xref: /linux/fs/dcache.c (revision d7851dc13d87688e2c532f0e77c2bd29f902d6cf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __ro_after_init;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89 
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98 
99 static unsigned int d_hash_shift __ro_after_init;
100 
101 static struct hlist_bl_head *dentry_hashtable __ro_after_init;
102 
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 	return dentry_hashtable + (hash >> d_hash_shift);
106 }
107 
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110 
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 					unsigned int hash)
113 {
114 	hash += (unsigned long) parent / L1_CACHE_BYTES;
115 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117 
118 struct dentry_stat_t {
119 	long nr_dentry;
120 	long nr_unused;
121 	long age_limit;		/* age in seconds */
122 	long want_pages;	/* pages requested by system */
123 	long nr_negative;	/* # of unused negative dentries */
124 	long dummy;		/* Reserved for future use */
125 };
126 
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134 	.age_limit = 45,
135 };
136 
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
149 static long get_nr_dentry(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_unused(void)
159 {
160 	int i;
161 	long sum = 0;
162 	for_each_possible_cpu(i)
163 		sum += per_cpu(nr_dentry_unused, i);
164 	return sum < 0 ? 0 : sum;
165 }
166 
167 static long get_nr_dentry_negative(void)
168 {
169 	int i;
170 	long sum = 0;
171 
172 	for_each_possible_cpu(i)
173 		sum += per_cpu(nr_dentry_negative, i);
174 	return sum < 0 ? 0 : sum;
175 }
176 
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 			  size_t *lenp, loff_t *ppos)
179 {
180 	dentry_stat.nr_dentry = get_nr_dentry();
181 	dentry_stat.nr_unused = get_nr_dentry_unused();
182 	dentry_stat.nr_negative = get_nr_dentry_negative();
183 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185 
186 static struct ctl_table fs_dcache_sysctls[] = {
187 	{
188 		.procname	= "dentry-state",
189 		.data		= &dentry_stat,
190 		.maxlen		= 6*sizeof(long),
191 		.mode		= 0444,
192 		.proc_handler	= proc_nr_dentry,
193 	},
194 	{ }
195 };
196 
197 static int __init init_fs_dcache_sysctls(void)
198 {
199 	register_sysctl_init("fs", fs_dcache_sysctls);
200 	return 0;
201 }
202 fs_initcall(init_fs_dcache_sysctls);
203 #endif
204 
205 /*
206  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207  * The strings are both count bytes long, and count is non-zero.
208  */
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
210 
211 #include <asm/word-at-a-time.h>
212 /*
213  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214  * aligned allocation for this particular component. We don't
215  * strictly need the load_unaligned_zeropad() safety, but it
216  * doesn't hurt either.
217  *
218  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219  * need the careful unaligned handling.
220  */
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222 {
223 	unsigned long a,b,mask;
224 
225 	for (;;) {
226 		a = read_word_at_a_time(cs);
227 		b = load_unaligned_zeropad(ct);
228 		if (tcount < sizeof(unsigned long))
229 			break;
230 		if (unlikely(a != b))
231 			return 1;
232 		cs += sizeof(unsigned long);
233 		ct += sizeof(unsigned long);
234 		tcount -= sizeof(unsigned long);
235 		if (!tcount)
236 			return 0;
237 	}
238 	mask = bytemask_from_count(tcount);
239 	return unlikely(!!((a ^ b) & mask));
240 }
241 
242 #else
243 
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245 {
246 	do {
247 		if (*cs != *ct)
248 			return 1;
249 		cs++;
250 		ct++;
251 		tcount--;
252 	} while (tcount);
253 	return 0;
254 }
255 
256 #endif
257 
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259 {
260 	/*
261 	 * Be careful about RCU walk racing with rename:
262 	 * use 'READ_ONCE' to fetch the name pointer.
263 	 *
264 	 * NOTE! Even if a rename will mean that the length
265 	 * was not loaded atomically, we don't care. The
266 	 * RCU walk will check the sequence count eventually,
267 	 * and catch it. And we won't overrun the buffer,
268 	 * because we're reading the name pointer atomically,
269 	 * and a dentry name is guaranteed to be properly
270 	 * terminated with a NUL byte.
271 	 *
272 	 * End result: even if 'len' is wrong, we'll exit
273 	 * early because the data cannot match (there can
274 	 * be no NUL in the ct/tcount data)
275 	 */
276 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277 
278 	return dentry_string_cmp(cs, ct, tcount);
279 }
280 
281 struct external_name {
282 	union {
283 		atomic_t count;
284 		struct rcu_head head;
285 	} u;
286 	unsigned char name[];
287 };
288 
289 static inline struct external_name *external_name(struct dentry *dentry)
290 {
291 	return container_of(dentry->d_name.name, struct external_name, name[0]);
292 }
293 
294 static void __d_free(struct rcu_head *head)
295 {
296 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297 
298 	kmem_cache_free(dentry_cache, dentry);
299 }
300 
301 static void __d_free_external(struct rcu_head *head)
302 {
303 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 	kfree(external_name(dentry));
305 	kmem_cache_free(dentry_cache, dentry);
306 }
307 
308 static inline int dname_external(const struct dentry *dentry)
309 {
310 	return dentry->d_name.name != dentry->d_iname;
311 }
312 
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314 {
315 	spin_lock(&dentry->d_lock);
316 	name->name = dentry->d_name;
317 	if (unlikely(dname_external(dentry))) {
318 		atomic_inc(&external_name(dentry)->u.count);
319 	} else {
320 		memcpy(name->inline_name, dentry->d_iname,
321 		       dentry->d_name.len + 1);
322 		name->name.name = name->inline_name;
323 	}
324 	spin_unlock(&dentry->d_lock);
325 }
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
327 
328 void release_dentry_name_snapshot(struct name_snapshot *name)
329 {
330 	if (unlikely(name->name.name != name->inline_name)) {
331 		struct external_name *p;
332 		p = container_of(name->name.name, struct external_name, name[0]);
333 		if (unlikely(atomic_dec_and_test(&p->u.count)))
334 			kfree_rcu(p, u.head);
335 	}
336 }
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
338 
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
340 					  struct inode *inode,
341 					  unsigned type_flags)
342 {
343 	unsigned flags;
344 
345 	dentry->d_inode = inode;
346 	flags = READ_ONCE(dentry->d_flags);
347 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348 	flags |= type_flags;
349 	smp_store_release(&dentry->d_flags, flags);
350 }
351 
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
353 {
354 	unsigned flags = READ_ONCE(dentry->d_flags);
355 
356 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 	WRITE_ONCE(dentry->d_flags, flags);
358 	dentry->d_inode = NULL;
359 	if (dentry->d_flags & DCACHE_LRU_LIST)
360 		this_cpu_inc(nr_dentry_negative);
361 }
362 
363 static void dentry_free(struct dentry *dentry)
364 {
365 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366 	if (unlikely(dname_external(dentry))) {
367 		struct external_name *p = external_name(dentry);
368 		if (likely(atomic_dec_and_test(&p->u.count))) {
369 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370 			return;
371 		}
372 	}
373 	/* if dentry was never visible to RCU, immediate free is OK */
374 	if (dentry->d_flags & DCACHE_NORCU)
375 		__d_free(&dentry->d_u.d_rcu);
376 	else
377 		call_rcu(&dentry->d_u.d_rcu, __d_free);
378 }
379 
380 /*
381  * Release the dentry's inode, using the filesystem
382  * d_iput() operation if defined.
383  */
384 static void dentry_unlink_inode(struct dentry * dentry)
385 	__releases(dentry->d_lock)
386 	__releases(dentry->d_inode->i_lock)
387 {
388 	struct inode *inode = dentry->d_inode;
389 
390 	raw_write_seqcount_begin(&dentry->d_seq);
391 	__d_clear_type_and_inode(dentry);
392 	hlist_del_init(&dentry->d_u.d_alias);
393 	raw_write_seqcount_end(&dentry->d_seq);
394 	spin_unlock(&dentry->d_lock);
395 	spin_unlock(&inode->i_lock);
396 	if (!inode->i_nlink)
397 		fsnotify_inoderemove(inode);
398 	if (dentry->d_op && dentry->d_op->d_iput)
399 		dentry->d_op->d_iput(dentry, inode);
400 	else
401 		iput(inode);
402 }
403 
404 /*
405  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406  * is in use - which includes both the "real" per-superblock
407  * LRU list _and_ the DCACHE_SHRINK_LIST use.
408  *
409  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410  * on the shrink list (ie not on the superblock LRU list).
411  *
412  * The per-cpu "nr_dentry_unused" counters are updated with
413  * the DCACHE_LRU_LIST bit.
414  *
415  * The per-cpu "nr_dentry_negative" counters are only updated
416  * when deleted from or added to the per-superblock LRU list, not
417  * from/to the shrink list. That is to avoid an unneeded dec/inc
418  * pair when moving from LRU to shrink list in select_collect().
419  *
420  * These helper functions make sure we always follow the
421  * rules. d_lock must be held by the caller.
422  */
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424 static void d_lru_add(struct dentry *dentry)
425 {
426 	D_FLAG_VERIFY(dentry, 0);
427 	dentry->d_flags |= DCACHE_LRU_LIST;
428 	this_cpu_inc(nr_dentry_unused);
429 	if (d_is_negative(dentry))
430 		this_cpu_inc(nr_dentry_negative);
431 	WARN_ON_ONCE(!list_lru_add_obj(
432 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
433 }
434 
435 static void d_lru_del(struct dentry *dentry)
436 {
437 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 	dentry->d_flags &= ~DCACHE_LRU_LIST;
439 	this_cpu_dec(nr_dentry_unused);
440 	if (d_is_negative(dentry))
441 		this_cpu_dec(nr_dentry_negative);
442 	WARN_ON_ONCE(!list_lru_del_obj(
443 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
444 }
445 
446 static void d_shrink_del(struct dentry *dentry)
447 {
448 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 	list_del_init(&dentry->d_lru);
450 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
451 	this_cpu_dec(nr_dentry_unused);
452 }
453 
454 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
455 {
456 	D_FLAG_VERIFY(dentry, 0);
457 	list_add(&dentry->d_lru, list);
458 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
459 	this_cpu_inc(nr_dentry_unused);
460 }
461 
462 /*
463  * These can only be called under the global LRU lock, ie during the
464  * callback for freeing the LRU list. "isolate" removes it from the
465  * LRU lists entirely, while shrink_move moves it to the indicated
466  * private list.
467  */
468 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
469 {
470 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
471 	dentry->d_flags &= ~DCACHE_LRU_LIST;
472 	this_cpu_dec(nr_dentry_unused);
473 	if (d_is_negative(dentry))
474 		this_cpu_dec(nr_dentry_negative);
475 	list_lru_isolate(lru, &dentry->d_lru);
476 }
477 
478 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
479 			      struct list_head *list)
480 {
481 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
482 	dentry->d_flags |= DCACHE_SHRINK_LIST;
483 	if (d_is_negative(dentry))
484 		this_cpu_dec(nr_dentry_negative);
485 	list_lru_isolate_move(lru, &dentry->d_lru, list);
486 }
487 
488 static void ___d_drop(struct dentry *dentry)
489 {
490 	struct hlist_bl_head *b;
491 	/*
492 	 * Hashed dentries are normally on the dentry hashtable,
493 	 * with the exception of those newly allocated by
494 	 * d_obtain_root, which are always IS_ROOT:
495 	 */
496 	if (unlikely(IS_ROOT(dentry)))
497 		b = &dentry->d_sb->s_roots;
498 	else
499 		b = d_hash(dentry->d_name.hash);
500 
501 	hlist_bl_lock(b);
502 	__hlist_bl_del(&dentry->d_hash);
503 	hlist_bl_unlock(b);
504 }
505 
506 void __d_drop(struct dentry *dentry)
507 {
508 	if (!d_unhashed(dentry)) {
509 		___d_drop(dentry);
510 		dentry->d_hash.pprev = NULL;
511 		write_seqcount_invalidate(&dentry->d_seq);
512 	}
513 }
514 EXPORT_SYMBOL(__d_drop);
515 
516 /**
517  * d_drop - drop a dentry
518  * @dentry: dentry to drop
519  *
520  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
521  * be found through a VFS lookup any more. Note that this is different from
522  * deleting the dentry - d_delete will try to mark the dentry negative if
523  * possible, giving a successful _negative_ lookup, while d_drop will
524  * just make the cache lookup fail.
525  *
526  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
527  * reason (NFS timeouts or autofs deletes).
528  *
529  * __d_drop requires dentry->d_lock
530  *
531  * ___d_drop doesn't mark dentry as "unhashed"
532  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
533  */
534 void d_drop(struct dentry *dentry)
535 {
536 	spin_lock(&dentry->d_lock);
537 	__d_drop(dentry);
538 	spin_unlock(&dentry->d_lock);
539 }
540 EXPORT_SYMBOL(d_drop);
541 
542 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
543 {
544 	struct dentry *next;
545 	/*
546 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
547 	 * attached to the dentry tree
548 	 */
549 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
550 	if (unlikely(list_empty(&dentry->d_child)))
551 		return;
552 	__list_del_entry(&dentry->d_child);
553 	/*
554 	 * Cursors can move around the list of children.  While we'd been
555 	 * a normal list member, it didn't matter - ->d_child.next would've
556 	 * been updated.  However, from now on it won't be and for the
557 	 * things like d_walk() it might end up with a nasty surprise.
558 	 * Normally d_walk() doesn't care about cursors moving around -
559 	 * ->d_lock on parent prevents that and since a cursor has no children
560 	 * of its own, we get through it without ever unlocking the parent.
561 	 * There is one exception, though - if we ascend from a child that
562 	 * gets killed as soon as we unlock it, the next sibling is found
563 	 * using the value left in its ->d_child.next.  And if _that_
564 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
565 	 * before d_walk() regains parent->d_lock, we'll end up skipping
566 	 * everything the cursor had been moved past.
567 	 *
568 	 * Solution: make sure that the pointer left behind in ->d_child.next
569 	 * points to something that won't be moving around.  I.e. skip the
570 	 * cursors.
571 	 */
572 	while (dentry->d_child.next != &parent->d_subdirs) {
573 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
574 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
575 			break;
576 		dentry->d_child.next = next->d_child.next;
577 	}
578 }
579 
580 static void __dentry_kill(struct dentry *dentry)
581 {
582 	struct dentry *parent = NULL;
583 	bool can_free = true;
584 	if (!IS_ROOT(dentry))
585 		parent = dentry->d_parent;
586 
587 	/*
588 	 * The dentry is now unrecoverably dead to the world.
589 	 */
590 	lockref_mark_dead(&dentry->d_lockref);
591 
592 	/*
593 	 * inform the fs via d_prune that this dentry is about to be
594 	 * unhashed and destroyed.
595 	 */
596 	if (dentry->d_flags & DCACHE_OP_PRUNE)
597 		dentry->d_op->d_prune(dentry);
598 
599 	if (dentry->d_flags & DCACHE_LRU_LIST) {
600 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
601 			d_lru_del(dentry);
602 	}
603 	/* if it was on the hash then remove it */
604 	__d_drop(dentry);
605 	dentry_unlist(dentry, parent);
606 	if (parent)
607 		spin_unlock(&parent->d_lock);
608 	if (dentry->d_inode)
609 		dentry_unlink_inode(dentry);
610 	else
611 		spin_unlock(&dentry->d_lock);
612 	this_cpu_dec(nr_dentry);
613 	if (dentry->d_op && dentry->d_op->d_release)
614 		dentry->d_op->d_release(dentry);
615 
616 	spin_lock(&dentry->d_lock);
617 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
618 		dentry->d_flags |= DCACHE_MAY_FREE;
619 		can_free = false;
620 	}
621 	spin_unlock(&dentry->d_lock);
622 	if (likely(can_free))
623 		dentry_free(dentry);
624 	cond_resched();
625 }
626 
627 static struct dentry *__lock_parent(struct dentry *dentry)
628 {
629 	struct dentry *parent;
630 	rcu_read_lock();
631 	spin_unlock(&dentry->d_lock);
632 again:
633 	parent = READ_ONCE(dentry->d_parent);
634 	spin_lock(&parent->d_lock);
635 	/*
636 	 * We can't blindly lock dentry until we are sure
637 	 * that we won't violate the locking order.
638 	 * Any changes of dentry->d_parent must have
639 	 * been done with parent->d_lock held, so
640 	 * spin_lock() above is enough of a barrier
641 	 * for checking if it's still our child.
642 	 */
643 	if (unlikely(parent != dentry->d_parent)) {
644 		spin_unlock(&parent->d_lock);
645 		goto again;
646 	}
647 	rcu_read_unlock();
648 	if (parent != dentry)
649 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
650 	else
651 		parent = NULL;
652 	return parent;
653 }
654 
655 static inline struct dentry *lock_parent(struct dentry *dentry)
656 {
657 	struct dentry *parent = dentry->d_parent;
658 	if (IS_ROOT(dentry))
659 		return NULL;
660 	if (likely(spin_trylock(&parent->d_lock)))
661 		return parent;
662 	return __lock_parent(dentry);
663 }
664 
665 static inline bool retain_dentry(struct dentry *dentry)
666 {
667 	WARN_ON(d_in_lookup(dentry));
668 
669 	/* Unreachable? Get rid of it */
670 	if (unlikely(d_unhashed(dentry)))
671 		return false;
672 
673 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
674 		return false;
675 
676 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
677 		if (dentry->d_op->d_delete(dentry))
678 			return false;
679 	}
680 
681 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
682 		return false;
683 
684 	/* retain; LRU fodder */
685 	dentry->d_lockref.count--;
686 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
687 		d_lru_add(dentry);
688 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
689 		dentry->d_flags |= DCACHE_REFERENCED;
690 	return true;
691 }
692 
693 void d_mark_dontcache(struct inode *inode)
694 {
695 	struct dentry *de;
696 
697 	spin_lock(&inode->i_lock);
698 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
699 		spin_lock(&de->d_lock);
700 		de->d_flags |= DCACHE_DONTCACHE;
701 		spin_unlock(&de->d_lock);
702 	}
703 	inode->i_state |= I_DONTCACHE;
704 	spin_unlock(&inode->i_lock);
705 }
706 EXPORT_SYMBOL(d_mark_dontcache);
707 
708 /*
709  * Finish off a dentry we've decided to kill.
710  * dentry->d_lock must be held, returns with it unlocked.
711  * Returns dentry requiring refcount drop, or NULL if we're done.
712  */
713 static struct dentry *dentry_kill(struct dentry *dentry)
714 	__releases(dentry->d_lock)
715 {
716 	struct inode *inode = dentry->d_inode;
717 	struct dentry *parent = NULL;
718 
719 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
720 		goto slow_positive;
721 
722 	if (!IS_ROOT(dentry)) {
723 		parent = dentry->d_parent;
724 		if (unlikely(!spin_trylock(&parent->d_lock))) {
725 			parent = __lock_parent(dentry);
726 			if (likely(inode || !dentry->d_inode))
727 				goto got_locks;
728 			/* negative that became positive */
729 			if (parent)
730 				spin_unlock(&parent->d_lock);
731 			inode = dentry->d_inode;
732 			goto slow_positive;
733 		}
734 	}
735 	__dentry_kill(dentry);
736 	return parent;
737 
738 slow_positive:
739 	spin_unlock(&dentry->d_lock);
740 	spin_lock(&inode->i_lock);
741 	spin_lock(&dentry->d_lock);
742 	parent = lock_parent(dentry);
743 got_locks:
744 	if (unlikely(dentry->d_lockref.count != 1)) {
745 		dentry->d_lockref.count--;
746 	} else if (likely(!retain_dentry(dentry))) {
747 		__dentry_kill(dentry);
748 		return parent;
749 	}
750 	/* we are keeping it, after all */
751 	if (inode)
752 		spin_unlock(&inode->i_lock);
753 	if (parent)
754 		spin_unlock(&parent->d_lock);
755 	spin_unlock(&dentry->d_lock);
756 	return NULL;
757 }
758 
759 /*
760  * Try to do a lockless dput(), and return whether that was successful.
761  *
762  * If unsuccessful, we return false, having already taken the dentry lock.
763  *
764  * The caller needs to hold the RCU read lock, so that the dentry is
765  * guaranteed to stay around even if the refcount goes down to zero!
766  */
767 static inline bool fast_dput(struct dentry *dentry)
768 {
769 	int ret;
770 	unsigned int d_flags;
771 
772 	/*
773 	 * If we have a d_op->d_delete() operation, we sould not
774 	 * let the dentry count go to zero, so use "put_or_lock".
775 	 */
776 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
777 		return lockref_put_or_lock(&dentry->d_lockref);
778 
779 	/*
780 	 * .. otherwise, we can try to just decrement the
781 	 * lockref optimistically.
782 	 */
783 	ret = lockref_put_return(&dentry->d_lockref);
784 
785 	/*
786 	 * If the lockref_put_return() failed due to the lock being held
787 	 * by somebody else, the fast path has failed. We will need to
788 	 * get the lock, and then check the count again.
789 	 */
790 	if (unlikely(ret < 0)) {
791 		spin_lock(&dentry->d_lock);
792 		if (dentry->d_lockref.count > 1) {
793 			dentry->d_lockref.count--;
794 			spin_unlock(&dentry->d_lock);
795 			return true;
796 		}
797 		return false;
798 	}
799 
800 	/*
801 	 * If we weren't the last ref, we're done.
802 	 */
803 	if (ret)
804 		return true;
805 
806 	/*
807 	 * Careful, careful. The reference count went down
808 	 * to zero, but we don't hold the dentry lock, so
809 	 * somebody else could get it again, and do another
810 	 * dput(), and we need to not race with that.
811 	 *
812 	 * However, there is a very special and common case
813 	 * where we don't care, because there is nothing to
814 	 * do: the dentry is still hashed, it does not have
815 	 * a 'delete' op, and it's referenced and already on
816 	 * the LRU list.
817 	 *
818 	 * NOTE! Since we aren't locked, these values are
819 	 * not "stable". However, it is sufficient that at
820 	 * some point after we dropped the reference the
821 	 * dentry was hashed and the flags had the proper
822 	 * value. Other dentry users may have re-gotten
823 	 * a reference to the dentry and change that, but
824 	 * our work is done - we can leave the dentry
825 	 * around with a zero refcount.
826 	 *
827 	 * Nevertheless, there are two cases that we should kill
828 	 * the dentry anyway.
829 	 * 1. free disconnected dentries as soon as their refcount
830 	 *    reached zero.
831 	 * 2. free dentries if they should not be cached.
832 	 */
833 	smp_rmb();
834 	d_flags = READ_ONCE(dentry->d_flags);
835 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
836 			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
837 
838 	/* Nothing to do? Dropping the reference was all we needed? */
839 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
840 		return true;
841 
842 	/*
843 	 * Not the fast normal case? Get the lock. We've already decremented
844 	 * the refcount, but we'll need to re-check the situation after
845 	 * getting the lock.
846 	 */
847 	spin_lock(&dentry->d_lock);
848 
849 	/*
850 	 * Did somebody else grab a reference to it in the meantime, and
851 	 * we're no longer the last user after all? Alternatively, somebody
852 	 * else could have killed it and marked it dead. Either way, we
853 	 * don't need to do anything else.
854 	 */
855 	if (dentry->d_lockref.count) {
856 		spin_unlock(&dentry->d_lock);
857 		return true;
858 	}
859 
860 	/*
861 	 * Re-get the reference we optimistically dropped. We hold the
862 	 * lock, and we just tested that it was zero, so we can just
863 	 * set it to 1.
864 	 */
865 	dentry->d_lockref.count = 1;
866 	return false;
867 }
868 
869 
870 /*
871  * This is dput
872  *
873  * This is complicated by the fact that we do not want to put
874  * dentries that are no longer on any hash chain on the unused
875  * list: we'd much rather just get rid of them immediately.
876  *
877  * However, that implies that we have to traverse the dentry
878  * tree upwards to the parents which might _also_ now be
879  * scheduled for deletion (it may have been only waiting for
880  * its last child to go away).
881  *
882  * This tail recursion is done by hand as we don't want to depend
883  * on the compiler to always get this right (gcc generally doesn't).
884  * Real recursion would eat up our stack space.
885  */
886 
887 /*
888  * dput - release a dentry
889  * @dentry: dentry to release
890  *
891  * Release a dentry. This will drop the usage count and if appropriate
892  * call the dentry unlink method as well as removing it from the queues and
893  * releasing its resources. If the parent dentries were scheduled for release
894  * they too may now get deleted.
895  */
896 void dput(struct dentry *dentry)
897 {
898 	while (dentry) {
899 		might_sleep();
900 
901 		rcu_read_lock();
902 		if (likely(fast_dput(dentry))) {
903 			rcu_read_unlock();
904 			return;
905 		}
906 
907 		/* Slow case: now with the dentry lock held */
908 		rcu_read_unlock();
909 
910 		if (likely(retain_dentry(dentry))) {
911 			spin_unlock(&dentry->d_lock);
912 			return;
913 		}
914 
915 		dentry = dentry_kill(dentry);
916 	}
917 }
918 EXPORT_SYMBOL(dput);
919 
920 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
921 __must_hold(&dentry->d_lock)
922 {
923 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
924 		/* let the owner of the list it's on deal with it */
925 		--dentry->d_lockref.count;
926 	} else {
927 		if (dentry->d_flags & DCACHE_LRU_LIST)
928 			d_lru_del(dentry);
929 		if (!--dentry->d_lockref.count)
930 			d_shrink_add(dentry, list);
931 	}
932 }
933 
934 void dput_to_list(struct dentry *dentry, struct list_head *list)
935 {
936 	rcu_read_lock();
937 	if (likely(fast_dput(dentry))) {
938 		rcu_read_unlock();
939 		return;
940 	}
941 	rcu_read_unlock();
942 	if (!retain_dentry(dentry))
943 		__dput_to_list(dentry, list);
944 	spin_unlock(&dentry->d_lock);
945 }
946 
947 /* This must be called with d_lock held */
948 static inline void __dget_dlock(struct dentry *dentry)
949 {
950 	dentry->d_lockref.count++;
951 }
952 
953 static inline void __dget(struct dentry *dentry)
954 {
955 	lockref_get(&dentry->d_lockref);
956 }
957 
958 struct dentry *dget_parent(struct dentry *dentry)
959 {
960 	int gotref;
961 	struct dentry *ret;
962 	unsigned seq;
963 
964 	/*
965 	 * Do optimistic parent lookup without any
966 	 * locking.
967 	 */
968 	rcu_read_lock();
969 	seq = raw_seqcount_begin(&dentry->d_seq);
970 	ret = READ_ONCE(dentry->d_parent);
971 	gotref = lockref_get_not_zero(&ret->d_lockref);
972 	rcu_read_unlock();
973 	if (likely(gotref)) {
974 		if (!read_seqcount_retry(&dentry->d_seq, seq))
975 			return ret;
976 		dput(ret);
977 	}
978 
979 repeat:
980 	/*
981 	 * Don't need rcu_dereference because we re-check it was correct under
982 	 * the lock.
983 	 */
984 	rcu_read_lock();
985 	ret = dentry->d_parent;
986 	spin_lock(&ret->d_lock);
987 	if (unlikely(ret != dentry->d_parent)) {
988 		spin_unlock(&ret->d_lock);
989 		rcu_read_unlock();
990 		goto repeat;
991 	}
992 	rcu_read_unlock();
993 	BUG_ON(!ret->d_lockref.count);
994 	ret->d_lockref.count++;
995 	spin_unlock(&ret->d_lock);
996 	return ret;
997 }
998 EXPORT_SYMBOL(dget_parent);
999 
1000 static struct dentry * __d_find_any_alias(struct inode *inode)
1001 {
1002 	struct dentry *alias;
1003 
1004 	if (hlist_empty(&inode->i_dentry))
1005 		return NULL;
1006 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1007 	__dget(alias);
1008 	return alias;
1009 }
1010 
1011 /**
1012  * d_find_any_alias - find any alias for a given inode
1013  * @inode: inode to find an alias for
1014  *
1015  * If any aliases exist for the given inode, take and return a
1016  * reference for one of them.  If no aliases exist, return %NULL.
1017  */
1018 struct dentry *d_find_any_alias(struct inode *inode)
1019 {
1020 	struct dentry *de;
1021 
1022 	spin_lock(&inode->i_lock);
1023 	de = __d_find_any_alias(inode);
1024 	spin_unlock(&inode->i_lock);
1025 	return de;
1026 }
1027 EXPORT_SYMBOL(d_find_any_alias);
1028 
1029 static struct dentry *__d_find_alias(struct inode *inode)
1030 {
1031 	struct dentry *alias;
1032 
1033 	if (S_ISDIR(inode->i_mode))
1034 		return __d_find_any_alias(inode);
1035 
1036 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1037 		spin_lock(&alias->d_lock);
1038  		if (!d_unhashed(alias)) {
1039 			__dget_dlock(alias);
1040 			spin_unlock(&alias->d_lock);
1041 			return alias;
1042 		}
1043 		spin_unlock(&alias->d_lock);
1044 	}
1045 	return NULL;
1046 }
1047 
1048 /**
1049  * d_find_alias - grab a hashed alias of inode
1050  * @inode: inode in question
1051  *
1052  * If inode has a hashed alias, or is a directory and has any alias,
1053  * acquire the reference to alias and return it. Otherwise return NULL.
1054  * Notice that if inode is a directory there can be only one alias and
1055  * it can be unhashed only if it has no children, or if it is the root
1056  * of a filesystem, or if the directory was renamed and d_revalidate
1057  * was the first vfs operation to notice.
1058  *
1059  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1060  * any other hashed alias over that one.
1061  */
1062 struct dentry *d_find_alias(struct inode *inode)
1063 {
1064 	struct dentry *de = NULL;
1065 
1066 	if (!hlist_empty(&inode->i_dentry)) {
1067 		spin_lock(&inode->i_lock);
1068 		de = __d_find_alias(inode);
1069 		spin_unlock(&inode->i_lock);
1070 	}
1071 	return de;
1072 }
1073 EXPORT_SYMBOL(d_find_alias);
1074 
1075 /*
1076  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1077  *  that inode won't get freed until rcu_read_unlock().
1078  */
1079 struct dentry *d_find_alias_rcu(struct inode *inode)
1080 {
1081 	struct hlist_head *l = &inode->i_dentry;
1082 	struct dentry *de = NULL;
1083 
1084 	spin_lock(&inode->i_lock);
1085 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1086 	// used without having I_FREEING set, which means no aliases left
1087 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1088 		if (S_ISDIR(inode->i_mode)) {
1089 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1090 		} else {
1091 			hlist_for_each_entry(de, l, d_u.d_alias)
1092 				if (!d_unhashed(de))
1093 					break;
1094 		}
1095 	}
1096 	spin_unlock(&inode->i_lock);
1097 	return de;
1098 }
1099 
1100 /*
1101  *	Try to kill dentries associated with this inode.
1102  * WARNING: you must own a reference to inode.
1103  */
1104 void d_prune_aliases(struct inode *inode)
1105 {
1106 	struct dentry *dentry;
1107 restart:
1108 	spin_lock(&inode->i_lock);
1109 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1110 		spin_lock(&dentry->d_lock);
1111 		if (!dentry->d_lockref.count) {
1112 			struct dentry *parent = lock_parent(dentry);
1113 			if (likely(!dentry->d_lockref.count)) {
1114 				__dentry_kill(dentry);
1115 				dput(parent);
1116 				goto restart;
1117 			}
1118 			if (parent)
1119 				spin_unlock(&parent->d_lock);
1120 		}
1121 		spin_unlock(&dentry->d_lock);
1122 	}
1123 	spin_unlock(&inode->i_lock);
1124 }
1125 EXPORT_SYMBOL(d_prune_aliases);
1126 
1127 /*
1128  * Lock a dentry from shrink list.
1129  * Called under rcu_read_lock() and dentry->d_lock; the former
1130  * guarantees that nothing we access will be freed under us.
1131  * Note that dentry is *not* protected from concurrent dentry_kill(),
1132  * d_delete(), etc.
1133  *
1134  * Return false if dentry has been disrupted or grabbed, leaving
1135  * the caller to kick it off-list.  Otherwise, return true and have
1136  * that dentry's inode and parent both locked.
1137  */
1138 static bool shrink_lock_dentry(struct dentry *dentry)
1139 {
1140 	struct inode *inode;
1141 	struct dentry *parent;
1142 
1143 	if (dentry->d_lockref.count)
1144 		return false;
1145 
1146 	inode = dentry->d_inode;
1147 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1148 		spin_unlock(&dentry->d_lock);
1149 		spin_lock(&inode->i_lock);
1150 		spin_lock(&dentry->d_lock);
1151 		if (unlikely(dentry->d_lockref.count))
1152 			goto out;
1153 		/* changed inode means that somebody had grabbed it */
1154 		if (unlikely(inode != dentry->d_inode))
1155 			goto out;
1156 	}
1157 
1158 	parent = dentry->d_parent;
1159 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1160 		return true;
1161 
1162 	spin_unlock(&dentry->d_lock);
1163 	spin_lock(&parent->d_lock);
1164 	if (unlikely(parent != dentry->d_parent)) {
1165 		spin_unlock(&parent->d_lock);
1166 		spin_lock(&dentry->d_lock);
1167 		goto out;
1168 	}
1169 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1170 	if (likely(!dentry->d_lockref.count))
1171 		return true;
1172 	spin_unlock(&parent->d_lock);
1173 out:
1174 	if (inode)
1175 		spin_unlock(&inode->i_lock);
1176 	return false;
1177 }
1178 
1179 void shrink_dentry_list(struct list_head *list)
1180 {
1181 	while (!list_empty(list)) {
1182 		struct dentry *dentry, *parent;
1183 
1184 		dentry = list_entry(list->prev, struct dentry, d_lru);
1185 		spin_lock(&dentry->d_lock);
1186 		rcu_read_lock();
1187 		if (!shrink_lock_dentry(dentry)) {
1188 			bool can_free = false;
1189 			rcu_read_unlock();
1190 			d_shrink_del(dentry);
1191 			if (dentry->d_lockref.count < 0)
1192 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1193 			spin_unlock(&dentry->d_lock);
1194 			if (can_free)
1195 				dentry_free(dentry);
1196 			continue;
1197 		}
1198 		rcu_read_unlock();
1199 		d_shrink_del(dentry);
1200 		parent = dentry->d_parent;
1201 		if (parent != dentry)
1202 			__dput_to_list(parent, list);
1203 		__dentry_kill(dentry);
1204 	}
1205 }
1206 
1207 static enum lru_status dentry_lru_isolate(struct list_head *item,
1208 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1209 {
1210 	struct list_head *freeable = arg;
1211 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1212 
1213 
1214 	/*
1215 	 * we are inverting the lru lock/dentry->d_lock here,
1216 	 * so use a trylock. If we fail to get the lock, just skip
1217 	 * it
1218 	 */
1219 	if (!spin_trylock(&dentry->d_lock))
1220 		return LRU_SKIP;
1221 
1222 	/*
1223 	 * Referenced dentries are still in use. If they have active
1224 	 * counts, just remove them from the LRU. Otherwise give them
1225 	 * another pass through the LRU.
1226 	 */
1227 	if (dentry->d_lockref.count) {
1228 		d_lru_isolate(lru, dentry);
1229 		spin_unlock(&dentry->d_lock);
1230 		return LRU_REMOVED;
1231 	}
1232 
1233 	if (dentry->d_flags & DCACHE_REFERENCED) {
1234 		dentry->d_flags &= ~DCACHE_REFERENCED;
1235 		spin_unlock(&dentry->d_lock);
1236 
1237 		/*
1238 		 * The list move itself will be made by the common LRU code. At
1239 		 * this point, we've dropped the dentry->d_lock but keep the
1240 		 * lru lock. This is safe to do, since every list movement is
1241 		 * protected by the lru lock even if both locks are held.
1242 		 *
1243 		 * This is guaranteed by the fact that all LRU management
1244 		 * functions are intermediated by the LRU API calls like
1245 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1246 		 * only ever occur through this functions or through callbacks
1247 		 * like this one, that are called from the LRU API.
1248 		 *
1249 		 * The only exceptions to this are functions like
1250 		 * shrink_dentry_list, and code that first checks for the
1251 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1252 		 * operating only with stack provided lists after they are
1253 		 * properly isolated from the main list.  It is thus, always a
1254 		 * local access.
1255 		 */
1256 		return LRU_ROTATE;
1257 	}
1258 
1259 	d_lru_shrink_move(lru, dentry, freeable);
1260 	spin_unlock(&dentry->d_lock);
1261 
1262 	return LRU_REMOVED;
1263 }
1264 
1265 /**
1266  * prune_dcache_sb - shrink the dcache
1267  * @sb: superblock
1268  * @sc: shrink control, passed to list_lru_shrink_walk()
1269  *
1270  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1271  * is done when we need more memory and called from the superblock shrinker
1272  * function.
1273  *
1274  * This function may fail to free any resources if all the dentries are in
1275  * use.
1276  */
1277 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1278 {
1279 	LIST_HEAD(dispose);
1280 	long freed;
1281 
1282 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1283 				     dentry_lru_isolate, &dispose);
1284 	shrink_dentry_list(&dispose);
1285 	return freed;
1286 }
1287 
1288 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1289 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1290 {
1291 	struct list_head *freeable = arg;
1292 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1293 
1294 	/*
1295 	 * we are inverting the lru lock/dentry->d_lock here,
1296 	 * so use a trylock. If we fail to get the lock, just skip
1297 	 * it
1298 	 */
1299 	if (!spin_trylock(&dentry->d_lock))
1300 		return LRU_SKIP;
1301 
1302 	d_lru_shrink_move(lru, dentry, freeable);
1303 	spin_unlock(&dentry->d_lock);
1304 
1305 	return LRU_REMOVED;
1306 }
1307 
1308 
1309 /**
1310  * shrink_dcache_sb - shrink dcache for a superblock
1311  * @sb: superblock
1312  *
1313  * Shrink the dcache for the specified super block. This is used to free
1314  * the dcache before unmounting a file system.
1315  */
1316 void shrink_dcache_sb(struct super_block *sb)
1317 {
1318 	do {
1319 		LIST_HEAD(dispose);
1320 
1321 		list_lru_walk(&sb->s_dentry_lru,
1322 			dentry_lru_isolate_shrink, &dispose, 1024);
1323 		shrink_dentry_list(&dispose);
1324 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1325 }
1326 EXPORT_SYMBOL(shrink_dcache_sb);
1327 
1328 /**
1329  * enum d_walk_ret - action to talke during tree walk
1330  * @D_WALK_CONTINUE:	contrinue walk
1331  * @D_WALK_QUIT:	quit walk
1332  * @D_WALK_NORETRY:	quit when retry is needed
1333  * @D_WALK_SKIP:	skip this dentry and its children
1334  */
1335 enum d_walk_ret {
1336 	D_WALK_CONTINUE,
1337 	D_WALK_QUIT,
1338 	D_WALK_NORETRY,
1339 	D_WALK_SKIP,
1340 };
1341 
1342 /**
1343  * d_walk - walk the dentry tree
1344  * @parent:	start of walk
1345  * @data:	data passed to @enter() and @finish()
1346  * @enter:	callback when first entering the dentry
1347  *
1348  * The @enter() callbacks are called with d_lock held.
1349  */
1350 static void d_walk(struct dentry *parent, void *data,
1351 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1352 {
1353 	struct dentry *this_parent;
1354 	struct list_head *next;
1355 	unsigned seq = 0;
1356 	enum d_walk_ret ret;
1357 	bool retry = true;
1358 
1359 again:
1360 	read_seqbegin_or_lock(&rename_lock, &seq);
1361 	this_parent = parent;
1362 	spin_lock(&this_parent->d_lock);
1363 
1364 	ret = enter(data, this_parent);
1365 	switch (ret) {
1366 	case D_WALK_CONTINUE:
1367 		break;
1368 	case D_WALK_QUIT:
1369 	case D_WALK_SKIP:
1370 		goto out_unlock;
1371 	case D_WALK_NORETRY:
1372 		retry = false;
1373 		break;
1374 	}
1375 repeat:
1376 	next = this_parent->d_subdirs.next;
1377 resume:
1378 	while (next != &this_parent->d_subdirs) {
1379 		struct list_head *tmp = next;
1380 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1381 		next = tmp->next;
1382 
1383 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1384 			continue;
1385 
1386 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1387 
1388 		ret = enter(data, dentry);
1389 		switch (ret) {
1390 		case D_WALK_CONTINUE:
1391 			break;
1392 		case D_WALK_QUIT:
1393 			spin_unlock(&dentry->d_lock);
1394 			goto out_unlock;
1395 		case D_WALK_NORETRY:
1396 			retry = false;
1397 			break;
1398 		case D_WALK_SKIP:
1399 			spin_unlock(&dentry->d_lock);
1400 			continue;
1401 		}
1402 
1403 		if (!list_empty(&dentry->d_subdirs)) {
1404 			spin_unlock(&this_parent->d_lock);
1405 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1406 			this_parent = dentry;
1407 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1408 			goto repeat;
1409 		}
1410 		spin_unlock(&dentry->d_lock);
1411 	}
1412 	/*
1413 	 * All done at this level ... ascend and resume the search.
1414 	 */
1415 	rcu_read_lock();
1416 ascend:
1417 	if (this_parent != parent) {
1418 		struct dentry *child = this_parent;
1419 		this_parent = child->d_parent;
1420 
1421 		spin_unlock(&child->d_lock);
1422 		spin_lock(&this_parent->d_lock);
1423 
1424 		/* might go back up the wrong parent if we have had a rename. */
1425 		if (need_seqretry(&rename_lock, seq))
1426 			goto rename_retry;
1427 		/* go into the first sibling still alive */
1428 		do {
1429 			next = child->d_child.next;
1430 			if (next == &this_parent->d_subdirs)
1431 				goto ascend;
1432 			child = list_entry(next, struct dentry, d_child);
1433 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1434 		rcu_read_unlock();
1435 		goto resume;
1436 	}
1437 	if (need_seqretry(&rename_lock, seq))
1438 		goto rename_retry;
1439 	rcu_read_unlock();
1440 
1441 out_unlock:
1442 	spin_unlock(&this_parent->d_lock);
1443 	done_seqretry(&rename_lock, seq);
1444 	return;
1445 
1446 rename_retry:
1447 	spin_unlock(&this_parent->d_lock);
1448 	rcu_read_unlock();
1449 	BUG_ON(seq & 1);
1450 	if (!retry)
1451 		return;
1452 	seq = 1;
1453 	goto again;
1454 }
1455 
1456 struct check_mount {
1457 	struct vfsmount *mnt;
1458 	unsigned int mounted;
1459 };
1460 
1461 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1462 {
1463 	struct check_mount *info = data;
1464 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1465 
1466 	if (likely(!d_mountpoint(dentry)))
1467 		return D_WALK_CONTINUE;
1468 	if (__path_is_mountpoint(&path)) {
1469 		info->mounted = 1;
1470 		return D_WALK_QUIT;
1471 	}
1472 	return D_WALK_CONTINUE;
1473 }
1474 
1475 /**
1476  * path_has_submounts - check for mounts over a dentry in the
1477  *                      current namespace.
1478  * @parent: path to check.
1479  *
1480  * Return true if the parent or its subdirectories contain
1481  * a mount point in the current namespace.
1482  */
1483 int path_has_submounts(const struct path *parent)
1484 {
1485 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1486 
1487 	read_seqlock_excl(&mount_lock);
1488 	d_walk(parent->dentry, &data, path_check_mount);
1489 	read_sequnlock_excl(&mount_lock);
1490 
1491 	return data.mounted;
1492 }
1493 EXPORT_SYMBOL(path_has_submounts);
1494 
1495 /*
1496  * Called by mount code to set a mountpoint and check if the mountpoint is
1497  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1498  * subtree can become unreachable).
1499  *
1500  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1501  * this reason take rename_lock and d_lock on dentry and ancestors.
1502  */
1503 int d_set_mounted(struct dentry *dentry)
1504 {
1505 	struct dentry *p;
1506 	int ret = -ENOENT;
1507 	write_seqlock(&rename_lock);
1508 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1509 		/* Need exclusion wrt. d_invalidate() */
1510 		spin_lock(&p->d_lock);
1511 		if (unlikely(d_unhashed(p))) {
1512 			spin_unlock(&p->d_lock);
1513 			goto out;
1514 		}
1515 		spin_unlock(&p->d_lock);
1516 	}
1517 	spin_lock(&dentry->d_lock);
1518 	if (!d_unlinked(dentry)) {
1519 		ret = -EBUSY;
1520 		if (!d_mountpoint(dentry)) {
1521 			dentry->d_flags |= DCACHE_MOUNTED;
1522 			ret = 0;
1523 		}
1524 	}
1525  	spin_unlock(&dentry->d_lock);
1526 out:
1527 	write_sequnlock(&rename_lock);
1528 	return ret;
1529 }
1530 
1531 /*
1532  * Search the dentry child list of the specified parent,
1533  * and move any unused dentries to the end of the unused
1534  * list for prune_dcache(). We descend to the next level
1535  * whenever the d_subdirs list is non-empty and continue
1536  * searching.
1537  *
1538  * It returns zero iff there are no unused children,
1539  * otherwise  it returns the number of children moved to
1540  * the end of the unused list. This may not be the total
1541  * number of unused children, because select_parent can
1542  * drop the lock and return early due to latency
1543  * constraints.
1544  */
1545 
1546 struct select_data {
1547 	struct dentry *start;
1548 	union {
1549 		long found;
1550 		struct dentry *victim;
1551 	};
1552 	struct list_head dispose;
1553 };
1554 
1555 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1556 {
1557 	struct select_data *data = _data;
1558 	enum d_walk_ret ret = D_WALK_CONTINUE;
1559 
1560 	if (data->start == dentry)
1561 		goto out;
1562 
1563 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1564 		data->found++;
1565 	} else {
1566 		if (dentry->d_flags & DCACHE_LRU_LIST)
1567 			d_lru_del(dentry);
1568 		if (!dentry->d_lockref.count) {
1569 			d_shrink_add(dentry, &data->dispose);
1570 			data->found++;
1571 		}
1572 	}
1573 	/*
1574 	 * We can return to the caller if we have found some (this
1575 	 * ensures forward progress). We'll be coming back to find
1576 	 * the rest.
1577 	 */
1578 	if (!list_empty(&data->dispose))
1579 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1580 out:
1581 	return ret;
1582 }
1583 
1584 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1585 {
1586 	struct select_data *data = _data;
1587 	enum d_walk_ret ret = D_WALK_CONTINUE;
1588 
1589 	if (data->start == dentry)
1590 		goto out;
1591 
1592 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1593 		if (!dentry->d_lockref.count) {
1594 			rcu_read_lock();
1595 			data->victim = dentry;
1596 			return D_WALK_QUIT;
1597 		}
1598 	} else {
1599 		if (dentry->d_flags & DCACHE_LRU_LIST)
1600 			d_lru_del(dentry);
1601 		if (!dentry->d_lockref.count)
1602 			d_shrink_add(dentry, &data->dispose);
1603 	}
1604 	/*
1605 	 * We can return to the caller if we have found some (this
1606 	 * ensures forward progress). We'll be coming back to find
1607 	 * the rest.
1608 	 */
1609 	if (!list_empty(&data->dispose))
1610 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1611 out:
1612 	return ret;
1613 }
1614 
1615 /**
1616  * shrink_dcache_parent - prune dcache
1617  * @parent: parent of entries to prune
1618  *
1619  * Prune the dcache to remove unused children of the parent dentry.
1620  */
1621 void shrink_dcache_parent(struct dentry *parent)
1622 {
1623 	for (;;) {
1624 		struct select_data data = {.start = parent};
1625 
1626 		INIT_LIST_HEAD(&data.dispose);
1627 		d_walk(parent, &data, select_collect);
1628 
1629 		if (!list_empty(&data.dispose)) {
1630 			shrink_dentry_list(&data.dispose);
1631 			continue;
1632 		}
1633 
1634 		cond_resched();
1635 		if (!data.found)
1636 			break;
1637 		data.victim = NULL;
1638 		d_walk(parent, &data, select_collect2);
1639 		if (data.victim) {
1640 			struct dentry *parent;
1641 			spin_lock(&data.victim->d_lock);
1642 			if (!shrink_lock_dentry(data.victim)) {
1643 				spin_unlock(&data.victim->d_lock);
1644 				rcu_read_unlock();
1645 			} else {
1646 				rcu_read_unlock();
1647 				parent = data.victim->d_parent;
1648 				if (parent != data.victim)
1649 					__dput_to_list(parent, &data.dispose);
1650 				__dentry_kill(data.victim);
1651 			}
1652 		}
1653 		if (!list_empty(&data.dispose))
1654 			shrink_dentry_list(&data.dispose);
1655 	}
1656 }
1657 EXPORT_SYMBOL(shrink_dcache_parent);
1658 
1659 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1660 {
1661 	/* it has busy descendents; complain about those instead */
1662 	if (!list_empty(&dentry->d_subdirs))
1663 		return D_WALK_CONTINUE;
1664 
1665 	/* root with refcount 1 is fine */
1666 	if (dentry == _data && dentry->d_lockref.count == 1)
1667 		return D_WALK_CONTINUE;
1668 
1669 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1670 			" still in use (%d) [unmount of %s %s]\n",
1671 		       dentry,
1672 		       dentry->d_inode ?
1673 		       dentry->d_inode->i_ino : 0UL,
1674 		       dentry,
1675 		       dentry->d_lockref.count,
1676 		       dentry->d_sb->s_type->name,
1677 		       dentry->d_sb->s_id);
1678 	return D_WALK_CONTINUE;
1679 }
1680 
1681 static void do_one_tree(struct dentry *dentry)
1682 {
1683 	shrink_dcache_parent(dentry);
1684 	d_walk(dentry, dentry, umount_check);
1685 	d_drop(dentry);
1686 	dput(dentry);
1687 }
1688 
1689 /*
1690  * destroy the dentries attached to a superblock on unmounting
1691  */
1692 void shrink_dcache_for_umount(struct super_block *sb)
1693 {
1694 	struct dentry *dentry;
1695 
1696 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1697 
1698 	dentry = sb->s_root;
1699 	sb->s_root = NULL;
1700 	do_one_tree(dentry);
1701 
1702 	while (!hlist_bl_empty(&sb->s_roots)) {
1703 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1704 		do_one_tree(dentry);
1705 	}
1706 }
1707 
1708 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1709 {
1710 	struct dentry **victim = _data;
1711 	if (d_mountpoint(dentry)) {
1712 		__dget_dlock(dentry);
1713 		*victim = dentry;
1714 		return D_WALK_QUIT;
1715 	}
1716 	return D_WALK_CONTINUE;
1717 }
1718 
1719 /**
1720  * d_invalidate - detach submounts, prune dcache, and drop
1721  * @dentry: dentry to invalidate (aka detach, prune and drop)
1722  */
1723 void d_invalidate(struct dentry *dentry)
1724 {
1725 	bool had_submounts = false;
1726 	spin_lock(&dentry->d_lock);
1727 	if (d_unhashed(dentry)) {
1728 		spin_unlock(&dentry->d_lock);
1729 		return;
1730 	}
1731 	__d_drop(dentry);
1732 	spin_unlock(&dentry->d_lock);
1733 
1734 	/* Negative dentries can be dropped without further checks */
1735 	if (!dentry->d_inode)
1736 		return;
1737 
1738 	shrink_dcache_parent(dentry);
1739 	for (;;) {
1740 		struct dentry *victim = NULL;
1741 		d_walk(dentry, &victim, find_submount);
1742 		if (!victim) {
1743 			if (had_submounts)
1744 				shrink_dcache_parent(dentry);
1745 			return;
1746 		}
1747 		had_submounts = true;
1748 		detach_mounts(victim);
1749 		dput(victim);
1750 	}
1751 }
1752 EXPORT_SYMBOL(d_invalidate);
1753 
1754 /**
1755  * __d_alloc	-	allocate a dcache entry
1756  * @sb: filesystem it will belong to
1757  * @name: qstr of the name
1758  *
1759  * Allocates a dentry. It returns %NULL if there is insufficient memory
1760  * available. On a success the dentry is returned. The name passed in is
1761  * copied and the copy passed in may be reused after this call.
1762  */
1763 
1764 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1765 {
1766 	struct dentry *dentry;
1767 	char *dname;
1768 	int err;
1769 
1770 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1771 				      GFP_KERNEL);
1772 	if (!dentry)
1773 		return NULL;
1774 
1775 	/*
1776 	 * We guarantee that the inline name is always NUL-terminated.
1777 	 * This way the memcpy() done by the name switching in rename
1778 	 * will still always have a NUL at the end, even if we might
1779 	 * be overwriting an internal NUL character
1780 	 */
1781 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1782 	if (unlikely(!name)) {
1783 		name = &slash_name;
1784 		dname = dentry->d_iname;
1785 	} else if (name->len > DNAME_INLINE_LEN-1) {
1786 		size_t size = offsetof(struct external_name, name[1]);
1787 		struct external_name *p = kmalloc(size + name->len,
1788 						  GFP_KERNEL_ACCOUNT |
1789 						  __GFP_RECLAIMABLE);
1790 		if (!p) {
1791 			kmem_cache_free(dentry_cache, dentry);
1792 			return NULL;
1793 		}
1794 		atomic_set(&p->u.count, 1);
1795 		dname = p->name;
1796 	} else  {
1797 		dname = dentry->d_iname;
1798 	}
1799 
1800 	dentry->d_name.len = name->len;
1801 	dentry->d_name.hash = name->hash;
1802 	memcpy(dname, name->name, name->len);
1803 	dname[name->len] = 0;
1804 
1805 	/* Make sure we always see the terminating NUL character */
1806 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1807 
1808 	dentry->d_lockref.count = 1;
1809 	dentry->d_flags = 0;
1810 	spin_lock_init(&dentry->d_lock);
1811 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1812 	dentry->d_inode = NULL;
1813 	dentry->d_parent = dentry;
1814 	dentry->d_sb = sb;
1815 	dentry->d_op = NULL;
1816 	dentry->d_fsdata = NULL;
1817 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1818 	INIT_LIST_HEAD(&dentry->d_lru);
1819 	INIT_LIST_HEAD(&dentry->d_subdirs);
1820 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1821 	INIT_LIST_HEAD(&dentry->d_child);
1822 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1823 
1824 	if (dentry->d_op && dentry->d_op->d_init) {
1825 		err = dentry->d_op->d_init(dentry);
1826 		if (err) {
1827 			if (dname_external(dentry))
1828 				kfree(external_name(dentry));
1829 			kmem_cache_free(dentry_cache, dentry);
1830 			return NULL;
1831 		}
1832 	}
1833 
1834 	this_cpu_inc(nr_dentry);
1835 
1836 	return dentry;
1837 }
1838 
1839 /**
1840  * d_alloc	-	allocate a dcache entry
1841  * @parent: parent of entry to allocate
1842  * @name: qstr of the name
1843  *
1844  * Allocates a dentry. It returns %NULL if there is insufficient memory
1845  * available. On a success the dentry is returned. The name passed in is
1846  * copied and the copy passed in may be reused after this call.
1847  */
1848 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1849 {
1850 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1851 	if (!dentry)
1852 		return NULL;
1853 	spin_lock(&parent->d_lock);
1854 	/*
1855 	 * don't need child lock because it is not subject
1856 	 * to concurrency here
1857 	 */
1858 	__dget_dlock(parent);
1859 	dentry->d_parent = parent;
1860 	list_add(&dentry->d_child, &parent->d_subdirs);
1861 	spin_unlock(&parent->d_lock);
1862 
1863 	return dentry;
1864 }
1865 EXPORT_SYMBOL(d_alloc);
1866 
1867 struct dentry *d_alloc_anon(struct super_block *sb)
1868 {
1869 	return __d_alloc(sb, NULL);
1870 }
1871 EXPORT_SYMBOL(d_alloc_anon);
1872 
1873 struct dentry *d_alloc_cursor(struct dentry * parent)
1874 {
1875 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1876 	if (dentry) {
1877 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1878 		dentry->d_parent = dget(parent);
1879 	}
1880 	return dentry;
1881 }
1882 
1883 /**
1884  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1885  * @sb: the superblock
1886  * @name: qstr of the name
1887  *
1888  * For a filesystem that just pins its dentries in memory and never
1889  * performs lookups at all, return an unhashed IS_ROOT dentry.
1890  * This is used for pipes, sockets et.al. - the stuff that should
1891  * never be anyone's children or parents.  Unlike all other
1892  * dentries, these will not have RCU delay between dropping the
1893  * last reference and freeing them.
1894  *
1895  * The only user is alloc_file_pseudo() and that's what should
1896  * be considered a public interface.  Don't use directly.
1897  */
1898 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1899 {
1900 	struct dentry *dentry = __d_alloc(sb, name);
1901 	if (likely(dentry))
1902 		dentry->d_flags |= DCACHE_NORCU;
1903 	return dentry;
1904 }
1905 
1906 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1907 {
1908 	struct qstr q;
1909 
1910 	q.name = name;
1911 	q.hash_len = hashlen_string(parent, name);
1912 	return d_alloc(parent, &q);
1913 }
1914 EXPORT_SYMBOL(d_alloc_name);
1915 
1916 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1917 {
1918 	WARN_ON_ONCE(dentry->d_op);
1919 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1920 				DCACHE_OP_COMPARE	|
1921 				DCACHE_OP_REVALIDATE	|
1922 				DCACHE_OP_WEAK_REVALIDATE	|
1923 				DCACHE_OP_DELETE	|
1924 				DCACHE_OP_REAL));
1925 	dentry->d_op = op;
1926 	if (!op)
1927 		return;
1928 	if (op->d_hash)
1929 		dentry->d_flags |= DCACHE_OP_HASH;
1930 	if (op->d_compare)
1931 		dentry->d_flags |= DCACHE_OP_COMPARE;
1932 	if (op->d_revalidate)
1933 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1934 	if (op->d_weak_revalidate)
1935 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1936 	if (op->d_delete)
1937 		dentry->d_flags |= DCACHE_OP_DELETE;
1938 	if (op->d_prune)
1939 		dentry->d_flags |= DCACHE_OP_PRUNE;
1940 	if (op->d_real)
1941 		dentry->d_flags |= DCACHE_OP_REAL;
1942 
1943 }
1944 EXPORT_SYMBOL(d_set_d_op);
1945 
1946 
1947 /*
1948  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1949  * @dentry - The dentry to mark
1950  *
1951  * Mark a dentry as falling through to the lower layer (as set with
1952  * d_pin_lower()).  This flag may be recorded on the medium.
1953  */
1954 void d_set_fallthru(struct dentry *dentry)
1955 {
1956 	spin_lock(&dentry->d_lock);
1957 	dentry->d_flags |= DCACHE_FALLTHRU;
1958 	spin_unlock(&dentry->d_lock);
1959 }
1960 EXPORT_SYMBOL(d_set_fallthru);
1961 
1962 static unsigned d_flags_for_inode(struct inode *inode)
1963 {
1964 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1965 
1966 	if (!inode)
1967 		return DCACHE_MISS_TYPE;
1968 
1969 	if (S_ISDIR(inode->i_mode)) {
1970 		add_flags = DCACHE_DIRECTORY_TYPE;
1971 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1972 			if (unlikely(!inode->i_op->lookup))
1973 				add_flags = DCACHE_AUTODIR_TYPE;
1974 			else
1975 				inode->i_opflags |= IOP_LOOKUP;
1976 		}
1977 		goto type_determined;
1978 	}
1979 
1980 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1981 		if (unlikely(inode->i_op->get_link)) {
1982 			add_flags = DCACHE_SYMLINK_TYPE;
1983 			goto type_determined;
1984 		}
1985 		inode->i_opflags |= IOP_NOFOLLOW;
1986 	}
1987 
1988 	if (unlikely(!S_ISREG(inode->i_mode)))
1989 		add_flags = DCACHE_SPECIAL_TYPE;
1990 
1991 type_determined:
1992 	if (unlikely(IS_AUTOMOUNT(inode)))
1993 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1994 	return add_flags;
1995 }
1996 
1997 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1998 {
1999 	unsigned add_flags = d_flags_for_inode(inode);
2000 	WARN_ON(d_in_lookup(dentry));
2001 
2002 	spin_lock(&dentry->d_lock);
2003 	/*
2004 	 * Decrement negative dentry count if it was in the LRU list.
2005 	 */
2006 	if (dentry->d_flags & DCACHE_LRU_LIST)
2007 		this_cpu_dec(nr_dentry_negative);
2008 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2009 	raw_write_seqcount_begin(&dentry->d_seq);
2010 	__d_set_inode_and_type(dentry, inode, add_flags);
2011 	raw_write_seqcount_end(&dentry->d_seq);
2012 	fsnotify_update_flags(dentry);
2013 	spin_unlock(&dentry->d_lock);
2014 }
2015 
2016 /**
2017  * d_instantiate - fill in inode information for a dentry
2018  * @entry: dentry to complete
2019  * @inode: inode to attach to this dentry
2020  *
2021  * Fill in inode information in the entry.
2022  *
2023  * This turns negative dentries into productive full members
2024  * of society.
2025  *
2026  * NOTE! This assumes that the inode count has been incremented
2027  * (or otherwise set) by the caller to indicate that it is now
2028  * in use by the dcache.
2029  */
2030 
2031 void d_instantiate(struct dentry *entry, struct inode * inode)
2032 {
2033 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2034 	if (inode) {
2035 		security_d_instantiate(entry, inode);
2036 		spin_lock(&inode->i_lock);
2037 		__d_instantiate(entry, inode);
2038 		spin_unlock(&inode->i_lock);
2039 	}
2040 }
2041 EXPORT_SYMBOL(d_instantiate);
2042 
2043 /*
2044  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2045  * with lockdep-related part of unlock_new_inode() done before
2046  * anything else.  Use that instead of open-coding d_instantiate()/
2047  * unlock_new_inode() combinations.
2048  */
2049 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2050 {
2051 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2052 	BUG_ON(!inode);
2053 	lockdep_annotate_inode_mutex_key(inode);
2054 	security_d_instantiate(entry, inode);
2055 	spin_lock(&inode->i_lock);
2056 	__d_instantiate(entry, inode);
2057 	WARN_ON(!(inode->i_state & I_NEW));
2058 	inode->i_state &= ~I_NEW & ~I_CREATING;
2059 	smp_mb();
2060 	wake_up_bit(&inode->i_state, __I_NEW);
2061 	spin_unlock(&inode->i_lock);
2062 }
2063 EXPORT_SYMBOL(d_instantiate_new);
2064 
2065 struct dentry *d_make_root(struct inode *root_inode)
2066 {
2067 	struct dentry *res = NULL;
2068 
2069 	if (root_inode) {
2070 		res = d_alloc_anon(root_inode->i_sb);
2071 		if (res)
2072 			d_instantiate(res, root_inode);
2073 		else
2074 			iput(root_inode);
2075 	}
2076 	return res;
2077 }
2078 EXPORT_SYMBOL(d_make_root);
2079 
2080 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2081 					   struct inode *inode,
2082 					   bool disconnected)
2083 {
2084 	struct dentry *res;
2085 	unsigned add_flags;
2086 
2087 	security_d_instantiate(dentry, inode);
2088 	spin_lock(&inode->i_lock);
2089 	res = __d_find_any_alias(inode);
2090 	if (res) {
2091 		spin_unlock(&inode->i_lock);
2092 		dput(dentry);
2093 		goto out_iput;
2094 	}
2095 
2096 	/* attach a disconnected dentry */
2097 	add_flags = d_flags_for_inode(inode);
2098 
2099 	if (disconnected)
2100 		add_flags |= DCACHE_DISCONNECTED;
2101 
2102 	spin_lock(&dentry->d_lock);
2103 	__d_set_inode_and_type(dentry, inode, add_flags);
2104 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2105 	if (!disconnected) {
2106 		hlist_bl_lock(&dentry->d_sb->s_roots);
2107 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2108 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2109 	}
2110 	spin_unlock(&dentry->d_lock);
2111 	spin_unlock(&inode->i_lock);
2112 
2113 	return dentry;
2114 
2115  out_iput:
2116 	iput(inode);
2117 	return res;
2118 }
2119 
2120 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2121 {
2122 	return __d_instantiate_anon(dentry, inode, true);
2123 }
2124 EXPORT_SYMBOL(d_instantiate_anon);
2125 
2126 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2127 {
2128 	struct dentry *tmp;
2129 	struct dentry *res;
2130 
2131 	if (!inode)
2132 		return ERR_PTR(-ESTALE);
2133 	if (IS_ERR(inode))
2134 		return ERR_CAST(inode);
2135 
2136 	res = d_find_any_alias(inode);
2137 	if (res)
2138 		goto out_iput;
2139 
2140 	tmp = d_alloc_anon(inode->i_sb);
2141 	if (!tmp) {
2142 		res = ERR_PTR(-ENOMEM);
2143 		goto out_iput;
2144 	}
2145 
2146 	return __d_instantiate_anon(tmp, inode, disconnected);
2147 
2148 out_iput:
2149 	iput(inode);
2150 	return res;
2151 }
2152 
2153 /**
2154  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2155  * @inode: inode to allocate the dentry for
2156  *
2157  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2158  * similar open by handle operations.  The returned dentry may be anonymous,
2159  * or may have a full name (if the inode was already in the cache).
2160  *
2161  * When called on a directory inode, we must ensure that the inode only ever
2162  * has one dentry.  If a dentry is found, that is returned instead of
2163  * allocating a new one.
2164  *
2165  * On successful return, the reference to the inode has been transferred
2166  * to the dentry.  In case of an error the reference on the inode is released.
2167  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2168  * be passed in and the error will be propagated to the return value,
2169  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2170  */
2171 struct dentry *d_obtain_alias(struct inode *inode)
2172 {
2173 	return __d_obtain_alias(inode, true);
2174 }
2175 EXPORT_SYMBOL(d_obtain_alias);
2176 
2177 /**
2178  * d_obtain_root - find or allocate a dentry for a given inode
2179  * @inode: inode to allocate the dentry for
2180  *
2181  * Obtain an IS_ROOT dentry for the root of a filesystem.
2182  *
2183  * We must ensure that directory inodes only ever have one dentry.  If a
2184  * dentry is found, that is returned instead of allocating a new one.
2185  *
2186  * On successful return, the reference to the inode has been transferred
2187  * to the dentry.  In case of an error the reference on the inode is
2188  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2189  * error will be propagate to the return value, with a %NULL @inode
2190  * replaced by ERR_PTR(-ESTALE).
2191  */
2192 struct dentry *d_obtain_root(struct inode *inode)
2193 {
2194 	return __d_obtain_alias(inode, false);
2195 }
2196 EXPORT_SYMBOL(d_obtain_root);
2197 
2198 /**
2199  * d_add_ci - lookup or allocate new dentry with case-exact name
2200  * @inode:  the inode case-insensitive lookup has found
2201  * @dentry: the negative dentry that was passed to the parent's lookup func
2202  * @name:   the case-exact name to be associated with the returned dentry
2203  *
2204  * This is to avoid filling the dcache with case-insensitive names to the
2205  * same inode, only the actual correct case is stored in the dcache for
2206  * case-insensitive filesystems.
2207  *
2208  * For a case-insensitive lookup match and if the case-exact dentry
2209  * already exists in the dcache, use it and return it.
2210  *
2211  * If no entry exists with the exact case name, allocate new dentry with
2212  * the exact case, and return the spliced entry.
2213  */
2214 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2215 			struct qstr *name)
2216 {
2217 	struct dentry *found, *res;
2218 
2219 	/*
2220 	 * First check if a dentry matching the name already exists,
2221 	 * if not go ahead and create it now.
2222 	 */
2223 	found = d_hash_and_lookup(dentry->d_parent, name);
2224 	if (found) {
2225 		iput(inode);
2226 		return found;
2227 	}
2228 	if (d_in_lookup(dentry)) {
2229 		found = d_alloc_parallel(dentry->d_parent, name,
2230 					dentry->d_wait);
2231 		if (IS_ERR(found) || !d_in_lookup(found)) {
2232 			iput(inode);
2233 			return found;
2234 		}
2235 	} else {
2236 		found = d_alloc(dentry->d_parent, name);
2237 		if (!found) {
2238 			iput(inode);
2239 			return ERR_PTR(-ENOMEM);
2240 		}
2241 	}
2242 	res = d_splice_alias(inode, found);
2243 	if (res) {
2244 		d_lookup_done(found);
2245 		dput(found);
2246 		return res;
2247 	}
2248 	return found;
2249 }
2250 EXPORT_SYMBOL(d_add_ci);
2251 
2252 /**
2253  * d_same_name - compare dentry name with case-exact name
2254  * @parent: parent dentry
2255  * @dentry: the negative dentry that was passed to the parent's lookup func
2256  * @name:   the case-exact name to be associated with the returned dentry
2257  *
2258  * Return: true if names are same, or false
2259  */
2260 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2261 		 const struct qstr *name)
2262 {
2263 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2264 		if (dentry->d_name.len != name->len)
2265 			return false;
2266 		return dentry_cmp(dentry, name->name, name->len) == 0;
2267 	}
2268 	return parent->d_op->d_compare(dentry,
2269 				       dentry->d_name.len, dentry->d_name.name,
2270 				       name) == 0;
2271 }
2272 EXPORT_SYMBOL_GPL(d_same_name);
2273 
2274 /*
2275  * This is __d_lookup_rcu() when the parent dentry has
2276  * DCACHE_OP_COMPARE, which makes things much nastier.
2277  */
2278 static noinline struct dentry *__d_lookup_rcu_op_compare(
2279 	const struct dentry *parent,
2280 	const struct qstr *name,
2281 	unsigned *seqp)
2282 {
2283 	u64 hashlen = name->hash_len;
2284 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2285 	struct hlist_bl_node *node;
2286 	struct dentry *dentry;
2287 
2288 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2289 		int tlen;
2290 		const char *tname;
2291 		unsigned seq;
2292 
2293 seqretry:
2294 		seq = raw_seqcount_begin(&dentry->d_seq);
2295 		if (dentry->d_parent != parent)
2296 			continue;
2297 		if (d_unhashed(dentry))
2298 			continue;
2299 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2300 			continue;
2301 		tlen = dentry->d_name.len;
2302 		tname = dentry->d_name.name;
2303 		/* we want a consistent (name,len) pair */
2304 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2305 			cpu_relax();
2306 			goto seqretry;
2307 		}
2308 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2309 			continue;
2310 		*seqp = seq;
2311 		return dentry;
2312 	}
2313 	return NULL;
2314 }
2315 
2316 /**
2317  * __d_lookup_rcu - search for a dentry (racy, store-free)
2318  * @parent: parent dentry
2319  * @name: qstr of name we wish to find
2320  * @seqp: returns d_seq value at the point where the dentry was found
2321  * Returns: dentry, or NULL
2322  *
2323  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2324  * resolution (store-free path walking) design described in
2325  * Documentation/filesystems/path-lookup.txt.
2326  *
2327  * This is not to be used outside core vfs.
2328  *
2329  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2330  * held, and rcu_read_lock held. The returned dentry must not be stored into
2331  * without taking d_lock and checking d_seq sequence count against @seq
2332  * returned here.
2333  *
2334  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2335  * function.
2336  *
2337  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2338  * the returned dentry, so long as its parent's seqlock is checked after the
2339  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2340  * is formed, giving integrity down the path walk.
2341  *
2342  * NOTE! The caller *has* to check the resulting dentry against the sequence
2343  * number we've returned before using any of the resulting dentry state!
2344  */
2345 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2346 				const struct qstr *name,
2347 				unsigned *seqp)
2348 {
2349 	u64 hashlen = name->hash_len;
2350 	const unsigned char *str = name->name;
2351 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2352 	struct hlist_bl_node *node;
2353 	struct dentry *dentry;
2354 
2355 	/*
2356 	 * Note: There is significant duplication with __d_lookup_rcu which is
2357 	 * required to prevent single threaded performance regressions
2358 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2359 	 * Keep the two functions in sync.
2360 	 */
2361 
2362 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2363 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2364 
2365 	/*
2366 	 * The hash list is protected using RCU.
2367 	 *
2368 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2369 	 * races with d_move().
2370 	 *
2371 	 * It is possible that concurrent renames can mess up our list
2372 	 * walk here and result in missing our dentry, resulting in the
2373 	 * false-negative result. d_lookup() protects against concurrent
2374 	 * renames using rename_lock seqlock.
2375 	 *
2376 	 * See Documentation/filesystems/path-lookup.txt for more details.
2377 	 */
2378 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2379 		unsigned seq;
2380 
2381 		/*
2382 		 * The dentry sequence count protects us from concurrent
2383 		 * renames, and thus protects parent and name fields.
2384 		 *
2385 		 * The caller must perform a seqcount check in order
2386 		 * to do anything useful with the returned dentry.
2387 		 *
2388 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2389 		 * we don't wait for the sequence count to stabilize if it
2390 		 * is in the middle of a sequence change. If we do the slow
2391 		 * dentry compare, we will do seqretries until it is stable,
2392 		 * and if we end up with a successful lookup, we actually
2393 		 * want to exit RCU lookup anyway.
2394 		 *
2395 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2396 		 * we are still guaranteed NUL-termination of ->d_name.name.
2397 		 */
2398 		seq = raw_seqcount_begin(&dentry->d_seq);
2399 		if (dentry->d_parent != parent)
2400 			continue;
2401 		if (d_unhashed(dentry))
2402 			continue;
2403 		if (dentry->d_name.hash_len != hashlen)
2404 			continue;
2405 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2406 			continue;
2407 		*seqp = seq;
2408 		return dentry;
2409 	}
2410 	return NULL;
2411 }
2412 
2413 /**
2414  * d_lookup - search for a dentry
2415  * @parent: parent dentry
2416  * @name: qstr of name we wish to find
2417  * Returns: dentry, or NULL
2418  *
2419  * d_lookup searches the children of the parent dentry for the name in
2420  * question. If the dentry is found its reference count is incremented and the
2421  * dentry is returned. The caller must use dput to free the entry when it has
2422  * finished using it. %NULL is returned if the dentry does not exist.
2423  */
2424 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2425 {
2426 	struct dentry *dentry;
2427 	unsigned seq;
2428 
2429 	do {
2430 		seq = read_seqbegin(&rename_lock);
2431 		dentry = __d_lookup(parent, name);
2432 		if (dentry)
2433 			break;
2434 	} while (read_seqretry(&rename_lock, seq));
2435 	return dentry;
2436 }
2437 EXPORT_SYMBOL(d_lookup);
2438 
2439 /**
2440  * __d_lookup - search for a dentry (racy)
2441  * @parent: parent dentry
2442  * @name: qstr of name we wish to find
2443  * Returns: dentry, or NULL
2444  *
2445  * __d_lookup is like d_lookup, however it may (rarely) return a
2446  * false-negative result due to unrelated rename activity.
2447  *
2448  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2449  * however it must be used carefully, eg. with a following d_lookup in
2450  * the case of failure.
2451  *
2452  * __d_lookup callers must be commented.
2453  */
2454 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2455 {
2456 	unsigned int hash = name->hash;
2457 	struct hlist_bl_head *b = d_hash(hash);
2458 	struct hlist_bl_node *node;
2459 	struct dentry *found = NULL;
2460 	struct dentry *dentry;
2461 
2462 	/*
2463 	 * Note: There is significant duplication with __d_lookup_rcu which is
2464 	 * required to prevent single threaded performance regressions
2465 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2466 	 * Keep the two functions in sync.
2467 	 */
2468 
2469 	/*
2470 	 * The hash list is protected using RCU.
2471 	 *
2472 	 * Take d_lock when comparing a candidate dentry, to avoid races
2473 	 * with d_move().
2474 	 *
2475 	 * It is possible that concurrent renames can mess up our list
2476 	 * walk here and result in missing our dentry, resulting in the
2477 	 * false-negative result. d_lookup() protects against concurrent
2478 	 * renames using rename_lock seqlock.
2479 	 *
2480 	 * See Documentation/filesystems/path-lookup.txt for more details.
2481 	 */
2482 	rcu_read_lock();
2483 
2484 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2485 
2486 		if (dentry->d_name.hash != hash)
2487 			continue;
2488 
2489 		spin_lock(&dentry->d_lock);
2490 		if (dentry->d_parent != parent)
2491 			goto next;
2492 		if (d_unhashed(dentry))
2493 			goto next;
2494 
2495 		if (!d_same_name(dentry, parent, name))
2496 			goto next;
2497 
2498 		dentry->d_lockref.count++;
2499 		found = dentry;
2500 		spin_unlock(&dentry->d_lock);
2501 		break;
2502 next:
2503 		spin_unlock(&dentry->d_lock);
2504  	}
2505  	rcu_read_unlock();
2506 
2507  	return found;
2508 }
2509 
2510 /**
2511  * d_hash_and_lookup - hash the qstr then search for a dentry
2512  * @dir: Directory to search in
2513  * @name: qstr of name we wish to find
2514  *
2515  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2516  */
2517 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2518 {
2519 	/*
2520 	 * Check for a fs-specific hash function. Note that we must
2521 	 * calculate the standard hash first, as the d_op->d_hash()
2522 	 * routine may choose to leave the hash value unchanged.
2523 	 */
2524 	name->hash = full_name_hash(dir, name->name, name->len);
2525 	if (dir->d_flags & DCACHE_OP_HASH) {
2526 		int err = dir->d_op->d_hash(dir, name);
2527 		if (unlikely(err < 0))
2528 			return ERR_PTR(err);
2529 	}
2530 	return d_lookup(dir, name);
2531 }
2532 EXPORT_SYMBOL(d_hash_and_lookup);
2533 
2534 /*
2535  * When a file is deleted, we have two options:
2536  * - turn this dentry into a negative dentry
2537  * - unhash this dentry and free it.
2538  *
2539  * Usually, we want to just turn this into
2540  * a negative dentry, but if anybody else is
2541  * currently using the dentry or the inode
2542  * we can't do that and we fall back on removing
2543  * it from the hash queues and waiting for
2544  * it to be deleted later when it has no users
2545  */
2546 
2547 /**
2548  * d_delete - delete a dentry
2549  * @dentry: The dentry to delete
2550  *
2551  * Turn the dentry into a negative dentry if possible, otherwise
2552  * remove it from the hash queues so it can be deleted later
2553  */
2554 
2555 void d_delete(struct dentry * dentry)
2556 {
2557 	struct inode *inode = dentry->d_inode;
2558 
2559 	spin_lock(&inode->i_lock);
2560 	spin_lock(&dentry->d_lock);
2561 	/*
2562 	 * Are we the only user?
2563 	 */
2564 	if (dentry->d_lockref.count == 1) {
2565 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2566 		dentry_unlink_inode(dentry);
2567 	} else {
2568 		__d_drop(dentry);
2569 		spin_unlock(&dentry->d_lock);
2570 		spin_unlock(&inode->i_lock);
2571 	}
2572 }
2573 EXPORT_SYMBOL(d_delete);
2574 
2575 static void __d_rehash(struct dentry *entry)
2576 {
2577 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2578 
2579 	hlist_bl_lock(b);
2580 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2581 	hlist_bl_unlock(b);
2582 }
2583 
2584 /**
2585  * d_rehash	- add an entry back to the hash
2586  * @entry: dentry to add to the hash
2587  *
2588  * Adds a dentry to the hash according to its name.
2589  */
2590 
2591 void d_rehash(struct dentry * entry)
2592 {
2593 	spin_lock(&entry->d_lock);
2594 	__d_rehash(entry);
2595 	spin_unlock(&entry->d_lock);
2596 }
2597 EXPORT_SYMBOL(d_rehash);
2598 
2599 static inline unsigned start_dir_add(struct inode *dir)
2600 {
2601 	preempt_disable_nested();
2602 	for (;;) {
2603 		unsigned n = dir->i_dir_seq;
2604 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2605 			return n;
2606 		cpu_relax();
2607 	}
2608 }
2609 
2610 static inline void end_dir_add(struct inode *dir, unsigned int n,
2611 			       wait_queue_head_t *d_wait)
2612 {
2613 	smp_store_release(&dir->i_dir_seq, n + 2);
2614 	preempt_enable_nested();
2615 	wake_up_all(d_wait);
2616 }
2617 
2618 static void d_wait_lookup(struct dentry *dentry)
2619 {
2620 	if (d_in_lookup(dentry)) {
2621 		DECLARE_WAITQUEUE(wait, current);
2622 		add_wait_queue(dentry->d_wait, &wait);
2623 		do {
2624 			set_current_state(TASK_UNINTERRUPTIBLE);
2625 			spin_unlock(&dentry->d_lock);
2626 			schedule();
2627 			spin_lock(&dentry->d_lock);
2628 		} while (d_in_lookup(dentry));
2629 	}
2630 }
2631 
2632 struct dentry *d_alloc_parallel(struct dentry *parent,
2633 				const struct qstr *name,
2634 				wait_queue_head_t *wq)
2635 {
2636 	unsigned int hash = name->hash;
2637 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2638 	struct hlist_bl_node *node;
2639 	struct dentry *new = d_alloc(parent, name);
2640 	struct dentry *dentry;
2641 	unsigned seq, r_seq, d_seq;
2642 
2643 	if (unlikely(!new))
2644 		return ERR_PTR(-ENOMEM);
2645 
2646 retry:
2647 	rcu_read_lock();
2648 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2649 	r_seq = read_seqbegin(&rename_lock);
2650 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2651 	if (unlikely(dentry)) {
2652 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2653 			rcu_read_unlock();
2654 			goto retry;
2655 		}
2656 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2657 			rcu_read_unlock();
2658 			dput(dentry);
2659 			goto retry;
2660 		}
2661 		rcu_read_unlock();
2662 		dput(new);
2663 		return dentry;
2664 	}
2665 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2666 		rcu_read_unlock();
2667 		goto retry;
2668 	}
2669 
2670 	if (unlikely(seq & 1)) {
2671 		rcu_read_unlock();
2672 		goto retry;
2673 	}
2674 
2675 	hlist_bl_lock(b);
2676 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2677 		hlist_bl_unlock(b);
2678 		rcu_read_unlock();
2679 		goto retry;
2680 	}
2681 	/*
2682 	 * No changes for the parent since the beginning of d_lookup().
2683 	 * Since all removals from the chain happen with hlist_bl_lock(),
2684 	 * any potential in-lookup matches are going to stay here until
2685 	 * we unlock the chain.  All fields are stable in everything
2686 	 * we encounter.
2687 	 */
2688 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2689 		if (dentry->d_name.hash != hash)
2690 			continue;
2691 		if (dentry->d_parent != parent)
2692 			continue;
2693 		if (!d_same_name(dentry, parent, name))
2694 			continue;
2695 		hlist_bl_unlock(b);
2696 		/* now we can try to grab a reference */
2697 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2698 			rcu_read_unlock();
2699 			goto retry;
2700 		}
2701 
2702 		rcu_read_unlock();
2703 		/*
2704 		 * somebody is likely to be still doing lookup for it;
2705 		 * wait for them to finish
2706 		 */
2707 		spin_lock(&dentry->d_lock);
2708 		d_wait_lookup(dentry);
2709 		/*
2710 		 * it's not in-lookup anymore; in principle we should repeat
2711 		 * everything from dcache lookup, but it's likely to be what
2712 		 * d_lookup() would've found anyway.  If it is, just return it;
2713 		 * otherwise we really have to repeat the whole thing.
2714 		 */
2715 		if (unlikely(dentry->d_name.hash != hash))
2716 			goto mismatch;
2717 		if (unlikely(dentry->d_parent != parent))
2718 			goto mismatch;
2719 		if (unlikely(d_unhashed(dentry)))
2720 			goto mismatch;
2721 		if (unlikely(!d_same_name(dentry, parent, name)))
2722 			goto mismatch;
2723 		/* OK, it *is* a hashed match; return it */
2724 		spin_unlock(&dentry->d_lock);
2725 		dput(new);
2726 		return dentry;
2727 	}
2728 	rcu_read_unlock();
2729 	/* we can't take ->d_lock here; it's OK, though. */
2730 	new->d_flags |= DCACHE_PAR_LOOKUP;
2731 	new->d_wait = wq;
2732 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2733 	hlist_bl_unlock(b);
2734 	return new;
2735 mismatch:
2736 	spin_unlock(&dentry->d_lock);
2737 	dput(dentry);
2738 	goto retry;
2739 }
2740 EXPORT_SYMBOL(d_alloc_parallel);
2741 
2742 /*
2743  * - Unhash the dentry
2744  * - Retrieve and clear the waitqueue head in dentry
2745  * - Return the waitqueue head
2746  */
2747 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2748 {
2749 	wait_queue_head_t *d_wait;
2750 	struct hlist_bl_head *b;
2751 
2752 	lockdep_assert_held(&dentry->d_lock);
2753 
2754 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2755 	hlist_bl_lock(b);
2756 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2757 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2758 	d_wait = dentry->d_wait;
2759 	dentry->d_wait = NULL;
2760 	hlist_bl_unlock(b);
2761 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2762 	INIT_LIST_HEAD(&dentry->d_lru);
2763 	return d_wait;
2764 }
2765 
2766 void __d_lookup_unhash_wake(struct dentry *dentry)
2767 {
2768 	spin_lock(&dentry->d_lock);
2769 	wake_up_all(__d_lookup_unhash(dentry));
2770 	spin_unlock(&dentry->d_lock);
2771 }
2772 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2773 
2774 /* inode->i_lock held if inode is non-NULL */
2775 
2776 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2777 {
2778 	wait_queue_head_t *d_wait;
2779 	struct inode *dir = NULL;
2780 	unsigned n;
2781 	spin_lock(&dentry->d_lock);
2782 	if (unlikely(d_in_lookup(dentry))) {
2783 		dir = dentry->d_parent->d_inode;
2784 		n = start_dir_add(dir);
2785 		d_wait = __d_lookup_unhash(dentry);
2786 	}
2787 	if (inode) {
2788 		unsigned add_flags = d_flags_for_inode(inode);
2789 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2790 		raw_write_seqcount_begin(&dentry->d_seq);
2791 		__d_set_inode_and_type(dentry, inode, add_flags);
2792 		raw_write_seqcount_end(&dentry->d_seq);
2793 		fsnotify_update_flags(dentry);
2794 	}
2795 	__d_rehash(dentry);
2796 	if (dir)
2797 		end_dir_add(dir, n, d_wait);
2798 	spin_unlock(&dentry->d_lock);
2799 	if (inode)
2800 		spin_unlock(&inode->i_lock);
2801 }
2802 
2803 /**
2804  * d_add - add dentry to hash queues
2805  * @entry: dentry to add
2806  * @inode: The inode to attach to this dentry
2807  *
2808  * This adds the entry to the hash queues and initializes @inode.
2809  * The entry was actually filled in earlier during d_alloc().
2810  */
2811 
2812 void d_add(struct dentry *entry, struct inode *inode)
2813 {
2814 	if (inode) {
2815 		security_d_instantiate(entry, inode);
2816 		spin_lock(&inode->i_lock);
2817 	}
2818 	__d_add(entry, inode);
2819 }
2820 EXPORT_SYMBOL(d_add);
2821 
2822 /**
2823  * d_exact_alias - find and hash an exact unhashed alias
2824  * @entry: dentry to add
2825  * @inode: The inode to go with this dentry
2826  *
2827  * If an unhashed dentry with the same name/parent and desired
2828  * inode already exists, hash and return it.  Otherwise, return
2829  * NULL.
2830  *
2831  * Parent directory should be locked.
2832  */
2833 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2834 {
2835 	struct dentry *alias;
2836 	unsigned int hash = entry->d_name.hash;
2837 
2838 	spin_lock(&inode->i_lock);
2839 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2840 		/*
2841 		 * Don't need alias->d_lock here, because aliases with
2842 		 * d_parent == entry->d_parent are not subject to name or
2843 		 * parent changes, because the parent inode i_mutex is held.
2844 		 */
2845 		if (alias->d_name.hash != hash)
2846 			continue;
2847 		if (alias->d_parent != entry->d_parent)
2848 			continue;
2849 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2850 			continue;
2851 		spin_lock(&alias->d_lock);
2852 		if (!d_unhashed(alias)) {
2853 			spin_unlock(&alias->d_lock);
2854 			alias = NULL;
2855 		} else {
2856 			__dget_dlock(alias);
2857 			__d_rehash(alias);
2858 			spin_unlock(&alias->d_lock);
2859 		}
2860 		spin_unlock(&inode->i_lock);
2861 		return alias;
2862 	}
2863 	spin_unlock(&inode->i_lock);
2864 	return NULL;
2865 }
2866 EXPORT_SYMBOL(d_exact_alias);
2867 
2868 static void swap_names(struct dentry *dentry, struct dentry *target)
2869 {
2870 	if (unlikely(dname_external(target))) {
2871 		if (unlikely(dname_external(dentry))) {
2872 			/*
2873 			 * Both external: swap the pointers
2874 			 */
2875 			swap(target->d_name.name, dentry->d_name.name);
2876 		} else {
2877 			/*
2878 			 * dentry:internal, target:external.  Steal target's
2879 			 * storage and make target internal.
2880 			 */
2881 			memcpy(target->d_iname, dentry->d_name.name,
2882 					dentry->d_name.len + 1);
2883 			dentry->d_name.name = target->d_name.name;
2884 			target->d_name.name = target->d_iname;
2885 		}
2886 	} else {
2887 		if (unlikely(dname_external(dentry))) {
2888 			/*
2889 			 * dentry:external, target:internal.  Give dentry's
2890 			 * storage to target and make dentry internal
2891 			 */
2892 			memcpy(dentry->d_iname, target->d_name.name,
2893 					target->d_name.len + 1);
2894 			target->d_name.name = dentry->d_name.name;
2895 			dentry->d_name.name = dentry->d_iname;
2896 		} else {
2897 			/*
2898 			 * Both are internal.
2899 			 */
2900 			unsigned int i;
2901 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2902 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2903 				swap(((long *) &dentry->d_iname)[i],
2904 				     ((long *) &target->d_iname)[i]);
2905 			}
2906 		}
2907 	}
2908 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2909 }
2910 
2911 static void copy_name(struct dentry *dentry, struct dentry *target)
2912 {
2913 	struct external_name *old_name = NULL;
2914 	if (unlikely(dname_external(dentry)))
2915 		old_name = external_name(dentry);
2916 	if (unlikely(dname_external(target))) {
2917 		atomic_inc(&external_name(target)->u.count);
2918 		dentry->d_name = target->d_name;
2919 	} else {
2920 		memcpy(dentry->d_iname, target->d_name.name,
2921 				target->d_name.len + 1);
2922 		dentry->d_name.name = dentry->d_iname;
2923 		dentry->d_name.hash_len = target->d_name.hash_len;
2924 	}
2925 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2926 		kfree_rcu(old_name, u.head);
2927 }
2928 
2929 /*
2930  * __d_move - move a dentry
2931  * @dentry: entry to move
2932  * @target: new dentry
2933  * @exchange: exchange the two dentries
2934  *
2935  * Update the dcache to reflect the move of a file name. Negative
2936  * dcache entries should not be moved in this way. Caller must hold
2937  * rename_lock, the i_mutex of the source and target directories,
2938  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2939  */
2940 static void __d_move(struct dentry *dentry, struct dentry *target,
2941 		     bool exchange)
2942 {
2943 	struct dentry *old_parent, *p;
2944 	wait_queue_head_t *d_wait;
2945 	struct inode *dir = NULL;
2946 	unsigned n;
2947 
2948 	WARN_ON(!dentry->d_inode);
2949 	if (WARN_ON(dentry == target))
2950 		return;
2951 
2952 	BUG_ON(d_ancestor(target, dentry));
2953 	old_parent = dentry->d_parent;
2954 	p = d_ancestor(old_parent, target);
2955 	if (IS_ROOT(dentry)) {
2956 		BUG_ON(p);
2957 		spin_lock(&target->d_parent->d_lock);
2958 	} else if (!p) {
2959 		/* target is not a descendent of dentry->d_parent */
2960 		spin_lock(&target->d_parent->d_lock);
2961 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2962 	} else {
2963 		BUG_ON(p == dentry);
2964 		spin_lock(&old_parent->d_lock);
2965 		if (p != target)
2966 			spin_lock_nested(&target->d_parent->d_lock,
2967 					DENTRY_D_LOCK_NESTED);
2968 	}
2969 	spin_lock_nested(&dentry->d_lock, 2);
2970 	spin_lock_nested(&target->d_lock, 3);
2971 
2972 	if (unlikely(d_in_lookup(target))) {
2973 		dir = target->d_parent->d_inode;
2974 		n = start_dir_add(dir);
2975 		d_wait = __d_lookup_unhash(target);
2976 	}
2977 
2978 	write_seqcount_begin(&dentry->d_seq);
2979 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2980 
2981 	/* unhash both */
2982 	if (!d_unhashed(dentry))
2983 		___d_drop(dentry);
2984 	if (!d_unhashed(target))
2985 		___d_drop(target);
2986 
2987 	/* ... and switch them in the tree */
2988 	dentry->d_parent = target->d_parent;
2989 	if (!exchange) {
2990 		copy_name(dentry, target);
2991 		target->d_hash.pprev = NULL;
2992 		dentry->d_parent->d_lockref.count++;
2993 		if (dentry != old_parent) /* wasn't IS_ROOT */
2994 			WARN_ON(!--old_parent->d_lockref.count);
2995 	} else {
2996 		target->d_parent = old_parent;
2997 		swap_names(dentry, target);
2998 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2999 		__d_rehash(target);
3000 		fsnotify_update_flags(target);
3001 	}
3002 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3003 	__d_rehash(dentry);
3004 	fsnotify_update_flags(dentry);
3005 	fscrypt_handle_d_move(dentry);
3006 
3007 	write_seqcount_end(&target->d_seq);
3008 	write_seqcount_end(&dentry->d_seq);
3009 
3010 	if (dir)
3011 		end_dir_add(dir, n, d_wait);
3012 
3013 	if (dentry->d_parent != old_parent)
3014 		spin_unlock(&dentry->d_parent->d_lock);
3015 	if (dentry != old_parent)
3016 		spin_unlock(&old_parent->d_lock);
3017 	spin_unlock(&target->d_lock);
3018 	spin_unlock(&dentry->d_lock);
3019 }
3020 
3021 /*
3022  * d_move - move a dentry
3023  * @dentry: entry to move
3024  * @target: new dentry
3025  *
3026  * Update the dcache to reflect the move of a file name. Negative
3027  * dcache entries should not be moved in this way. See the locking
3028  * requirements for __d_move.
3029  */
3030 void d_move(struct dentry *dentry, struct dentry *target)
3031 {
3032 	write_seqlock(&rename_lock);
3033 	__d_move(dentry, target, false);
3034 	write_sequnlock(&rename_lock);
3035 }
3036 EXPORT_SYMBOL(d_move);
3037 
3038 /*
3039  * d_exchange - exchange two dentries
3040  * @dentry1: first dentry
3041  * @dentry2: second dentry
3042  */
3043 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3044 {
3045 	write_seqlock(&rename_lock);
3046 
3047 	WARN_ON(!dentry1->d_inode);
3048 	WARN_ON(!dentry2->d_inode);
3049 	WARN_ON(IS_ROOT(dentry1));
3050 	WARN_ON(IS_ROOT(dentry2));
3051 
3052 	__d_move(dentry1, dentry2, true);
3053 
3054 	write_sequnlock(&rename_lock);
3055 }
3056 
3057 /**
3058  * d_ancestor - search for an ancestor
3059  * @p1: ancestor dentry
3060  * @p2: child dentry
3061  *
3062  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3063  * an ancestor of p2, else NULL.
3064  */
3065 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3066 {
3067 	struct dentry *p;
3068 
3069 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3070 		if (p->d_parent == p1)
3071 			return p;
3072 	}
3073 	return NULL;
3074 }
3075 
3076 /*
3077  * This helper attempts to cope with remotely renamed directories
3078  *
3079  * It assumes that the caller is already holding
3080  * dentry->d_parent->d_inode->i_mutex, and rename_lock
3081  *
3082  * Note: If ever the locking in lock_rename() changes, then please
3083  * remember to update this too...
3084  */
3085 static int __d_unalias(struct inode *inode,
3086 		struct dentry *dentry, struct dentry *alias)
3087 {
3088 	struct mutex *m1 = NULL;
3089 	struct rw_semaphore *m2 = NULL;
3090 	int ret = -ESTALE;
3091 
3092 	/* If alias and dentry share a parent, then no extra locks required */
3093 	if (alias->d_parent == dentry->d_parent)
3094 		goto out_unalias;
3095 
3096 	/* See lock_rename() */
3097 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3098 		goto out_err;
3099 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3100 	if (!inode_trylock_shared(alias->d_parent->d_inode))
3101 		goto out_err;
3102 	m2 = &alias->d_parent->d_inode->i_rwsem;
3103 out_unalias:
3104 	__d_move(alias, dentry, false);
3105 	ret = 0;
3106 out_err:
3107 	if (m2)
3108 		up_read(m2);
3109 	if (m1)
3110 		mutex_unlock(m1);
3111 	return ret;
3112 }
3113 
3114 /**
3115  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3116  * @inode:  the inode which may have a disconnected dentry
3117  * @dentry: a negative dentry which we want to point to the inode.
3118  *
3119  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3120  * place of the given dentry and return it, else simply d_add the inode
3121  * to the dentry and return NULL.
3122  *
3123  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3124  * we should error out: directories can't have multiple aliases.
3125  *
3126  * This is needed in the lookup routine of any filesystem that is exportable
3127  * (via knfsd) so that we can build dcache paths to directories effectively.
3128  *
3129  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3130  * is returned.  This matches the expected return value of ->lookup.
3131  *
3132  * Cluster filesystems may call this function with a negative, hashed dentry.
3133  * In that case, we know that the inode will be a regular file, and also this
3134  * will only occur during atomic_open. So we need to check for the dentry
3135  * being already hashed only in the final case.
3136  */
3137 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3138 {
3139 	if (IS_ERR(inode))
3140 		return ERR_CAST(inode);
3141 
3142 	BUG_ON(!d_unhashed(dentry));
3143 
3144 	if (!inode)
3145 		goto out;
3146 
3147 	security_d_instantiate(dentry, inode);
3148 	spin_lock(&inode->i_lock);
3149 	if (S_ISDIR(inode->i_mode)) {
3150 		struct dentry *new = __d_find_any_alias(inode);
3151 		if (unlikely(new)) {
3152 			/* The reference to new ensures it remains an alias */
3153 			spin_unlock(&inode->i_lock);
3154 			write_seqlock(&rename_lock);
3155 			if (unlikely(d_ancestor(new, dentry))) {
3156 				write_sequnlock(&rename_lock);
3157 				dput(new);
3158 				new = ERR_PTR(-ELOOP);
3159 				pr_warn_ratelimited(
3160 					"VFS: Lookup of '%s' in %s %s"
3161 					" would have caused loop\n",
3162 					dentry->d_name.name,
3163 					inode->i_sb->s_type->name,
3164 					inode->i_sb->s_id);
3165 			} else if (!IS_ROOT(new)) {
3166 				struct dentry *old_parent = dget(new->d_parent);
3167 				int err = __d_unalias(inode, dentry, new);
3168 				write_sequnlock(&rename_lock);
3169 				if (err) {
3170 					dput(new);
3171 					new = ERR_PTR(err);
3172 				}
3173 				dput(old_parent);
3174 			} else {
3175 				__d_move(new, dentry, false);
3176 				write_sequnlock(&rename_lock);
3177 			}
3178 			iput(inode);
3179 			return new;
3180 		}
3181 	}
3182 out:
3183 	__d_add(dentry, inode);
3184 	return NULL;
3185 }
3186 EXPORT_SYMBOL(d_splice_alias);
3187 
3188 /*
3189  * Test whether new_dentry is a subdirectory of old_dentry.
3190  *
3191  * Trivially implemented using the dcache structure
3192  */
3193 
3194 /**
3195  * is_subdir - is new dentry a subdirectory of old_dentry
3196  * @new_dentry: new dentry
3197  * @old_dentry: old dentry
3198  *
3199  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3200  * Returns false otherwise.
3201  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3202  */
3203 
3204 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3205 {
3206 	bool result;
3207 	unsigned seq;
3208 
3209 	if (new_dentry == old_dentry)
3210 		return true;
3211 
3212 	do {
3213 		/* for restarting inner loop in case of seq retry */
3214 		seq = read_seqbegin(&rename_lock);
3215 		/*
3216 		 * Need rcu_readlock to protect against the d_parent trashing
3217 		 * due to d_move
3218 		 */
3219 		rcu_read_lock();
3220 		if (d_ancestor(old_dentry, new_dentry))
3221 			result = true;
3222 		else
3223 			result = false;
3224 		rcu_read_unlock();
3225 	} while (read_seqretry(&rename_lock, seq));
3226 
3227 	return result;
3228 }
3229 EXPORT_SYMBOL(is_subdir);
3230 
3231 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3232 {
3233 	struct dentry *root = data;
3234 	if (dentry != root) {
3235 		if (d_unhashed(dentry) || !dentry->d_inode)
3236 			return D_WALK_SKIP;
3237 
3238 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3239 			dentry->d_flags |= DCACHE_GENOCIDE;
3240 			dentry->d_lockref.count--;
3241 		}
3242 	}
3243 	return D_WALK_CONTINUE;
3244 }
3245 
3246 void d_genocide(struct dentry *parent)
3247 {
3248 	d_walk(parent, parent, d_genocide_kill);
3249 }
3250 
3251 void d_mark_tmpfile(struct file *file, struct inode *inode)
3252 {
3253 	struct dentry *dentry = file->f_path.dentry;
3254 
3255 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3256 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3257 		!d_unlinked(dentry));
3258 	spin_lock(&dentry->d_parent->d_lock);
3259 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3260 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3261 				(unsigned long long)inode->i_ino);
3262 	spin_unlock(&dentry->d_lock);
3263 	spin_unlock(&dentry->d_parent->d_lock);
3264 }
3265 EXPORT_SYMBOL(d_mark_tmpfile);
3266 
3267 void d_tmpfile(struct file *file, struct inode *inode)
3268 {
3269 	struct dentry *dentry = file->f_path.dentry;
3270 
3271 	inode_dec_link_count(inode);
3272 	d_mark_tmpfile(file, inode);
3273 	d_instantiate(dentry, inode);
3274 }
3275 EXPORT_SYMBOL(d_tmpfile);
3276 
3277 static __initdata unsigned long dhash_entries;
3278 static int __init set_dhash_entries(char *str)
3279 {
3280 	if (!str)
3281 		return 0;
3282 	dhash_entries = simple_strtoul(str, &str, 0);
3283 	return 1;
3284 }
3285 __setup("dhash_entries=", set_dhash_entries);
3286 
3287 static void __init dcache_init_early(void)
3288 {
3289 	/* If hashes are distributed across NUMA nodes, defer
3290 	 * hash allocation until vmalloc space is available.
3291 	 */
3292 	if (hashdist)
3293 		return;
3294 
3295 	dentry_hashtable =
3296 		alloc_large_system_hash("Dentry cache",
3297 					sizeof(struct hlist_bl_head),
3298 					dhash_entries,
3299 					13,
3300 					HASH_EARLY | HASH_ZERO,
3301 					&d_hash_shift,
3302 					NULL,
3303 					0,
3304 					0);
3305 	d_hash_shift = 32 - d_hash_shift;
3306 }
3307 
3308 static void __init dcache_init(void)
3309 {
3310 	/*
3311 	 * A constructor could be added for stable state like the lists,
3312 	 * but it is probably not worth it because of the cache nature
3313 	 * of the dcache.
3314 	 */
3315 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3316 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3317 		d_iname);
3318 
3319 	/* Hash may have been set up in dcache_init_early */
3320 	if (!hashdist)
3321 		return;
3322 
3323 	dentry_hashtable =
3324 		alloc_large_system_hash("Dentry cache",
3325 					sizeof(struct hlist_bl_head),
3326 					dhash_entries,
3327 					13,
3328 					HASH_ZERO,
3329 					&d_hash_shift,
3330 					NULL,
3331 					0,
3332 					0);
3333 	d_hash_shift = 32 - d_hash_shift;
3334 }
3335 
3336 /* SLAB cache for __getname() consumers */
3337 struct kmem_cache *names_cachep __ro_after_init;
3338 EXPORT_SYMBOL(names_cachep);
3339 
3340 void __init vfs_caches_init_early(void)
3341 {
3342 	int i;
3343 
3344 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3345 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3346 
3347 	dcache_init_early();
3348 	inode_init_early();
3349 }
3350 
3351 void __init vfs_caches_init(void)
3352 {
3353 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3354 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3355 
3356 	dcache_init();
3357 	inode_init();
3358 	files_init();
3359 	files_maxfiles_init();
3360 	mnt_init();
3361 	bdev_cache_init();
3362 	chrdev_init();
3363 }
3364