1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __ro_after_init; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 const struct qstr dotdot_name = QSTR_INIT("..", 2); 88 EXPORT_SYMBOL(dotdot_name); 89 90 /* 91 * This is the single most critical data structure when it comes 92 * to the dcache: the hashtable for lookups. Somebody should try 93 * to make this good - I've just made it work. 94 * 95 * This hash-function tries to avoid losing too many bits of hash 96 * information, yet avoid using a prime hash-size or similar. 97 */ 98 99 static unsigned int d_hash_shift __ro_after_init; 100 101 static struct hlist_bl_head *dentry_hashtable __ro_after_init; 102 103 static inline struct hlist_bl_head *d_hash(unsigned int hash) 104 { 105 return dentry_hashtable + (hash >> d_hash_shift); 106 } 107 108 #define IN_LOOKUP_SHIFT 10 109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 110 111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 112 unsigned int hash) 113 { 114 hash += (unsigned long) parent / L1_CACHE_BYTES; 115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 116 } 117 118 struct dentry_stat_t { 119 long nr_dentry; 120 long nr_unused; 121 long age_limit; /* age in seconds */ 122 long want_pages; /* pages requested by system */ 123 long nr_negative; /* # of unused negative dentries */ 124 long dummy; /* Reserved for future use */ 125 }; 126 127 static DEFINE_PER_CPU(long, nr_dentry); 128 static DEFINE_PER_CPU(long, nr_dentry_unused); 129 static DEFINE_PER_CPU(long, nr_dentry_negative); 130 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 132 /* Statistics gathering. */ 133 static struct dentry_stat_t dentry_stat = { 134 .age_limit = 45, 135 }; 136 137 /* 138 * Here we resort to our own counters instead of using generic per-cpu counters 139 * for consistency with what the vfs inode code does. We are expected to harvest 140 * better code and performance by having our own specialized counters. 141 * 142 * Please note that the loop is done over all possible CPUs, not over all online 143 * CPUs. The reason for this is that we don't want to play games with CPUs going 144 * on and off. If one of them goes off, we will just keep their counters. 145 * 146 * glommer: See cffbc8a for details, and if you ever intend to change this, 147 * please update all vfs counters to match. 148 */ 149 static long get_nr_dentry(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_unused(void) 159 { 160 int i; 161 long sum = 0; 162 for_each_possible_cpu(i) 163 sum += per_cpu(nr_dentry_unused, i); 164 return sum < 0 ? 0 : sum; 165 } 166 167 static long get_nr_dentry_negative(void) 168 { 169 int i; 170 long sum = 0; 171 172 for_each_possible_cpu(i) 173 sum += per_cpu(nr_dentry_negative, i); 174 return sum < 0 ? 0 : sum; 175 } 176 177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 178 size_t *lenp, loff_t *ppos) 179 { 180 dentry_stat.nr_dentry = get_nr_dentry(); 181 dentry_stat.nr_unused = get_nr_dentry_unused(); 182 dentry_stat.nr_negative = get_nr_dentry_negative(); 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 184 } 185 186 static struct ctl_table fs_dcache_sysctls[] = { 187 { 188 .procname = "dentry-state", 189 .data = &dentry_stat, 190 .maxlen = 6*sizeof(long), 191 .mode = 0444, 192 .proc_handler = proc_nr_dentry, 193 }, 194 { } 195 }; 196 197 static int __init init_fs_dcache_sysctls(void) 198 { 199 register_sysctl_init("fs", fs_dcache_sysctls); 200 return 0; 201 } 202 fs_initcall(init_fs_dcache_sysctls); 203 #endif 204 205 /* 206 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 207 * The strings are both count bytes long, and count is non-zero. 208 */ 209 #ifdef CONFIG_DCACHE_WORD_ACCESS 210 211 #include <asm/word-at-a-time.h> 212 /* 213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 214 * aligned allocation for this particular component. We don't 215 * strictly need the load_unaligned_zeropad() safety, but it 216 * doesn't hurt either. 217 * 218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 219 * need the careful unaligned handling. 220 */ 221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 222 { 223 unsigned long a,b,mask; 224 225 for (;;) { 226 a = read_word_at_a_time(cs); 227 b = load_unaligned_zeropad(ct); 228 if (tcount < sizeof(unsigned long)) 229 break; 230 if (unlikely(a != b)) 231 return 1; 232 cs += sizeof(unsigned long); 233 ct += sizeof(unsigned long); 234 tcount -= sizeof(unsigned long); 235 if (!tcount) 236 return 0; 237 } 238 mask = bytemask_from_count(tcount); 239 return unlikely(!!((a ^ b) & mask)); 240 } 241 242 #else 243 244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 245 { 246 do { 247 if (*cs != *ct) 248 return 1; 249 cs++; 250 ct++; 251 tcount--; 252 } while (tcount); 253 return 0; 254 } 255 256 #endif 257 258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 259 { 260 /* 261 * Be careful about RCU walk racing with rename: 262 * use 'READ_ONCE' to fetch the name pointer. 263 * 264 * NOTE! Even if a rename will mean that the length 265 * was not loaded atomically, we don't care. The 266 * RCU walk will check the sequence count eventually, 267 * and catch it. And we won't overrun the buffer, 268 * because we're reading the name pointer atomically, 269 * and a dentry name is guaranteed to be properly 270 * terminated with a NUL byte. 271 * 272 * End result: even if 'len' is wrong, we'll exit 273 * early because the data cannot match (there can 274 * be no NUL in the ct/tcount data) 275 */ 276 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 277 278 return dentry_string_cmp(cs, ct, tcount); 279 } 280 281 struct external_name { 282 union { 283 atomic_t count; 284 struct rcu_head head; 285 } u; 286 unsigned char name[]; 287 }; 288 289 static inline struct external_name *external_name(struct dentry *dentry) 290 { 291 return container_of(dentry->d_name.name, struct external_name, name[0]); 292 } 293 294 static void __d_free(struct rcu_head *head) 295 { 296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 297 298 kmem_cache_free(dentry_cache, dentry); 299 } 300 301 static void __d_free_external(struct rcu_head *head) 302 { 303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 kfree(external_name(dentry)); 305 kmem_cache_free(dentry_cache, dentry); 306 } 307 308 static inline int dname_external(const struct dentry *dentry) 309 { 310 return dentry->d_name.name != dentry->d_iname; 311 } 312 313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 314 { 315 spin_lock(&dentry->d_lock); 316 name->name = dentry->d_name; 317 if (unlikely(dname_external(dentry))) { 318 atomic_inc(&external_name(dentry)->u.count); 319 } else { 320 memcpy(name->inline_name, dentry->d_iname, 321 dentry->d_name.len + 1); 322 name->name.name = name->inline_name; 323 } 324 spin_unlock(&dentry->d_lock); 325 } 326 EXPORT_SYMBOL(take_dentry_name_snapshot); 327 328 void release_dentry_name_snapshot(struct name_snapshot *name) 329 { 330 if (unlikely(name->name.name != name->inline_name)) { 331 struct external_name *p; 332 p = container_of(name->name.name, struct external_name, name[0]); 333 if (unlikely(atomic_dec_and_test(&p->u.count))) 334 kfree_rcu(p, u.head); 335 } 336 } 337 EXPORT_SYMBOL(release_dentry_name_snapshot); 338 339 static inline void __d_set_inode_and_type(struct dentry *dentry, 340 struct inode *inode, 341 unsigned type_flags) 342 { 343 unsigned flags; 344 345 dentry->d_inode = inode; 346 flags = READ_ONCE(dentry->d_flags); 347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 348 flags |= type_flags; 349 smp_store_release(&dentry->d_flags, flags); 350 } 351 352 static inline void __d_clear_type_and_inode(struct dentry *dentry) 353 { 354 unsigned flags = READ_ONCE(dentry->d_flags); 355 356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 357 WRITE_ONCE(dentry->d_flags, flags); 358 dentry->d_inode = NULL; 359 if (dentry->d_flags & DCACHE_LRU_LIST) 360 this_cpu_inc(nr_dentry_negative); 361 } 362 363 static void dentry_free(struct dentry *dentry) 364 { 365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 366 if (unlikely(dname_external(dentry))) { 367 struct external_name *p = external_name(dentry); 368 if (likely(atomic_dec_and_test(&p->u.count))) { 369 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 370 return; 371 } 372 } 373 /* if dentry was never visible to RCU, immediate free is OK */ 374 if (dentry->d_flags & DCACHE_NORCU) 375 __d_free(&dentry->d_u.d_rcu); 376 else 377 call_rcu(&dentry->d_u.d_rcu, __d_free); 378 } 379 380 /* 381 * Release the dentry's inode, using the filesystem 382 * d_iput() operation if defined. 383 */ 384 static void dentry_unlink_inode(struct dentry * dentry) 385 __releases(dentry->d_lock) 386 __releases(dentry->d_inode->i_lock) 387 { 388 struct inode *inode = dentry->d_inode; 389 390 raw_write_seqcount_begin(&dentry->d_seq); 391 __d_clear_type_and_inode(dentry); 392 hlist_del_init(&dentry->d_u.d_alias); 393 raw_write_seqcount_end(&dentry->d_seq); 394 spin_unlock(&dentry->d_lock); 395 spin_unlock(&inode->i_lock); 396 if (!inode->i_nlink) 397 fsnotify_inoderemove(inode); 398 if (dentry->d_op && dentry->d_op->d_iput) 399 dentry->d_op->d_iput(dentry, inode); 400 else 401 iput(inode); 402 } 403 404 /* 405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 406 * is in use - which includes both the "real" per-superblock 407 * LRU list _and_ the DCACHE_SHRINK_LIST use. 408 * 409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 410 * on the shrink list (ie not on the superblock LRU list). 411 * 412 * The per-cpu "nr_dentry_unused" counters are updated with 413 * the DCACHE_LRU_LIST bit. 414 * 415 * The per-cpu "nr_dentry_negative" counters are only updated 416 * when deleted from or added to the per-superblock LRU list, not 417 * from/to the shrink list. That is to avoid an unneeded dec/inc 418 * pair when moving from LRU to shrink list in select_collect(). 419 * 420 * These helper functions make sure we always follow the 421 * rules. d_lock must be held by the caller. 422 */ 423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 424 static void d_lru_add(struct dentry *dentry) 425 { 426 D_FLAG_VERIFY(dentry, 0); 427 dentry->d_flags |= DCACHE_LRU_LIST; 428 this_cpu_inc(nr_dentry_unused); 429 if (d_is_negative(dentry)) 430 this_cpu_inc(nr_dentry_negative); 431 WARN_ON_ONCE(!list_lru_add_obj( 432 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 433 } 434 435 static void d_lru_del(struct dentry *dentry) 436 { 437 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 438 dentry->d_flags &= ~DCACHE_LRU_LIST; 439 this_cpu_dec(nr_dentry_unused); 440 if (d_is_negative(dentry)) 441 this_cpu_dec(nr_dentry_negative); 442 WARN_ON_ONCE(!list_lru_del_obj( 443 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 444 } 445 446 static void d_shrink_del(struct dentry *dentry) 447 { 448 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 449 list_del_init(&dentry->d_lru); 450 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 451 this_cpu_dec(nr_dentry_unused); 452 } 453 454 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 455 { 456 D_FLAG_VERIFY(dentry, 0); 457 list_add(&dentry->d_lru, list); 458 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 459 this_cpu_inc(nr_dentry_unused); 460 } 461 462 /* 463 * These can only be called under the global LRU lock, ie during the 464 * callback for freeing the LRU list. "isolate" removes it from the 465 * LRU lists entirely, while shrink_move moves it to the indicated 466 * private list. 467 */ 468 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 469 { 470 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 471 dentry->d_flags &= ~DCACHE_LRU_LIST; 472 this_cpu_dec(nr_dentry_unused); 473 if (d_is_negative(dentry)) 474 this_cpu_dec(nr_dentry_negative); 475 list_lru_isolate(lru, &dentry->d_lru); 476 } 477 478 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 479 struct list_head *list) 480 { 481 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 482 dentry->d_flags |= DCACHE_SHRINK_LIST; 483 if (d_is_negative(dentry)) 484 this_cpu_dec(nr_dentry_negative); 485 list_lru_isolate_move(lru, &dentry->d_lru, list); 486 } 487 488 static void ___d_drop(struct dentry *dentry) 489 { 490 struct hlist_bl_head *b; 491 /* 492 * Hashed dentries are normally on the dentry hashtable, 493 * with the exception of those newly allocated by 494 * d_obtain_root, which are always IS_ROOT: 495 */ 496 if (unlikely(IS_ROOT(dentry))) 497 b = &dentry->d_sb->s_roots; 498 else 499 b = d_hash(dentry->d_name.hash); 500 501 hlist_bl_lock(b); 502 __hlist_bl_del(&dentry->d_hash); 503 hlist_bl_unlock(b); 504 } 505 506 void __d_drop(struct dentry *dentry) 507 { 508 if (!d_unhashed(dentry)) { 509 ___d_drop(dentry); 510 dentry->d_hash.pprev = NULL; 511 write_seqcount_invalidate(&dentry->d_seq); 512 } 513 } 514 EXPORT_SYMBOL(__d_drop); 515 516 /** 517 * d_drop - drop a dentry 518 * @dentry: dentry to drop 519 * 520 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 521 * be found through a VFS lookup any more. Note that this is different from 522 * deleting the dentry - d_delete will try to mark the dentry negative if 523 * possible, giving a successful _negative_ lookup, while d_drop will 524 * just make the cache lookup fail. 525 * 526 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 527 * reason (NFS timeouts or autofs deletes). 528 * 529 * __d_drop requires dentry->d_lock 530 * 531 * ___d_drop doesn't mark dentry as "unhashed" 532 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 533 */ 534 void d_drop(struct dentry *dentry) 535 { 536 spin_lock(&dentry->d_lock); 537 __d_drop(dentry); 538 spin_unlock(&dentry->d_lock); 539 } 540 EXPORT_SYMBOL(d_drop); 541 542 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 543 { 544 struct dentry *next; 545 /* 546 * Inform d_walk() and shrink_dentry_list() that we are no longer 547 * attached to the dentry tree 548 */ 549 dentry->d_flags |= DCACHE_DENTRY_KILLED; 550 if (unlikely(list_empty(&dentry->d_child))) 551 return; 552 __list_del_entry(&dentry->d_child); 553 /* 554 * Cursors can move around the list of children. While we'd been 555 * a normal list member, it didn't matter - ->d_child.next would've 556 * been updated. However, from now on it won't be and for the 557 * things like d_walk() it might end up with a nasty surprise. 558 * Normally d_walk() doesn't care about cursors moving around - 559 * ->d_lock on parent prevents that and since a cursor has no children 560 * of its own, we get through it without ever unlocking the parent. 561 * There is one exception, though - if we ascend from a child that 562 * gets killed as soon as we unlock it, the next sibling is found 563 * using the value left in its ->d_child.next. And if _that_ 564 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 565 * before d_walk() regains parent->d_lock, we'll end up skipping 566 * everything the cursor had been moved past. 567 * 568 * Solution: make sure that the pointer left behind in ->d_child.next 569 * points to something that won't be moving around. I.e. skip the 570 * cursors. 571 */ 572 while (dentry->d_child.next != &parent->d_subdirs) { 573 next = list_entry(dentry->d_child.next, struct dentry, d_child); 574 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 575 break; 576 dentry->d_child.next = next->d_child.next; 577 } 578 } 579 580 static void __dentry_kill(struct dentry *dentry) 581 { 582 struct dentry *parent = NULL; 583 bool can_free = true; 584 if (!IS_ROOT(dentry)) 585 parent = dentry->d_parent; 586 587 /* 588 * The dentry is now unrecoverably dead to the world. 589 */ 590 lockref_mark_dead(&dentry->d_lockref); 591 592 /* 593 * inform the fs via d_prune that this dentry is about to be 594 * unhashed and destroyed. 595 */ 596 if (dentry->d_flags & DCACHE_OP_PRUNE) 597 dentry->d_op->d_prune(dentry); 598 599 if (dentry->d_flags & DCACHE_LRU_LIST) { 600 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 601 d_lru_del(dentry); 602 } 603 /* if it was on the hash then remove it */ 604 __d_drop(dentry); 605 dentry_unlist(dentry, parent); 606 if (parent) 607 spin_unlock(&parent->d_lock); 608 if (dentry->d_inode) 609 dentry_unlink_inode(dentry); 610 else 611 spin_unlock(&dentry->d_lock); 612 this_cpu_dec(nr_dentry); 613 if (dentry->d_op && dentry->d_op->d_release) 614 dentry->d_op->d_release(dentry); 615 616 spin_lock(&dentry->d_lock); 617 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 618 dentry->d_flags |= DCACHE_MAY_FREE; 619 can_free = false; 620 } 621 spin_unlock(&dentry->d_lock); 622 if (likely(can_free)) 623 dentry_free(dentry); 624 cond_resched(); 625 } 626 627 static struct dentry *__lock_parent(struct dentry *dentry) 628 { 629 struct dentry *parent; 630 rcu_read_lock(); 631 spin_unlock(&dentry->d_lock); 632 again: 633 parent = READ_ONCE(dentry->d_parent); 634 spin_lock(&parent->d_lock); 635 /* 636 * We can't blindly lock dentry until we are sure 637 * that we won't violate the locking order. 638 * Any changes of dentry->d_parent must have 639 * been done with parent->d_lock held, so 640 * spin_lock() above is enough of a barrier 641 * for checking if it's still our child. 642 */ 643 if (unlikely(parent != dentry->d_parent)) { 644 spin_unlock(&parent->d_lock); 645 goto again; 646 } 647 rcu_read_unlock(); 648 if (parent != dentry) 649 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 650 else 651 parent = NULL; 652 return parent; 653 } 654 655 static inline struct dentry *lock_parent(struct dentry *dentry) 656 { 657 struct dentry *parent = dentry->d_parent; 658 if (IS_ROOT(dentry)) 659 return NULL; 660 if (likely(spin_trylock(&parent->d_lock))) 661 return parent; 662 return __lock_parent(dentry); 663 } 664 665 static inline bool retain_dentry(struct dentry *dentry) 666 { 667 WARN_ON(d_in_lookup(dentry)); 668 669 /* Unreachable? Get rid of it */ 670 if (unlikely(d_unhashed(dentry))) 671 return false; 672 673 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 674 return false; 675 676 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 677 if (dentry->d_op->d_delete(dentry)) 678 return false; 679 } 680 681 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 682 return false; 683 684 /* retain; LRU fodder */ 685 dentry->d_lockref.count--; 686 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 687 d_lru_add(dentry); 688 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 689 dentry->d_flags |= DCACHE_REFERENCED; 690 return true; 691 } 692 693 void d_mark_dontcache(struct inode *inode) 694 { 695 struct dentry *de; 696 697 spin_lock(&inode->i_lock); 698 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 699 spin_lock(&de->d_lock); 700 de->d_flags |= DCACHE_DONTCACHE; 701 spin_unlock(&de->d_lock); 702 } 703 inode->i_state |= I_DONTCACHE; 704 spin_unlock(&inode->i_lock); 705 } 706 EXPORT_SYMBOL(d_mark_dontcache); 707 708 /* 709 * Finish off a dentry we've decided to kill. 710 * dentry->d_lock must be held, returns with it unlocked. 711 * Returns dentry requiring refcount drop, or NULL if we're done. 712 */ 713 static struct dentry *dentry_kill(struct dentry *dentry) 714 __releases(dentry->d_lock) 715 { 716 struct inode *inode = dentry->d_inode; 717 struct dentry *parent = NULL; 718 719 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 720 goto slow_positive; 721 722 if (!IS_ROOT(dentry)) { 723 parent = dentry->d_parent; 724 if (unlikely(!spin_trylock(&parent->d_lock))) { 725 parent = __lock_parent(dentry); 726 if (likely(inode || !dentry->d_inode)) 727 goto got_locks; 728 /* negative that became positive */ 729 if (parent) 730 spin_unlock(&parent->d_lock); 731 inode = dentry->d_inode; 732 goto slow_positive; 733 } 734 } 735 __dentry_kill(dentry); 736 return parent; 737 738 slow_positive: 739 spin_unlock(&dentry->d_lock); 740 spin_lock(&inode->i_lock); 741 spin_lock(&dentry->d_lock); 742 parent = lock_parent(dentry); 743 got_locks: 744 if (unlikely(dentry->d_lockref.count != 1)) { 745 dentry->d_lockref.count--; 746 } else if (likely(!retain_dentry(dentry))) { 747 __dentry_kill(dentry); 748 return parent; 749 } 750 /* we are keeping it, after all */ 751 if (inode) 752 spin_unlock(&inode->i_lock); 753 if (parent) 754 spin_unlock(&parent->d_lock); 755 spin_unlock(&dentry->d_lock); 756 return NULL; 757 } 758 759 /* 760 * Try to do a lockless dput(), and return whether that was successful. 761 * 762 * If unsuccessful, we return false, having already taken the dentry lock. 763 * 764 * The caller needs to hold the RCU read lock, so that the dentry is 765 * guaranteed to stay around even if the refcount goes down to zero! 766 */ 767 static inline bool fast_dput(struct dentry *dentry) 768 { 769 int ret; 770 unsigned int d_flags; 771 772 /* 773 * If we have a d_op->d_delete() operation, we sould not 774 * let the dentry count go to zero, so use "put_or_lock". 775 */ 776 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 777 return lockref_put_or_lock(&dentry->d_lockref); 778 779 /* 780 * .. otherwise, we can try to just decrement the 781 * lockref optimistically. 782 */ 783 ret = lockref_put_return(&dentry->d_lockref); 784 785 /* 786 * If the lockref_put_return() failed due to the lock being held 787 * by somebody else, the fast path has failed. We will need to 788 * get the lock, and then check the count again. 789 */ 790 if (unlikely(ret < 0)) { 791 spin_lock(&dentry->d_lock); 792 if (dentry->d_lockref.count > 1) { 793 dentry->d_lockref.count--; 794 spin_unlock(&dentry->d_lock); 795 return true; 796 } 797 return false; 798 } 799 800 /* 801 * If we weren't the last ref, we're done. 802 */ 803 if (ret) 804 return true; 805 806 /* 807 * Careful, careful. The reference count went down 808 * to zero, but we don't hold the dentry lock, so 809 * somebody else could get it again, and do another 810 * dput(), and we need to not race with that. 811 * 812 * However, there is a very special and common case 813 * where we don't care, because there is nothing to 814 * do: the dentry is still hashed, it does not have 815 * a 'delete' op, and it's referenced and already on 816 * the LRU list. 817 * 818 * NOTE! Since we aren't locked, these values are 819 * not "stable". However, it is sufficient that at 820 * some point after we dropped the reference the 821 * dentry was hashed and the flags had the proper 822 * value. Other dentry users may have re-gotten 823 * a reference to the dentry and change that, but 824 * our work is done - we can leave the dentry 825 * around with a zero refcount. 826 * 827 * Nevertheless, there are two cases that we should kill 828 * the dentry anyway. 829 * 1. free disconnected dentries as soon as their refcount 830 * reached zero. 831 * 2. free dentries if they should not be cached. 832 */ 833 smp_rmb(); 834 d_flags = READ_ONCE(dentry->d_flags); 835 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | 836 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; 837 838 /* Nothing to do? Dropping the reference was all we needed? */ 839 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 840 return true; 841 842 /* 843 * Not the fast normal case? Get the lock. We've already decremented 844 * the refcount, but we'll need to re-check the situation after 845 * getting the lock. 846 */ 847 spin_lock(&dentry->d_lock); 848 849 /* 850 * Did somebody else grab a reference to it in the meantime, and 851 * we're no longer the last user after all? Alternatively, somebody 852 * else could have killed it and marked it dead. Either way, we 853 * don't need to do anything else. 854 */ 855 if (dentry->d_lockref.count) { 856 spin_unlock(&dentry->d_lock); 857 return true; 858 } 859 860 /* 861 * Re-get the reference we optimistically dropped. We hold the 862 * lock, and we just tested that it was zero, so we can just 863 * set it to 1. 864 */ 865 dentry->d_lockref.count = 1; 866 return false; 867 } 868 869 870 /* 871 * This is dput 872 * 873 * This is complicated by the fact that we do not want to put 874 * dentries that are no longer on any hash chain on the unused 875 * list: we'd much rather just get rid of them immediately. 876 * 877 * However, that implies that we have to traverse the dentry 878 * tree upwards to the parents which might _also_ now be 879 * scheduled for deletion (it may have been only waiting for 880 * its last child to go away). 881 * 882 * This tail recursion is done by hand as we don't want to depend 883 * on the compiler to always get this right (gcc generally doesn't). 884 * Real recursion would eat up our stack space. 885 */ 886 887 /* 888 * dput - release a dentry 889 * @dentry: dentry to release 890 * 891 * Release a dentry. This will drop the usage count and if appropriate 892 * call the dentry unlink method as well as removing it from the queues and 893 * releasing its resources. If the parent dentries were scheduled for release 894 * they too may now get deleted. 895 */ 896 void dput(struct dentry *dentry) 897 { 898 while (dentry) { 899 might_sleep(); 900 901 rcu_read_lock(); 902 if (likely(fast_dput(dentry))) { 903 rcu_read_unlock(); 904 return; 905 } 906 907 /* Slow case: now with the dentry lock held */ 908 rcu_read_unlock(); 909 910 if (likely(retain_dentry(dentry))) { 911 spin_unlock(&dentry->d_lock); 912 return; 913 } 914 915 dentry = dentry_kill(dentry); 916 } 917 } 918 EXPORT_SYMBOL(dput); 919 920 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 921 __must_hold(&dentry->d_lock) 922 { 923 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 924 /* let the owner of the list it's on deal with it */ 925 --dentry->d_lockref.count; 926 } else { 927 if (dentry->d_flags & DCACHE_LRU_LIST) 928 d_lru_del(dentry); 929 if (!--dentry->d_lockref.count) 930 d_shrink_add(dentry, list); 931 } 932 } 933 934 void dput_to_list(struct dentry *dentry, struct list_head *list) 935 { 936 rcu_read_lock(); 937 if (likely(fast_dput(dentry))) { 938 rcu_read_unlock(); 939 return; 940 } 941 rcu_read_unlock(); 942 if (!retain_dentry(dentry)) 943 __dput_to_list(dentry, list); 944 spin_unlock(&dentry->d_lock); 945 } 946 947 /* This must be called with d_lock held */ 948 static inline void __dget_dlock(struct dentry *dentry) 949 { 950 dentry->d_lockref.count++; 951 } 952 953 static inline void __dget(struct dentry *dentry) 954 { 955 lockref_get(&dentry->d_lockref); 956 } 957 958 struct dentry *dget_parent(struct dentry *dentry) 959 { 960 int gotref; 961 struct dentry *ret; 962 unsigned seq; 963 964 /* 965 * Do optimistic parent lookup without any 966 * locking. 967 */ 968 rcu_read_lock(); 969 seq = raw_seqcount_begin(&dentry->d_seq); 970 ret = READ_ONCE(dentry->d_parent); 971 gotref = lockref_get_not_zero(&ret->d_lockref); 972 rcu_read_unlock(); 973 if (likely(gotref)) { 974 if (!read_seqcount_retry(&dentry->d_seq, seq)) 975 return ret; 976 dput(ret); 977 } 978 979 repeat: 980 /* 981 * Don't need rcu_dereference because we re-check it was correct under 982 * the lock. 983 */ 984 rcu_read_lock(); 985 ret = dentry->d_parent; 986 spin_lock(&ret->d_lock); 987 if (unlikely(ret != dentry->d_parent)) { 988 spin_unlock(&ret->d_lock); 989 rcu_read_unlock(); 990 goto repeat; 991 } 992 rcu_read_unlock(); 993 BUG_ON(!ret->d_lockref.count); 994 ret->d_lockref.count++; 995 spin_unlock(&ret->d_lock); 996 return ret; 997 } 998 EXPORT_SYMBOL(dget_parent); 999 1000 static struct dentry * __d_find_any_alias(struct inode *inode) 1001 { 1002 struct dentry *alias; 1003 1004 if (hlist_empty(&inode->i_dentry)) 1005 return NULL; 1006 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1007 __dget(alias); 1008 return alias; 1009 } 1010 1011 /** 1012 * d_find_any_alias - find any alias for a given inode 1013 * @inode: inode to find an alias for 1014 * 1015 * If any aliases exist for the given inode, take and return a 1016 * reference for one of them. If no aliases exist, return %NULL. 1017 */ 1018 struct dentry *d_find_any_alias(struct inode *inode) 1019 { 1020 struct dentry *de; 1021 1022 spin_lock(&inode->i_lock); 1023 de = __d_find_any_alias(inode); 1024 spin_unlock(&inode->i_lock); 1025 return de; 1026 } 1027 EXPORT_SYMBOL(d_find_any_alias); 1028 1029 static struct dentry *__d_find_alias(struct inode *inode) 1030 { 1031 struct dentry *alias; 1032 1033 if (S_ISDIR(inode->i_mode)) 1034 return __d_find_any_alias(inode); 1035 1036 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1037 spin_lock(&alias->d_lock); 1038 if (!d_unhashed(alias)) { 1039 __dget_dlock(alias); 1040 spin_unlock(&alias->d_lock); 1041 return alias; 1042 } 1043 spin_unlock(&alias->d_lock); 1044 } 1045 return NULL; 1046 } 1047 1048 /** 1049 * d_find_alias - grab a hashed alias of inode 1050 * @inode: inode in question 1051 * 1052 * If inode has a hashed alias, or is a directory and has any alias, 1053 * acquire the reference to alias and return it. Otherwise return NULL. 1054 * Notice that if inode is a directory there can be only one alias and 1055 * it can be unhashed only if it has no children, or if it is the root 1056 * of a filesystem, or if the directory was renamed and d_revalidate 1057 * was the first vfs operation to notice. 1058 * 1059 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1060 * any other hashed alias over that one. 1061 */ 1062 struct dentry *d_find_alias(struct inode *inode) 1063 { 1064 struct dentry *de = NULL; 1065 1066 if (!hlist_empty(&inode->i_dentry)) { 1067 spin_lock(&inode->i_lock); 1068 de = __d_find_alias(inode); 1069 spin_unlock(&inode->i_lock); 1070 } 1071 return de; 1072 } 1073 EXPORT_SYMBOL(d_find_alias); 1074 1075 /* 1076 * Caller MUST be holding rcu_read_lock() and be guaranteed 1077 * that inode won't get freed until rcu_read_unlock(). 1078 */ 1079 struct dentry *d_find_alias_rcu(struct inode *inode) 1080 { 1081 struct hlist_head *l = &inode->i_dentry; 1082 struct dentry *de = NULL; 1083 1084 spin_lock(&inode->i_lock); 1085 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1086 // used without having I_FREEING set, which means no aliases left 1087 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1088 if (S_ISDIR(inode->i_mode)) { 1089 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1090 } else { 1091 hlist_for_each_entry(de, l, d_u.d_alias) 1092 if (!d_unhashed(de)) 1093 break; 1094 } 1095 } 1096 spin_unlock(&inode->i_lock); 1097 return de; 1098 } 1099 1100 /* 1101 * Try to kill dentries associated with this inode. 1102 * WARNING: you must own a reference to inode. 1103 */ 1104 void d_prune_aliases(struct inode *inode) 1105 { 1106 struct dentry *dentry; 1107 restart: 1108 spin_lock(&inode->i_lock); 1109 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1110 spin_lock(&dentry->d_lock); 1111 if (!dentry->d_lockref.count) { 1112 struct dentry *parent = lock_parent(dentry); 1113 if (likely(!dentry->d_lockref.count)) { 1114 __dentry_kill(dentry); 1115 dput(parent); 1116 goto restart; 1117 } 1118 if (parent) 1119 spin_unlock(&parent->d_lock); 1120 } 1121 spin_unlock(&dentry->d_lock); 1122 } 1123 spin_unlock(&inode->i_lock); 1124 } 1125 EXPORT_SYMBOL(d_prune_aliases); 1126 1127 /* 1128 * Lock a dentry from shrink list. 1129 * Called under rcu_read_lock() and dentry->d_lock; the former 1130 * guarantees that nothing we access will be freed under us. 1131 * Note that dentry is *not* protected from concurrent dentry_kill(), 1132 * d_delete(), etc. 1133 * 1134 * Return false if dentry has been disrupted or grabbed, leaving 1135 * the caller to kick it off-list. Otherwise, return true and have 1136 * that dentry's inode and parent both locked. 1137 */ 1138 static bool shrink_lock_dentry(struct dentry *dentry) 1139 { 1140 struct inode *inode; 1141 struct dentry *parent; 1142 1143 if (dentry->d_lockref.count) 1144 return false; 1145 1146 inode = dentry->d_inode; 1147 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1148 spin_unlock(&dentry->d_lock); 1149 spin_lock(&inode->i_lock); 1150 spin_lock(&dentry->d_lock); 1151 if (unlikely(dentry->d_lockref.count)) 1152 goto out; 1153 /* changed inode means that somebody had grabbed it */ 1154 if (unlikely(inode != dentry->d_inode)) 1155 goto out; 1156 } 1157 1158 parent = dentry->d_parent; 1159 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1160 return true; 1161 1162 spin_unlock(&dentry->d_lock); 1163 spin_lock(&parent->d_lock); 1164 if (unlikely(parent != dentry->d_parent)) { 1165 spin_unlock(&parent->d_lock); 1166 spin_lock(&dentry->d_lock); 1167 goto out; 1168 } 1169 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1170 if (likely(!dentry->d_lockref.count)) 1171 return true; 1172 spin_unlock(&parent->d_lock); 1173 out: 1174 if (inode) 1175 spin_unlock(&inode->i_lock); 1176 return false; 1177 } 1178 1179 void shrink_dentry_list(struct list_head *list) 1180 { 1181 while (!list_empty(list)) { 1182 struct dentry *dentry, *parent; 1183 1184 dentry = list_entry(list->prev, struct dentry, d_lru); 1185 spin_lock(&dentry->d_lock); 1186 rcu_read_lock(); 1187 if (!shrink_lock_dentry(dentry)) { 1188 bool can_free = false; 1189 rcu_read_unlock(); 1190 d_shrink_del(dentry); 1191 if (dentry->d_lockref.count < 0) 1192 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1193 spin_unlock(&dentry->d_lock); 1194 if (can_free) 1195 dentry_free(dentry); 1196 continue; 1197 } 1198 rcu_read_unlock(); 1199 d_shrink_del(dentry); 1200 parent = dentry->d_parent; 1201 if (parent != dentry) 1202 __dput_to_list(parent, list); 1203 __dentry_kill(dentry); 1204 } 1205 } 1206 1207 static enum lru_status dentry_lru_isolate(struct list_head *item, 1208 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1209 { 1210 struct list_head *freeable = arg; 1211 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1212 1213 1214 /* 1215 * we are inverting the lru lock/dentry->d_lock here, 1216 * so use a trylock. If we fail to get the lock, just skip 1217 * it 1218 */ 1219 if (!spin_trylock(&dentry->d_lock)) 1220 return LRU_SKIP; 1221 1222 /* 1223 * Referenced dentries are still in use. If they have active 1224 * counts, just remove them from the LRU. Otherwise give them 1225 * another pass through the LRU. 1226 */ 1227 if (dentry->d_lockref.count) { 1228 d_lru_isolate(lru, dentry); 1229 spin_unlock(&dentry->d_lock); 1230 return LRU_REMOVED; 1231 } 1232 1233 if (dentry->d_flags & DCACHE_REFERENCED) { 1234 dentry->d_flags &= ~DCACHE_REFERENCED; 1235 spin_unlock(&dentry->d_lock); 1236 1237 /* 1238 * The list move itself will be made by the common LRU code. At 1239 * this point, we've dropped the dentry->d_lock but keep the 1240 * lru lock. This is safe to do, since every list movement is 1241 * protected by the lru lock even if both locks are held. 1242 * 1243 * This is guaranteed by the fact that all LRU management 1244 * functions are intermediated by the LRU API calls like 1245 * list_lru_add_obj and list_lru_del_obj. List movement in this file 1246 * only ever occur through this functions or through callbacks 1247 * like this one, that are called from the LRU API. 1248 * 1249 * The only exceptions to this are functions like 1250 * shrink_dentry_list, and code that first checks for the 1251 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1252 * operating only with stack provided lists after they are 1253 * properly isolated from the main list. It is thus, always a 1254 * local access. 1255 */ 1256 return LRU_ROTATE; 1257 } 1258 1259 d_lru_shrink_move(lru, dentry, freeable); 1260 spin_unlock(&dentry->d_lock); 1261 1262 return LRU_REMOVED; 1263 } 1264 1265 /** 1266 * prune_dcache_sb - shrink the dcache 1267 * @sb: superblock 1268 * @sc: shrink control, passed to list_lru_shrink_walk() 1269 * 1270 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1271 * is done when we need more memory and called from the superblock shrinker 1272 * function. 1273 * 1274 * This function may fail to free any resources if all the dentries are in 1275 * use. 1276 */ 1277 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1278 { 1279 LIST_HEAD(dispose); 1280 long freed; 1281 1282 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1283 dentry_lru_isolate, &dispose); 1284 shrink_dentry_list(&dispose); 1285 return freed; 1286 } 1287 1288 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1289 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1290 { 1291 struct list_head *freeable = arg; 1292 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1293 1294 /* 1295 * we are inverting the lru lock/dentry->d_lock here, 1296 * so use a trylock. If we fail to get the lock, just skip 1297 * it 1298 */ 1299 if (!spin_trylock(&dentry->d_lock)) 1300 return LRU_SKIP; 1301 1302 d_lru_shrink_move(lru, dentry, freeable); 1303 spin_unlock(&dentry->d_lock); 1304 1305 return LRU_REMOVED; 1306 } 1307 1308 1309 /** 1310 * shrink_dcache_sb - shrink dcache for a superblock 1311 * @sb: superblock 1312 * 1313 * Shrink the dcache for the specified super block. This is used to free 1314 * the dcache before unmounting a file system. 1315 */ 1316 void shrink_dcache_sb(struct super_block *sb) 1317 { 1318 do { 1319 LIST_HEAD(dispose); 1320 1321 list_lru_walk(&sb->s_dentry_lru, 1322 dentry_lru_isolate_shrink, &dispose, 1024); 1323 shrink_dentry_list(&dispose); 1324 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1325 } 1326 EXPORT_SYMBOL(shrink_dcache_sb); 1327 1328 /** 1329 * enum d_walk_ret - action to talke during tree walk 1330 * @D_WALK_CONTINUE: contrinue walk 1331 * @D_WALK_QUIT: quit walk 1332 * @D_WALK_NORETRY: quit when retry is needed 1333 * @D_WALK_SKIP: skip this dentry and its children 1334 */ 1335 enum d_walk_ret { 1336 D_WALK_CONTINUE, 1337 D_WALK_QUIT, 1338 D_WALK_NORETRY, 1339 D_WALK_SKIP, 1340 }; 1341 1342 /** 1343 * d_walk - walk the dentry tree 1344 * @parent: start of walk 1345 * @data: data passed to @enter() and @finish() 1346 * @enter: callback when first entering the dentry 1347 * 1348 * The @enter() callbacks are called with d_lock held. 1349 */ 1350 static void d_walk(struct dentry *parent, void *data, 1351 enum d_walk_ret (*enter)(void *, struct dentry *)) 1352 { 1353 struct dentry *this_parent; 1354 struct list_head *next; 1355 unsigned seq = 0; 1356 enum d_walk_ret ret; 1357 bool retry = true; 1358 1359 again: 1360 read_seqbegin_or_lock(&rename_lock, &seq); 1361 this_parent = parent; 1362 spin_lock(&this_parent->d_lock); 1363 1364 ret = enter(data, this_parent); 1365 switch (ret) { 1366 case D_WALK_CONTINUE: 1367 break; 1368 case D_WALK_QUIT: 1369 case D_WALK_SKIP: 1370 goto out_unlock; 1371 case D_WALK_NORETRY: 1372 retry = false; 1373 break; 1374 } 1375 repeat: 1376 next = this_parent->d_subdirs.next; 1377 resume: 1378 while (next != &this_parent->d_subdirs) { 1379 struct list_head *tmp = next; 1380 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1381 next = tmp->next; 1382 1383 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1384 continue; 1385 1386 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1387 1388 ret = enter(data, dentry); 1389 switch (ret) { 1390 case D_WALK_CONTINUE: 1391 break; 1392 case D_WALK_QUIT: 1393 spin_unlock(&dentry->d_lock); 1394 goto out_unlock; 1395 case D_WALK_NORETRY: 1396 retry = false; 1397 break; 1398 case D_WALK_SKIP: 1399 spin_unlock(&dentry->d_lock); 1400 continue; 1401 } 1402 1403 if (!list_empty(&dentry->d_subdirs)) { 1404 spin_unlock(&this_parent->d_lock); 1405 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1406 this_parent = dentry; 1407 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1408 goto repeat; 1409 } 1410 spin_unlock(&dentry->d_lock); 1411 } 1412 /* 1413 * All done at this level ... ascend and resume the search. 1414 */ 1415 rcu_read_lock(); 1416 ascend: 1417 if (this_parent != parent) { 1418 struct dentry *child = this_parent; 1419 this_parent = child->d_parent; 1420 1421 spin_unlock(&child->d_lock); 1422 spin_lock(&this_parent->d_lock); 1423 1424 /* might go back up the wrong parent if we have had a rename. */ 1425 if (need_seqretry(&rename_lock, seq)) 1426 goto rename_retry; 1427 /* go into the first sibling still alive */ 1428 do { 1429 next = child->d_child.next; 1430 if (next == &this_parent->d_subdirs) 1431 goto ascend; 1432 child = list_entry(next, struct dentry, d_child); 1433 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1434 rcu_read_unlock(); 1435 goto resume; 1436 } 1437 if (need_seqretry(&rename_lock, seq)) 1438 goto rename_retry; 1439 rcu_read_unlock(); 1440 1441 out_unlock: 1442 spin_unlock(&this_parent->d_lock); 1443 done_seqretry(&rename_lock, seq); 1444 return; 1445 1446 rename_retry: 1447 spin_unlock(&this_parent->d_lock); 1448 rcu_read_unlock(); 1449 BUG_ON(seq & 1); 1450 if (!retry) 1451 return; 1452 seq = 1; 1453 goto again; 1454 } 1455 1456 struct check_mount { 1457 struct vfsmount *mnt; 1458 unsigned int mounted; 1459 }; 1460 1461 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1462 { 1463 struct check_mount *info = data; 1464 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1465 1466 if (likely(!d_mountpoint(dentry))) 1467 return D_WALK_CONTINUE; 1468 if (__path_is_mountpoint(&path)) { 1469 info->mounted = 1; 1470 return D_WALK_QUIT; 1471 } 1472 return D_WALK_CONTINUE; 1473 } 1474 1475 /** 1476 * path_has_submounts - check for mounts over a dentry in the 1477 * current namespace. 1478 * @parent: path to check. 1479 * 1480 * Return true if the parent or its subdirectories contain 1481 * a mount point in the current namespace. 1482 */ 1483 int path_has_submounts(const struct path *parent) 1484 { 1485 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1486 1487 read_seqlock_excl(&mount_lock); 1488 d_walk(parent->dentry, &data, path_check_mount); 1489 read_sequnlock_excl(&mount_lock); 1490 1491 return data.mounted; 1492 } 1493 EXPORT_SYMBOL(path_has_submounts); 1494 1495 /* 1496 * Called by mount code to set a mountpoint and check if the mountpoint is 1497 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1498 * subtree can become unreachable). 1499 * 1500 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1501 * this reason take rename_lock and d_lock on dentry and ancestors. 1502 */ 1503 int d_set_mounted(struct dentry *dentry) 1504 { 1505 struct dentry *p; 1506 int ret = -ENOENT; 1507 write_seqlock(&rename_lock); 1508 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1509 /* Need exclusion wrt. d_invalidate() */ 1510 spin_lock(&p->d_lock); 1511 if (unlikely(d_unhashed(p))) { 1512 spin_unlock(&p->d_lock); 1513 goto out; 1514 } 1515 spin_unlock(&p->d_lock); 1516 } 1517 spin_lock(&dentry->d_lock); 1518 if (!d_unlinked(dentry)) { 1519 ret = -EBUSY; 1520 if (!d_mountpoint(dentry)) { 1521 dentry->d_flags |= DCACHE_MOUNTED; 1522 ret = 0; 1523 } 1524 } 1525 spin_unlock(&dentry->d_lock); 1526 out: 1527 write_sequnlock(&rename_lock); 1528 return ret; 1529 } 1530 1531 /* 1532 * Search the dentry child list of the specified parent, 1533 * and move any unused dentries to the end of the unused 1534 * list for prune_dcache(). We descend to the next level 1535 * whenever the d_subdirs list is non-empty and continue 1536 * searching. 1537 * 1538 * It returns zero iff there are no unused children, 1539 * otherwise it returns the number of children moved to 1540 * the end of the unused list. This may not be the total 1541 * number of unused children, because select_parent can 1542 * drop the lock and return early due to latency 1543 * constraints. 1544 */ 1545 1546 struct select_data { 1547 struct dentry *start; 1548 union { 1549 long found; 1550 struct dentry *victim; 1551 }; 1552 struct list_head dispose; 1553 }; 1554 1555 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1556 { 1557 struct select_data *data = _data; 1558 enum d_walk_ret ret = D_WALK_CONTINUE; 1559 1560 if (data->start == dentry) 1561 goto out; 1562 1563 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1564 data->found++; 1565 } else { 1566 if (dentry->d_flags & DCACHE_LRU_LIST) 1567 d_lru_del(dentry); 1568 if (!dentry->d_lockref.count) { 1569 d_shrink_add(dentry, &data->dispose); 1570 data->found++; 1571 } 1572 } 1573 /* 1574 * We can return to the caller if we have found some (this 1575 * ensures forward progress). We'll be coming back to find 1576 * the rest. 1577 */ 1578 if (!list_empty(&data->dispose)) 1579 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1580 out: 1581 return ret; 1582 } 1583 1584 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1585 { 1586 struct select_data *data = _data; 1587 enum d_walk_ret ret = D_WALK_CONTINUE; 1588 1589 if (data->start == dentry) 1590 goto out; 1591 1592 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1593 if (!dentry->d_lockref.count) { 1594 rcu_read_lock(); 1595 data->victim = dentry; 1596 return D_WALK_QUIT; 1597 } 1598 } else { 1599 if (dentry->d_flags & DCACHE_LRU_LIST) 1600 d_lru_del(dentry); 1601 if (!dentry->d_lockref.count) 1602 d_shrink_add(dentry, &data->dispose); 1603 } 1604 /* 1605 * We can return to the caller if we have found some (this 1606 * ensures forward progress). We'll be coming back to find 1607 * the rest. 1608 */ 1609 if (!list_empty(&data->dispose)) 1610 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1611 out: 1612 return ret; 1613 } 1614 1615 /** 1616 * shrink_dcache_parent - prune dcache 1617 * @parent: parent of entries to prune 1618 * 1619 * Prune the dcache to remove unused children of the parent dentry. 1620 */ 1621 void shrink_dcache_parent(struct dentry *parent) 1622 { 1623 for (;;) { 1624 struct select_data data = {.start = parent}; 1625 1626 INIT_LIST_HEAD(&data.dispose); 1627 d_walk(parent, &data, select_collect); 1628 1629 if (!list_empty(&data.dispose)) { 1630 shrink_dentry_list(&data.dispose); 1631 continue; 1632 } 1633 1634 cond_resched(); 1635 if (!data.found) 1636 break; 1637 data.victim = NULL; 1638 d_walk(parent, &data, select_collect2); 1639 if (data.victim) { 1640 struct dentry *parent; 1641 spin_lock(&data.victim->d_lock); 1642 if (!shrink_lock_dentry(data.victim)) { 1643 spin_unlock(&data.victim->d_lock); 1644 rcu_read_unlock(); 1645 } else { 1646 rcu_read_unlock(); 1647 parent = data.victim->d_parent; 1648 if (parent != data.victim) 1649 __dput_to_list(parent, &data.dispose); 1650 __dentry_kill(data.victim); 1651 } 1652 } 1653 if (!list_empty(&data.dispose)) 1654 shrink_dentry_list(&data.dispose); 1655 } 1656 } 1657 EXPORT_SYMBOL(shrink_dcache_parent); 1658 1659 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1660 { 1661 /* it has busy descendents; complain about those instead */ 1662 if (!list_empty(&dentry->d_subdirs)) 1663 return D_WALK_CONTINUE; 1664 1665 /* root with refcount 1 is fine */ 1666 if (dentry == _data && dentry->d_lockref.count == 1) 1667 return D_WALK_CONTINUE; 1668 1669 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " 1670 " still in use (%d) [unmount of %s %s]\n", 1671 dentry, 1672 dentry->d_inode ? 1673 dentry->d_inode->i_ino : 0UL, 1674 dentry, 1675 dentry->d_lockref.count, 1676 dentry->d_sb->s_type->name, 1677 dentry->d_sb->s_id); 1678 return D_WALK_CONTINUE; 1679 } 1680 1681 static void do_one_tree(struct dentry *dentry) 1682 { 1683 shrink_dcache_parent(dentry); 1684 d_walk(dentry, dentry, umount_check); 1685 d_drop(dentry); 1686 dput(dentry); 1687 } 1688 1689 /* 1690 * destroy the dentries attached to a superblock on unmounting 1691 */ 1692 void shrink_dcache_for_umount(struct super_block *sb) 1693 { 1694 struct dentry *dentry; 1695 1696 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1697 1698 dentry = sb->s_root; 1699 sb->s_root = NULL; 1700 do_one_tree(dentry); 1701 1702 while (!hlist_bl_empty(&sb->s_roots)) { 1703 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1704 do_one_tree(dentry); 1705 } 1706 } 1707 1708 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1709 { 1710 struct dentry **victim = _data; 1711 if (d_mountpoint(dentry)) { 1712 __dget_dlock(dentry); 1713 *victim = dentry; 1714 return D_WALK_QUIT; 1715 } 1716 return D_WALK_CONTINUE; 1717 } 1718 1719 /** 1720 * d_invalidate - detach submounts, prune dcache, and drop 1721 * @dentry: dentry to invalidate (aka detach, prune and drop) 1722 */ 1723 void d_invalidate(struct dentry *dentry) 1724 { 1725 bool had_submounts = false; 1726 spin_lock(&dentry->d_lock); 1727 if (d_unhashed(dentry)) { 1728 spin_unlock(&dentry->d_lock); 1729 return; 1730 } 1731 __d_drop(dentry); 1732 spin_unlock(&dentry->d_lock); 1733 1734 /* Negative dentries can be dropped without further checks */ 1735 if (!dentry->d_inode) 1736 return; 1737 1738 shrink_dcache_parent(dentry); 1739 for (;;) { 1740 struct dentry *victim = NULL; 1741 d_walk(dentry, &victim, find_submount); 1742 if (!victim) { 1743 if (had_submounts) 1744 shrink_dcache_parent(dentry); 1745 return; 1746 } 1747 had_submounts = true; 1748 detach_mounts(victim); 1749 dput(victim); 1750 } 1751 } 1752 EXPORT_SYMBOL(d_invalidate); 1753 1754 /** 1755 * __d_alloc - allocate a dcache entry 1756 * @sb: filesystem it will belong to 1757 * @name: qstr of the name 1758 * 1759 * Allocates a dentry. It returns %NULL if there is insufficient memory 1760 * available. On a success the dentry is returned. The name passed in is 1761 * copied and the copy passed in may be reused after this call. 1762 */ 1763 1764 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1765 { 1766 struct dentry *dentry; 1767 char *dname; 1768 int err; 1769 1770 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1771 GFP_KERNEL); 1772 if (!dentry) 1773 return NULL; 1774 1775 /* 1776 * We guarantee that the inline name is always NUL-terminated. 1777 * This way the memcpy() done by the name switching in rename 1778 * will still always have a NUL at the end, even if we might 1779 * be overwriting an internal NUL character 1780 */ 1781 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1782 if (unlikely(!name)) { 1783 name = &slash_name; 1784 dname = dentry->d_iname; 1785 } else if (name->len > DNAME_INLINE_LEN-1) { 1786 size_t size = offsetof(struct external_name, name[1]); 1787 struct external_name *p = kmalloc(size + name->len, 1788 GFP_KERNEL_ACCOUNT | 1789 __GFP_RECLAIMABLE); 1790 if (!p) { 1791 kmem_cache_free(dentry_cache, dentry); 1792 return NULL; 1793 } 1794 atomic_set(&p->u.count, 1); 1795 dname = p->name; 1796 } else { 1797 dname = dentry->d_iname; 1798 } 1799 1800 dentry->d_name.len = name->len; 1801 dentry->d_name.hash = name->hash; 1802 memcpy(dname, name->name, name->len); 1803 dname[name->len] = 0; 1804 1805 /* Make sure we always see the terminating NUL character */ 1806 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1807 1808 dentry->d_lockref.count = 1; 1809 dentry->d_flags = 0; 1810 spin_lock_init(&dentry->d_lock); 1811 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1812 dentry->d_inode = NULL; 1813 dentry->d_parent = dentry; 1814 dentry->d_sb = sb; 1815 dentry->d_op = NULL; 1816 dentry->d_fsdata = NULL; 1817 INIT_HLIST_BL_NODE(&dentry->d_hash); 1818 INIT_LIST_HEAD(&dentry->d_lru); 1819 INIT_LIST_HEAD(&dentry->d_subdirs); 1820 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1821 INIT_LIST_HEAD(&dentry->d_child); 1822 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1823 1824 if (dentry->d_op && dentry->d_op->d_init) { 1825 err = dentry->d_op->d_init(dentry); 1826 if (err) { 1827 if (dname_external(dentry)) 1828 kfree(external_name(dentry)); 1829 kmem_cache_free(dentry_cache, dentry); 1830 return NULL; 1831 } 1832 } 1833 1834 this_cpu_inc(nr_dentry); 1835 1836 return dentry; 1837 } 1838 1839 /** 1840 * d_alloc - allocate a dcache entry 1841 * @parent: parent of entry to allocate 1842 * @name: qstr of the name 1843 * 1844 * Allocates a dentry. It returns %NULL if there is insufficient memory 1845 * available. On a success the dentry is returned. The name passed in is 1846 * copied and the copy passed in may be reused after this call. 1847 */ 1848 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1849 { 1850 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1851 if (!dentry) 1852 return NULL; 1853 spin_lock(&parent->d_lock); 1854 /* 1855 * don't need child lock because it is not subject 1856 * to concurrency here 1857 */ 1858 __dget_dlock(parent); 1859 dentry->d_parent = parent; 1860 list_add(&dentry->d_child, &parent->d_subdirs); 1861 spin_unlock(&parent->d_lock); 1862 1863 return dentry; 1864 } 1865 EXPORT_SYMBOL(d_alloc); 1866 1867 struct dentry *d_alloc_anon(struct super_block *sb) 1868 { 1869 return __d_alloc(sb, NULL); 1870 } 1871 EXPORT_SYMBOL(d_alloc_anon); 1872 1873 struct dentry *d_alloc_cursor(struct dentry * parent) 1874 { 1875 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1876 if (dentry) { 1877 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1878 dentry->d_parent = dget(parent); 1879 } 1880 return dentry; 1881 } 1882 1883 /** 1884 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1885 * @sb: the superblock 1886 * @name: qstr of the name 1887 * 1888 * For a filesystem that just pins its dentries in memory and never 1889 * performs lookups at all, return an unhashed IS_ROOT dentry. 1890 * This is used for pipes, sockets et.al. - the stuff that should 1891 * never be anyone's children or parents. Unlike all other 1892 * dentries, these will not have RCU delay between dropping the 1893 * last reference and freeing them. 1894 * 1895 * The only user is alloc_file_pseudo() and that's what should 1896 * be considered a public interface. Don't use directly. 1897 */ 1898 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1899 { 1900 struct dentry *dentry = __d_alloc(sb, name); 1901 if (likely(dentry)) 1902 dentry->d_flags |= DCACHE_NORCU; 1903 return dentry; 1904 } 1905 1906 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1907 { 1908 struct qstr q; 1909 1910 q.name = name; 1911 q.hash_len = hashlen_string(parent, name); 1912 return d_alloc(parent, &q); 1913 } 1914 EXPORT_SYMBOL(d_alloc_name); 1915 1916 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1917 { 1918 WARN_ON_ONCE(dentry->d_op); 1919 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1920 DCACHE_OP_COMPARE | 1921 DCACHE_OP_REVALIDATE | 1922 DCACHE_OP_WEAK_REVALIDATE | 1923 DCACHE_OP_DELETE | 1924 DCACHE_OP_REAL)); 1925 dentry->d_op = op; 1926 if (!op) 1927 return; 1928 if (op->d_hash) 1929 dentry->d_flags |= DCACHE_OP_HASH; 1930 if (op->d_compare) 1931 dentry->d_flags |= DCACHE_OP_COMPARE; 1932 if (op->d_revalidate) 1933 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1934 if (op->d_weak_revalidate) 1935 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1936 if (op->d_delete) 1937 dentry->d_flags |= DCACHE_OP_DELETE; 1938 if (op->d_prune) 1939 dentry->d_flags |= DCACHE_OP_PRUNE; 1940 if (op->d_real) 1941 dentry->d_flags |= DCACHE_OP_REAL; 1942 1943 } 1944 EXPORT_SYMBOL(d_set_d_op); 1945 1946 1947 /* 1948 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1949 * @dentry - The dentry to mark 1950 * 1951 * Mark a dentry as falling through to the lower layer (as set with 1952 * d_pin_lower()). This flag may be recorded on the medium. 1953 */ 1954 void d_set_fallthru(struct dentry *dentry) 1955 { 1956 spin_lock(&dentry->d_lock); 1957 dentry->d_flags |= DCACHE_FALLTHRU; 1958 spin_unlock(&dentry->d_lock); 1959 } 1960 EXPORT_SYMBOL(d_set_fallthru); 1961 1962 static unsigned d_flags_for_inode(struct inode *inode) 1963 { 1964 unsigned add_flags = DCACHE_REGULAR_TYPE; 1965 1966 if (!inode) 1967 return DCACHE_MISS_TYPE; 1968 1969 if (S_ISDIR(inode->i_mode)) { 1970 add_flags = DCACHE_DIRECTORY_TYPE; 1971 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1972 if (unlikely(!inode->i_op->lookup)) 1973 add_flags = DCACHE_AUTODIR_TYPE; 1974 else 1975 inode->i_opflags |= IOP_LOOKUP; 1976 } 1977 goto type_determined; 1978 } 1979 1980 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1981 if (unlikely(inode->i_op->get_link)) { 1982 add_flags = DCACHE_SYMLINK_TYPE; 1983 goto type_determined; 1984 } 1985 inode->i_opflags |= IOP_NOFOLLOW; 1986 } 1987 1988 if (unlikely(!S_ISREG(inode->i_mode))) 1989 add_flags = DCACHE_SPECIAL_TYPE; 1990 1991 type_determined: 1992 if (unlikely(IS_AUTOMOUNT(inode))) 1993 add_flags |= DCACHE_NEED_AUTOMOUNT; 1994 return add_flags; 1995 } 1996 1997 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1998 { 1999 unsigned add_flags = d_flags_for_inode(inode); 2000 WARN_ON(d_in_lookup(dentry)); 2001 2002 spin_lock(&dentry->d_lock); 2003 /* 2004 * Decrement negative dentry count if it was in the LRU list. 2005 */ 2006 if (dentry->d_flags & DCACHE_LRU_LIST) 2007 this_cpu_dec(nr_dentry_negative); 2008 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2009 raw_write_seqcount_begin(&dentry->d_seq); 2010 __d_set_inode_and_type(dentry, inode, add_flags); 2011 raw_write_seqcount_end(&dentry->d_seq); 2012 fsnotify_update_flags(dentry); 2013 spin_unlock(&dentry->d_lock); 2014 } 2015 2016 /** 2017 * d_instantiate - fill in inode information for a dentry 2018 * @entry: dentry to complete 2019 * @inode: inode to attach to this dentry 2020 * 2021 * Fill in inode information in the entry. 2022 * 2023 * This turns negative dentries into productive full members 2024 * of society. 2025 * 2026 * NOTE! This assumes that the inode count has been incremented 2027 * (or otherwise set) by the caller to indicate that it is now 2028 * in use by the dcache. 2029 */ 2030 2031 void d_instantiate(struct dentry *entry, struct inode * inode) 2032 { 2033 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2034 if (inode) { 2035 security_d_instantiate(entry, inode); 2036 spin_lock(&inode->i_lock); 2037 __d_instantiate(entry, inode); 2038 spin_unlock(&inode->i_lock); 2039 } 2040 } 2041 EXPORT_SYMBOL(d_instantiate); 2042 2043 /* 2044 * This should be equivalent to d_instantiate() + unlock_new_inode(), 2045 * with lockdep-related part of unlock_new_inode() done before 2046 * anything else. Use that instead of open-coding d_instantiate()/ 2047 * unlock_new_inode() combinations. 2048 */ 2049 void d_instantiate_new(struct dentry *entry, struct inode *inode) 2050 { 2051 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2052 BUG_ON(!inode); 2053 lockdep_annotate_inode_mutex_key(inode); 2054 security_d_instantiate(entry, inode); 2055 spin_lock(&inode->i_lock); 2056 __d_instantiate(entry, inode); 2057 WARN_ON(!(inode->i_state & I_NEW)); 2058 inode->i_state &= ~I_NEW & ~I_CREATING; 2059 smp_mb(); 2060 wake_up_bit(&inode->i_state, __I_NEW); 2061 spin_unlock(&inode->i_lock); 2062 } 2063 EXPORT_SYMBOL(d_instantiate_new); 2064 2065 struct dentry *d_make_root(struct inode *root_inode) 2066 { 2067 struct dentry *res = NULL; 2068 2069 if (root_inode) { 2070 res = d_alloc_anon(root_inode->i_sb); 2071 if (res) 2072 d_instantiate(res, root_inode); 2073 else 2074 iput(root_inode); 2075 } 2076 return res; 2077 } 2078 EXPORT_SYMBOL(d_make_root); 2079 2080 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2081 struct inode *inode, 2082 bool disconnected) 2083 { 2084 struct dentry *res; 2085 unsigned add_flags; 2086 2087 security_d_instantiate(dentry, inode); 2088 spin_lock(&inode->i_lock); 2089 res = __d_find_any_alias(inode); 2090 if (res) { 2091 spin_unlock(&inode->i_lock); 2092 dput(dentry); 2093 goto out_iput; 2094 } 2095 2096 /* attach a disconnected dentry */ 2097 add_flags = d_flags_for_inode(inode); 2098 2099 if (disconnected) 2100 add_flags |= DCACHE_DISCONNECTED; 2101 2102 spin_lock(&dentry->d_lock); 2103 __d_set_inode_and_type(dentry, inode, add_flags); 2104 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2105 if (!disconnected) { 2106 hlist_bl_lock(&dentry->d_sb->s_roots); 2107 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2108 hlist_bl_unlock(&dentry->d_sb->s_roots); 2109 } 2110 spin_unlock(&dentry->d_lock); 2111 spin_unlock(&inode->i_lock); 2112 2113 return dentry; 2114 2115 out_iput: 2116 iput(inode); 2117 return res; 2118 } 2119 2120 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2121 { 2122 return __d_instantiate_anon(dentry, inode, true); 2123 } 2124 EXPORT_SYMBOL(d_instantiate_anon); 2125 2126 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2127 { 2128 struct dentry *tmp; 2129 struct dentry *res; 2130 2131 if (!inode) 2132 return ERR_PTR(-ESTALE); 2133 if (IS_ERR(inode)) 2134 return ERR_CAST(inode); 2135 2136 res = d_find_any_alias(inode); 2137 if (res) 2138 goto out_iput; 2139 2140 tmp = d_alloc_anon(inode->i_sb); 2141 if (!tmp) { 2142 res = ERR_PTR(-ENOMEM); 2143 goto out_iput; 2144 } 2145 2146 return __d_instantiate_anon(tmp, inode, disconnected); 2147 2148 out_iput: 2149 iput(inode); 2150 return res; 2151 } 2152 2153 /** 2154 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2155 * @inode: inode to allocate the dentry for 2156 * 2157 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2158 * similar open by handle operations. The returned dentry may be anonymous, 2159 * or may have a full name (if the inode was already in the cache). 2160 * 2161 * When called on a directory inode, we must ensure that the inode only ever 2162 * has one dentry. If a dentry is found, that is returned instead of 2163 * allocating a new one. 2164 * 2165 * On successful return, the reference to the inode has been transferred 2166 * to the dentry. In case of an error the reference on the inode is released. 2167 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2168 * be passed in and the error will be propagated to the return value, 2169 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2170 */ 2171 struct dentry *d_obtain_alias(struct inode *inode) 2172 { 2173 return __d_obtain_alias(inode, true); 2174 } 2175 EXPORT_SYMBOL(d_obtain_alias); 2176 2177 /** 2178 * d_obtain_root - find or allocate a dentry for a given inode 2179 * @inode: inode to allocate the dentry for 2180 * 2181 * Obtain an IS_ROOT dentry for the root of a filesystem. 2182 * 2183 * We must ensure that directory inodes only ever have one dentry. If a 2184 * dentry is found, that is returned instead of allocating a new one. 2185 * 2186 * On successful return, the reference to the inode has been transferred 2187 * to the dentry. In case of an error the reference on the inode is 2188 * released. A %NULL or IS_ERR inode may be passed in and will be the 2189 * error will be propagate to the return value, with a %NULL @inode 2190 * replaced by ERR_PTR(-ESTALE). 2191 */ 2192 struct dentry *d_obtain_root(struct inode *inode) 2193 { 2194 return __d_obtain_alias(inode, false); 2195 } 2196 EXPORT_SYMBOL(d_obtain_root); 2197 2198 /** 2199 * d_add_ci - lookup or allocate new dentry with case-exact name 2200 * @inode: the inode case-insensitive lookup has found 2201 * @dentry: the negative dentry that was passed to the parent's lookup func 2202 * @name: the case-exact name to be associated with the returned dentry 2203 * 2204 * This is to avoid filling the dcache with case-insensitive names to the 2205 * same inode, only the actual correct case is stored in the dcache for 2206 * case-insensitive filesystems. 2207 * 2208 * For a case-insensitive lookup match and if the case-exact dentry 2209 * already exists in the dcache, use it and return it. 2210 * 2211 * If no entry exists with the exact case name, allocate new dentry with 2212 * the exact case, and return the spliced entry. 2213 */ 2214 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2215 struct qstr *name) 2216 { 2217 struct dentry *found, *res; 2218 2219 /* 2220 * First check if a dentry matching the name already exists, 2221 * if not go ahead and create it now. 2222 */ 2223 found = d_hash_and_lookup(dentry->d_parent, name); 2224 if (found) { 2225 iput(inode); 2226 return found; 2227 } 2228 if (d_in_lookup(dentry)) { 2229 found = d_alloc_parallel(dentry->d_parent, name, 2230 dentry->d_wait); 2231 if (IS_ERR(found) || !d_in_lookup(found)) { 2232 iput(inode); 2233 return found; 2234 } 2235 } else { 2236 found = d_alloc(dentry->d_parent, name); 2237 if (!found) { 2238 iput(inode); 2239 return ERR_PTR(-ENOMEM); 2240 } 2241 } 2242 res = d_splice_alias(inode, found); 2243 if (res) { 2244 d_lookup_done(found); 2245 dput(found); 2246 return res; 2247 } 2248 return found; 2249 } 2250 EXPORT_SYMBOL(d_add_ci); 2251 2252 /** 2253 * d_same_name - compare dentry name with case-exact name 2254 * @parent: parent dentry 2255 * @dentry: the negative dentry that was passed to the parent's lookup func 2256 * @name: the case-exact name to be associated with the returned dentry 2257 * 2258 * Return: true if names are same, or false 2259 */ 2260 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2261 const struct qstr *name) 2262 { 2263 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2264 if (dentry->d_name.len != name->len) 2265 return false; 2266 return dentry_cmp(dentry, name->name, name->len) == 0; 2267 } 2268 return parent->d_op->d_compare(dentry, 2269 dentry->d_name.len, dentry->d_name.name, 2270 name) == 0; 2271 } 2272 EXPORT_SYMBOL_GPL(d_same_name); 2273 2274 /* 2275 * This is __d_lookup_rcu() when the parent dentry has 2276 * DCACHE_OP_COMPARE, which makes things much nastier. 2277 */ 2278 static noinline struct dentry *__d_lookup_rcu_op_compare( 2279 const struct dentry *parent, 2280 const struct qstr *name, 2281 unsigned *seqp) 2282 { 2283 u64 hashlen = name->hash_len; 2284 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2285 struct hlist_bl_node *node; 2286 struct dentry *dentry; 2287 2288 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2289 int tlen; 2290 const char *tname; 2291 unsigned seq; 2292 2293 seqretry: 2294 seq = raw_seqcount_begin(&dentry->d_seq); 2295 if (dentry->d_parent != parent) 2296 continue; 2297 if (d_unhashed(dentry)) 2298 continue; 2299 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2300 continue; 2301 tlen = dentry->d_name.len; 2302 tname = dentry->d_name.name; 2303 /* we want a consistent (name,len) pair */ 2304 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2305 cpu_relax(); 2306 goto seqretry; 2307 } 2308 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2309 continue; 2310 *seqp = seq; 2311 return dentry; 2312 } 2313 return NULL; 2314 } 2315 2316 /** 2317 * __d_lookup_rcu - search for a dentry (racy, store-free) 2318 * @parent: parent dentry 2319 * @name: qstr of name we wish to find 2320 * @seqp: returns d_seq value at the point where the dentry was found 2321 * Returns: dentry, or NULL 2322 * 2323 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2324 * resolution (store-free path walking) design described in 2325 * Documentation/filesystems/path-lookup.txt. 2326 * 2327 * This is not to be used outside core vfs. 2328 * 2329 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2330 * held, and rcu_read_lock held. The returned dentry must not be stored into 2331 * without taking d_lock and checking d_seq sequence count against @seq 2332 * returned here. 2333 * 2334 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2335 * function. 2336 * 2337 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2338 * the returned dentry, so long as its parent's seqlock is checked after the 2339 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2340 * is formed, giving integrity down the path walk. 2341 * 2342 * NOTE! The caller *has* to check the resulting dentry against the sequence 2343 * number we've returned before using any of the resulting dentry state! 2344 */ 2345 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2346 const struct qstr *name, 2347 unsigned *seqp) 2348 { 2349 u64 hashlen = name->hash_len; 2350 const unsigned char *str = name->name; 2351 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2352 struct hlist_bl_node *node; 2353 struct dentry *dentry; 2354 2355 /* 2356 * Note: There is significant duplication with __d_lookup_rcu which is 2357 * required to prevent single threaded performance regressions 2358 * especially on architectures where smp_rmb (in seqcounts) are costly. 2359 * Keep the two functions in sync. 2360 */ 2361 2362 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2363 return __d_lookup_rcu_op_compare(parent, name, seqp); 2364 2365 /* 2366 * The hash list is protected using RCU. 2367 * 2368 * Carefully use d_seq when comparing a candidate dentry, to avoid 2369 * races with d_move(). 2370 * 2371 * It is possible that concurrent renames can mess up our list 2372 * walk here and result in missing our dentry, resulting in the 2373 * false-negative result. d_lookup() protects against concurrent 2374 * renames using rename_lock seqlock. 2375 * 2376 * See Documentation/filesystems/path-lookup.txt for more details. 2377 */ 2378 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2379 unsigned seq; 2380 2381 /* 2382 * The dentry sequence count protects us from concurrent 2383 * renames, and thus protects parent and name fields. 2384 * 2385 * The caller must perform a seqcount check in order 2386 * to do anything useful with the returned dentry. 2387 * 2388 * NOTE! We do a "raw" seqcount_begin here. That means that 2389 * we don't wait for the sequence count to stabilize if it 2390 * is in the middle of a sequence change. If we do the slow 2391 * dentry compare, we will do seqretries until it is stable, 2392 * and if we end up with a successful lookup, we actually 2393 * want to exit RCU lookup anyway. 2394 * 2395 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2396 * we are still guaranteed NUL-termination of ->d_name.name. 2397 */ 2398 seq = raw_seqcount_begin(&dentry->d_seq); 2399 if (dentry->d_parent != parent) 2400 continue; 2401 if (d_unhashed(dentry)) 2402 continue; 2403 if (dentry->d_name.hash_len != hashlen) 2404 continue; 2405 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2406 continue; 2407 *seqp = seq; 2408 return dentry; 2409 } 2410 return NULL; 2411 } 2412 2413 /** 2414 * d_lookup - search for a dentry 2415 * @parent: parent dentry 2416 * @name: qstr of name we wish to find 2417 * Returns: dentry, or NULL 2418 * 2419 * d_lookup searches the children of the parent dentry for the name in 2420 * question. If the dentry is found its reference count is incremented and the 2421 * dentry is returned. The caller must use dput to free the entry when it has 2422 * finished using it. %NULL is returned if the dentry does not exist. 2423 */ 2424 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2425 { 2426 struct dentry *dentry; 2427 unsigned seq; 2428 2429 do { 2430 seq = read_seqbegin(&rename_lock); 2431 dentry = __d_lookup(parent, name); 2432 if (dentry) 2433 break; 2434 } while (read_seqretry(&rename_lock, seq)); 2435 return dentry; 2436 } 2437 EXPORT_SYMBOL(d_lookup); 2438 2439 /** 2440 * __d_lookup - search for a dentry (racy) 2441 * @parent: parent dentry 2442 * @name: qstr of name we wish to find 2443 * Returns: dentry, or NULL 2444 * 2445 * __d_lookup is like d_lookup, however it may (rarely) return a 2446 * false-negative result due to unrelated rename activity. 2447 * 2448 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2449 * however it must be used carefully, eg. with a following d_lookup in 2450 * the case of failure. 2451 * 2452 * __d_lookup callers must be commented. 2453 */ 2454 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2455 { 2456 unsigned int hash = name->hash; 2457 struct hlist_bl_head *b = d_hash(hash); 2458 struct hlist_bl_node *node; 2459 struct dentry *found = NULL; 2460 struct dentry *dentry; 2461 2462 /* 2463 * Note: There is significant duplication with __d_lookup_rcu which is 2464 * required to prevent single threaded performance regressions 2465 * especially on architectures where smp_rmb (in seqcounts) are costly. 2466 * Keep the two functions in sync. 2467 */ 2468 2469 /* 2470 * The hash list is protected using RCU. 2471 * 2472 * Take d_lock when comparing a candidate dentry, to avoid races 2473 * with d_move(). 2474 * 2475 * It is possible that concurrent renames can mess up our list 2476 * walk here and result in missing our dentry, resulting in the 2477 * false-negative result. d_lookup() protects against concurrent 2478 * renames using rename_lock seqlock. 2479 * 2480 * See Documentation/filesystems/path-lookup.txt for more details. 2481 */ 2482 rcu_read_lock(); 2483 2484 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2485 2486 if (dentry->d_name.hash != hash) 2487 continue; 2488 2489 spin_lock(&dentry->d_lock); 2490 if (dentry->d_parent != parent) 2491 goto next; 2492 if (d_unhashed(dentry)) 2493 goto next; 2494 2495 if (!d_same_name(dentry, parent, name)) 2496 goto next; 2497 2498 dentry->d_lockref.count++; 2499 found = dentry; 2500 spin_unlock(&dentry->d_lock); 2501 break; 2502 next: 2503 spin_unlock(&dentry->d_lock); 2504 } 2505 rcu_read_unlock(); 2506 2507 return found; 2508 } 2509 2510 /** 2511 * d_hash_and_lookup - hash the qstr then search for a dentry 2512 * @dir: Directory to search in 2513 * @name: qstr of name we wish to find 2514 * 2515 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2516 */ 2517 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2518 { 2519 /* 2520 * Check for a fs-specific hash function. Note that we must 2521 * calculate the standard hash first, as the d_op->d_hash() 2522 * routine may choose to leave the hash value unchanged. 2523 */ 2524 name->hash = full_name_hash(dir, name->name, name->len); 2525 if (dir->d_flags & DCACHE_OP_HASH) { 2526 int err = dir->d_op->d_hash(dir, name); 2527 if (unlikely(err < 0)) 2528 return ERR_PTR(err); 2529 } 2530 return d_lookup(dir, name); 2531 } 2532 EXPORT_SYMBOL(d_hash_and_lookup); 2533 2534 /* 2535 * When a file is deleted, we have two options: 2536 * - turn this dentry into a negative dentry 2537 * - unhash this dentry and free it. 2538 * 2539 * Usually, we want to just turn this into 2540 * a negative dentry, but if anybody else is 2541 * currently using the dentry or the inode 2542 * we can't do that and we fall back on removing 2543 * it from the hash queues and waiting for 2544 * it to be deleted later when it has no users 2545 */ 2546 2547 /** 2548 * d_delete - delete a dentry 2549 * @dentry: The dentry to delete 2550 * 2551 * Turn the dentry into a negative dentry if possible, otherwise 2552 * remove it from the hash queues so it can be deleted later 2553 */ 2554 2555 void d_delete(struct dentry * dentry) 2556 { 2557 struct inode *inode = dentry->d_inode; 2558 2559 spin_lock(&inode->i_lock); 2560 spin_lock(&dentry->d_lock); 2561 /* 2562 * Are we the only user? 2563 */ 2564 if (dentry->d_lockref.count == 1) { 2565 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2566 dentry_unlink_inode(dentry); 2567 } else { 2568 __d_drop(dentry); 2569 spin_unlock(&dentry->d_lock); 2570 spin_unlock(&inode->i_lock); 2571 } 2572 } 2573 EXPORT_SYMBOL(d_delete); 2574 2575 static void __d_rehash(struct dentry *entry) 2576 { 2577 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2578 2579 hlist_bl_lock(b); 2580 hlist_bl_add_head_rcu(&entry->d_hash, b); 2581 hlist_bl_unlock(b); 2582 } 2583 2584 /** 2585 * d_rehash - add an entry back to the hash 2586 * @entry: dentry to add to the hash 2587 * 2588 * Adds a dentry to the hash according to its name. 2589 */ 2590 2591 void d_rehash(struct dentry * entry) 2592 { 2593 spin_lock(&entry->d_lock); 2594 __d_rehash(entry); 2595 spin_unlock(&entry->d_lock); 2596 } 2597 EXPORT_SYMBOL(d_rehash); 2598 2599 static inline unsigned start_dir_add(struct inode *dir) 2600 { 2601 preempt_disable_nested(); 2602 for (;;) { 2603 unsigned n = dir->i_dir_seq; 2604 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2605 return n; 2606 cpu_relax(); 2607 } 2608 } 2609 2610 static inline void end_dir_add(struct inode *dir, unsigned int n, 2611 wait_queue_head_t *d_wait) 2612 { 2613 smp_store_release(&dir->i_dir_seq, n + 2); 2614 preempt_enable_nested(); 2615 wake_up_all(d_wait); 2616 } 2617 2618 static void d_wait_lookup(struct dentry *dentry) 2619 { 2620 if (d_in_lookup(dentry)) { 2621 DECLARE_WAITQUEUE(wait, current); 2622 add_wait_queue(dentry->d_wait, &wait); 2623 do { 2624 set_current_state(TASK_UNINTERRUPTIBLE); 2625 spin_unlock(&dentry->d_lock); 2626 schedule(); 2627 spin_lock(&dentry->d_lock); 2628 } while (d_in_lookup(dentry)); 2629 } 2630 } 2631 2632 struct dentry *d_alloc_parallel(struct dentry *parent, 2633 const struct qstr *name, 2634 wait_queue_head_t *wq) 2635 { 2636 unsigned int hash = name->hash; 2637 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2638 struct hlist_bl_node *node; 2639 struct dentry *new = d_alloc(parent, name); 2640 struct dentry *dentry; 2641 unsigned seq, r_seq, d_seq; 2642 2643 if (unlikely(!new)) 2644 return ERR_PTR(-ENOMEM); 2645 2646 retry: 2647 rcu_read_lock(); 2648 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2649 r_seq = read_seqbegin(&rename_lock); 2650 dentry = __d_lookup_rcu(parent, name, &d_seq); 2651 if (unlikely(dentry)) { 2652 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2653 rcu_read_unlock(); 2654 goto retry; 2655 } 2656 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2657 rcu_read_unlock(); 2658 dput(dentry); 2659 goto retry; 2660 } 2661 rcu_read_unlock(); 2662 dput(new); 2663 return dentry; 2664 } 2665 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2666 rcu_read_unlock(); 2667 goto retry; 2668 } 2669 2670 if (unlikely(seq & 1)) { 2671 rcu_read_unlock(); 2672 goto retry; 2673 } 2674 2675 hlist_bl_lock(b); 2676 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2677 hlist_bl_unlock(b); 2678 rcu_read_unlock(); 2679 goto retry; 2680 } 2681 /* 2682 * No changes for the parent since the beginning of d_lookup(). 2683 * Since all removals from the chain happen with hlist_bl_lock(), 2684 * any potential in-lookup matches are going to stay here until 2685 * we unlock the chain. All fields are stable in everything 2686 * we encounter. 2687 */ 2688 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2689 if (dentry->d_name.hash != hash) 2690 continue; 2691 if (dentry->d_parent != parent) 2692 continue; 2693 if (!d_same_name(dentry, parent, name)) 2694 continue; 2695 hlist_bl_unlock(b); 2696 /* now we can try to grab a reference */ 2697 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2698 rcu_read_unlock(); 2699 goto retry; 2700 } 2701 2702 rcu_read_unlock(); 2703 /* 2704 * somebody is likely to be still doing lookup for it; 2705 * wait for them to finish 2706 */ 2707 spin_lock(&dentry->d_lock); 2708 d_wait_lookup(dentry); 2709 /* 2710 * it's not in-lookup anymore; in principle we should repeat 2711 * everything from dcache lookup, but it's likely to be what 2712 * d_lookup() would've found anyway. If it is, just return it; 2713 * otherwise we really have to repeat the whole thing. 2714 */ 2715 if (unlikely(dentry->d_name.hash != hash)) 2716 goto mismatch; 2717 if (unlikely(dentry->d_parent != parent)) 2718 goto mismatch; 2719 if (unlikely(d_unhashed(dentry))) 2720 goto mismatch; 2721 if (unlikely(!d_same_name(dentry, parent, name))) 2722 goto mismatch; 2723 /* OK, it *is* a hashed match; return it */ 2724 spin_unlock(&dentry->d_lock); 2725 dput(new); 2726 return dentry; 2727 } 2728 rcu_read_unlock(); 2729 /* we can't take ->d_lock here; it's OK, though. */ 2730 new->d_flags |= DCACHE_PAR_LOOKUP; 2731 new->d_wait = wq; 2732 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2733 hlist_bl_unlock(b); 2734 return new; 2735 mismatch: 2736 spin_unlock(&dentry->d_lock); 2737 dput(dentry); 2738 goto retry; 2739 } 2740 EXPORT_SYMBOL(d_alloc_parallel); 2741 2742 /* 2743 * - Unhash the dentry 2744 * - Retrieve and clear the waitqueue head in dentry 2745 * - Return the waitqueue head 2746 */ 2747 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2748 { 2749 wait_queue_head_t *d_wait; 2750 struct hlist_bl_head *b; 2751 2752 lockdep_assert_held(&dentry->d_lock); 2753 2754 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2755 hlist_bl_lock(b); 2756 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2757 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2758 d_wait = dentry->d_wait; 2759 dentry->d_wait = NULL; 2760 hlist_bl_unlock(b); 2761 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2762 INIT_LIST_HEAD(&dentry->d_lru); 2763 return d_wait; 2764 } 2765 2766 void __d_lookup_unhash_wake(struct dentry *dentry) 2767 { 2768 spin_lock(&dentry->d_lock); 2769 wake_up_all(__d_lookup_unhash(dentry)); 2770 spin_unlock(&dentry->d_lock); 2771 } 2772 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2773 2774 /* inode->i_lock held if inode is non-NULL */ 2775 2776 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2777 { 2778 wait_queue_head_t *d_wait; 2779 struct inode *dir = NULL; 2780 unsigned n; 2781 spin_lock(&dentry->d_lock); 2782 if (unlikely(d_in_lookup(dentry))) { 2783 dir = dentry->d_parent->d_inode; 2784 n = start_dir_add(dir); 2785 d_wait = __d_lookup_unhash(dentry); 2786 } 2787 if (inode) { 2788 unsigned add_flags = d_flags_for_inode(inode); 2789 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2790 raw_write_seqcount_begin(&dentry->d_seq); 2791 __d_set_inode_and_type(dentry, inode, add_flags); 2792 raw_write_seqcount_end(&dentry->d_seq); 2793 fsnotify_update_flags(dentry); 2794 } 2795 __d_rehash(dentry); 2796 if (dir) 2797 end_dir_add(dir, n, d_wait); 2798 spin_unlock(&dentry->d_lock); 2799 if (inode) 2800 spin_unlock(&inode->i_lock); 2801 } 2802 2803 /** 2804 * d_add - add dentry to hash queues 2805 * @entry: dentry to add 2806 * @inode: The inode to attach to this dentry 2807 * 2808 * This adds the entry to the hash queues and initializes @inode. 2809 * The entry was actually filled in earlier during d_alloc(). 2810 */ 2811 2812 void d_add(struct dentry *entry, struct inode *inode) 2813 { 2814 if (inode) { 2815 security_d_instantiate(entry, inode); 2816 spin_lock(&inode->i_lock); 2817 } 2818 __d_add(entry, inode); 2819 } 2820 EXPORT_SYMBOL(d_add); 2821 2822 /** 2823 * d_exact_alias - find and hash an exact unhashed alias 2824 * @entry: dentry to add 2825 * @inode: The inode to go with this dentry 2826 * 2827 * If an unhashed dentry with the same name/parent and desired 2828 * inode already exists, hash and return it. Otherwise, return 2829 * NULL. 2830 * 2831 * Parent directory should be locked. 2832 */ 2833 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2834 { 2835 struct dentry *alias; 2836 unsigned int hash = entry->d_name.hash; 2837 2838 spin_lock(&inode->i_lock); 2839 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2840 /* 2841 * Don't need alias->d_lock here, because aliases with 2842 * d_parent == entry->d_parent are not subject to name or 2843 * parent changes, because the parent inode i_mutex is held. 2844 */ 2845 if (alias->d_name.hash != hash) 2846 continue; 2847 if (alias->d_parent != entry->d_parent) 2848 continue; 2849 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2850 continue; 2851 spin_lock(&alias->d_lock); 2852 if (!d_unhashed(alias)) { 2853 spin_unlock(&alias->d_lock); 2854 alias = NULL; 2855 } else { 2856 __dget_dlock(alias); 2857 __d_rehash(alias); 2858 spin_unlock(&alias->d_lock); 2859 } 2860 spin_unlock(&inode->i_lock); 2861 return alias; 2862 } 2863 spin_unlock(&inode->i_lock); 2864 return NULL; 2865 } 2866 EXPORT_SYMBOL(d_exact_alias); 2867 2868 static void swap_names(struct dentry *dentry, struct dentry *target) 2869 { 2870 if (unlikely(dname_external(target))) { 2871 if (unlikely(dname_external(dentry))) { 2872 /* 2873 * Both external: swap the pointers 2874 */ 2875 swap(target->d_name.name, dentry->d_name.name); 2876 } else { 2877 /* 2878 * dentry:internal, target:external. Steal target's 2879 * storage and make target internal. 2880 */ 2881 memcpy(target->d_iname, dentry->d_name.name, 2882 dentry->d_name.len + 1); 2883 dentry->d_name.name = target->d_name.name; 2884 target->d_name.name = target->d_iname; 2885 } 2886 } else { 2887 if (unlikely(dname_external(dentry))) { 2888 /* 2889 * dentry:external, target:internal. Give dentry's 2890 * storage to target and make dentry internal 2891 */ 2892 memcpy(dentry->d_iname, target->d_name.name, 2893 target->d_name.len + 1); 2894 target->d_name.name = dentry->d_name.name; 2895 dentry->d_name.name = dentry->d_iname; 2896 } else { 2897 /* 2898 * Both are internal. 2899 */ 2900 unsigned int i; 2901 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2902 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2903 swap(((long *) &dentry->d_iname)[i], 2904 ((long *) &target->d_iname)[i]); 2905 } 2906 } 2907 } 2908 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2909 } 2910 2911 static void copy_name(struct dentry *dentry, struct dentry *target) 2912 { 2913 struct external_name *old_name = NULL; 2914 if (unlikely(dname_external(dentry))) 2915 old_name = external_name(dentry); 2916 if (unlikely(dname_external(target))) { 2917 atomic_inc(&external_name(target)->u.count); 2918 dentry->d_name = target->d_name; 2919 } else { 2920 memcpy(dentry->d_iname, target->d_name.name, 2921 target->d_name.len + 1); 2922 dentry->d_name.name = dentry->d_iname; 2923 dentry->d_name.hash_len = target->d_name.hash_len; 2924 } 2925 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2926 kfree_rcu(old_name, u.head); 2927 } 2928 2929 /* 2930 * __d_move - move a dentry 2931 * @dentry: entry to move 2932 * @target: new dentry 2933 * @exchange: exchange the two dentries 2934 * 2935 * Update the dcache to reflect the move of a file name. Negative 2936 * dcache entries should not be moved in this way. Caller must hold 2937 * rename_lock, the i_mutex of the source and target directories, 2938 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2939 */ 2940 static void __d_move(struct dentry *dentry, struct dentry *target, 2941 bool exchange) 2942 { 2943 struct dentry *old_parent, *p; 2944 wait_queue_head_t *d_wait; 2945 struct inode *dir = NULL; 2946 unsigned n; 2947 2948 WARN_ON(!dentry->d_inode); 2949 if (WARN_ON(dentry == target)) 2950 return; 2951 2952 BUG_ON(d_ancestor(target, dentry)); 2953 old_parent = dentry->d_parent; 2954 p = d_ancestor(old_parent, target); 2955 if (IS_ROOT(dentry)) { 2956 BUG_ON(p); 2957 spin_lock(&target->d_parent->d_lock); 2958 } else if (!p) { 2959 /* target is not a descendent of dentry->d_parent */ 2960 spin_lock(&target->d_parent->d_lock); 2961 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2962 } else { 2963 BUG_ON(p == dentry); 2964 spin_lock(&old_parent->d_lock); 2965 if (p != target) 2966 spin_lock_nested(&target->d_parent->d_lock, 2967 DENTRY_D_LOCK_NESTED); 2968 } 2969 spin_lock_nested(&dentry->d_lock, 2); 2970 spin_lock_nested(&target->d_lock, 3); 2971 2972 if (unlikely(d_in_lookup(target))) { 2973 dir = target->d_parent->d_inode; 2974 n = start_dir_add(dir); 2975 d_wait = __d_lookup_unhash(target); 2976 } 2977 2978 write_seqcount_begin(&dentry->d_seq); 2979 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2980 2981 /* unhash both */ 2982 if (!d_unhashed(dentry)) 2983 ___d_drop(dentry); 2984 if (!d_unhashed(target)) 2985 ___d_drop(target); 2986 2987 /* ... and switch them in the tree */ 2988 dentry->d_parent = target->d_parent; 2989 if (!exchange) { 2990 copy_name(dentry, target); 2991 target->d_hash.pprev = NULL; 2992 dentry->d_parent->d_lockref.count++; 2993 if (dentry != old_parent) /* wasn't IS_ROOT */ 2994 WARN_ON(!--old_parent->d_lockref.count); 2995 } else { 2996 target->d_parent = old_parent; 2997 swap_names(dentry, target); 2998 list_move(&target->d_child, &target->d_parent->d_subdirs); 2999 __d_rehash(target); 3000 fsnotify_update_flags(target); 3001 } 3002 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 3003 __d_rehash(dentry); 3004 fsnotify_update_flags(dentry); 3005 fscrypt_handle_d_move(dentry); 3006 3007 write_seqcount_end(&target->d_seq); 3008 write_seqcount_end(&dentry->d_seq); 3009 3010 if (dir) 3011 end_dir_add(dir, n, d_wait); 3012 3013 if (dentry->d_parent != old_parent) 3014 spin_unlock(&dentry->d_parent->d_lock); 3015 if (dentry != old_parent) 3016 spin_unlock(&old_parent->d_lock); 3017 spin_unlock(&target->d_lock); 3018 spin_unlock(&dentry->d_lock); 3019 } 3020 3021 /* 3022 * d_move - move a dentry 3023 * @dentry: entry to move 3024 * @target: new dentry 3025 * 3026 * Update the dcache to reflect the move of a file name. Negative 3027 * dcache entries should not be moved in this way. See the locking 3028 * requirements for __d_move. 3029 */ 3030 void d_move(struct dentry *dentry, struct dentry *target) 3031 { 3032 write_seqlock(&rename_lock); 3033 __d_move(dentry, target, false); 3034 write_sequnlock(&rename_lock); 3035 } 3036 EXPORT_SYMBOL(d_move); 3037 3038 /* 3039 * d_exchange - exchange two dentries 3040 * @dentry1: first dentry 3041 * @dentry2: second dentry 3042 */ 3043 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 3044 { 3045 write_seqlock(&rename_lock); 3046 3047 WARN_ON(!dentry1->d_inode); 3048 WARN_ON(!dentry2->d_inode); 3049 WARN_ON(IS_ROOT(dentry1)); 3050 WARN_ON(IS_ROOT(dentry2)); 3051 3052 __d_move(dentry1, dentry2, true); 3053 3054 write_sequnlock(&rename_lock); 3055 } 3056 3057 /** 3058 * d_ancestor - search for an ancestor 3059 * @p1: ancestor dentry 3060 * @p2: child dentry 3061 * 3062 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 3063 * an ancestor of p2, else NULL. 3064 */ 3065 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 3066 { 3067 struct dentry *p; 3068 3069 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 3070 if (p->d_parent == p1) 3071 return p; 3072 } 3073 return NULL; 3074 } 3075 3076 /* 3077 * This helper attempts to cope with remotely renamed directories 3078 * 3079 * It assumes that the caller is already holding 3080 * dentry->d_parent->d_inode->i_mutex, and rename_lock 3081 * 3082 * Note: If ever the locking in lock_rename() changes, then please 3083 * remember to update this too... 3084 */ 3085 static int __d_unalias(struct inode *inode, 3086 struct dentry *dentry, struct dentry *alias) 3087 { 3088 struct mutex *m1 = NULL; 3089 struct rw_semaphore *m2 = NULL; 3090 int ret = -ESTALE; 3091 3092 /* If alias and dentry share a parent, then no extra locks required */ 3093 if (alias->d_parent == dentry->d_parent) 3094 goto out_unalias; 3095 3096 /* See lock_rename() */ 3097 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 3098 goto out_err; 3099 m1 = &dentry->d_sb->s_vfs_rename_mutex; 3100 if (!inode_trylock_shared(alias->d_parent->d_inode)) 3101 goto out_err; 3102 m2 = &alias->d_parent->d_inode->i_rwsem; 3103 out_unalias: 3104 __d_move(alias, dentry, false); 3105 ret = 0; 3106 out_err: 3107 if (m2) 3108 up_read(m2); 3109 if (m1) 3110 mutex_unlock(m1); 3111 return ret; 3112 } 3113 3114 /** 3115 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3116 * @inode: the inode which may have a disconnected dentry 3117 * @dentry: a negative dentry which we want to point to the inode. 3118 * 3119 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3120 * place of the given dentry and return it, else simply d_add the inode 3121 * to the dentry and return NULL. 3122 * 3123 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3124 * we should error out: directories can't have multiple aliases. 3125 * 3126 * This is needed in the lookup routine of any filesystem that is exportable 3127 * (via knfsd) so that we can build dcache paths to directories effectively. 3128 * 3129 * If a dentry was found and moved, then it is returned. Otherwise NULL 3130 * is returned. This matches the expected return value of ->lookup. 3131 * 3132 * Cluster filesystems may call this function with a negative, hashed dentry. 3133 * In that case, we know that the inode will be a regular file, and also this 3134 * will only occur during atomic_open. So we need to check for the dentry 3135 * being already hashed only in the final case. 3136 */ 3137 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3138 { 3139 if (IS_ERR(inode)) 3140 return ERR_CAST(inode); 3141 3142 BUG_ON(!d_unhashed(dentry)); 3143 3144 if (!inode) 3145 goto out; 3146 3147 security_d_instantiate(dentry, inode); 3148 spin_lock(&inode->i_lock); 3149 if (S_ISDIR(inode->i_mode)) { 3150 struct dentry *new = __d_find_any_alias(inode); 3151 if (unlikely(new)) { 3152 /* The reference to new ensures it remains an alias */ 3153 spin_unlock(&inode->i_lock); 3154 write_seqlock(&rename_lock); 3155 if (unlikely(d_ancestor(new, dentry))) { 3156 write_sequnlock(&rename_lock); 3157 dput(new); 3158 new = ERR_PTR(-ELOOP); 3159 pr_warn_ratelimited( 3160 "VFS: Lookup of '%s' in %s %s" 3161 " would have caused loop\n", 3162 dentry->d_name.name, 3163 inode->i_sb->s_type->name, 3164 inode->i_sb->s_id); 3165 } else if (!IS_ROOT(new)) { 3166 struct dentry *old_parent = dget(new->d_parent); 3167 int err = __d_unalias(inode, dentry, new); 3168 write_sequnlock(&rename_lock); 3169 if (err) { 3170 dput(new); 3171 new = ERR_PTR(err); 3172 } 3173 dput(old_parent); 3174 } else { 3175 __d_move(new, dentry, false); 3176 write_sequnlock(&rename_lock); 3177 } 3178 iput(inode); 3179 return new; 3180 } 3181 } 3182 out: 3183 __d_add(dentry, inode); 3184 return NULL; 3185 } 3186 EXPORT_SYMBOL(d_splice_alias); 3187 3188 /* 3189 * Test whether new_dentry is a subdirectory of old_dentry. 3190 * 3191 * Trivially implemented using the dcache structure 3192 */ 3193 3194 /** 3195 * is_subdir - is new dentry a subdirectory of old_dentry 3196 * @new_dentry: new dentry 3197 * @old_dentry: old dentry 3198 * 3199 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3200 * Returns false otherwise. 3201 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3202 */ 3203 3204 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3205 { 3206 bool result; 3207 unsigned seq; 3208 3209 if (new_dentry == old_dentry) 3210 return true; 3211 3212 do { 3213 /* for restarting inner loop in case of seq retry */ 3214 seq = read_seqbegin(&rename_lock); 3215 /* 3216 * Need rcu_readlock to protect against the d_parent trashing 3217 * due to d_move 3218 */ 3219 rcu_read_lock(); 3220 if (d_ancestor(old_dentry, new_dentry)) 3221 result = true; 3222 else 3223 result = false; 3224 rcu_read_unlock(); 3225 } while (read_seqretry(&rename_lock, seq)); 3226 3227 return result; 3228 } 3229 EXPORT_SYMBOL(is_subdir); 3230 3231 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3232 { 3233 struct dentry *root = data; 3234 if (dentry != root) { 3235 if (d_unhashed(dentry) || !dentry->d_inode) 3236 return D_WALK_SKIP; 3237 3238 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3239 dentry->d_flags |= DCACHE_GENOCIDE; 3240 dentry->d_lockref.count--; 3241 } 3242 } 3243 return D_WALK_CONTINUE; 3244 } 3245 3246 void d_genocide(struct dentry *parent) 3247 { 3248 d_walk(parent, parent, d_genocide_kill); 3249 } 3250 3251 void d_mark_tmpfile(struct file *file, struct inode *inode) 3252 { 3253 struct dentry *dentry = file->f_path.dentry; 3254 3255 BUG_ON(dentry->d_name.name != dentry->d_iname || 3256 !hlist_unhashed(&dentry->d_u.d_alias) || 3257 !d_unlinked(dentry)); 3258 spin_lock(&dentry->d_parent->d_lock); 3259 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3260 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3261 (unsigned long long)inode->i_ino); 3262 spin_unlock(&dentry->d_lock); 3263 spin_unlock(&dentry->d_parent->d_lock); 3264 } 3265 EXPORT_SYMBOL(d_mark_tmpfile); 3266 3267 void d_tmpfile(struct file *file, struct inode *inode) 3268 { 3269 struct dentry *dentry = file->f_path.dentry; 3270 3271 inode_dec_link_count(inode); 3272 d_mark_tmpfile(file, inode); 3273 d_instantiate(dentry, inode); 3274 } 3275 EXPORT_SYMBOL(d_tmpfile); 3276 3277 static __initdata unsigned long dhash_entries; 3278 static int __init set_dhash_entries(char *str) 3279 { 3280 if (!str) 3281 return 0; 3282 dhash_entries = simple_strtoul(str, &str, 0); 3283 return 1; 3284 } 3285 __setup("dhash_entries=", set_dhash_entries); 3286 3287 static void __init dcache_init_early(void) 3288 { 3289 /* If hashes are distributed across NUMA nodes, defer 3290 * hash allocation until vmalloc space is available. 3291 */ 3292 if (hashdist) 3293 return; 3294 3295 dentry_hashtable = 3296 alloc_large_system_hash("Dentry cache", 3297 sizeof(struct hlist_bl_head), 3298 dhash_entries, 3299 13, 3300 HASH_EARLY | HASH_ZERO, 3301 &d_hash_shift, 3302 NULL, 3303 0, 3304 0); 3305 d_hash_shift = 32 - d_hash_shift; 3306 } 3307 3308 static void __init dcache_init(void) 3309 { 3310 /* 3311 * A constructor could be added for stable state like the lists, 3312 * but it is probably not worth it because of the cache nature 3313 * of the dcache. 3314 */ 3315 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3316 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3317 d_iname); 3318 3319 /* Hash may have been set up in dcache_init_early */ 3320 if (!hashdist) 3321 return; 3322 3323 dentry_hashtable = 3324 alloc_large_system_hash("Dentry cache", 3325 sizeof(struct hlist_bl_head), 3326 dhash_entries, 3327 13, 3328 HASH_ZERO, 3329 &d_hash_shift, 3330 NULL, 3331 0, 3332 0); 3333 d_hash_shift = 32 - d_hash_shift; 3334 } 3335 3336 /* SLAB cache for __getname() consumers */ 3337 struct kmem_cache *names_cachep __ro_after_init; 3338 EXPORT_SYMBOL(names_cachep); 3339 3340 void __init vfs_caches_init_early(void) 3341 { 3342 int i; 3343 3344 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3345 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3346 3347 dcache_init_early(); 3348 inode_init_early(); 3349 } 3350 3351 void __init vfs_caches_init(void) 3352 { 3353 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3354 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3355 3356 dcache_init(); 3357 inode_init(); 3358 files_init(); 3359 files_maxfiles_init(); 3360 mnt_init(); 3361 bdev_cache_init(); 3362 chrdev_init(); 3363 } 3364