->d_lock);
1069 		return LRU_REMOVED;
1070 	}
1071 
1072 	if (dentry->d_flags & DCACHE_REFERENCED) {
1073 		dentry->d_flags &= ~DCACHE_REFERENCED;
1074 		spin_unlock(&dentry->d_lock);
1075 
1076 		/*
1077 		 * The list move itself will be made by the common LRU code. At
1078 		 * this point, we've dropped the dentry->d_lock but keep the
1079 		 * lru lock. This is safe to do, since every list movement is
1080 		 * protected by the lru lock even if both locks are held.
1081 		 *
1082 		 * This is guaranteed by the fact that all LRU management
1083 		 * functions are intermediated by the LRU API calls like
1084 		 * list_lru_add and list_lru_del. List movement in this file
1085 		 * only ever occur through this functions or through callbacks
1086 		 * like this one, that are called from the LRU API.
1087 		 *
1088 		 * The only exceptions to this are functions like
1089 		 * shrink_dentry_list, and code that first checks for the
1090 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1091 		 * operating only with stack provided lists after they are
1092 		 * properly isolated from the main list.  It is thus, always a
1093 		 * local access.
1094 		 */
1095 		return LRU_ROTATE;
1096 	}
1097 
1098 	d_lru_shrink_move(lru, dentry, freeable);
1099 	spin_unlock(&dentry->d_lock);
1100 
1101 	return LRU_REMOVED;
1102 }
1103 
1104 /**
1105  * prune_dcache_sb - shrink the dcache
1106  * @sb: superblock
1107  * @sc: shrink control, passed to list_lru_shrink_walk()
1108  *
1109  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1110  * is done when we need more memory and called from the superblock shrinker
1111  * function.
1112  *
1113  * This function may fail to free any resources if all the dentries are in
1114  * use.
1115  */
1116 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1117 {
1118 	LIST_HEAD(dispose);
1119 	long freed;
1120 
1121 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1122 				     dentry_lru_isolate, &dispose);
1123 	shrink_dentry_list(&dispose);
1124 	return freed;
1125 }
1126 
1127 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1128 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1129 {
1130 	struct list_head *freeable = arg;
1131 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1132 
1133 	/*
1134 	 * we are inverting the lru lock/dentry->d_lock here,
1135 	 * so use a trylock. If we fail to get the lock, just skip
1136 	 * it
1137 	 */
1138 	if (!spin_trylock(&dentry->d_lock))
1139 		return LRU_SKIP;
1140 
1141 	d_lru_shrink_move(lru, dentry, freeable);
1142 	spin_unlock(&dentry->d_lock);
1143 
1144 	return LRU_REMOVED;
1145 }
1146 
1147 
1148 /**
1149  * shrink_dcache_sb - shrink dcache for a superblock
1150  * @sb: superblock
1151  *
1152  * Shrink the dcache for the specified super block. This is used to free
1153  * the dcache before unmounting a file system.
1154  */
1155 void shrink_dcache_sb(struct super_block *sb)
1156 {
1157 	long freed;
1158 
1159 	do {
1160 		LIST_HEAD(dispose);
1161 
1162 		freed = list_lru_walk(&sb->s_dentry_lru,
1163 			dentry_lru_isolate_shrink, &dispose, 1024);
1164 
1165 		this_cpu_sub(nr_dentry_unused, freed);
1166 		shrink_dentry_list(&dispose);
1167 		cond_resched();
1168 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1169 }
1170 EXPORT_SYMBOL(shrink_dcache_sb);
1171 
1172 /**
1173  * enum d_walk_ret - action to talke during tree walk
1174  * @D_WALK_CONTINUE:	contrinue walk
1175  * @D_WALK_QUIT:	quit walk
1176  * @D_WALK_NORETRY:	quit when retry is needed
1177  * @D_WALK_SKIP:	skip this dentry and its children
1178  */
1179 enum d_walk_ret {
1180 	D_WALK_CONTINUE,
1181 	D_WALK_QUIT,
1182 	D_WALK_NORETRY,
1183 	D_WALK_SKIP,
1184 };
1185 
1186 /**
1187  * d_walk - walk the dentry tree
1188  * @parent:	start of walk
1189  * @data:	data passed to @enter() and @finish()
1190  * @enter:	callback when first entering the dentry
1191  * @finish:	callback when successfully finished the walk
1192  *
1193  * The @enter() and @finish() callbacks are called with d_lock held.
1194  */
1195 static void d_walk(struct dentry *parent, void *data,
1196 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1197 		   void (*finish)(void *))
1198 {
1199 	struct dentry *this_parent;
1200 	struct list_head *next;
1201 	unsigned seq = 0;
1202 	enum d_walk_ret ret;
1203 	bool retry = true;
1204 
1205 again:
1206 	read_seqbegin_or_lock(&rename_lock, &seq);
1207 	this_parent = parent;
1208 	spin_lock(&this_parent->d_lock);
1209 
1210 	ret = enter(data, this_parent);
1211 	switch (ret) {
1212 	case D_WALK_CONTINUE:
1213 		break;
1214 	case D_WALK_QUIT:
1215 	case D_WALK_SKIP:
1216 		goto out_unlock;
1217 	case D_WALK_NORETRY:
1218 		retry = false;
1219 		break;
1220 	}
1221 repeat:
1222 	next = this_parent->d_subdirs.next;
1223 resume:
1224 	while (next != &this_parent->d_subdirs) {
1225 		struct list_head *tmp = next;
1226 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1227 		next = tmp->next;
1228 
1229 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1230 			continue;
1231 
1232 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1233 
1234 		ret = enter(data, dentry);
1235 		switch (ret) {
1236 		case D_WALK_CONTINUE:
1237 			break;
1238 		case D_WALK_QUIT:
1239 			spin_unlock(&dentry->d_lock);
1240 			goto out_unlock;
1241 		case D_WALK_NORETRY:
1242 			retry = false;
1243 			break;
1244 		case D_WALK_SKIP:
1245 			spin_unlock(&dentry->d_lock);
1246 			continue;
1247 		}
1248 
1249 		if (!list_empty(&dentry->d_subdirs)) {
1250 			spin_unlock(&this_parent->d_lock);
1251 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1252 			this_parent = dentry;
1253 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1254 			goto repeat;
1255 		}
1256 		spin_unlock(&dentry->d_lock);
1257 	}
1258 	/*
1259 	 * All done at this level ... ascend and resume the search.
1260 	 */
1261 	rcu_read_lock();
1262 ascend:
1263 	if (this_parent != parent) {
1264 		struct dentry *child = this_parent;
1265 		this_parent = child->d_parent;
1266 
1267 		spin_unlock(&child->d_lock);
1268 		spin_lock(&this_parent->d_lock);
1269 
1270 		/* might go back up the wrong parent if we have had a rename. */
1271 		if (need_seqretry(&rename_lock, seq))
1272 			goto rename_retry;
1273 		/* go into the first sibling still alive */
1274 		do {
1275 			next = child->d_child.next;
1276 			if (next == &this_parent->d_subdirs)
1277 				goto ascend;
1278 			child = list_entry(next, struct dentry, d_child);
1279 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1280 		rcu_read_unlock();
1281 		goto resume;
1282 	}
1283 	if (need_seqretry(&rename_lock, seq))
1284 		goto rename_retry;
1285 	rcu_read_unlock();
1286 	if (finish)
1287 		finish(data);
1288 
1289 out_unlock:
1290 	spin_unlock(&this_parent->d_lock);
1291 	done_seqretry(&rename_lock, seq);
1292 	return;
1293 
1294 rename_retry:
1295 	spin_unlock(&this_parent->d_lock);
1296 	rcu_read_unlock();
1297 	BUG_ON(seq & 1);
1298 	if (!retry)
1299 		return;
1300 	seq = 1;
1301 	goto again;
1302 }
1303 
1304 struct check_mount {
1305 	struct vfsmount *mnt;
1306 	unsigned int mounted;
1307 };
1308 
1309 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1310 {
1311 	struct check_mount *info = data;
1312 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1313 
1314 	if (likely(!d_mountpoint(dentry)))
1315 		return D_WALK_CONTINUE;
1316 	if (__path_is_mountpoint(&path)) {
1317 		info->mounted = 1;
1318 		return D_WALK_QUIT;
1319 	}
1320 	return D_WALK_CONTINUE;
1321 }
1322 
1323 /**
1324  * path_has_submounts - check for mounts over a dentry in the
1325  *                      current namespace.
1326  * @parent: path to check.
1327  *
1328  * Return true if the parent or its subdirectories contain
1329  * a mount point in the current namespace.
1330  */
1331 int path_has_submounts(const struct path *parent)
1332 {
1333 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1334 
1335 	read_seqlock_excl(&mount_lock);
1336 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1337 	read_sequnlock_excl(&mount_lock);
1338 
1339 	return data.mounted;
1340 }
1341 EXPORT_SYMBOL(path_has_submounts);
1342 
1343 /*
1344  * Called by mount code to set a mountpoint and check if the mountpoint is
1345  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1346  * subtree can become unreachable).
1347  *
1348  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1349  * this reason take rename_lock and d_lock on dentry and ancestors.
1350  */
1351 int d_set_mounted(struct dentry *dentry)
1352 {
1353 	struct dentry *p;
1354 	int ret = -ENOENT;
1355 	write_seqlock(&rename_lock);
1356 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1357 		/* Need exclusion wrt. d_invalidate() */
1358 		spin_lock(&p->d_lock);
1359 		if (unlikely(d_unhashed(p))) {
1360 			spin_unlock(&p->d_lock);
1361 			goto out;
1362 		}
1363 		spin_unlock(&p->d_lock);
1364 	}
1365 	spin_lock(&dentry->d_lock);
1366 	if (!d_unlinked(dentry)) {
1367 		ret = -EBUSY;
1368 		if (!d_mountpoint(dentry)) {
1369 			dentry->d_flags |= DCACHE_MOUNTED;
1370 			ret = 0;
1371 		}
1372 	}
1373  	spin_unlock(&dentry->d_lock);
1374 out:
1375 	write_sequnlock(&rename_lock);
1376 	return ret;
1377 }
1378 
1379 /*
1380  * Search the dentry child list of the specified parent,
1381  * and move any unused dentries to the end of the unused
1382  * list for prune_dcache(). We descend to the next level
1383  * whenever the d_subdirs list is non-empty and continue
1384  * searching.
1385  *
1386  * It returns zero iff there are no unused children,
1387  * otherwise  it returns the number of children moved to
1388  * the end of the unused list. This may not be the total
1389  * number of unused children, because select_parent can
1390  * drop the lock and return early due to latency
1391  * constraints.
1392  */
1393 
1394 struct select_data {
1395 	struct dentry *start;
1396 	struct list_head dispose;
1397 	int found;
1398 };
1399 
1400 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1401 {
1402 	struct select_data *data = _data;
1403 	enum d_walk_ret ret = D_WALK_CONTINUE;
1404 
1405 	if (data->start == dentry)
1406 		goto out;
1407 
1408 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1409 		data->found++;
1410 	} else {
1411 		if (dentry->d_flags & DCACHE_LRU_LIST)
1412 			d_lru_del(dentry);
1413 		if (!dentry->d_lockref.count) {
1414 			d_shrink_add(dentry, &data->dispose);
1415 			data->found++;
1416 		}
1417 	}
1418 	/*
1419 	 * We can return to the caller if we have found some (this
1420 	 * ensures forward progress). We'll be coming back to find
1421 	 * the rest.
1422 	 */
1423 	if (!list_empty(&data->dispose))
1424 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1425 out:
1426 	return ret;
1427 }
1428 
1429 /**
1430  * shrink_dcache_parent - prune dcache
1431  * @parent: parent of entries to prune
1432  *
1433  * Prune the dcache to remove unused children of the parent dentry.
1434  */
1435 void shrink_dcache_parent(struct dentry *parent)
1436 {
1437 	for (;;) {
1438 		struct select_data data;
1439 
1440 		INIT_LIST_HEAD(&data.dispose);
1441 		data.start = parent;
1442 		data.found = 0;
1443 
1444 		d_walk(parent, &data, select_collect, NULL);
1445 		if (!data.found)
1446 			break;
1447 
1448 		shrink_dentry_list(&data.dispose);
1449 		cond_resched();
1450 	}
1451 }
1452 EXPORT_SYMBOL(shrink_dcache_parent);
1453 
1454 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1455 {
1456 	/* it has busy descendents; complain about those instead */
1457 	if (!list_empty(&dentry->d_subdirs))
1458 		return D_WALK_CONTINUE;
1459 
1460 	/* root with refcount 1 is fine */
1461 	if (dentry == _data && dentry->d_lockref.count == 1)
1462 		return D_WALK_CONTINUE;
1463 
1464 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1465 			" still in use (%d) [unmount of %s %s]\n",
1466 		       dentry,
1467 		       dentry->d_inode ?
1468 		       dentry->d_inode->i_ino : 0UL,
1469 		       dentry,
1470 		       dentry->d_lockref.count,
1471 		       dentry->d_sb->s_type->name,
1472 		       dentry->d_sb->s_id);
1473 	WARN_ON(1);
1474 	return D_WALK_CONTINUE;
1475 }
1476 
1477 static void do_one_tree(struct dentry *dentry)
1478 {
1479 	shrink_dcache_parent(dentry);
1480 	d_walk(dentry, dentry, umount_check, NULL);
1481 	d_drop(dentry);
1482 	dput(dentry);
1483 }
1484 
1485 /*
1486  * destroy the dentries attached to a superblock on unmounting
1487  */
1488 void shrink_dcache_for_umount(struct super_block *sb)
1489 {
1490 	struct dentry *dentry;
1491 
1492 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1493 
1494 	dentry = sb->s_root;
1495 	sb->s_root = NULL;
1496 	do_one_tree(dentry);
1497 
1498 	while (!hlist_bl_empty(&sb->s_anon)) {
1499 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1500 		do_one_tree(dentry);
1501 	}
1502 }
1503 
1504 struct detach_data {
1505 	struct select_data select;
1506 	struct dentry *mountpoint;
1507 };
1508 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1509 {
1510 	struct detach_data *data = _data;
1511 
1512 	if (d_mountpoint(dentry)) {
1513 		__dget_dlock(dentry);
1514 		data->mountpoint = dentry;
1515 		return D_WALK_QUIT;
1516 	}
1517 
1518 	return select_collect(&data->select, dentry);
1519 }
1520 
1521 static void check_and_drop(void *_data)
1522 {
1523 	struct detach_data *data = _data;
1524 
1525 	if (!data->mountpoint && list_empty(&data->select.dispose))
1526 		__d_drop(data->select.start);
1527 }
1528 
1529 /**
1530  * d_invalidate - detach submounts, prune dcache, and drop
1531  * @dentry: dentry to invalidate (aka detach, prune and drop)
1532  *
1533  * no dcache lock.
1534  *
1535  * The final d_drop is done as an atomic operation relative to
1536  * rename_lock ensuring there are no races with d_set_mounted.  This
1537  * ensures there are no unhashed dentries on the path to a mountpoint.
1538  */
1539 void d_invalidate(struct dentry *dentry)
1540 {
1541 	/*
1542 	 * If it's already been dropped, return OK.
1543 	 */
1544 	spin_lock(&dentry->d_lock);
1545 	if (d_unhashed(dentry)) {
1546 		spin_unlock(&dentry->d_lock);
1547 		return;
1548 	}
1549 	spin_unlock(&dentry->d_lock);
1550 
1551 	/* Negative dentries can be dropped without further checks */
1552 	if (!dentry->d_inode) {
1553 		d_drop(dentry);
1554 		return;
1555 	}
1556 
1557 	for (;;) {
1558 		struct detach_data data;
1559 
1560 		data.mountpoint = NULL;
1561 		INIT_LIST_HEAD(&data.select.dispose);
1562 		data.select.start = dentry;
1563 		data.select.found = 0;
1564 
1565 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1566 
1567 		if (!list_empty(&data.select.dispose))
1568 			shrink_dentry_list(&data.select.dispose);
1569 		else if (!data.mountpoint)
1570 			return;
1571 
1572 		if (data.mountpoint) {
1573 			detach_mounts(data.mountpoint);
1574 			dput(data.mountpoint);
1575 		}
1576 		cond_resched();
1577 	}
1578 }
1579 EXPORT_SYMBOL(d_invalidate);
1580 
1581 /**
1582  * __d_alloc	-	allocate a dcache entry
1583  * @sb: filesystem it will belong to
1584  * @name: qstr of the name
1585  *
1586  * Allocates a dentry. It returns %NULL if there is insufficient memory
1587  * available. On a success the dentry is returned. The name passed in is
1588  * copied and the copy passed in may be reused after this call.
1589  */
1590 
1591 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1592 {
1593 	struct dentry *dentry;
1594 	char *dname;
1595 	int err;
1596 
1597 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1598 	if (!dentry)
1599 		return NULL;
1600 
1601 	/*
1602 	 * We guarantee that the inline name is always NUL-terminated.
1603 	 * This way the memcpy() done by the name switching in rename
1604 	 * will still always have a NUL at the end, even if we might
1605 	 * be overwriting an internal NUL character
1606 	 */
1607 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1608 	if (unlikely(!name)) {
1609 		static const struct qstr anon = QSTR_INIT("/", 1);
1610 		name = &anon;
1611 		dname = dentry->d_iname;
1612 	} else if (name->len > DNAME_INLINE_LEN-1) {
1613 		size_t size = offsetof(struct external_name, name[1]);
1614 		struct external_name *p = kmalloc(size + name->len,
1615 						  GFP_KERNEL_ACCOUNT);
1616 		if (!p) {
1617 			kmem_cache_free(dentry_cache, dentry);
1618 			return NULL;
1619 		}
1620 		atomic_set(&p->u.count, 1);
1621 		dname = p->name;
1622 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1623 			kasan_unpoison_shadow(dname,
1624 				round_up(name->len + 1,	sizeof(unsigned long)));
1625 	} else  {
1626 		dname = dentry->d_iname;
1627 	}
1628 
1629 	dentry->d_name.len = name->len;
1630 	dentry->d_name.hash = name->hash;
1631 	memcpy(dname, name->name, name->len);
1632 	dname[name->len] = 0;
1633 
1634 	/* Make sure we always see the terminating NUL character */
1635 	smp_wmb();
1636 	dentry->d_name.name = dname;
1637 
1638 	dentry->d_lockref.count = 1;
1639 	dentry->d_flags = 0;
1640 	spin_lock_init(&dentry->d_lock);
1641 	seqcount_init(&dentry->d_seq);
1642 	dentry->d_inode = NULL;
1643 	dentry->d_parent = dentry;
1644 	dentry->d_sb = sb;
1645 	dentry->d_op = NULL;
1646 	dentry->d_fsdata = NULL;
1647 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1648 	INIT_LIST_HEAD(&dentry->d_lru);
1649 	INIT_LIST_HEAD(&dentry->d_subdirs);
1650 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1651 	INIT_LIST_HEAD(&dentry->d_child);
1652 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1653 
1654 	if (dentry->d_op && dentry->d_op->d_init) {
1655 		err = dentry->d_op->d_init(dentry);
1656 		if (err) {
1657 			if (dname_external(dentry))
1658 				kfree(external_name(dentry));
1659 			kmem_cache_free(dentry_cache, dentry);
1660 			return NULL;
1661 		}
1662 	}
1663 
1664 	this_cpu_inc(nr_dentry);
1665 
1666 	return dentry;
1667 }
1668 
1669 /**
1670  * d_alloc	-	allocate a dcache entry
1671  * @parent: parent of entry to allocate
1672  * @name: qstr of the name
1673  *
1674  * Allocates a dentry. It returns %NULL if there is insufficient memory
1675  * available. On a success the dentry is returned. The name passed in is
1676  * copied and the copy passed in may be reused after this call.
1677  */
1678 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1679 {
1680 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1681 	if (!dentry)
1682 		return NULL;
1683 	dentry->d_flags |= DCACHE_RCUACCESS;
1684 	spin_lock(&parent->d_lock);
1685 	/*
1686 	 * don't need child lock because it is not subject
1687 	 * to concurrency here
1688 	 */
1689 	__dget_dlock(parent);
1690 	dentry->d_parent = parent;
1691 	list_add(&dentry->d_child, &parent->d_subdirs);
1692 	spin_unlock(&parent->d_lock);
1693 
1694 	return dentry;
1695 }
1696 EXPORT_SYMBOL(d_alloc);
1697 
1698 struct dentry *d_alloc_cursor(struct dentry * parent)
1699 {
1700 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1701 	if (dentry) {
1702 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1703 		dentry->d_parent = dget(parent);
1704 	}
1705 	return dentry;
1706 }
1707 
1708 /**
1709  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1710  * @sb: the superblock
1711  * @name: qstr of the name
1712  *
1713  * For a filesystem that just pins its dentries in memory and never
1714  * performs lookups at all, return an unhashed IS_ROOT dentry.
1715  */
1716 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1717 {
1718 	return __d_alloc(sb, name);
1719 }
1720 EXPORT_SYMBOL(d_alloc_pseudo);
1721 
1722 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1723 {
1724 	struct qstr q;
1725 
1726 	q.name = name;
1727 	q.hash_len = hashlen_string(parent, name);
1728 	return d_alloc(parent, &q);
1729 }
1730 EXPORT_SYMBOL(d_alloc_name);
1731 
1732 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1733 {
1734 	WARN_ON_ONCE(dentry->d_op);
1735 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1736 				DCACHE_OP_COMPARE	|
1737 				DCACHE_OP_REVALIDATE	|
1738 				DCACHE_OP_WEAK_REVALIDATE	|
1739 				DCACHE_OP_DELETE	|
1740 				DCACHE_OP_REAL));
1741 	dentry->d_op = op;
1742 	if (!op)
1743 		return;
1744 	if (op->d_hash)
1745 		dentry->d_flags |= DCACHE_OP_HASH;
1746 	if (op->d_compare)
1747 		dentry->d_flags |= DCACHE_OP_COMPARE;
1748 	if (op->d_revalidate)
1749 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1750 	if (op->d_weak_revalidate)
1751 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1752 	if (op->d_delete)
1753 		dentry->d_flags |= DCACHE_OP_DELETE;
1754 	if (op->d_prune)
1755 		dentry->d_flags |= DCACHE_OP_PRUNE;
1756 	if (op->d_real)
1757 		dentry->d_flags |= DCACHE_OP_REAL;
1758 
1759 }
1760 EXPORT_SYMBOL(d_set_d_op);
1761 
1762 
1763 /*
1764  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1765  * @dentry - The dentry to mark
1766  *
1767  * Mark a dentry as falling through to the lower layer (as set with
1768  * d_pin_lower()).  This flag may be recorded on the medium.
1769  */
1770 void d_set_fallthru(struct dentry *dentry)
1771 {
1772 	spin_lock(&dentry->d_lock);
1773 	dentry->d_flags |= DCACHE_FALLTHRU;
1774 	spin_unlock(&dentry->d_lock);
1775 }
1776 EXPORT_SYMBOL(d_set_fallthru);
1777 
1778 static unsigned d_flags_for_inode(struct inode *inode)
1779 {
1780 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1781 
1782 	if (!inode)
1783 		return DCACHE_MISS_TYPE;
1784 
1785 	if (S_ISDIR(inode->i_mode)) {
1786 		add_flags = DCACHE_DIRECTORY_TYPE;
1787 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1788 			if (unlikely(!inode->i_op->lookup))
1789 				add_flags = DCACHE_AUTODIR_TYPE;
1790 			else
1791 				inode->i_opflags |= IOP_LOOKUP;
1792 		}
1793 		goto type_determined;
1794 	}
1795 
1796 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1797 		if (unlikely(inode->i_op->get_link)) {
1798 			add_flags = DCACHE_SYMLINK_TYPE;
1799 			goto type_determined;
1800 		}
1801 		inode->i_opflags |= IOP_NOFOLLOW;
1802 	}
1803 
1804 	if (unlikely(!S_ISREG(inode->i_mode)))
1805 		add_flags = DCACHE_SPECIAL_TYPE;
1806 
1807 type_determined:
1808 	if (unlikely(IS_AUTOMOUNT(inode)))
1809 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1810 	return add_flags;
1811 }
1812 
1813 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1814 {
1815 	unsigned add_flags = d_flags_for_inode(inode);
1816 	WARN_ON(d_in_lookup(dentry));
1817 
1818 	spin_lock(&dentry->d_lock);
1819 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1820 	raw_write_seqcount_begin(&dentry->d_seq);
1821 	__d_set_inode_and_type(dentry, inode, add_flags);
1822 	raw_write_seqcount_end(&dentry->d_seq);
1823 	fsnotify_update_flags(dentry);
1824 	spin_unlock(&dentry->d_lock);
1825 }
1826 
1827 /**
1828  * d_instantiate - fill in inode information for a dentry
1829  * @entry: dentry to complete
1830  * @inode: inode to attach to this dentry
1831  *
1832  * Fill in inode information in the entry.
1833  *
1834  * This turns negative dentries into productive full members
1835  * of society.
1836  *
1837  * NOTE! This assumes that the inode count has been incremented
1838  * (or otherwise set) by the caller to indicate that it is now
1839  * in use by the dcache.
1840  */
1841 
1842 void d_instantiate(struct dentry *entry, struct inode * inode)
1843 {
1844 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1845 	if (inode) {
1846 		security_d_instantiate(entry, inode);
1847 		spin_lock(&inode->i_lock);
1848 		__d_instantiate(entry, inode);
1849 		spin_unlock(&inode->i_lock);
1850 	}
1851 }
1852 EXPORT_SYMBOL(d_instantiate);
1853 
1854 /**
1855  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1856  * @entry: dentry to complete
1857  * @inode: inode to attach to this dentry
1858  *
1859  * Fill in inode information in the entry.  If a directory alias is found, then
1860  * return an error (and drop inode).  Together with d_materialise_unique() this
1861  * guarantees that a directory inode may never have more than one alias.
1862  */
1863 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1864 {
1865 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1866 
1867 	security_d_instantiate(entry, inode);
1868 	spin_lock(&inode->i_lock);
1869 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1870 		spin_unlock(&inode->i_lock);
1871 		iput(inode);
1872 		return -EBUSY;
1873 	}
1874 	__d_instantiate(entry, inode);
1875 	spin_unlock(&inode->i_lock);
1876 
1877 	return 0;
1878 }
1879 EXPORT_SYMBOL(d_instantiate_no_diralias);
1880 
1881 struct dentry *d_make_root(struct inode *root_inode)
1882 {
1883 	struct dentry *res = NULL;
1884 
1885 	if (root_inode) {
1886 		res = __d_alloc(root_inode->i_sb, NULL);
1887 		if (res)
1888 			d_instantiate(res, root_inode);
1889 		else
1890 			iput(root_inode);
1891 	}
1892 	return res;
1893 }
1894 EXPORT_SYMBOL(d_make_root);
1895 
1896 static struct dentry * __d_find_any_alias(struct inode *inode)
1897 {
1898 	struct dentry *alias;
1899 
1900 	if (hlist_empty(&inode->i_dentry))
1901 		return NULL;
1902 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1903 	__dget(alias);
1904 	return alias;
1905 }
1906 
1907 /**
1908  * d_find_any_alias - find any alias for a given inode
1909  * @inode: inode to find an alias for
1910  *
1911  * If any aliases exist for the given inode, take and return a
1912  * reference for one of them.  If no aliases exist, return %NULL.
1913  */
1914 struct dentry *d_find_any_alias(struct inode *inode)
1915 {
1916 	struct dentry *de;
1917 
1918 	spin_lock(&inode->i_lock);
1919 	de = __d_find_any_alias(inode);
1920 	spin_unlock(&inode->i_lock);
1921 	return de;
1922 }
1923 EXPORT_SYMBOL(d_find_any_alias);
1924 
1925 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1926 {
1927 	struct dentry *tmp;
1928 	struct dentry *res;
1929 	unsigned add_flags;
1930 
1931 	if (!inode)
1932 		return ERR_PTR(-ESTALE);
1933 	if (IS_ERR(inode))
1934 		return ERR_CAST(inode);
1935 
1936 	res = d_find_any_alias(inode);
1937 	if (res)
1938 		goto out_iput;
1939 
1940 	tmp = __d_alloc(inode->i_sb, NULL);
1941 	if (!tmp) {
1942 		res = ERR_PTR(-ENOMEM);
1943 		goto out_iput;
1944 	}
1945 
1946 	security_d_instantiate(tmp, inode);
1947 	spin_lock(&inode->i_lock);
1948 	res = __d_find_any_alias(inode);
1949 	if (res) {
1950 		spin_unlock(&inode->i_lock);
1951 		dput(tmp);
1952 		goto out_iput;
1953 	}
1954 
1955 	/* attach a disconnected dentry */
1956 	add_flags = d_flags_for_inode(inode);
1957 
1958 	if (disconnected)
1959 		add_flags |= DCACHE_DISCONNECTED;
1960 
1961 	spin_lock(&tmp->d_lock);
1962 	__d_set_inode_and_type(tmp, inode, add_flags);
1963 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1964 	hlist_bl_lock(&tmp->d_sb->s_anon);
1965 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1966 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1967 	spin_unlock(&tmp->d_lock);
1968 	spin_unlock(&inode->i_lock);
1969 
1970 	return tmp;
1971 
1972  out_iput:
1973 	iput(inode);
1974 	return res;
1975 }
1976 
1977 /**
1978  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1979  * @inode: inode to allocate the dentry for
1980  *
1981  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1982  * similar open by handle operations.  The returned dentry may be anonymous,
1983  * or may have a full name (if the inode was already in the cache).
1984  *
1985  * When called on a directory inode, we must ensure that the inode only ever
1986  * has one dentry.  If a dentry is found, that is returned instead of
1987  * allocating a new one.
1988  *
1989  * On successful return, the reference to the inode has been transferred
1990  * to the dentry.  In case of an error the reference on the inode is released.
1991  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1992  * be passed in and the error will be propagated to the return value,
1993  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1994  */
1995 struct dentry *d_obtain_alias(struct inode *inode)
1996 {
1997 	return __d_obtain_alias(inode, 1);
1998 }
1999 EXPORT_SYMBOL(d_obtain_alias);
2000 
2001 /**
2002  * d_obtain_root - find or allocate a dentry for a given inode
2003  * @inode: inode to allocate the dentry for
2004  *
2005  * Obtain an IS_ROOT dentry for the root of a filesystem.
2006  *
2007  * We must ensure that directory inodes only ever have one dentry.  If a
2008  * dentry is found, that is returned instead of allocating a new one.
2009  *
2010  * On successful return, the reference to the inode has been transferred
2011  * to the dentry.  In case of an error the reference on the inode is
2012  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2013  * error will be propagate to the return value, with a %NULL @inode
2014  * replaced by ERR_PTR(-ESTALE).
2015  */
2016 struct dentry *d_obtain_root(struct inode *inode)
2017 {
2018 	return __d_obtain_alias(inode, 0);
2019 }
2020 EXPORT_SYMBOL(d_obtain_root);
2021 
2022 /**
2023  * d_add_ci - lookup or allocate new dentry with case-exact name
2024  * @inode:  the inode case-insensitive lookup has found
2025  * @dentry: the negative dentry that was passed to the parent's lookup func
2026  * @name:   the case-exact name to be associated with the returned dentry
2027  *
2028  * This is to avoid filling the dcache with case-insensitive names to the
2029  * same inode, only the actual correct case is stored in the dcache for
2030  * case-insensitive filesystems.
2031  *
2032  * For a case-insensitive lookup match and if the the case-exact dentry
2033  * already exists in in the dcache, use it and return it.
2034  *
2035  * If no entry exists with the exact case name, allocate new dentry with
2036  * the exact case, and return the spliced entry.
2037  */
2038 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2039 			struct qstr *name)
2040 {
2041 	struct dentry *found, *res;
2042 
2043 	/*
2044 	 * First check if a dentry matching the name already exists,
2045 	 * if not go ahead and create it now.
2046 	 */
2047 	found = d_hash_and_lookup(dentry->d_parent, name);
2048 	if (found) {
2049 		iput(inode);
2050 		return found;
2051 	}
2052 	if (d_in_lookup(dentry)) {
2053 		found = d_alloc_parallel(dentry->d_parent, name,
2054 					dentry->d_wait);
2055 		if (IS_ERR(found) || !d_in_lookup(found)) {
2056 			iput(inode);
2057 			return found;
2058 		}
2059 	} else {
2060 		found = d_alloc(dentry->d_parent, name);
2061 		if (!found) {
2062 			iput(inode);
2063 			return ERR_PTR(-ENOMEM);
2064 		}
2065 	}
2066 	res = d_splice_alias(inode, found);
2067 	if (res) {
2068 		dput(found);
2069 		return res;
2070 	}
2071 	return found;
2072 }
2073 EXPORT_SYMBOL(d_add_ci);
2074 
2075 
2076 static inline bool d_same_name(const struct dentry *dentry,
2077 				const struct dentry *parent,
2078 				const struct qstr *name)
2079 {
2080 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2081 		if (dentry->d_name.len != name->len)
2082 			return false;
2083 		return dentry_cmp(dentry, name->name, name->len) == 0;
2084 	}
2085 	return parent->d_op->d_compare(dentry,
2086 				       dentry->d_name.len, dentry->d_name.name,
2087 				       name) == 0;
2088 }
2089 
2090 /**
2091  * __d_lookup_rcu - search for a dentry (racy, store-free)
2092  * @parent: parent dentry
2093  * @name: qstr of name we wish to find
2094  * @seqp: returns d_seq value at the point where the dentry was found
2095  * Returns: dentry, or NULL
2096  *
2097  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2098  * resolution (store-free path walking) design described in
2099  * Documentation/filesystems/path-lookup.txt.
2100  *
2101  * This is not to be used outside core vfs.
2102  *
2103  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2104  * held, and rcu_read_lock held. The returned dentry must not be stored into
2105  * without taking d_lock and checking d_seq sequence count against @seq
2106  * returned here.
2107  *
2108  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2109  * function.
2110  *
2111  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2112  * the returned dentry, so long as its parent's seqlock is checked after the
2113  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2114  * is formed, giving integrity down the path walk.
2115  *
2116  * NOTE! The caller *has* to check the resulting dentry against the sequence
2117  * number we've returned before using any of the resulting dentry state!
2118  */
2119 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2120 				const struct qstr *name,
2121 				unsigned *seqp)
2122 {
2123 	u64 hashlen = name->hash_len;
2124 	const unsigned char *str = name->name;
2125 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2126 	struct hlist_bl_node *node;
2127 	struct dentry *dentry;
2128 
2129 	/*
2130 	 * Note: There is significant duplication with __d_lookup_rcu which is
2131 	 * required to prevent single threaded performance regressions
2132 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2133 	 * Keep the two functions in sync.
2134 	 */
2135 
2136 	/*
2137 	 * The hash list is protected using RCU.
2138 	 *
2139 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2140 	 * races with d_move().
2141 	 *
2142 	 * It is possible that concurrent renames can mess up our list
2143 	 * walk here and result in missing our dentry, resulting in the
2144 	 * false-negative result. d_lookup() protects against concurrent
2145 	 * renames using rename_lock seqlock.
2146 	 *
2147 	 * See Documentation/filesystems/path-lookup.txt for more details.
2148 	 */
2149 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2150 		unsigned seq;
2151 
2152 seqretry:
2153 		/*
2154 		 * The dentry sequence count protects us from concurrent
2155 		 * renames, and thus protects parent and name fields.
2156 		 *
2157 		 * The caller must perform a seqcount check in order
2158 		 * to do anything useful with the returned dentry.
2159 		 *
2160 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2161 		 * we don't wait for the sequence count to stabilize if it
2162 		 * is in the middle of a sequence change. If we do the slow
2163 		 * dentry compare, we will do seqretries until it is stable,
2164 		 * and if we end up with a successful lookup, we actually
2165 		 * want to exit RCU lookup anyway.
2166 		 *
2167 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2168 		 * we are still guaranteed NUL-termination of ->d_name.name.
2169 		 */
2170 		seq = raw_seqcount_begin(&dentry->d_seq);
2171 		if (dentry->d_parent != parent)
2172 			continue;
2173 		if (d_unhashed(dentry))
2174 			continue;
2175 
2176 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2177 			int tlen;
2178 			const char *tname;
2179 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2180 				continue;
2181 			tlen = dentry->d_name.len;
2182 			tname = dentry->d_name.name;
2183 			/* we want a consistent (name,len) pair */
2184 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2185 				cpu_relax();
2186 				goto seqretry;
2187 			}
2188 			if (parent->d_op->d_compare(dentry,
2189 						    tlen, tname, name) != 0)
2190 				continue;
2191 		} else {
2192 			if (dentry->d_name.hash_len != hashlen)
2193 				continue;
2194 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2195 				continue;
2196 		}
2197 		*seqp = seq;
2198 		return dentry;
2199 	}
2200 	return NULL;
2201 }
2202 
2203 /**
2204  * d_lookup - search for a dentry
2205  * @parent: parent dentry
2206  * @name: qstr of name we wish to find
2207  * Returns: dentry, or NULL
2208  *
2209  * d_lookup searches the children of the parent dentry for the name in
2210  * question. If the dentry is found its reference count is incremented and the
2211  * dentry is returned. The caller must use dput to free the entry when it has
2212  * finished using it. %NULL is returned if the dentry does not exist.
2213  */
2214 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2215 {
2216 	struct dentry *dentry;
2217 	unsigned seq;
2218 
2219 	do {
2220 		seq = read_seqbegin(&rename_lock);
2221 		dentry = __d_lookup(parent, name);
2222 		if (dentry)
2223 			break;
2224 	} while (read_seqretry(&rename_lock, seq));
2225 	return dentry;
2226 }
2227 EXPORT_SYMBOL(d_lookup);
2228 
2229 /**
2230  * __d_lookup - search for a dentry (racy)
2231  * @parent: parent dentry
2232  * @name: qstr of name we wish to find
2233  * Returns: dentry, or NULL
2234  *
2235  * __d_lookup is like d_lookup, however it may (rarely) return a
2236  * false-negative result due to unrelated rename activity.
2237  *
2238  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2239  * however it must be used carefully, eg. with a following d_lookup in
2240  * the case of failure.
2241  *
2242  * __d_lookup callers must be commented.
2243  */
2244 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2245 {
2246 	unsigned int hash = name->hash;
2247 	struct hlist_bl_head *b = d_hash(hash);
2248 	struct hlist_bl_node *node;
2249 	struct dentry *found = NULL;
2250 	struct dentry *dentry;
2251 
2252 	/*
2253 	 * Note: There is significant duplication with __d_lookup_rcu which is
2254 	 * required to prevent single threaded performance regressions
2255 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2256 	 * Keep the two functions in sync.
2257 	 */
2258 
2259 	/*
2260 	 * The hash list is protected using RCU.
2261 	 *
2262 	 * Take d_lock when comparing a candidate dentry, to avoid races
2263 	 * with d_move().
2264 	 *
2265 	 * It is possible that concurrent renames can mess up our list
2266 	 * walk here and result in missing our dentry, resulting in the
2267 	 * false-negative result. d_lookup() protects against concurrent
2268 	 * renames using rename_lock seqlock.
2269 	 *
2270 	 * See Documentation/filesystems/path-lookup.txt for more details.
2271 	 */
2272 	rcu_read_lock();
2273 
2274 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2275 
2276 		if (dentry->d_name.hash != hash)
2277 			continue;
2278 
2279 		spin_lock(&dentry->d_lock);
2280 		if (dentry->d_parent != parent)
2281 			goto next;
2282 		if (d_unhashed(dentry))
2283 			goto next;
2284 
2285 		if (!d_same_name(dentry, parent, name))
2286 			goto next;
2287 
2288 		dentry->d_lockref.count++;
2289 		found = dentry;
2290 		spin_unlock(&dentry->d_lock);
2291 		break;
2292 next:
2293 		spin_unlock(&dentry->d_lock);
2294  	}
2295  	rcu_read_unlock();
2296 
2297  	return found;
2298 }
2299 
2300 /**
2301  * d_hash_and_lookup - hash the qstr then search for a dentry
2302  * @dir: Directory to search in
2303  * @name: qstr of name we wish to find
2304  *
2305  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2306  */
2307 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2308 {
2309 	/*
2310 	 * Check for a fs-specific hash function. Note that we must
2311 	 * calculate the standard hash first, as the d_op->d_hash()
2312 	 * routine may choose to leave the hash value unchanged.
2313 	 */
2314 	name->hash = full_name_hash(dir, name->name, name->len);
2315 	if (dir->d_flags & DCACHE_OP_HASH) {
2316 		int err = dir->d_op->d_hash(dir, name);
2317 		if (unlikely(err < 0))
2318 			return ERR_PTR(err);
2319 	}
2320 	return d_lookup(dir, name);
2321 }
2322 EXPORT_SYMBOL(d_hash_and_lookup);
2323 
2324 /*
2325  * When a file is deleted, we have two options:
2326  * - turn this dentry into a negative dentry
2327  * - unhash this dentry and free it.
2328  *
2329  * Usually, we want to just turn this into
2330  * a negative dentry, but if anybody else is
2331  * currently using the dentry or the inode
2332  * we can't do that and we fall back on removing
2333  * it from the hash queues and waiting for
2334  * it to be deleted later when it has no users
2335  */
2336 
2337 /**
2338  * d_delete - delete a dentry
2339  * @dentry: The dentry to delete
2340  *
2341  * Turn the dentry into a negative dentry if possible, otherwise
2342  * remove it from the hash queues so it can be deleted later
2343  */
2344 
2345 void d_delete(struct dentry * dentry)
2346 {
2347 	struct inode *inode;
2348 	int isdir = 0;
2349 	/*
2350 	 * Are we the only user?
2351 	 */
2352 again:
2353 	spin_lock(&dentry->d_lock);
2354 	inode = dentry->d_inode;
2355 	isdir = S_ISDIR(inode->i_mode);
2356 	if (dentry->d_lockref.count == 1) {
2357 		if (!spin_trylock(&inode->i_lock)) {
2358 			spin_unlock(&dentry->d_lock);
2359 			cpu_relax();
2360 			goto again;
2361 		}
2362 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2363 		dentry_unlink_inode(dentry);
2364 		fsnotify_nameremove(dentry, isdir);
2365 		return;
2366 	}
2367 
2368 	if (!d_unhashed(dentry))
2369 		__d_drop(dentry);
2370 
2371 	spin_unlock(&dentry->d_lock);
2372 
2373 	fsnotify_nameremove(dentry, isdir);
2374 }
2375 EXPORT_SYMBOL(d_delete);
2376 
2377 static void __d_rehash(struct dentry *entry)
2378 {
2379 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2380 	BUG_ON(!d_unhashed(entry));
2381 	hlist_bl_lock(b);
2382 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2383 	hlist_bl_unlock(b);
2384 }
2385 
2386 /**
2387  * d_rehash	- add an entry back to the hash
2388  * @entry: dentry to add to the hash
2389  *
2390  * Adds a dentry to the hash according to its name.
2391  */
2392 
2393 void d_rehash(struct dentry * entry)
2394 {
2395 	spin_lock(&entry->d_lock);
2396 	__d_rehash(entry);
2397 	spin_unlock(&entry->d_lock);
2398 }
2399 EXPORT_SYMBOL(d_rehash);
2400 
2401 static inline unsigned start_dir_add(struct inode *dir)
2402 {
2403 
2404 	for (;;) {
2405 		unsigned n = dir->i_dir_seq;
2406 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2407 			return n;
2408 		cpu_relax();
2409 	}
2410 }
2411 
2412 static inline void end_dir_add(struct inode *dir, unsigned n)
2413 {
2414 	smp_store_release(&dir->i_dir_seq, n + 2);
2415 }
2416 
2417 static void d_wait_lookup(struct dentry *dentry)
2418 {
2419 	if (d_in_lookup(dentry)) {
2420 		DECLARE_WAITQUEUE(wait, current);
2421 		add_wait_queue(dentry->d_wait, &wait);
2422 		do {
2423 			set_current_state(TASK_UNINTERRUPTIBLE);
2424 			spin_unlock(&dentry->d_lock);
2425 			schedule();
2426 			spin_lock(&dentry->d_lock);
2427 		} while (d_in_lookup(dentry));
2428 	}
2429 }
2430 
2431 struct dentry *d_alloc_parallel(struct dentry *parent,
2432 				const struct qstr *name,
2433 				wait_queue_head_t *wq)
2434 {
2435 	unsigned int hash = name->hash;
2436 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2437 	struct hlist_bl_node *node;
2438 	struct dentry *new = d_alloc(parent, name);
2439 	struct dentry *dentry;
2440 	unsigned seq, r_seq, d_seq;
2441 
2442 	if (unlikely(!new))
2443 		return ERR_PTR(-ENOMEM);
2444 
2445 retry:
2446 	rcu_read_lock();
2447 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2448 	r_seq = read_seqbegin(&rename_lock);
2449 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2450 	if (unlikely(dentry)) {
2451 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2452 			rcu_read_unlock();
2453 			goto retry;
2454 		}
2455 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2456 			rcu_read_unlock();
2457 			dput(dentry);
2458 			goto retry;
2459 		}
2460 		rcu_read_unlock();
2461 		dput(new);
2462 		return dentry;
2463 	}
2464 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2465 		rcu_read_unlock();
2466 		goto retry;
2467 	}
2468 	hlist_bl_lock(b);
2469 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2470 		hlist_bl_unlock(b);
2471 		rcu_read_unlock();
2472 		goto retry;
2473 	}
2474 	/*
2475 	 * No changes for the parent since the beginning of d_lookup().
2476 	 * Since all removals from the chain happen with hlist_bl_lock(),
2477 	 * any potential in-lookup matches are going to stay here until
2478 	 * we unlock the chain.  All fields are stable in everything
2479 	 * we encounter.
2480 	 */
2481 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2482 		if (dentry->d_name.hash != hash)
2483 			continue;
2484 		if (dentry->d_parent != parent)
2485 			continue;
2486 		if (!d_same_name(dentry, parent, name))
2487 			continue;
2488 		hlist_bl_unlock(b);
2489 		/* now we can try to grab a reference */
2490 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2491 			rcu_read_unlock();
2492 			goto retry;
2493 		}
2494 
2495 		rcu_read_unlock();
2496 		/*
2497 		 * somebody is likely to be still doing lookup for it;
2498 		 * wait for them to finish
2499 		 */
2500 		spin_lock(&dentry->d_lock);
2501 		d_wait_lookup(dentry);
2502 		/*
2503 		 * it's not in-lookup anymore; in principle we should repeat
2504 		 * everything from dcache lookup, but it's likely to be what
2505 		 * d_lookup() would've found anyway.  If it is, just return it;
2506 		 * otherwise we really have to repeat the whole thing.
2507 		 */
2508 		if (unlikely(dentry->d_name.hash != hash))
2509 			goto mismatch;
2510 		if (unlikely(dentry->d_parent != parent))
2511 			goto mismatch;
2512 		if (unlikely(d_unhashed(dentry)))
2513 			goto mismatch;
2514 		if (unlikely(!d_same_name(dentry, parent, name)))
2515 			goto mismatch;
2516 		/* OK, it *is* a hashed match; return it */
2517 		spin_unlock(&dentry->d_lock);
2518 		dput(new);
2519 		return dentry;
2520 	}
2521 	rcu_read_unlock();
2522 	/* we can't take ->d_lock here; it's OK, though. */
2523 	new->d_flags |= DCACHE_PAR_LOOKUP;
2524 	new->d_wait = wq;
2525 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2526 	hlist_bl_unlock(b);
2527 	return new;
2528 mismatch:
2529 	spin_unlock(&dentry->d_lock);
2530 	dput(dentry);
2531 	goto retry;
2532 }
2533 EXPORT_SYMBOL(d_alloc_parallel);
2534 
2535 void __d_lookup_done(struct dentry *dentry)
2536 {
2537 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2538 						 dentry->d_name.hash);
2539 	hlist_bl_lock(b);
2540 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2541 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2542 	wake_up_all(dentry->d_wait);
2543 	dentry->d_wait = NULL;
2544 	hlist_bl_unlock(b);
2545 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2546 	INIT_LIST_HEAD(&dentry->d_lru);
2547 }
2548 EXPORT_SYMBOL(__d_lookup_done);
2549 
2550 /* inode->i_lock held if inode is non-NULL */
2551 
2552 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2553 {
2554 	struct inode *dir = NULL;
2555 	unsigned n;
2556 	spin_lock(&dentry->d_lock);
2557 	if (unlikely(d_in_lookup(dentry))) {
2558 		dir = dentry->d_parent->d_inode;
2559 		n = start_dir_add(dir);
2560 		__d_lookup_done(dentry);
2561 	}
2562 	if (inode) {
2563 		unsigned add_flags = d_flags_for_inode(inode);
2564 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2565 		raw_write_seqcount_begin(&dentry->d_seq);
2566 		__d_set_inode_and_type(dentry, inode, add_flags);
2567 		raw_write_seqcount_end(&dentry->d_seq);
2568 		fsnotify_update_flags(dentry);
2569 	}
2570 	__d_rehash(dentry);
2571 	if (dir)
2572 		end_dir_add(dir, n);
2573 	spin_unlock(&dentry->d_lock);
2574 	if (inode)
2575 		spin_unlock(&inode->i_lock);
2576 }
2577 
2578 /**
2579  * d_add - add dentry to hash queues
2580  * @entry: dentry to add
2581  * @inode: The inode to attach to this dentry
2582  *
2583  * This adds the entry to the hash queues and initializes @inode.
2584  * The entry was actually filled in earlier during d_alloc().
2585  */
2586 
2587 void d_add(struct dentry *entry, struct inode *inode)
2588 {
2589 	if (inode) {
2590 		security_d_instantiate(entry, inode);
2591 		spin_lock(&inode->i_lock);
2592 	}
2593 	__d_add(entry, inode);
2594 }
2595 EXPORT_SYMBOL(d_add);
2596 
2597 /**
2598  * d_exact_alias - find and hash an exact unhashed alias
2599  * @entry: dentry to add
2600  * @inode: The inode to go with this dentry
2601  *
2602  * If an unhashed dentry with the same name/parent and desired
2603  * inode already exists, hash and return it.  Otherwise, return
2604  * NULL.
2605  *
2606  * Parent directory should be locked.
2607  */
2608 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2609 {
2610 	struct dentry *alias;
2611 	unsigned int hash = entry->d_name.hash;
2612 
2613 	spin_lock(&inode->i_lock);
2614 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2615 		/*
2616 		 * Don't need alias->d_lock here, because aliases with
2617 		 * d_parent == entry->d_parent are not subject to name or
2618 		 * parent changes, because the parent inode i_mutex is held.
2619 		 */
2620 		if (alias->d_name.hash != hash)
2621 			continue;
2622 		if (alias->d_parent != entry->d_parent)
2623 			continue;
2624 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2625 			continue;
2626 		spin_lock(&alias->d_lock);
2627 		if (!d_unhashed(alias)) {
2628 			spin_unlock(&alias->d_lock);
2629 			alias = NULL;
2630 		} else {
2631 			__dget_dlock(alias);
2632 			__d_rehash(alias);
2633 			spin_unlock(&alias->d_lock);
2634 		}
2635 		spin_unlock(&inode->i_lock);
2636 		return alias;
2637 	}
2638 	spin_unlock(&inode->i_lock);
2639 	return NULL;
2640 }
2641 EXPORT_SYMBOL(d_exact_alias);
2642 
2643 /**
2644  * dentry_update_name_case - update case insensitive dentry with a new name
2645  * @dentry: dentry to be updated
2646  * @name: new name
2647  *
2648  * Update a case insensitive dentry with new case of name.
2649  *
2650  * dentry must have been returned by d_lookup with name @name. Old and new
2651  * name lengths must match (ie. no d_compare which allows mismatched name
2652  * lengths).
2653  *
2654  * Parent inode i_mutex must be held over d_lookup and into this call (to
2655  * keep renames and concurrent inserts, and readdir(2) away).
2656  */
2657 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2658 {
2659 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2660 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2661 
2662 	spin_lock(&dentry->d_lock);
2663 	write_seqcount_begin(&dentry->d_seq);
2664 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2665 	write_seqcount_end(&dentry->d_seq);
2666 	spin_unlock(&dentry->d_lock);
2667 }
2668 EXPORT_SYMBOL(dentry_update_name_case);
2669 
2670 static void swap_names(struct dentry *dentry, struct dentry *target)
2671 {
2672 	if (unlikely(dname_external(target))) {
2673 		if (unlikely(dname_external(dentry))) {
2674 			/*
2675 			 * Both external: swap the pointers
2676 			 */
2677 			swap(target->d_name.name, dentry->d_name.name);
2678 		} else {
2679 			/*
2680 			 * dentry:internal, target:external.  Steal target's
2681 			 * storage and make target internal.
2682 			 */
2683 			memcpy(target->d_iname, dentry->d_name.name,
2684 					dentry->d_name.len + 1);
2685 			dentry->d_name.name = target->d_name.name;
2686 			target->d_name.name = target->d_iname;
2687 		}
2688 	} else {
2689 		if (unlikely(dname_external(dentry))) {
2690 			/*
2691 			 * dentry:external, target:internal.  Give dentry's
2692 			 * storage to target and make dentry internal
2693 			 */
2694 			memcpy(dentry->d_iname, target->d_name.name,
2695 					target->d_name.len + 1);
2696 			target->d_name.name = dentry->d_name.name;
2697 			dentry->d_name.name = dentry->d_iname;
2698 		} else {
2699 			/*
2700 			 * Both are internal.
2701 			 */
2702 			unsigned int i;
2703 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2704 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2705 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2706 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2707 				swap(((long *) &dentry->d_iname)[i],
2708 				     ((long *) &target->d_iname)[i]);
2709 			}
2710 		}
2711 	}
2712 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2713 }
2714 
2715 static void copy_name(struct dentry *dentry, struct dentry *target)
2716 {
2717 	struct external_name *old_name = NULL;
2718 	if (unlikely(dname_external(dentry)))
2719 		old_name = external_name(dentry);
2720 	if (unlikely(dname_external(target))) {
2721 		atomic_inc(&external_name(target)->u.count);
2722 		dentry->d_name = target->d_name;
2723 	} else {
2724 		memcpy(dentry->d_iname, target->d_name.name,
2725 				target->d_name.len + 1);
2726 		dentry->d_name.name = dentry->d_iname;
2727 		dentry->d_name.hash_len = target->d_name.hash_len;
2728 	}
2729 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2730 		kfree_rcu(old_name, u.head);
2731 }
2732 
2733 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2734 {
2735 	/*
2736 	 * XXXX: do we really need to take target->d_lock?
2737 	 */
2738 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2739 		spin_lock(&target->d_parent->d_lock);
2740 	else {
2741 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2742 			spin_lock(&dentry->d_parent->d_lock);
2743 			spin_lock_nested(&target->d_parent->d_lock,
2744 						DENTRY_D_LOCK_NESTED);
2745 		} else {
2746 			spin_lock(&target->d_parent->d_lock);
2747 			spin_lock_nested(&dentry->d_parent->d_lock,
2748 						DENTRY_D_LOCK_NESTED);
2749 		}
2750 	}
2751 	if (target < dentry) {
2752 		spin_lock_nested(&target->d_lock, 2);
2753 		spin_lock_nested(&dentry->d_lock, 3);
2754 	} else {
2755 		spin_lock_nested(&dentry->d_lock, 2);
2756 		spin_lock_nested(&target->d_lock, 3);
2757 	}
2758 }
2759 
2760 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2761 {
2762 	if (target->d_parent != dentry->d_parent)
2763 		spin_unlock(&dentry->d_parent->d_lock);
2764 	if (target->d_parent != target)
2765 		spin_unlock(&target->d_parent->d_lock);
2766 	spin_unlock(&target->d_lock);
2767 	spin_unlock(&dentry->d_lock);
2768 }
2769 
2770 /*
2771  * When switching names, the actual string doesn't strictly have to
2772  * be preserved in the target - because we're dropping the target
2773  * anyway. As such, we can just do a simple memcpy() to copy over
2774  * the new name before we switch, unless we are going to rehash
2775  * it.  Note that if we *do* unhash the target, we are not allowed
2776  * to rehash it without giving it a new name/hash key - whether
2777  * we swap or overwrite the names here, resulting name won't match
2778  * the reality in filesystem; it's only there for d_path() purposes.
2779  * Note that all of this is happening under rename_lock, so the
2780  * any hash lookup seeing it in the middle of manipulations will
2781  * be discarded anyway.  So we do not care what happens to the hash
2782  * key in that case.
2783  */
2784 /*
2785  * __d_move - move a dentry
2786  * @dentry: entry to move
2787  * @target: new dentry
2788  * @exchange: exchange the two dentries
2789  *
2790  * Update the dcache to reflect the move of a file name. Negative
2791  * dcache entries should not be moved in this way. Caller must hold
2792  * rename_lock, the i_mutex of the source and target directories,
2793  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2794  */
2795 static void __d_move(struct dentry *dentry, struct dentry *target,
2796 		     bool exchange)
2797 {
2798 	struct inode *dir = NULL;
2799 	unsigned n;
2800 	if (!dentry->d_inode)
2801 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2802 
2803 	BUG_ON(d_ancestor(dentry, target));
2804 	BUG_ON(d_ancestor(target, dentry));
2805 
2806 	dentry_lock_for_move(dentry, target);
2807 	if (unlikely(d_in_lookup(target))) {
2808 		dir = target->d_parent->d_inode;
2809 		n = start_dir_add(dir);
2810 		__d_lookup_done(target);
2811 	}
2812 
2813 	write_seqcount_begin(&dentry->d_seq);
2814 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2815 
2816 	/* unhash both */
2817 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2818 	__d_drop(dentry);
2819 	__d_drop(target);
2820 
2821 	/* Switch the names.. */
2822 	if (exchange)
2823 		swap_names(dentry, target);
2824 	else
2825 		copy_name(dentry, target);
2826 
2827 	/* rehash in new place(s) */
2828 	__d_rehash(dentry);
2829 	if (exchange)
2830 		__d_rehash(target);
2831 
2832 	/* ... and switch them in the tree */
2833 	if (IS_ROOT(dentry)) {
2834 		/* splicing a tree */
2835 		dentry->d_flags |= DCACHE_RCUACCESS;
2836 		dentry->d_parent = target->d_parent;
2837 		target->d_parent = target;
2838 		list_del_init(&target->d_child);
2839 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2840 	} else {
2841 		/* swapping two dentries */
2842 		swap(dentry->d_parent, target->d_parent);
2843 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2844 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2845 		if (exchange)
2846 			fsnotify_update_flags(target);
2847 		fsnotify_update_flags(dentry);
2848 	}
2849 
2850 	write_seqcount_end(&target->d_seq);
2851 	write_seqcount_end(&dentry->d_seq);
2852 
2853 	if (dir)
2854 		end_dir_add(dir, n);
2855 	dentry_unlock_for_move(dentry, target);
2856 }
2857 
2858 /*
2859  * d_move - move a dentry
2860  * @dentry: entry to move
2861  * @target: new dentry
2862  *
2863  * Update the dcache to reflect the move of a file name. Negative
2864  * dcache entries should not be moved in this way. See the locking
2865  * requirements for __d_move.
2866  */
2867 void d_move(struct dentry *dentry, struct dentry *target)
2868 {
2869 	write_seqlock(&rename_lock);
2870 	__d_move(dentry, target, false);
2871 	write_sequnlock(&rename_lock);
2872 }
2873 EXPORT_SYMBOL(d_move);
2874 
2875 /*
2876  * d_exchange - exchange two dentries
2877  * @dentry1: first dentry
2878  * @dentry2: second dentry
2879  */
2880 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2881 {
2882 	write_seqlock(&rename_lock);
2883 
2884 	WARN_ON(!dentry1->d_inode);
2885 	WARN_ON(!dentry2->d_inode);
2886 	WARN_ON(IS_ROOT(dentry1));
2887 	WARN_ON(IS_ROOT(dentry2));
2888 
2889 	__d_move(dentry1, dentry2, true);
2890 
2891 	write_sequnlock(&rename_lock);
2892 }
2893 
2894 /**
2895  * d_ancestor - search for an ancestor
2896  * @p1: ancestor dentry
2897  * @p2: child dentry
2898  *
2899  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2900  * an ancestor of p2, else NULL.
2901  */
2902 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2903 {
2904 	struct dentry *p;
2905 
2906 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2907 		if (p->d_parent == p1)
2908 			return p;
2909 	}
2910 	return NULL;
2911 }
2912 
2913 /*
2914  * This helper attempts to cope with remotely renamed directories
2915  *
2916  * It assumes that the caller is already holding
2917  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2918  *
2919  * Note: If ever the locking in lock_rename() changes, then please
2920  * remember to update this too...
2921  */
2922 static int __d_unalias(struct inode *inode,
2923 		struct dentry *dentry, struct dentry *alias)
2924 {
2925 	struct mutex *m1 = NULL;
2926 	struct rw_semaphore *m2 = NULL;
2927 	int ret = -ESTALE;
2928 
2929 	/* If alias and dentry share a parent, then no extra locks required */
2930 	if (alias->d_parent == dentry->d_parent)
2931 		goto out_unalias;
2932 
2933 	/* See lock_rename() */
2934 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2935 		goto out_err;
2936 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2937 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2938 		goto out_err;
2939 	m2 = &alias->d_parent->d_inode->i_rwsem;
2940 out_unalias:
2941 	__d_move(alias, dentry, false);
2942 	ret = 0;
2943 out_err:
2944 	if (m2)
2945 		up_read(m2);
2946 	if (m1)
2947 		mutex_unlock(m1);
2948 	return ret;
2949 }
2950 
2951 /**
2952  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2953  * @inode:  the inode which may have a disconnected dentry
2954  * @dentry: a negative dentry which we want to point to the inode.
2955  *
2956  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2957  * place of the given dentry and return it, else simply d_add the inode
2958  * to the dentry and return NULL.
2959  *
2960  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2961  * we should error out: directories can't have multiple aliases.
2962  *
2963  * This is needed in the lookup routine of any filesystem that is exportable
2964  * (via knfsd) so that we can build dcache paths to directories effectively.
2965  *
2966  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2967  * is returned.  This matches the expected return value of ->lookup.
2968  *
2969  * Cluster filesystems may call this function with a negative, hashed dentry.
2970  * In that case, we know that the inode will be a regular file, and also this
2971  * will only occur during atomic_open. So we need to check for the dentry
2972  * being already hashed only in the final case.
2973  */
2974 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2975 {
2976 	if (IS_ERR(inode))
2977 		return ERR_CAST(inode);
2978 
2979 	BUG_ON(!d_unhashed(dentry));
2980 
2981 	if (!inode)
2982 		goto out;
2983 
2984 	security_d_instantiate(dentry, inode);
2985 	spin_lock(&inode->i_lock);
2986 	if (S_ISDIR(inode->i_mode)) {
2987 		struct dentry *new = __d_find_any_alias(inode);
2988 		if (unlikely(new)) {
2989 			/* The reference to new ensures it remains an alias */
2990 			spin_unlock(&inode->i_lock);
2991 			write_seqlock(&rename_lock);
2992 			if (unlikely(d_ancestor(new, dentry))) {
2993 				write_sequnlock(&rename_lock);
2994 				dput(new);
2995 				new = ERR_PTR(-ELOOP);
2996 				pr_warn_ratelimited(
2997 					"VFS: Lookup of '%s' in %s %s"
2998 					" would have caused loop\n",
2999 					dentry->d_name.name,
3000 					inode->i_sb->s_type->name,
3001 					inode->i_sb->s_id);
3002 			} else if (!IS_ROOT(new)) {
3003 				int err = __d_unalias(inode, dentry, new);
3004 				write_sequnlock(&rename_lock);
3005 				if (err) {
3006 					dput(new);
3007 					new = ERR_PTR(err);
3008 				}
3009 			} else {
3010 				__d_move(new, dentry, false);
3011 				write_sequnlock(&rename_lock);
3012 			}
3013 			iput(inode);
3014 			return new;
3015 		}
3016 	}
3017 out:
3018 	__d_add(dentry, inode);
3019 	return NULL;
3020 }
3021 EXPORT_SYMBOL(d_splice_alias);
3022 
3023 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3024 {
3025 	*buflen -= namelen;
3026 	if (*buflen < 0)
3027 		return -ENAMETOOLONG;
3028 	*buffer -= namelen;
3029 	memcpy(*buffer, str, namelen);
3030 	return 0;
3031 }
3032 
3033 /**
3034  * prepend_name - prepend a pathname in front of current buffer pointer
3035  * @buffer: buffer pointer
3036  * @buflen: allocated length of the buffer
3037  * @name:   name string and length qstr structure
3038  *
3039  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3040  * make sure that either the old or the new name pointer and length are
3041  * fetched. However, there may be mismatch between length and pointer.
3042  * The length cannot be trusted, we need to copy it byte-by-byte until
3043  * the length is reached or a null byte is found. It also prepends "/" at
3044  * the beginning of the name. The sequence number check at the caller will
3045  * retry it again when a d_move() does happen. So any garbage in the buffer
3046  * due to mismatched pointer and length will be discarded.
3047  *
3048  * Data dependency barrier is needed to make sure that we see that terminating
3049  * NUL.  Alpha strikes again, film at 11...
3050  */
3051 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3052 {
3053 	const char *dname = ACCESS_ONCE(name->name);
3054 	u32 dlen = ACCESS_ONCE(name->len);
3055 	char *p;
3056 
3057 	smp_read_barrier_depends();
3058 
3059 	*buflen -= dlen + 1;
3060 	if (*buflen < 0)
3061 		return -ENAMETOOLONG;
3062 	p = *buffer -= dlen + 1;
3063 	*p++ = '/';
3064 	while (dlen--) {
3065 		char c = *dname++;
3066 		if (!c)
3067 			break;
3068 		*p++ = c;
3069 	}
3070 	return 0;
3071 }
3072 
3073 /**
3074  * prepend_path - Prepend path string to a buffer
3075  * @path: the dentry/vfsmount to report
3076  * @root: root vfsmnt/dentry
3077  * @buffer: pointer to the end of the buffer
3078  * @buflen: pointer to buffer length
3079  *
3080  * The function will first try to write out the pathname without taking any
3081  * lock other than the RCU read lock to make sure that dentries won't go away.
3082  * It only checks the sequence number of the global rename_lock as any change
3083  * in the dentry's d_seq will be preceded by changes in the rename_lock
3084  * sequence number. If the sequence number had been changed, it will restart
3085  * the whole pathname back-tracing sequence again by taking the rename_lock.
3086  * In this case, there is no need to take the RCU read lock as the recursive
3087  * parent pointer references will keep the dentry chain alive as long as no
3088  * rename operation is performed.
3089  */
3090 static int prepend_path(const struct path *path,
3091 			const struct path *root,
3092 			char **buffer, int *buflen)
3093 {
3094 	struct dentry *dentry;
3095 	struct vfsmount *vfsmnt;
3096 	struct mount *mnt;
3097 	int error = 0;
3098 	unsigned seq, m_seq = 0;
3099 	char *bptr;
3100 	int blen;
3101 
3102 	rcu_read_lock();
3103 restart_mnt:
3104 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3105 	seq = 0;
3106 	rcu_read_lock();
3107 restart:
3108 	bptr = *buffer;
3109 	blen = *buflen;
3110 	error = 0;
3111 	dentry = path->dentry;
3112 	vfsmnt = path->mnt;
3113 	mnt = real_mount(vfsmnt);
3114 	read_seqbegin_or_lock(&rename_lock, &seq);
3115 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3116 		struct dentry * parent;
3117 
3118 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3119 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3120 			/* Escaped? */
3121 			if (dentry != vfsmnt->mnt_root) {
3122 				bptr = *buffer;
3123 				blen = *buflen;
3124 				error = 3;
3125 				break;
3126 			}
3127 			/* Global root? */
3128 			if (mnt != parent) {
3129 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3130 				mnt = parent;
3131 				vfsmnt = &mnt->mnt;
3132 				continue;
3133 			}
3134 			if (!error)
3135 				error = is_mounted(vfsmnt) ? 1 : 2;
3136 			break;
3137 		}
3138 		parent = dentry->d_parent;
3139 		prefetch(parent);
3140 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3141 		if (error)
3142 			break;
3143 
3144 		dentry = parent;
3145 	}
3146 	if (!(seq & 1))
3147 		rcu_read_unlock();
3148 	if (need_seqretry(&rename_lock, seq)) {
3149 		seq = 1;
3150 		goto restart;
3151 	}
3152 	done_seqretry(&rename_lock, seq);
3153 
3154 	if (!(m_seq & 1))
3155 		rcu_read_unlock();
3156 	if (need_seqretry(&mount_lock, m_seq)) {
3157 		m_seq = 1;
3158 		goto restart_mnt;
3159 	}
3160 	done_seqretry(&mount_lock, m_seq);
3161 
3162 	if (error >= 0 && bptr == *buffer) {
3163 		if (--blen < 0)
3164 			error = -ENAMETOOLONG;
3165 		else
3166 			*--bptr = '/';
3167 	}
3168 	*buffer = bptr;
3169 	*buflen = blen;
3170 	return error;
3171 }
3172 
3173 /**
3174  * __d_path - return the path of a dentry
3175  * @path: the dentry/vfsmount to report
3176  * @root: root vfsmnt/dentry
3177  * @buf: buffer to return value in
3178  * @buflen: buffer length
3179  *
3180  * Convert a dentry into an ASCII path name.
3181  *
3182  * Returns a pointer into the buffer or an error code if the
3183  * path was too long.
3184  *
3185  * "buflen" should be positive.
3186  *
3187  * If the path is not reachable from the supplied root, return %NULL.
3188  */
3189 char *__d_path(const struct path *path,
3190 	       const struct path *root,
3191 	       char *buf, int buflen)
3192 {
3193 	char *res = buf + buflen;
3194 	int error;
3195 
3196 	prepend(&res, &buflen, "\0", 1);
3197 	error = prepend_path(path, root, &res, &buflen);
3198 
3199 	if (error < 0)
3200 		return ERR_PTR(error);
3201 	if (error > 0)
3202 		return NULL;
3203 	return res;
3204 }
3205 
3206 char *d_absolute_path(const struct path *path,
3207 	       char *buf, int buflen)
3208 {
3209 	struct path root = {};
3210 	char *res = buf + buflen;
3211 	int error;
3212 
3213 	prepend(&res, &buflen, "\0", 1);
3214 	error = prepend_path(path, &root, &res, &buflen);
3215 
3216 	if (error > 1)
3217 		error = -EINVAL;
3218 	if (error < 0)
3219 		return ERR_PTR(error);
3220 	return res;
3221 }
3222 
3223 /*
3224  * same as __d_path but appends "(deleted)" for unlinked files.
3225  */
3226 static int path_with_deleted(const struct path *path,
3227 			     const struct path *root,
3228 			     char **buf, int *buflen)
3229 {
3230 	prepend(buf, buflen, "\0", 1);
3231 	if (d_unlinked(path->dentry)) {
3232 		int error = prepend(buf, buflen, " (deleted)", 10);
3233 		if (error)
3234 			return error;
3235 	}
3236 
3237 	return prepend_path(path, root, buf, buflen);
3238 }
3239 
3240 static int prepend_unreachable(char **buffer, int *buflen)
3241 {
3242 	return prepend(buffer, buflen, "(unreachable)", 13);
3243 }
3244 
3245 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3246 {
3247 	unsigned seq;
3248 
3249 	do {
3250 		seq = read_seqcount_begin(&fs->seq);
3251 		*root = fs->root;
3252 	} while (read_seqcount_retry(&fs->seq, seq));
3253 }
3254 
3255 /**
3256  * d_path - return the path of a dentry
3257  * @path: path to report
3258  * @buf: buffer to return value in
3259  * @buflen: buffer length
3260  *
3261  * Convert a dentry into an ASCII path name. If the entry has been deleted
3262  * the string " (deleted)" is appended. Note that this is ambiguous.
3263  *
3264  * Returns a pointer into the buffer or an error code if the path was
3265  * too long. Note: Callers should use the returned pointer, not the passed
3266  * in buffer, to use the name! The implementation often starts at an offset
3267  * into the buffer, and may leave 0 bytes at the start.
3268  *
3269  * "buflen" should be positive.
3270  */
3271 char *d_path(const struct path *path, char *buf, int buflen)
3272 {
3273 	char *res = buf + buflen;
3274 	struct path root;
3275 	int error;
3276 
3277 	/*
3278 	 * We have various synthetic filesystems that never get mounted.  On
3279 	 * these filesystems dentries are never used for lookup purposes, and
3280 	 * thus don't need to be hashed.  They also don't need a name until a
3281 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3282 	 * below allows us to generate a name for these objects on demand:
3283 	 *
3284 	 * Some pseudo inodes are mountable.  When they are mounted
3285 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3286 	 * and instead have d_path return the mounted path.
3287 	 */
3288 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3289 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3290 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3291 
3292 	rcu_read_lock();
3293 	get_fs_root_rcu(current->fs, &root);
3294 	error = path_with_deleted(path, &root, &res, &buflen);
3295 	rcu_read_unlock();
3296 
3297 	if (error < 0)
3298 		res = ERR_PTR(error);
3299 	return res;
3300 }
3301 EXPORT_SYMBOL(d_path);
3302 
3303 /*
3304  * Helper function for dentry_operations.d_dname() members
3305  */
3306 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3307 			const char *fmt, ...)
3308 {
3309 	va_list args;
3310 	char temp[64];
3311 	int sz;
3312 
3313 	va_start(args, fmt);
3314 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3315 	va_end(args);
3316 
3317 	if (sz > sizeof(temp) || sz > buflen)
3318 		return ERR_PTR(-ENAMETOOLONG);
3319 
3320 	buffer += buflen - sz;
3321 	return memcpy(buffer, temp, sz);
3322 }
3323 
3324 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3325 {
3326 	char *end = buffer + buflen;
3327 	/* these dentries are never renamed, so d_lock is not needed */
3328 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3329 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3330 	    prepend(&end, &buflen, "/", 1))
3331 		end = ERR_PTR(-ENAMETOOLONG);
3332 	return end;
3333 }
3334 EXPORT_SYMBOL(simple_dname);
3335 
3336 /*
3337  * Write full pathname from the root of the filesystem into the buffer.
3338  */
3339 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3340 {
3341 	struct dentry *dentry;
3342 	char *end, *retval;
3343 	int len, seq = 0;
3344 	int error = 0;
3345 
3346 	if (buflen < 2)
3347 		goto Elong;
3348 
3349 	rcu_read_lock();
3350 restart:
3351 	dentry = d;
3352 	end = buf + buflen;
3353 	len = buflen;
3354 	prepend(&end, &len, "\0", 1);
3355 	/* Get '/' right */
3356 	retval = end-1;
3357 	*retval = '/';
3358 	read_seqbegin_or_lock(&rename_lock, &seq);
3359 	while (!IS_ROOT(dentry)) {
3360 		struct dentry *parent = dentry->d_parent;
3361 
3362 		prefetch(parent);
3363 		error = prepend_name(&end, &len, &dentry->d_name);
3364 		if (error)
3365 			break;
3366 
3367 		retval = end;
3368 		dentry = parent;
3369 	}
3370 	if (!(seq & 1))
3371 		rcu_read_unlock();
3372 	if (need_seqretry(&rename_lock, seq)) {
3373 		seq = 1;
3374 		goto restart;
3375 	}
3376 	done_seqretry(&rename_lock, seq);
3377 	if (error)
3378 		goto Elong;
3379 	return retval;
3380 Elong:
3381 	return ERR_PTR(-ENAMETOOLONG);
3382 }
3383 
3384 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3385 {
3386 	return __dentry_path(dentry, buf, buflen);
3387 }
3388 EXPORT_SYMBOL(dentry_path_raw);
3389 
3390 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3391 {
3392 	char *p = NULL;
3393 	char *retval;
3394 
3395 	if (d_unlinked(dentry)) {
3396 		p = buf + buflen;
3397 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3398 			goto Elong;
3399 		buflen++;
3400 	}
3401 	retval = __dentry_path(dentry, buf, buflen);
3402 	if (!IS_ERR(retval) && p)
3403 		*p = '/';	/* restore '/' overriden with '\0' */
3404 	return retval;
3405 Elong:
3406 	return ERR_PTR(-ENAMETOOLONG);
3407 }
3408 
3409 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3410 				    struct path *pwd)
3411 {
3412 	unsigned seq;
3413 
3414 	do {
3415 		seq = read_seqcount_begin(&fs->seq);
3416 		*root = fs->root;
3417 		*pwd = fs->pwd;
3418 	} while (read_seqcount_retry(&fs->seq, seq));
3419 }
3420 
3421 /*
3422  * NOTE! The user-level library version returns a
3423  * character pointer. The kernel system call just
3424  * returns the length of the buffer filled (which
3425  * includes the ending '\0' character), or a negative
3426  * error value. So libc would do something like
3427  *
3428  *	char *getcwd(char * buf, size_t size)
3429  *	{
3430  *		int retval;
3431  *
3432  *		retval = sys_getcwd(buf, size);
3433  *		if (retval >= 0)
3434  *			return buf;
3435  *		errno = -retval;
3436  *		return NULL;
3437  *	}
3438  */
3439 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3440 {
3441 	int error;
3442 	struct path pwd, root;
3443 	char *page = __getname();
3444 
3445 	if (!page)
3446 		return -ENOMEM;
3447 
3448 	rcu_read_lock();
3449 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3450 
3451 	error = -ENOENT;
3452 	if (!d_unlinked(pwd.dentry)) {
3453 		unsigned long len;
3454 		char *cwd = page + PATH_MAX;
3455 		int buflen = PATH_MAX;
3456 
3457 		prepend(&cwd, &buflen, "\0", 1);
3458 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3459 		rcu_read_unlock();
3460 
3461 		if (error < 0)
3462 			goto out;
3463 
3464 		/* Unreachable from current root */
3465 		if (error > 0) {
3466 			error = prepend_unreachable(&cwd, &buflen);
3467 			if (error)
3468 				goto out;
3469 		}
3470 
3471 		error = -ERANGE;
3472 		len = PATH_MAX + page - cwd;
3473 		if (len <= size) {
3474 			error = len;
3475 			if (copy_to_user(buf, cwd, len))
3476 				error = -EFAULT;
3477 		}
3478 	} else {
3479 		rcu_read_unlock();
3480 	}
3481 
3482 out:
3483 	__putname(page);
3484 	return error;
3485 }
3486 
3487 /*
3488  * Test whether new_dentry is a subdirectory of old_dentry.
3489  *
3490  * Trivially implemented using the dcache structure
3491  */
3492 
3493 /**
3494  * is_subdir - is new dentry a subdirectory of old_dentry
3495  * @new_dentry: new dentry
3496  * @old_dentry: old dentry
3497  *
3498  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3499  * Returns false otherwise.
3500  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3501  */
3502 
3503 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3504 {
3505 	bool result;
3506 	unsigned seq;
3507 
3508 	if (new_dentry == old_dentry)
3509 		return true;
3510 
3511 	do {
3512 		/* for restarting inner loop in case of seq retry */
3513 		seq = read_seqbegin(&rename_lock);
3514 		/*
3515 		 * Need rcu_readlock to protect against the d_parent trashing
3516 		 * due to d_move
3517 		 */
3518 		rcu_read_lock();
3519 		if (d_ancestor(old_dentry, new_dentry))
3520 			result = true;
3521 		else
3522 			result = false;
3523 		rcu_read_unlock();
3524 	} while (read_seqretry(&rename_lock, seq));
3525 
3526 	return result;
3527 }
3528 
3529 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3530 {
3531 	struct dentry *root = data;
3532 	if (dentry != root) {
3533 		if (d_unhashed(dentry) || !dentry->d_inode)
3534 			return D_WALK_SKIP;
3535 
3536 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3537 			dentry->d_flags |= DCACHE_GENOCIDE;
3538 			dentry->d_lockref.count--;
3539 		}
3540 	}
3541 	return D_WALK_CONTINUE;
3542 }
3543 
3544 void d_genocide(struct dentry *parent)
3545 {
3546 	d_walk(parent, parent, d_genocide_kill, NULL);
3547 }
3548 
3549 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3550 {
3551 	inode_dec_link_count(inode);
3552 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3553 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3554 		!d_unlinked(dentry));
3555 	spin_lock(&dentry->d_parent->d_lock);
3556 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3557 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3558 				(unsigned long long)inode->i_ino);
3559 	spin_unlock(&dentry->d_lock);
3560 	spin_unlock(&dentry->d_parent->d_lock);
3561 	d_instantiate(dentry, inode);
3562 }
3563 EXPORT_SYMBOL(d_tmpfile);
3564 
3565 static __initdata unsigned long dhash_entries;
3566 static int __init set_dhash_entries(char *str)
3567 {
3568 	if (!str)
3569 		return 0;
3570 	dhash_entries = simple_strtoul(str, &str, 0);
3571 	return 1;
3572 }
3573 __setup("dhash_entries=", set_dhash_entries);
3574 
3575 static void __init dcache_init_early(void)
3576 {
3577 	/* If hashes are distributed across NUMA nodes, defer
3578 	 * hash allocation until vmalloc space is available.
3579 	 */
3580 	if (hashdist)
3581 		return;
3582 
3583 	dentry_hashtable =
3584 		alloc_large_system_hash("Dentry cache",
3585 					sizeof(struct hlist_bl_head),
3586 					dhash_entries,
3587 					13,
3588 					HASH_EARLY | HASH_ZERO,
3589 					&d_hash_shift,
3590 					&d_hash_mask,
3591 					0,
3592 					0);
3593 }
3594 
3595 static void __init dcache_init(void)
3596 {
3597 	/*
3598 	 * A constructor could be added for stable state like the lists,
3599 	 * but it is probably not worth it because of the cache nature
3600 	 * of the dcache.
3601 	 */
3602 	dentry_cache = KMEM_CACHE(dentry,
3603 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3604 
3605 	/* Hash may have been set up in dcache_init_early */
3606 	if (!hashdist)
3607 		return;
3608 
3609 	dentry_hashtable =
3610 		alloc_large_system_hash("Dentry cache",
3611 					sizeof(struct hlist_bl_head),
3612 					dhash_entries,
3613 					13,
3614 					HASH_ZERO,
3615 					&d_hash_shift,
3616 					&d_hash_mask,
3617 					0,
3618 					0);
3619 }
3620 
3621 /* SLAB cache for __getname() consumers */
3622 struct kmem_cache *names_cachep __read_mostly;
3623 EXPORT_SYMBOL(names_cachep);
3624 
3625 EXPORT_SYMBOL(d_genocide);
3626 
3627 void __init vfs_caches_init_early(void)
3628 {
3629 	int i;
3630 
3631 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3632 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3633 
3634 	dcache_init_early();
3635 	inode_init_early();
3636 }
3637 
3638 void __init vfs_caches_init(void)
3639 {
3640 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3641 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3642 
3643 	dcache_init();
3644 	inode_init();
3645 	files_init();
3646 	files_maxfiles_init();
3647 	mnt_init();
3648 	bdev_cache_init();
3649 	chrdev_init();
3650 }
3651