xref: /linux/fs/dcache.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
36 
37 /* #define DCACHE_DEBUG 1 */
38 
39 int sysctl_vfs_cache_pressure = 100;
40 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
41 
42  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
43 static seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
44 
45 EXPORT_SYMBOL(dcache_lock);
46 
47 static kmem_cache_t *dentry_cache;
48 
49 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
50 
51 /*
52  * This is the single most critical data structure when it comes
53  * to the dcache: the hashtable for lookups. Somebody should try
54  * to make this good - I've just made it work.
55  *
56  * This hash-function tries to avoid losing too many bits of hash
57  * information, yet avoid using a prime hash-size or similar.
58  */
59 #define D_HASHBITS     d_hash_shift
60 #define D_HASHMASK     d_hash_mask
61 
62 static unsigned int d_hash_mask;
63 static unsigned int d_hash_shift;
64 static struct hlist_head *dentry_hashtable;
65 static LIST_HEAD(dentry_unused);
66 
67 /* Statistics gathering. */
68 struct dentry_stat_t dentry_stat = {
69 	.age_limit = 45,
70 };
71 
72 static void d_callback(struct rcu_head *head)
73 {
74 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
75 
76 	if (dname_external(dentry))
77 		kfree(dentry->d_name.name);
78 	kmem_cache_free(dentry_cache, dentry);
79 }
80 
81 /*
82  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
83  * inside dcache_lock.
84  */
85 static void d_free(struct dentry *dentry)
86 {
87 	if (dentry->d_op && dentry->d_op->d_release)
88 		dentry->d_op->d_release(dentry);
89  	call_rcu(&dentry->d_u.d_rcu, d_callback);
90 }
91 
92 /*
93  * Release the dentry's inode, using the filesystem
94  * d_iput() operation if defined.
95  * Called with dcache_lock and per dentry lock held, drops both.
96  */
97 static void dentry_iput(struct dentry * dentry)
98 {
99 	struct inode *inode = dentry->d_inode;
100 	if (inode) {
101 		dentry->d_inode = NULL;
102 		list_del_init(&dentry->d_alias);
103 		spin_unlock(&dentry->d_lock);
104 		spin_unlock(&dcache_lock);
105 		if (!inode->i_nlink)
106 			fsnotify_inoderemove(inode);
107 		if (dentry->d_op && dentry->d_op->d_iput)
108 			dentry->d_op->d_iput(dentry, inode);
109 		else
110 			iput(inode);
111 	} else {
112 		spin_unlock(&dentry->d_lock);
113 		spin_unlock(&dcache_lock);
114 	}
115 }
116 
117 /*
118  * This is dput
119  *
120  * This is complicated by the fact that we do not want to put
121  * dentries that are no longer on any hash chain on the unused
122  * list: we'd much rather just get rid of them immediately.
123  *
124  * However, that implies that we have to traverse the dentry
125  * tree upwards to the parents which might _also_ now be
126  * scheduled for deletion (it may have been only waiting for
127  * its last child to go away).
128  *
129  * This tail recursion is done by hand as we don't want to depend
130  * on the compiler to always get this right (gcc generally doesn't).
131  * Real recursion would eat up our stack space.
132  */
133 
134 /*
135  * dput - release a dentry
136  * @dentry: dentry to release
137  *
138  * Release a dentry. This will drop the usage count and if appropriate
139  * call the dentry unlink method as well as removing it from the queues and
140  * releasing its resources. If the parent dentries were scheduled for release
141  * they too may now get deleted.
142  *
143  * no dcache lock, please.
144  */
145 
146 void dput(struct dentry *dentry)
147 {
148 	if (!dentry)
149 		return;
150 
151 repeat:
152 	if (atomic_read(&dentry->d_count) == 1)
153 		might_sleep();
154 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
155 		return;
156 
157 	spin_lock(&dentry->d_lock);
158 	if (atomic_read(&dentry->d_count)) {
159 		spin_unlock(&dentry->d_lock);
160 		spin_unlock(&dcache_lock);
161 		return;
162 	}
163 
164 	/*
165 	 * AV: ->d_delete() is _NOT_ allowed to block now.
166 	 */
167 	if (dentry->d_op && dentry->d_op->d_delete) {
168 		if (dentry->d_op->d_delete(dentry))
169 			goto unhash_it;
170 	}
171 	/* Unreachable? Get rid of it */
172  	if (d_unhashed(dentry))
173 		goto kill_it;
174   	if (list_empty(&dentry->d_lru)) {
175   		dentry->d_flags |= DCACHE_REFERENCED;
176   		list_add(&dentry->d_lru, &dentry_unused);
177   		dentry_stat.nr_unused++;
178   	}
179  	spin_unlock(&dentry->d_lock);
180 	spin_unlock(&dcache_lock);
181 	return;
182 
183 unhash_it:
184 	__d_drop(dentry);
185 
186 kill_it: {
187 		struct dentry *parent;
188 
189 		/* If dentry was on d_lru list
190 		 * delete it from there
191 		 */
192   		if (!list_empty(&dentry->d_lru)) {
193   			list_del(&dentry->d_lru);
194   			dentry_stat.nr_unused--;
195   		}
196   		list_del(&dentry->d_u.d_child);
197 		dentry_stat.nr_dentry--;	/* For d_free, below */
198 		/*drops the locks, at that point nobody can reach this dentry */
199 		dentry_iput(dentry);
200 		parent = dentry->d_parent;
201 		d_free(dentry);
202 		if (dentry == parent)
203 			return;
204 		dentry = parent;
205 		goto repeat;
206 	}
207 }
208 
209 /**
210  * d_invalidate - invalidate a dentry
211  * @dentry: dentry to invalidate
212  *
213  * Try to invalidate the dentry if it turns out to be
214  * possible. If there are other dentries that can be
215  * reached through this one we can't delete it and we
216  * return -EBUSY. On success we return 0.
217  *
218  * no dcache lock.
219  */
220 
221 int d_invalidate(struct dentry * dentry)
222 {
223 	/*
224 	 * If it's already been dropped, return OK.
225 	 */
226 	spin_lock(&dcache_lock);
227 	if (d_unhashed(dentry)) {
228 		spin_unlock(&dcache_lock);
229 		return 0;
230 	}
231 	/*
232 	 * Check whether to do a partial shrink_dcache
233 	 * to get rid of unused child entries.
234 	 */
235 	if (!list_empty(&dentry->d_subdirs)) {
236 		spin_unlock(&dcache_lock);
237 		shrink_dcache_parent(dentry);
238 		spin_lock(&dcache_lock);
239 	}
240 
241 	/*
242 	 * Somebody else still using it?
243 	 *
244 	 * If it's a directory, we can't drop it
245 	 * for fear of somebody re-populating it
246 	 * with children (even though dropping it
247 	 * would make it unreachable from the root,
248 	 * we might still populate it if it was a
249 	 * working directory or similar).
250 	 */
251 	spin_lock(&dentry->d_lock);
252 	if (atomic_read(&dentry->d_count) > 1) {
253 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
254 			spin_unlock(&dentry->d_lock);
255 			spin_unlock(&dcache_lock);
256 			return -EBUSY;
257 		}
258 	}
259 
260 	__d_drop(dentry);
261 	spin_unlock(&dentry->d_lock);
262 	spin_unlock(&dcache_lock);
263 	return 0;
264 }
265 
266 /* This should be called _only_ with dcache_lock held */
267 
268 static inline struct dentry * __dget_locked(struct dentry *dentry)
269 {
270 	atomic_inc(&dentry->d_count);
271 	if (!list_empty(&dentry->d_lru)) {
272 		dentry_stat.nr_unused--;
273 		list_del_init(&dentry->d_lru);
274 	}
275 	return dentry;
276 }
277 
278 struct dentry * dget_locked(struct dentry *dentry)
279 {
280 	return __dget_locked(dentry);
281 }
282 
283 /**
284  * d_find_alias - grab a hashed alias of inode
285  * @inode: inode in question
286  * @want_discon:  flag, used by d_splice_alias, to request
287  *          that only a DISCONNECTED alias be returned.
288  *
289  * If inode has a hashed alias, or is a directory and has any alias,
290  * acquire the reference to alias and return it. Otherwise return NULL.
291  * Notice that if inode is a directory there can be only one alias and
292  * it can be unhashed only if it has no children, or if it is the root
293  * of a filesystem.
294  *
295  * If the inode has a DCACHE_DISCONNECTED alias, then prefer
296  * any other hashed alias over that one unless @want_discon is set,
297  * in which case only return a DCACHE_DISCONNECTED alias.
298  */
299 
300 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
301 {
302 	struct list_head *head, *next, *tmp;
303 	struct dentry *alias, *discon_alias=NULL;
304 
305 	head = &inode->i_dentry;
306 	next = inode->i_dentry.next;
307 	while (next != head) {
308 		tmp = next;
309 		next = tmp->next;
310 		prefetch(next);
311 		alias = list_entry(tmp, struct dentry, d_alias);
312  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
313 			if (alias->d_flags & DCACHE_DISCONNECTED)
314 				discon_alias = alias;
315 			else if (!want_discon) {
316 				__dget_locked(alias);
317 				return alias;
318 			}
319 		}
320 	}
321 	if (discon_alias)
322 		__dget_locked(discon_alias);
323 	return discon_alias;
324 }
325 
326 struct dentry * d_find_alias(struct inode *inode)
327 {
328 	struct dentry *de;
329 	spin_lock(&dcache_lock);
330 	de = __d_find_alias(inode, 0);
331 	spin_unlock(&dcache_lock);
332 	return de;
333 }
334 
335 /*
336  *	Try to kill dentries associated with this inode.
337  * WARNING: you must own a reference to inode.
338  */
339 void d_prune_aliases(struct inode *inode)
340 {
341 	struct dentry *dentry;
342 restart:
343 	spin_lock(&dcache_lock);
344 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
345 		spin_lock(&dentry->d_lock);
346 		if (!atomic_read(&dentry->d_count)) {
347 			__dget_locked(dentry);
348 			__d_drop(dentry);
349 			spin_unlock(&dentry->d_lock);
350 			spin_unlock(&dcache_lock);
351 			dput(dentry);
352 			goto restart;
353 		}
354 		spin_unlock(&dentry->d_lock);
355 	}
356 	spin_unlock(&dcache_lock);
357 }
358 
359 /*
360  * Throw away a dentry - free the inode, dput the parent.
361  * This requires that the LRU list has already been
362  * removed.
363  * Called with dcache_lock, drops it and then regains.
364  */
365 static inline void prune_one_dentry(struct dentry * dentry)
366 {
367 	struct dentry * parent;
368 
369 	__d_drop(dentry);
370 	list_del(&dentry->d_u.d_child);
371 	dentry_stat.nr_dentry--;	/* For d_free, below */
372 	dentry_iput(dentry);
373 	parent = dentry->d_parent;
374 	d_free(dentry);
375 	if (parent != dentry)
376 		dput(parent);
377 	spin_lock(&dcache_lock);
378 }
379 
380 /**
381  * prune_dcache - shrink the dcache
382  * @count: number of entries to try and free
383  *
384  * Shrink the dcache. This is done when we need
385  * more memory, or simply when we need to unmount
386  * something (at which point we need to unuse
387  * all dentries).
388  *
389  * This function may fail to free any resources if
390  * all the dentries are in use.
391  */
392 
393 static void prune_dcache(int count)
394 {
395 	spin_lock(&dcache_lock);
396 	for (; count ; count--) {
397 		struct dentry *dentry;
398 		struct list_head *tmp;
399 
400 		cond_resched_lock(&dcache_lock);
401 
402 		tmp = dentry_unused.prev;
403 		if (tmp == &dentry_unused)
404 			break;
405 		list_del_init(tmp);
406 		prefetch(dentry_unused.prev);
407  		dentry_stat.nr_unused--;
408 		dentry = list_entry(tmp, struct dentry, d_lru);
409 
410  		spin_lock(&dentry->d_lock);
411 		/*
412 		 * We found an inuse dentry which was not removed from
413 		 * dentry_unused because of laziness during lookup.  Do not free
414 		 * it - just keep it off the dentry_unused list.
415 		 */
416  		if (atomic_read(&dentry->d_count)) {
417  			spin_unlock(&dentry->d_lock);
418 			continue;
419 		}
420 		/* If the dentry was recently referenced, don't free it. */
421 		if (dentry->d_flags & DCACHE_REFERENCED) {
422 			dentry->d_flags &= ~DCACHE_REFERENCED;
423  			list_add(&dentry->d_lru, &dentry_unused);
424  			dentry_stat.nr_unused++;
425  			spin_unlock(&dentry->d_lock);
426 			continue;
427 		}
428 		prune_one_dentry(dentry);
429 	}
430 	spin_unlock(&dcache_lock);
431 }
432 
433 /*
434  * Shrink the dcache for the specified super block.
435  * This allows us to unmount a device without disturbing
436  * the dcache for the other devices.
437  *
438  * This implementation makes just two traversals of the
439  * unused list.  On the first pass we move the selected
440  * dentries to the most recent end, and on the second
441  * pass we free them.  The second pass must restart after
442  * each dput(), but since the target dentries are all at
443  * the end, it's really just a single traversal.
444  */
445 
446 /**
447  * shrink_dcache_sb - shrink dcache for a superblock
448  * @sb: superblock
449  *
450  * Shrink the dcache for the specified super block. This
451  * is used to free the dcache before unmounting a file
452  * system
453  */
454 
455 void shrink_dcache_sb(struct super_block * sb)
456 {
457 	struct list_head *tmp, *next;
458 	struct dentry *dentry;
459 
460 	/*
461 	 * Pass one ... move the dentries for the specified
462 	 * superblock to the most recent end of the unused list.
463 	 */
464 	spin_lock(&dcache_lock);
465 	list_for_each_safe(tmp, next, &dentry_unused) {
466 		dentry = list_entry(tmp, struct dentry, d_lru);
467 		if (dentry->d_sb != sb)
468 			continue;
469 		list_del(tmp);
470 		list_add(tmp, &dentry_unused);
471 	}
472 
473 	/*
474 	 * Pass two ... free the dentries for this superblock.
475 	 */
476 repeat:
477 	list_for_each_safe(tmp, next, &dentry_unused) {
478 		dentry = list_entry(tmp, struct dentry, d_lru);
479 		if (dentry->d_sb != sb)
480 			continue;
481 		dentry_stat.nr_unused--;
482 		list_del_init(tmp);
483 		spin_lock(&dentry->d_lock);
484 		if (atomic_read(&dentry->d_count)) {
485 			spin_unlock(&dentry->d_lock);
486 			continue;
487 		}
488 		prune_one_dentry(dentry);
489 		goto repeat;
490 	}
491 	spin_unlock(&dcache_lock);
492 }
493 
494 /*
495  * Search for at least 1 mount point in the dentry's subdirs.
496  * We descend to the next level whenever the d_subdirs
497  * list is non-empty and continue searching.
498  */
499 
500 /**
501  * have_submounts - check for mounts over a dentry
502  * @parent: dentry to check.
503  *
504  * Return true if the parent or its subdirectories contain
505  * a mount point
506  */
507 
508 int have_submounts(struct dentry *parent)
509 {
510 	struct dentry *this_parent = parent;
511 	struct list_head *next;
512 
513 	spin_lock(&dcache_lock);
514 	if (d_mountpoint(parent))
515 		goto positive;
516 repeat:
517 	next = this_parent->d_subdirs.next;
518 resume:
519 	while (next != &this_parent->d_subdirs) {
520 		struct list_head *tmp = next;
521 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
522 		next = tmp->next;
523 		/* Have we found a mount point ? */
524 		if (d_mountpoint(dentry))
525 			goto positive;
526 		if (!list_empty(&dentry->d_subdirs)) {
527 			this_parent = dentry;
528 			goto repeat;
529 		}
530 	}
531 	/*
532 	 * All done at this level ... ascend and resume the search.
533 	 */
534 	if (this_parent != parent) {
535 		next = this_parent->d_u.d_child.next;
536 		this_parent = this_parent->d_parent;
537 		goto resume;
538 	}
539 	spin_unlock(&dcache_lock);
540 	return 0; /* No mount points found in tree */
541 positive:
542 	spin_unlock(&dcache_lock);
543 	return 1;
544 }
545 
546 /*
547  * Search the dentry child list for the specified parent,
548  * and move any unused dentries to the end of the unused
549  * list for prune_dcache(). We descend to the next level
550  * whenever the d_subdirs list is non-empty and continue
551  * searching.
552  *
553  * It returns zero iff there are no unused children,
554  * otherwise  it returns the number of children moved to
555  * the end of the unused list. This may not be the total
556  * number of unused children, because select_parent can
557  * drop the lock and return early due to latency
558  * constraints.
559  */
560 static int select_parent(struct dentry * parent)
561 {
562 	struct dentry *this_parent = parent;
563 	struct list_head *next;
564 	int found = 0;
565 
566 	spin_lock(&dcache_lock);
567 repeat:
568 	next = this_parent->d_subdirs.next;
569 resume:
570 	while (next != &this_parent->d_subdirs) {
571 		struct list_head *tmp = next;
572 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
573 		next = tmp->next;
574 
575 		if (!list_empty(&dentry->d_lru)) {
576 			dentry_stat.nr_unused--;
577 			list_del_init(&dentry->d_lru);
578 		}
579 		/*
580 		 * move only zero ref count dentries to the end
581 		 * of the unused list for prune_dcache
582 		 */
583 		if (!atomic_read(&dentry->d_count)) {
584 			list_add(&dentry->d_lru, dentry_unused.prev);
585 			dentry_stat.nr_unused++;
586 			found++;
587 		}
588 
589 		/*
590 		 * We can return to the caller if we have found some (this
591 		 * ensures forward progress). We'll be coming back to find
592 		 * the rest.
593 		 */
594 		if (found && need_resched())
595 			goto out;
596 
597 		/*
598 		 * Descend a level if the d_subdirs list is non-empty.
599 		 */
600 		if (!list_empty(&dentry->d_subdirs)) {
601 			this_parent = dentry;
602 #ifdef DCACHE_DEBUG
603 printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
604 dentry->d_parent->d_name.name, dentry->d_name.name, found);
605 #endif
606 			goto repeat;
607 		}
608 	}
609 	/*
610 	 * All done at this level ... ascend and resume the search.
611 	 */
612 	if (this_parent != parent) {
613 		next = this_parent->d_u.d_child.next;
614 		this_parent = this_parent->d_parent;
615 #ifdef DCACHE_DEBUG
616 printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
617 this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
618 #endif
619 		goto resume;
620 	}
621 out:
622 	spin_unlock(&dcache_lock);
623 	return found;
624 }
625 
626 /**
627  * shrink_dcache_parent - prune dcache
628  * @parent: parent of entries to prune
629  *
630  * Prune the dcache to remove unused children of the parent dentry.
631  */
632 
633 void shrink_dcache_parent(struct dentry * parent)
634 {
635 	int found;
636 
637 	while ((found = select_parent(parent)) != 0)
638 		prune_dcache(found);
639 }
640 
641 /**
642  * shrink_dcache_anon - further prune the cache
643  * @head: head of d_hash list of dentries to prune
644  *
645  * Prune the dentries that are anonymous
646  *
647  * parsing d_hash list does not hlist_for_each_entry_rcu() as it
648  * done under dcache_lock.
649  *
650  */
651 void shrink_dcache_anon(struct hlist_head *head)
652 {
653 	struct hlist_node *lp;
654 	int found;
655 	do {
656 		found = 0;
657 		spin_lock(&dcache_lock);
658 		hlist_for_each(lp, head) {
659 			struct dentry *this = hlist_entry(lp, struct dentry, d_hash);
660 			if (!list_empty(&this->d_lru)) {
661 				dentry_stat.nr_unused--;
662 				list_del_init(&this->d_lru);
663 			}
664 
665 			/*
666 			 * move only zero ref count dentries to the end
667 			 * of the unused list for prune_dcache
668 			 */
669 			if (!atomic_read(&this->d_count)) {
670 				list_add_tail(&this->d_lru, &dentry_unused);
671 				dentry_stat.nr_unused++;
672 				found++;
673 			}
674 		}
675 		spin_unlock(&dcache_lock);
676 		prune_dcache(found);
677 	} while(found);
678 }
679 
680 /*
681  * Scan `nr' dentries and return the number which remain.
682  *
683  * We need to avoid reentering the filesystem if the caller is performing a
684  * GFP_NOFS allocation attempt.  One example deadlock is:
685  *
686  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
687  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
688  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
689  *
690  * In this case we return -1 to tell the caller that we baled.
691  */
692 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
693 {
694 	if (nr) {
695 		if (!(gfp_mask & __GFP_FS))
696 			return -1;
697 		prune_dcache(nr);
698 	}
699 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
700 }
701 
702 /**
703  * d_alloc	-	allocate a dcache entry
704  * @parent: parent of entry to allocate
705  * @name: qstr of the name
706  *
707  * Allocates a dentry. It returns %NULL if there is insufficient memory
708  * available. On a success the dentry is returned. The name passed in is
709  * copied and the copy passed in may be reused after this call.
710  */
711 
712 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
713 {
714 	struct dentry *dentry;
715 	char *dname;
716 
717 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
718 	if (!dentry)
719 		return NULL;
720 
721 	if (name->len > DNAME_INLINE_LEN-1) {
722 		dname = kmalloc(name->len + 1, GFP_KERNEL);
723 		if (!dname) {
724 			kmem_cache_free(dentry_cache, dentry);
725 			return NULL;
726 		}
727 	} else  {
728 		dname = dentry->d_iname;
729 	}
730 	dentry->d_name.name = dname;
731 
732 	dentry->d_name.len = name->len;
733 	dentry->d_name.hash = name->hash;
734 	memcpy(dname, name->name, name->len);
735 	dname[name->len] = 0;
736 
737 	atomic_set(&dentry->d_count, 1);
738 	dentry->d_flags = DCACHE_UNHASHED;
739 	spin_lock_init(&dentry->d_lock);
740 	dentry->d_inode = NULL;
741 	dentry->d_parent = NULL;
742 	dentry->d_sb = NULL;
743 	dentry->d_op = NULL;
744 	dentry->d_fsdata = NULL;
745 	dentry->d_mounted = 0;
746 #ifdef CONFIG_PROFILING
747 	dentry->d_cookie = NULL;
748 #endif
749 	INIT_HLIST_NODE(&dentry->d_hash);
750 	INIT_LIST_HEAD(&dentry->d_lru);
751 	INIT_LIST_HEAD(&dentry->d_subdirs);
752 	INIT_LIST_HEAD(&dentry->d_alias);
753 
754 	if (parent) {
755 		dentry->d_parent = dget(parent);
756 		dentry->d_sb = parent->d_sb;
757 	} else {
758 		INIT_LIST_HEAD(&dentry->d_u.d_child);
759 	}
760 
761 	spin_lock(&dcache_lock);
762 	if (parent)
763 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
764 	dentry_stat.nr_dentry++;
765 	spin_unlock(&dcache_lock);
766 
767 	return dentry;
768 }
769 
770 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
771 {
772 	struct qstr q;
773 
774 	q.name = name;
775 	q.len = strlen(name);
776 	q.hash = full_name_hash(q.name, q.len);
777 	return d_alloc(parent, &q);
778 }
779 
780 /**
781  * d_instantiate - fill in inode information for a dentry
782  * @entry: dentry to complete
783  * @inode: inode to attach to this dentry
784  *
785  * Fill in inode information in the entry.
786  *
787  * This turns negative dentries into productive full members
788  * of society.
789  *
790  * NOTE! This assumes that the inode count has been incremented
791  * (or otherwise set) by the caller to indicate that it is now
792  * in use by the dcache.
793  */
794 
795 void d_instantiate(struct dentry *entry, struct inode * inode)
796 {
797 	if (!list_empty(&entry->d_alias)) BUG();
798 	spin_lock(&dcache_lock);
799 	if (inode)
800 		list_add(&entry->d_alias, &inode->i_dentry);
801 	entry->d_inode = inode;
802 	spin_unlock(&dcache_lock);
803 	security_d_instantiate(entry, inode);
804 }
805 
806 /**
807  * d_instantiate_unique - instantiate a non-aliased dentry
808  * @entry: dentry to instantiate
809  * @inode: inode to attach to this dentry
810  *
811  * Fill in inode information in the entry. On success, it returns NULL.
812  * If an unhashed alias of "entry" already exists, then we return the
813  * aliased dentry instead and drop one reference to inode.
814  *
815  * Note that in order to avoid conflicts with rename() etc, the caller
816  * had better be holding the parent directory semaphore.
817  *
818  * This also assumes that the inode count has been incremented
819  * (or otherwise set) by the caller to indicate that it is now
820  * in use by the dcache.
821  */
822 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
823 {
824 	struct dentry *alias;
825 	int len = entry->d_name.len;
826 	const char *name = entry->d_name.name;
827 	unsigned int hash = entry->d_name.hash;
828 
829 	BUG_ON(!list_empty(&entry->d_alias));
830 	spin_lock(&dcache_lock);
831 	if (!inode)
832 		goto do_negative;
833 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
834 		struct qstr *qstr = &alias->d_name;
835 
836 		if (qstr->hash != hash)
837 			continue;
838 		if (alias->d_parent != entry->d_parent)
839 			continue;
840 		if (qstr->len != len)
841 			continue;
842 		if (memcmp(qstr->name, name, len))
843 			continue;
844 		dget_locked(alias);
845 		spin_unlock(&dcache_lock);
846 		BUG_ON(!d_unhashed(alias));
847 		iput(inode);
848 		return alias;
849 	}
850 	list_add(&entry->d_alias, &inode->i_dentry);
851 do_negative:
852 	entry->d_inode = inode;
853 	spin_unlock(&dcache_lock);
854 	security_d_instantiate(entry, inode);
855 	return NULL;
856 }
857 EXPORT_SYMBOL(d_instantiate_unique);
858 
859 /**
860  * d_alloc_root - allocate root dentry
861  * @root_inode: inode to allocate the root for
862  *
863  * Allocate a root ("/") dentry for the inode given. The inode is
864  * instantiated and returned. %NULL is returned if there is insufficient
865  * memory or the inode passed is %NULL.
866  */
867 
868 struct dentry * d_alloc_root(struct inode * root_inode)
869 {
870 	struct dentry *res = NULL;
871 
872 	if (root_inode) {
873 		static const struct qstr name = { .name = "/", .len = 1 };
874 
875 		res = d_alloc(NULL, &name);
876 		if (res) {
877 			res->d_sb = root_inode->i_sb;
878 			res->d_parent = res;
879 			d_instantiate(res, root_inode);
880 		}
881 	}
882 	return res;
883 }
884 
885 static inline struct hlist_head *d_hash(struct dentry *parent,
886 					unsigned long hash)
887 {
888 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
889 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
890 	return dentry_hashtable + (hash & D_HASHMASK);
891 }
892 
893 /**
894  * d_alloc_anon - allocate an anonymous dentry
895  * @inode: inode to allocate the dentry for
896  *
897  * This is similar to d_alloc_root.  It is used by filesystems when
898  * creating a dentry for a given inode, often in the process of
899  * mapping a filehandle to a dentry.  The returned dentry may be
900  * anonymous, or may have a full name (if the inode was already
901  * in the cache).  The file system may need to make further
902  * efforts to connect this dentry into the dcache properly.
903  *
904  * When called on a directory inode, we must ensure that
905  * the inode only ever has one dentry.  If a dentry is
906  * found, that is returned instead of allocating a new one.
907  *
908  * On successful return, the reference to the inode has been transferred
909  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
910  * the reference on the inode has not been released.
911  */
912 
913 struct dentry * d_alloc_anon(struct inode *inode)
914 {
915 	static const struct qstr anonstring = { .name = "" };
916 	struct dentry *tmp;
917 	struct dentry *res;
918 
919 	if ((res = d_find_alias(inode))) {
920 		iput(inode);
921 		return res;
922 	}
923 
924 	tmp = d_alloc(NULL, &anonstring);
925 	if (!tmp)
926 		return NULL;
927 
928 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
929 
930 	spin_lock(&dcache_lock);
931 	res = __d_find_alias(inode, 0);
932 	if (!res) {
933 		/* attach a disconnected dentry */
934 		res = tmp;
935 		tmp = NULL;
936 		spin_lock(&res->d_lock);
937 		res->d_sb = inode->i_sb;
938 		res->d_parent = res;
939 		res->d_inode = inode;
940 		res->d_flags |= DCACHE_DISCONNECTED;
941 		res->d_flags &= ~DCACHE_UNHASHED;
942 		list_add(&res->d_alias, &inode->i_dentry);
943 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
944 		spin_unlock(&res->d_lock);
945 
946 		inode = NULL; /* don't drop reference */
947 	}
948 	spin_unlock(&dcache_lock);
949 
950 	if (inode)
951 		iput(inode);
952 	if (tmp)
953 		dput(tmp);
954 	return res;
955 }
956 
957 
958 /**
959  * d_splice_alias - splice a disconnected dentry into the tree if one exists
960  * @inode:  the inode which may have a disconnected dentry
961  * @dentry: a negative dentry which we want to point to the inode.
962  *
963  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
964  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
965  * and return it, else simply d_add the inode to the dentry and return NULL.
966  *
967  * This is needed in the lookup routine of any filesystem that is exportable
968  * (via knfsd) so that we can build dcache paths to directories effectively.
969  *
970  * If a dentry was found and moved, then it is returned.  Otherwise NULL
971  * is returned.  This matches the expected return value of ->lookup.
972  *
973  */
974 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
975 {
976 	struct dentry *new = NULL;
977 
978 	if (inode) {
979 		spin_lock(&dcache_lock);
980 		new = __d_find_alias(inode, 1);
981 		if (new) {
982 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
983 			spin_unlock(&dcache_lock);
984 			security_d_instantiate(new, inode);
985 			d_rehash(dentry);
986 			d_move(new, dentry);
987 			iput(inode);
988 		} else {
989 			/* d_instantiate takes dcache_lock, so we do it by hand */
990 			list_add(&dentry->d_alias, &inode->i_dentry);
991 			dentry->d_inode = inode;
992 			spin_unlock(&dcache_lock);
993 			security_d_instantiate(dentry, inode);
994 			d_rehash(dentry);
995 		}
996 	} else
997 		d_add(dentry, inode);
998 	return new;
999 }
1000 
1001 
1002 /**
1003  * d_lookup - search for a dentry
1004  * @parent: parent dentry
1005  * @name: qstr of name we wish to find
1006  *
1007  * Searches the children of the parent dentry for the name in question. If
1008  * the dentry is found its reference count is incremented and the dentry
1009  * is returned. The caller must use d_put to free the entry when it has
1010  * finished using it. %NULL is returned on failure.
1011  *
1012  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1013  * Memory barriers are used while updating and doing lockless traversal.
1014  * To avoid races with d_move while rename is happening, d_lock is used.
1015  *
1016  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1017  * and name pointer in one structure pointed by d_qstr.
1018  *
1019  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1020  * lookup is going on.
1021  *
1022  * dentry_unused list is not updated even if lookup finds the required dentry
1023  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1024  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1025  * acquisition.
1026  *
1027  * d_lookup() is protected against the concurrent renames in some unrelated
1028  * directory using the seqlockt_t rename_lock.
1029  */
1030 
1031 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1032 {
1033 	struct dentry * dentry = NULL;
1034 	unsigned long seq;
1035 
1036         do {
1037                 seq = read_seqbegin(&rename_lock);
1038                 dentry = __d_lookup(parent, name);
1039                 if (dentry)
1040 			break;
1041 	} while (read_seqretry(&rename_lock, seq));
1042 	return dentry;
1043 }
1044 
1045 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1046 {
1047 	unsigned int len = name->len;
1048 	unsigned int hash = name->hash;
1049 	const unsigned char *str = name->name;
1050 	struct hlist_head *head = d_hash(parent,hash);
1051 	struct dentry *found = NULL;
1052 	struct hlist_node *node;
1053 	struct dentry *dentry;
1054 
1055 	rcu_read_lock();
1056 
1057 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1058 		struct qstr *qstr;
1059 
1060 		if (dentry->d_name.hash != hash)
1061 			continue;
1062 		if (dentry->d_parent != parent)
1063 			continue;
1064 
1065 		spin_lock(&dentry->d_lock);
1066 
1067 		/*
1068 		 * Recheck the dentry after taking the lock - d_move may have
1069 		 * changed things.  Don't bother checking the hash because we're
1070 		 * about to compare the whole name anyway.
1071 		 */
1072 		if (dentry->d_parent != parent)
1073 			goto next;
1074 
1075 		/*
1076 		 * It is safe to compare names since d_move() cannot
1077 		 * change the qstr (protected by d_lock).
1078 		 */
1079 		qstr = &dentry->d_name;
1080 		if (parent->d_op && parent->d_op->d_compare) {
1081 			if (parent->d_op->d_compare(parent, qstr, name))
1082 				goto next;
1083 		} else {
1084 			if (qstr->len != len)
1085 				goto next;
1086 			if (memcmp(qstr->name, str, len))
1087 				goto next;
1088 		}
1089 
1090 		if (!d_unhashed(dentry)) {
1091 			atomic_inc(&dentry->d_count);
1092 			found = dentry;
1093 		}
1094 		spin_unlock(&dentry->d_lock);
1095 		break;
1096 next:
1097 		spin_unlock(&dentry->d_lock);
1098  	}
1099  	rcu_read_unlock();
1100 
1101  	return found;
1102 }
1103 
1104 /**
1105  * d_validate - verify dentry provided from insecure source
1106  * @dentry: The dentry alleged to be valid child of @dparent
1107  * @dparent: The parent dentry (known to be valid)
1108  * @hash: Hash of the dentry
1109  * @len: Length of the name
1110  *
1111  * An insecure source has sent us a dentry, here we verify it and dget() it.
1112  * This is used by ncpfs in its readdir implementation.
1113  * Zero is returned in the dentry is invalid.
1114  */
1115 
1116 int d_validate(struct dentry *dentry, struct dentry *dparent)
1117 {
1118 	struct hlist_head *base;
1119 	struct hlist_node *lhp;
1120 
1121 	/* Check whether the ptr might be valid at all.. */
1122 	if (!kmem_ptr_validate(dentry_cache, dentry))
1123 		goto out;
1124 
1125 	if (dentry->d_parent != dparent)
1126 		goto out;
1127 
1128 	spin_lock(&dcache_lock);
1129 	base = d_hash(dparent, dentry->d_name.hash);
1130 	hlist_for_each(lhp,base) {
1131 		/* hlist_for_each_entry_rcu() not required for d_hash list
1132 		 * as it is parsed under dcache_lock
1133 		 */
1134 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1135 			__dget_locked(dentry);
1136 			spin_unlock(&dcache_lock);
1137 			return 1;
1138 		}
1139 	}
1140 	spin_unlock(&dcache_lock);
1141 out:
1142 	return 0;
1143 }
1144 
1145 /*
1146  * When a file is deleted, we have two options:
1147  * - turn this dentry into a negative dentry
1148  * - unhash this dentry and free it.
1149  *
1150  * Usually, we want to just turn this into
1151  * a negative dentry, but if anybody else is
1152  * currently using the dentry or the inode
1153  * we can't do that and we fall back on removing
1154  * it from the hash queues and waiting for
1155  * it to be deleted later when it has no users
1156  */
1157 
1158 /**
1159  * d_delete - delete a dentry
1160  * @dentry: The dentry to delete
1161  *
1162  * Turn the dentry into a negative dentry if possible, otherwise
1163  * remove it from the hash queues so it can be deleted later
1164  */
1165 
1166 void d_delete(struct dentry * dentry)
1167 {
1168 	int isdir = 0;
1169 	/*
1170 	 * Are we the only user?
1171 	 */
1172 	spin_lock(&dcache_lock);
1173 	spin_lock(&dentry->d_lock);
1174 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1175 	if (atomic_read(&dentry->d_count) == 1) {
1176 		dentry_iput(dentry);
1177 		fsnotify_nameremove(dentry, isdir);
1178 		return;
1179 	}
1180 
1181 	if (!d_unhashed(dentry))
1182 		__d_drop(dentry);
1183 
1184 	spin_unlock(&dentry->d_lock);
1185 	spin_unlock(&dcache_lock);
1186 
1187 	fsnotify_nameremove(dentry, isdir);
1188 }
1189 
1190 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1191 {
1192 
1193  	entry->d_flags &= ~DCACHE_UNHASHED;
1194  	hlist_add_head_rcu(&entry->d_hash, list);
1195 }
1196 
1197 /**
1198  * d_rehash	- add an entry back to the hash
1199  * @entry: dentry to add to the hash
1200  *
1201  * Adds a dentry to the hash according to its name.
1202  */
1203 
1204 void d_rehash(struct dentry * entry)
1205 {
1206 	struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash);
1207 
1208 	spin_lock(&dcache_lock);
1209 	spin_lock(&entry->d_lock);
1210 	__d_rehash(entry, list);
1211 	spin_unlock(&entry->d_lock);
1212 	spin_unlock(&dcache_lock);
1213 }
1214 
1215 #define do_switch(x,y) do { \
1216 	__typeof__ (x) __tmp = x; \
1217 	x = y; y = __tmp; } while (0)
1218 
1219 /*
1220  * When switching names, the actual string doesn't strictly have to
1221  * be preserved in the target - because we're dropping the target
1222  * anyway. As such, we can just do a simple memcpy() to copy over
1223  * the new name before we switch.
1224  *
1225  * Note that we have to be a lot more careful about getting the hash
1226  * switched - we have to switch the hash value properly even if it
1227  * then no longer matches the actual (corrupted) string of the target.
1228  * The hash value has to match the hash queue that the dentry is on..
1229  */
1230 static void switch_names(struct dentry *dentry, struct dentry *target)
1231 {
1232 	if (dname_external(target)) {
1233 		if (dname_external(dentry)) {
1234 			/*
1235 			 * Both external: swap the pointers
1236 			 */
1237 			do_switch(target->d_name.name, dentry->d_name.name);
1238 		} else {
1239 			/*
1240 			 * dentry:internal, target:external.  Steal target's
1241 			 * storage and make target internal.
1242 			 */
1243 			dentry->d_name.name = target->d_name.name;
1244 			target->d_name.name = target->d_iname;
1245 		}
1246 	} else {
1247 		if (dname_external(dentry)) {
1248 			/*
1249 			 * dentry:external, target:internal.  Give dentry's
1250 			 * storage to target and make dentry internal
1251 			 */
1252 			memcpy(dentry->d_iname, target->d_name.name,
1253 					target->d_name.len + 1);
1254 			target->d_name.name = dentry->d_name.name;
1255 			dentry->d_name.name = dentry->d_iname;
1256 		} else {
1257 			/*
1258 			 * Both are internal.  Just copy target to dentry
1259 			 */
1260 			memcpy(dentry->d_iname, target->d_name.name,
1261 					target->d_name.len + 1);
1262 		}
1263 	}
1264 }
1265 
1266 /*
1267  * We cannibalize "target" when moving dentry on top of it,
1268  * because it's going to be thrown away anyway. We could be more
1269  * polite about it, though.
1270  *
1271  * This forceful removal will result in ugly /proc output if
1272  * somebody holds a file open that got deleted due to a rename.
1273  * We could be nicer about the deleted file, and let it show
1274  * up under the name it got deleted rather than the name that
1275  * deleted it.
1276  */
1277 
1278 /**
1279  * d_move - move a dentry
1280  * @dentry: entry to move
1281  * @target: new dentry
1282  *
1283  * Update the dcache to reflect the move of a file name. Negative
1284  * dcache entries should not be moved in this way.
1285  */
1286 
1287 void d_move(struct dentry * dentry, struct dentry * target)
1288 {
1289 	struct hlist_head *list;
1290 
1291 	if (!dentry->d_inode)
1292 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1293 
1294 	spin_lock(&dcache_lock);
1295 	write_seqlock(&rename_lock);
1296 	/*
1297 	 * XXXX: do we really need to take target->d_lock?
1298 	 */
1299 	if (target < dentry) {
1300 		spin_lock(&target->d_lock);
1301 		spin_lock(&dentry->d_lock);
1302 	} else {
1303 		spin_lock(&dentry->d_lock);
1304 		spin_lock(&target->d_lock);
1305 	}
1306 
1307 	/* Move the dentry to the target hash queue, if on different bucket */
1308 	if (dentry->d_flags & DCACHE_UNHASHED)
1309 		goto already_unhashed;
1310 
1311 	hlist_del_rcu(&dentry->d_hash);
1312 
1313 already_unhashed:
1314 	list = d_hash(target->d_parent, target->d_name.hash);
1315 	__d_rehash(dentry, list);
1316 
1317 	/* Unhash the target: dput() will then get rid of it */
1318 	__d_drop(target);
1319 
1320 	list_del(&dentry->d_u.d_child);
1321 	list_del(&target->d_u.d_child);
1322 
1323 	/* Switch the names.. */
1324 	switch_names(dentry, target);
1325 	do_switch(dentry->d_name.len, target->d_name.len);
1326 	do_switch(dentry->d_name.hash, target->d_name.hash);
1327 
1328 	/* ... and switch the parents */
1329 	if (IS_ROOT(dentry)) {
1330 		dentry->d_parent = target->d_parent;
1331 		target->d_parent = target;
1332 		INIT_LIST_HEAD(&target->d_u.d_child);
1333 	} else {
1334 		do_switch(dentry->d_parent, target->d_parent);
1335 
1336 		/* And add them back to the (new) parent lists */
1337 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1338 	}
1339 
1340 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1341 	spin_unlock(&target->d_lock);
1342 	spin_unlock(&dentry->d_lock);
1343 	write_sequnlock(&rename_lock);
1344 	spin_unlock(&dcache_lock);
1345 }
1346 
1347 /**
1348  * d_path - return the path of a dentry
1349  * @dentry: dentry to report
1350  * @vfsmnt: vfsmnt to which the dentry belongs
1351  * @root: root dentry
1352  * @rootmnt: vfsmnt to which the root dentry belongs
1353  * @buffer: buffer to return value in
1354  * @buflen: buffer length
1355  *
1356  * Convert a dentry into an ASCII path name. If the entry has been deleted
1357  * the string " (deleted)" is appended. Note that this is ambiguous.
1358  *
1359  * Returns the buffer or an error code if the path was too long.
1360  *
1361  * "buflen" should be positive. Caller holds the dcache_lock.
1362  */
1363 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1364 			struct dentry *root, struct vfsmount *rootmnt,
1365 			char *buffer, int buflen)
1366 {
1367 	char * end = buffer+buflen;
1368 	char * retval;
1369 	int namelen;
1370 
1371 	*--end = '\0';
1372 	buflen--;
1373 	if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1374 		buflen -= 10;
1375 		end -= 10;
1376 		if (buflen < 0)
1377 			goto Elong;
1378 		memcpy(end, " (deleted)", 10);
1379 	}
1380 
1381 	if (buflen < 1)
1382 		goto Elong;
1383 	/* Get '/' right */
1384 	retval = end-1;
1385 	*retval = '/';
1386 
1387 	for (;;) {
1388 		struct dentry * parent;
1389 
1390 		if (dentry == root && vfsmnt == rootmnt)
1391 			break;
1392 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1393 			/* Global root? */
1394 			spin_lock(&vfsmount_lock);
1395 			if (vfsmnt->mnt_parent == vfsmnt) {
1396 				spin_unlock(&vfsmount_lock);
1397 				goto global_root;
1398 			}
1399 			dentry = vfsmnt->mnt_mountpoint;
1400 			vfsmnt = vfsmnt->mnt_parent;
1401 			spin_unlock(&vfsmount_lock);
1402 			continue;
1403 		}
1404 		parent = dentry->d_parent;
1405 		prefetch(parent);
1406 		namelen = dentry->d_name.len;
1407 		buflen -= namelen + 1;
1408 		if (buflen < 0)
1409 			goto Elong;
1410 		end -= namelen;
1411 		memcpy(end, dentry->d_name.name, namelen);
1412 		*--end = '/';
1413 		retval = end;
1414 		dentry = parent;
1415 	}
1416 
1417 	return retval;
1418 
1419 global_root:
1420 	namelen = dentry->d_name.len;
1421 	buflen -= namelen;
1422 	if (buflen < 0)
1423 		goto Elong;
1424 	retval -= namelen-1;	/* hit the slash */
1425 	memcpy(retval, dentry->d_name.name, namelen);
1426 	return retval;
1427 Elong:
1428 	return ERR_PTR(-ENAMETOOLONG);
1429 }
1430 
1431 /* write full pathname into buffer and return start of pathname */
1432 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1433 				char *buf, int buflen)
1434 {
1435 	char *res;
1436 	struct vfsmount *rootmnt;
1437 	struct dentry *root;
1438 
1439 	read_lock(&current->fs->lock);
1440 	rootmnt = mntget(current->fs->rootmnt);
1441 	root = dget(current->fs->root);
1442 	read_unlock(&current->fs->lock);
1443 	spin_lock(&dcache_lock);
1444 	res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1445 	spin_unlock(&dcache_lock);
1446 	dput(root);
1447 	mntput(rootmnt);
1448 	return res;
1449 }
1450 
1451 /*
1452  * NOTE! The user-level library version returns a
1453  * character pointer. The kernel system call just
1454  * returns the length of the buffer filled (which
1455  * includes the ending '\0' character), or a negative
1456  * error value. So libc would do something like
1457  *
1458  *	char *getcwd(char * buf, size_t size)
1459  *	{
1460  *		int retval;
1461  *
1462  *		retval = sys_getcwd(buf, size);
1463  *		if (retval >= 0)
1464  *			return buf;
1465  *		errno = -retval;
1466  *		return NULL;
1467  *	}
1468  */
1469 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1470 {
1471 	int error;
1472 	struct vfsmount *pwdmnt, *rootmnt;
1473 	struct dentry *pwd, *root;
1474 	char *page = (char *) __get_free_page(GFP_USER);
1475 
1476 	if (!page)
1477 		return -ENOMEM;
1478 
1479 	read_lock(&current->fs->lock);
1480 	pwdmnt = mntget(current->fs->pwdmnt);
1481 	pwd = dget(current->fs->pwd);
1482 	rootmnt = mntget(current->fs->rootmnt);
1483 	root = dget(current->fs->root);
1484 	read_unlock(&current->fs->lock);
1485 
1486 	error = -ENOENT;
1487 	/* Has the current directory has been unlinked? */
1488 	spin_lock(&dcache_lock);
1489 	if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1490 		unsigned long len;
1491 		char * cwd;
1492 
1493 		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1494 		spin_unlock(&dcache_lock);
1495 
1496 		error = PTR_ERR(cwd);
1497 		if (IS_ERR(cwd))
1498 			goto out;
1499 
1500 		error = -ERANGE;
1501 		len = PAGE_SIZE + page - cwd;
1502 		if (len <= size) {
1503 			error = len;
1504 			if (copy_to_user(buf, cwd, len))
1505 				error = -EFAULT;
1506 		}
1507 	} else
1508 		spin_unlock(&dcache_lock);
1509 
1510 out:
1511 	dput(pwd);
1512 	mntput(pwdmnt);
1513 	dput(root);
1514 	mntput(rootmnt);
1515 	free_page((unsigned long) page);
1516 	return error;
1517 }
1518 
1519 /*
1520  * Test whether new_dentry is a subdirectory of old_dentry.
1521  *
1522  * Trivially implemented using the dcache structure
1523  */
1524 
1525 /**
1526  * is_subdir - is new dentry a subdirectory of old_dentry
1527  * @new_dentry: new dentry
1528  * @old_dentry: old dentry
1529  *
1530  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1531  * Returns 0 otherwise.
1532  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1533  */
1534 
1535 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1536 {
1537 	int result;
1538 	struct dentry * saved = new_dentry;
1539 	unsigned long seq;
1540 
1541 	/* need rcu_readlock to protect against the d_parent trashing due to
1542 	 * d_move
1543 	 */
1544 	rcu_read_lock();
1545         do {
1546 		/* for restarting inner loop in case of seq retry */
1547 		new_dentry = saved;
1548 		result = 0;
1549 		seq = read_seqbegin(&rename_lock);
1550 		for (;;) {
1551 			if (new_dentry != old_dentry) {
1552 				struct dentry * parent = new_dentry->d_parent;
1553 				if (parent == new_dentry)
1554 					break;
1555 				new_dentry = parent;
1556 				continue;
1557 			}
1558 			result = 1;
1559 			break;
1560 		}
1561 	} while (read_seqretry(&rename_lock, seq));
1562 	rcu_read_unlock();
1563 
1564 	return result;
1565 }
1566 
1567 void d_genocide(struct dentry *root)
1568 {
1569 	struct dentry *this_parent = root;
1570 	struct list_head *next;
1571 
1572 	spin_lock(&dcache_lock);
1573 repeat:
1574 	next = this_parent->d_subdirs.next;
1575 resume:
1576 	while (next != &this_parent->d_subdirs) {
1577 		struct list_head *tmp = next;
1578 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1579 		next = tmp->next;
1580 		if (d_unhashed(dentry)||!dentry->d_inode)
1581 			continue;
1582 		if (!list_empty(&dentry->d_subdirs)) {
1583 			this_parent = dentry;
1584 			goto repeat;
1585 		}
1586 		atomic_dec(&dentry->d_count);
1587 	}
1588 	if (this_parent != root) {
1589 		next = this_parent->d_u.d_child.next;
1590 		atomic_dec(&this_parent->d_count);
1591 		this_parent = this_parent->d_parent;
1592 		goto resume;
1593 	}
1594 	spin_unlock(&dcache_lock);
1595 }
1596 
1597 /**
1598  * find_inode_number - check for dentry with name
1599  * @dir: directory to check
1600  * @name: Name to find.
1601  *
1602  * Check whether a dentry already exists for the given name,
1603  * and return the inode number if it has an inode. Otherwise
1604  * 0 is returned.
1605  *
1606  * This routine is used to post-process directory listings for
1607  * filesystems using synthetic inode numbers, and is necessary
1608  * to keep getcwd() working.
1609  */
1610 
1611 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1612 {
1613 	struct dentry * dentry;
1614 	ino_t ino = 0;
1615 
1616 	/*
1617 	 * Check for a fs-specific hash function. Note that we must
1618 	 * calculate the standard hash first, as the d_op->d_hash()
1619 	 * routine may choose to leave the hash value unchanged.
1620 	 */
1621 	name->hash = full_name_hash(name->name, name->len);
1622 	if (dir->d_op && dir->d_op->d_hash)
1623 	{
1624 		if (dir->d_op->d_hash(dir, name) != 0)
1625 			goto out;
1626 	}
1627 
1628 	dentry = d_lookup(dir, name);
1629 	if (dentry)
1630 	{
1631 		if (dentry->d_inode)
1632 			ino = dentry->d_inode->i_ino;
1633 		dput(dentry);
1634 	}
1635 out:
1636 	return ino;
1637 }
1638 
1639 static __initdata unsigned long dhash_entries;
1640 static int __init set_dhash_entries(char *str)
1641 {
1642 	if (!str)
1643 		return 0;
1644 	dhash_entries = simple_strtoul(str, &str, 0);
1645 	return 1;
1646 }
1647 __setup("dhash_entries=", set_dhash_entries);
1648 
1649 static void __init dcache_init_early(void)
1650 {
1651 	int loop;
1652 
1653 	/* If hashes are distributed across NUMA nodes, defer
1654 	 * hash allocation until vmalloc space is available.
1655 	 */
1656 	if (hashdist)
1657 		return;
1658 
1659 	dentry_hashtable =
1660 		alloc_large_system_hash("Dentry cache",
1661 					sizeof(struct hlist_head),
1662 					dhash_entries,
1663 					13,
1664 					HASH_EARLY,
1665 					&d_hash_shift,
1666 					&d_hash_mask,
1667 					0);
1668 
1669 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1670 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1671 }
1672 
1673 static void __init dcache_init(unsigned long mempages)
1674 {
1675 	int loop;
1676 
1677 	/*
1678 	 * A constructor could be added for stable state like the lists,
1679 	 * but it is probably not worth it because of the cache nature
1680 	 * of the dcache.
1681 	 */
1682 	dentry_cache = kmem_cache_create("dentry_cache",
1683 					 sizeof(struct dentry),
1684 					 0,
1685 					 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC,
1686 					 NULL, NULL);
1687 
1688 	set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1689 
1690 	/* Hash may have been set up in dcache_init_early */
1691 	if (!hashdist)
1692 		return;
1693 
1694 	dentry_hashtable =
1695 		alloc_large_system_hash("Dentry cache",
1696 					sizeof(struct hlist_head),
1697 					dhash_entries,
1698 					13,
1699 					0,
1700 					&d_hash_shift,
1701 					&d_hash_mask,
1702 					0);
1703 
1704 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1705 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1706 }
1707 
1708 /* SLAB cache for __getname() consumers */
1709 kmem_cache_t *names_cachep;
1710 
1711 /* SLAB cache for file structures */
1712 kmem_cache_t *filp_cachep;
1713 
1714 EXPORT_SYMBOL(d_genocide);
1715 
1716 extern void bdev_cache_init(void);
1717 extern void chrdev_init(void);
1718 
1719 void __init vfs_caches_init_early(void)
1720 {
1721 	dcache_init_early();
1722 	inode_init_early();
1723 }
1724 
1725 void __init vfs_caches_init(unsigned long mempages)
1726 {
1727 	unsigned long reserve;
1728 
1729 	/* Base hash sizes on available memory, with a reserve equal to
1730            150% of current kernel size */
1731 
1732 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1733 	mempages -= reserve;
1734 
1735 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1736 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1737 
1738 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
1739 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1740 
1741 	dcache_init(mempages);
1742 	inode_init(mempages);
1743 	files_init(mempages);
1744 	mnt_init(mempages);
1745 	bdev_cache_init();
1746 	chrdev_init();
1747 }
1748 
1749 EXPORT_SYMBOL(d_alloc);
1750 EXPORT_SYMBOL(d_alloc_anon);
1751 EXPORT_SYMBOL(d_alloc_root);
1752 EXPORT_SYMBOL(d_delete);
1753 EXPORT_SYMBOL(d_find_alias);
1754 EXPORT_SYMBOL(d_instantiate);
1755 EXPORT_SYMBOL(d_invalidate);
1756 EXPORT_SYMBOL(d_lookup);
1757 EXPORT_SYMBOL(d_move);
1758 EXPORT_SYMBOL(d_path);
1759 EXPORT_SYMBOL(d_prune_aliases);
1760 EXPORT_SYMBOL(d_rehash);
1761 EXPORT_SYMBOL(d_splice_alias);
1762 EXPORT_SYMBOL(d_validate);
1763 EXPORT_SYMBOL(dget_locked);
1764 EXPORT_SYMBOL(dput);
1765 EXPORT_SYMBOL(find_inode_number);
1766 EXPORT_SYMBOL(have_submounts);
1767 EXPORT_SYMBOL(names_cachep);
1768 EXPORT_SYMBOL(shrink_dcache_parent);
1769 EXPORT_SYMBOL(shrink_dcache_sb);
1770