xref: /linux/fs/dcache.c (revision cc374782b6ca0fd634482391da977542443d3368)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_chilren
55  *   - childrens' d_sib and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __ro_after_init;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89 
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98 
99 static unsigned int d_hash_shift __ro_after_init;
100 
101 static struct hlist_bl_head *dentry_hashtable __ro_after_init;
102 
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 	return dentry_hashtable + (hash >> d_hash_shift);
106 }
107 
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110 
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 					unsigned int hash)
113 {
114 	hash += (unsigned long) parent / L1_CACHE_BYTES;
115 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117 
118 struct dentry_stat_t {
119 	long nr_dentry;
120 	long nr_unused;
121 	long age_limit;		/* age in seconds */
122 	long want_pages;	/* pages requested by system */
123 	long nr_negative;	/* # of unused negative dentries */
124 	long dummy;		/* Reserved for future use */
125 };
126 
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134 	.age_limit = 45,
135 };
136 
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
149 static long get_nr_dentry(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_unused(void)
159 {
160 	int i;
161 	long sum = 0;
162 	for_each_possible_cpu(i)
163 		sum += per_cpu(nr_dentry_unused, i);
164 	return sum < 0 ? 0 : sum;
165 }
166 
167 static long get_nr_dentry_negative(void)
168 {
169 	int i;
170 	long sum = 0;
171 
172 	for_each_possible_cpu(i)
173 		sum += per_cpu(nr_dentry_negative, i);
174 	return sum < 0 ? 0 : sum;
175 }
176 
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 			  size_t *lenp, loff_t *ppos)
179 {
180 	dentry_stat.nr_dentry = get_nr_dentry();
181 	dentry_stat.nr_unused = get_nr_dentry_unused();
182 	dentry_stat.nr_negative = get_nr_dentry_negative();
183 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185 
186 static struct ctl_table fs_dcache_sysctls[] = {
187 	{
188 		.procname	= "dentry-state",
189 		.data		= &dentry_stat,
190 		.maxlen		= 6*sizeof(long),
191 		.mode		= 0444,
192 		.proc_handler	= proc_nr_dentry,
193 	},
194 };
195 
196 static int __init init_fs_dcache_sysctls(void)
197 {
198 	register_sysctl_init("fs", fs_dcache_sysctls);
199 	return 0;
200 }
201 fs_initcall(init_fs_dcache_sysctls);
202 #endif
203 
204 /*
205  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
206  * The strings are both count bytes long, and count is non-zero.
207  */
208 #ifdef CONFIG_DCACHE_WORD_ACCESS
209 
210 #include <asm/word-at-a-time.h>
211 /*
212  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
213  * aligned allocation for this particular component. We don't
214  * strictly need the load_unaligned_zeropad() safety, but it
215  * doesn't hurt either.
216  *
217  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
218  * need the careful unaligned handling.
219  */
220 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
221 {
222 	unsigned long a,b,mask;
223 
224 	for (;;) {
225 		a = read_word_at_a_time(cs);
226 		b = load_unaligned_zeropad(ct);
227 		if (tcount < sizeof(unsigned long))
228 			break;
229 		if (unlikely(a != b))
230 			return 1;
231 		cs += sizeof(unsigned long);
232 		ct += sizeof(unsigned long);
233 		tcount -= sizeof(unsigned long);
234 		if (!tcount)
235 			return 0;
236 	}
237 	mask = bytemask_from_count(tcount);
238 	return unlikely(!!((a ^ b) & mask));
239 }
240 
241 #else
242 
243 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
244 {
245 	do {
246 		if (*cs != *ct)
247 			return 1;
248 		cs++;
249 		ct++;
250 		tcount--;
251 	} while (tcount);
252 	return 0;
253 }
254 
255 #endif
256 
257 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
258 {
259 	/*
260 	 * Be careful about RCU walk racing with rename:
261 	 * use 'READ_ONCE' to fetch the name pointer.
262 	 *
263 	 * NOTE! Even if a rename will mean that the length
264 	 * was not loaded atomically, we don't care. The
265 	 * RCU walk will check the sequence count eventually,
266 	 * and catch it. And we won't overrun the buffer,
267 	 * because we're reading the name pointer atomically,
268 	 * and a dentry name is guaranteed to be properly
269 	 * terminated with a NUL byte.
270 	 *
271 	 * End result: even if 'len' is wrong, we'll exit
272 	 * early because the data cannot match (there can
273 	 * be no NUL in the ct/tcount data)
274 	 */
275 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
276 
277 	return dentry_string_cmp(cs, ct, tcount);
278 }
279 
280 struct external_name {
281 	union {
282 		atomic_t count;
283 		struct rcu_head head;
284 	} u;
285 	unsigned char name[];
286 };
287 
288 static inline struct external_name *external_name(struct dentry *dentry)
289 {
290 	return container_of(dentry->d_name.name, struct external_name, name[0]);
291 }
292 
293 static void __d_free(struct rcu_head *head)
294 {
295 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
296 
297 	kmem_cache_free(dentry_cache, dentry);
298 }
299 
300 static void __d_free_external(struct rcu_head *head)
301 {
302 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
303 	kfree(external_name(dentry));
304 	kmem_cache_free(dentry_cache, dentry);
305 }
306 
307 static inline int dname_external(const struct dentry *dentry)
308 {
309 	return dentry->d_name.name != dentry->d_iname;
310 }
311 
312 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
313 {
314 	spin_lock(&dentry->d_lock);
315 	name->name = dentry->d_name;
316 	if (unlikely(dname_external(dentry))) {
317 		atomic_inc(&external_name(dentry)->u.count);
318 	} else {
319 		memcpy(name->inline_name, dentry->d_iname,
320 		       dentry->d_name.len + 1);
321 		name->name.name = name->inline_name;
322 	}
323 	spin_unlock(&dentry->d_lock);
324 }
325 EXPORT_SYMBOL(take_dentry_name_snapshot);
326 
327 void release_dentry_name_snapshot(struct name_snapshot *name)
328 {
329 	if (unlikely(name->name.name != name->inline_name)) {
330 		struct external_name *p;
331 		p = container_of(name->name.name, struct external_name, name[0]);
332 		if (unlikely(atomic_dec_and_test(&p->u.count)))
333 			kfree_rcu(p, u.head);
334 	}
335 }
336 EXPORT_SYMBOL(release_dentry_name_snapshot);
337 
338 static inline void __d_set_inode_and_type(struct dentry *dentry,
339 					  struct inode *inode,
340 					  unsigned type_flags)
341 {
342 	unsigned flags;
343 
344 	dentry->d_inode = inode;
345 	flags = READ_ONCE(dentry->d_flags);
346 	flags &= ~DCACHE_ENTRY_TYPE;
347 	flags |= type_flags;
348 	smp_store_release(&dentry->d_flags, flags);
349 }
350 
351 static inline void __d_clear_type_and_inode(struct dentry *dentry)
352 {
353 	unsigned flags = READ_ONCE(dentry->d_flags);
354 
355 	flags &= ~DCACHE_ENTRY_TYPE;
356 	WRITE_ONCE(dentry->d_flags, flags);
357 	dentry->d_inode = NULL;
358 	/*
359 	 * The negative counter only tracks dentries on the LRU. Don't inc if
360 	 * d_lru is on another list.
361 	 */
362 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
363 		this_cpu_inc(nr_dentry_negative);
364 }
365 
366 static void dentry_free(struct dentry *dentry)
367 {
368 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
369 	if (unlikely(dname_external(dentry))) {
370 		struct external_name *p = external_name(dentry);
371 		if (likely(atomic_dec_and_test(&p->u.count))) {
372 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
373 			return;
374 		}
375 	}
376 	/* if dentry was never visible to RCU, immediate free is OK */
377 	if (dentry->d_flags & DCACHE_NORCU)
378 		__d_free(&dentry->d_u.d_rcu);
379 	else
380 		call_rcu(&dentry->d_u.d_rcu, __d_free);
381 }
382 
383 /*
384  * Release the dentry's inode, using the filesystem
385  * d_iput() operation if defined.
386  */
387 static void dentry_unlink_inode(struct dentry * dentry)
388 	__releases(dentry->d_lock)
389 	__releases(dentry->d_inode->i_lock)
390 {
391 	struct inode *inode = dentry->d_inode;
392 
393 	raw_write_seqcount_begin(&dentry->d_seq);
394 	__d_clear_type_and_inode(dentry);
395 	hlist_del_init(&dentry->d_u.d_alias);
396 	raw_write_seqcount_end(&dentry->d_seq);
397 	spin_unlock(&dentry->d_lock);
398 	spin_unlock(&inode->i_lock);
399 	if (!inode->i_nlink)
400 		fsnotify_inoderemove(inode);
401 	if (dentry->d_op && dentry->d_op->d_iput)
402 		dentry->d_op->d_iput(dentry, inode);
403 	else
404 		iput(inode);
405 }
406 
407 /*
408  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
409  * is in use - which includes both the "real" per-superblock
410  * LRU list _and_ the DCACHE_SHRINK_LIST use.
411  *
412  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
413  * on the shrink list (ie not on the superblock LRU list).
414  *
415  * The per-cpu "nr_dentry_unused" counters are updated with
416  * the DCACHE_LRU_LIST bit.
417  *
418  * The per-cpu "nr_dentry_negative" counters are only updated
419  * when deleted from or added to the per-superblock LRU list, not
420  * from/to the shrink list. That is to avoid an unneeded dec/inc
421  * pair when moving from LRU to shrink list in select_collect().
422  *
423  * These helper functions make sure we always follow the
424  * rules. d_lock must be held by the caller.
425  */
426 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
427 static void d_lru_add(struct dentry *dentry)
428 {
429 	D_FLAG_VERIFY(dentry, 0);
430 	dentry->d_flags |= DCACHE_LRU_LIST;
431 	this_cpu_inc(nr_dentry_unused);
432 	if (d_is_negative(dentry))
433 		this_cpu_inc(nr_dentry_negative);
434 	WARN_ON_ONCE(!list_lru_add_obj(
435 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
436 }
437 
438 static void d_lru_del(struct dentry *dentry)
439 {
440 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 	dentry->d_flags &= ~DCACHE_LRU_LIST;
442 	this_cpu_dec(nr_dentry_unused);
443 	if (d_is_negative(dentry))
444 		this_cpu_dec(nr_dentry_negative);
445 	WARN_ON_ONCE(!list_lru_del_obj(
446 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
447 }
448 
449 static void d_shrink_del(struct dentry *dentry)
450 {
451 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
452 	list_del_init(&dentry->d_lru);
453 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
454 	this_cpu_dec(nr_dentry_unused);
455 }
456 
457 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
458 {
459 	D_FLAG_VERIFY(dentry, 0);
460 	list_add(&dentry->d_lru, list);
461 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
462 	this_cpu_inc(nr_dentry_unused);
463 }
464 
465 /*
466  * These can only be called under the global LRU lock, ie during the
467  * callback for freeing the LRU list. "isolate" removes it from the
468  * LRU lists entirely, while shrink_move moves it to the indicated
469  * private list.
470  */
471 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
472 {
473 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
474 	dentry->d_flags &= ~DCACHE_LRU_LIST;
475 	this_cpu_dec(nr_dentry_unused);
476 	if (d_is_negative(dentry))
477 		this_cpu_dec(nr_dentry_negative);
478 	list_lru_isolate(lru, &dentry->d_lru);
479 }
480 
481 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
482 			      struct list_head *list)
483 {
484 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
485 	dentry->d_flags |= DCACHE_SHRINK_LIST;
486 	if (d_is_negative(dentry))
487 		this_cpu_dec(nr_dentry_negative);
488 	list_lru_isolate_move(lru, &dentry->d_lru, list);
489 }
490 
491 static void ___d_drop(struct dentry *dentry)
492 {
493 	struct hlist_bl_head *b;
494 	/*
495 	 * Hashed dentries are normally on the dentry hashtable,
496 	 * with the exception of those newly allocated by
497 	 * d_obtain_root, which are always IS_ROOT:
498 	 */
499 	if (unlikely(IS_ROOT(dentry)))
500 		b = &dentry->d_sb->s_roots;
501 	else
502 		b = d_hash(dentry->d_name.hash);
503 
504 	hlist_bl_lock(b);
505 	__hlist_bl_del(&dentry->d_hash);
506 	hlist_bl_unlock(b);
507 }
508 
509 void __d_drop(struct dentry *dentry)
510 {
511 	if (!d_unhashed(dentry)) {
512 		___d_drop(dentry);
513 		dentry->d_hash.pprev = NULL;
514 		write_seqcount_invalidate(&dentry->d_seq);
515 	}
516 }
517 EXPORT_SYMBOL(__d_drop);
518 
519 /**
520  * d_drop - drop a dentry
521  * @dentry: dentry to drop
522  *
523  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
524  * be found through a VFS lookup any more. Note that this is different from
525  * deleting the dentry - d_delete will try to mark the dentry negative if
526  * possible, giving a successful _negative_ lookup, while d_drop will
527  * just make the cache lookup fail.
528  *
529  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
530  * reason (NFS timeouts or autofs deletes).
531  *
532  * __d_drop requires dentry->d_lock
533  *
534  * ___d_drop doesn't mark dentry as "unhashed"
535  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
536  */
537 void d_drop(struct dentry *dentry)
538 {
539 	spin_lock(&dentry->d_lock);
540 	__d_drop(dentry);
541 	spin_unlock(&dentry->d_lock);
542 }
543 EXPORT_SYMBOL(d_drop);
544 
545 static inline void dentry_unlist(struct dentry *dentry)
546 {
547 	struct dentry *next;
548 	/*
549 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
550 	 * attached to the dentry tree
551 	 */
552 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
553 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
554 		return;
555 	__hlist_del(&dentry->d_sib);
556 	/*
557 	 * Cursors can move around the list of children.  While we'd been
558 	 * a normal list member, it didn't matter - ->d_sib.next would've
559 	 * been updated.  However, from now on it won't be and for the
560 	 * things like d_walk() it might end up with a nasty surprise.
561 	 * Normally d_walk() doesn't care about cursors moving around -
562 	 * ->d_lock on parent prevents that and since a cursor has no children
563 	 * of its own, we get through it without ever unlocking the parent.
564 	 * There is one exception, though - if we ascend from a child that
565 	 * gets killed as soon as we unlock it, the next sibling is found
566 	 * using the value left in its ->d_sib.next.  And if _that_
567 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
568 	 * before d_walk() regains parent->d_lock, we'll end up skipping
569 	 * everything the cursor had been moved past.
570 	 *
571 	 * Solution: make sure that the pointer left behind in ->d_sib.next
572 	 * points to something that won't be moving around.  I.e. skip the
573 	 * cursors.
574 	 */
575 	while (dentry->d_sib.next) {
576 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
577 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
578 			break;
579 		dentry->d_sib.next = next->d_sib.next;
580 	}
581 }
582 
583 static struct dentry *__dentry_kill(struct dentry *dentry)
584 {
585 	struct dentry *parent = NULL;
586 	bool can_free = true;
587 
588 	/*
589 	 * The dentry is now unrecoverably dead to the world.
590 	 */
591 	lockref_mark_dead(&dentry->d_lockref);
592 
593 	/*
594 	 * inform the fs via d_prune that this dentry is about to be
595 	 * unhashed and destroyed.
596 	 */
597 	if (dentry->d_flags & DCACHE_OP_PRUNE)
598 		dentry->d_op->d_prune(dentry);
599 
600 	if (dentry->d_flags & DCACHE_LRU_LIST) {
601 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
602 			d_lru_del(dentry);
603 	}
604 	/* if it was on the hash then remove it */
605 	__d_drop(dentry);
606 	if (dentry->d_inode)
607 		dentry_unlink_inode(dentry);
608 	else
609 		spin_unlock(&dentry->d_lock);
610 	this_cpu_dec(nr_dentry);
611 	if (dentry->d_op && dentry->d_op->d_release)
612 		dentry->d_op->d_release(dentry);
613 
614 	cond_resched();
615 	/* now that it's negative, ->d_parent is stable */
616 	if (!IS_ROOT(dentry)) {
617 		parent = dentry->d_parent;
618 		spin_lock(&parent->d_lock);
619 	}
620 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
621 	dentry_unlist(dentry);
622 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
623 		can_free = false;
624 	spin_unlock(&dentry->d_lock);
625 	if (likely(can_free))
626 		dentry_free(dentry);
627 	if (parent && --parent->d_lockref.count) {
628 		spin_unlock(&parent->d_lock);
629 		return NULL;
630 	}
631 	return parent;
632 }
633 
634 /*
635  * Lock a dentry for feeding it to __dentry_kill().
636  * Called under rcu_read_lock() and dentry->d_lock; the former
637  * guarantees that nothing we access will be freed under us.
638  * Note that dentry is *not* protected from concurrent dentry_kill(),
639  * d_delete(), etc.
640  *
641  * Return false if dentry is busy.  Otherwise, return true and have
642  * that dentry's inode locked.
643  */
644 
645 static bool lock_for_kill(struct dentry *dentry)
646 {
647 	struct inode *inode = dentry->d_inode;
648 
649 	if (unlikely(dentry->d_lockref.count))
650 		return false;
651 
652 	if (!inode || likely(spin_trylock(&inode->i_lock)))
653 		return true;
654 
655 	do {
656 		spin_unlock(&dentry->d_lock);
657 		spin_lock(&inode->i_lock);
658 		spin_lock(&dentry->d_lock);
659 		if (likely(inode == dentry->d_inode))
660 			break;
661 		spin_unlock(&inode->i_lock);
662 		inode = dentry->d_inode;
663 	} while (inode);
664 	if (likely(!dentry->d_lockref.count))
665 		return true;
666 	if (inode)
667 		spin_unlock(&inode->i_lock);
668 	return false;
669 }
670 
671 /*
672  * Decide if dentry is worth retaining.  Usually this is called with dentry
673  * locked; if not locked, we are more limited and might not be able to tell
674  * without a lock.  False in this case means "punt to locked path and recheck".
675  *
676  * In case we aren't locked, these predicates are not "stable". However, it is
677  * sufficient that at some point after we dropped the reference the dentry was
678  * hashed and the flags had the proper value. Other dentry users may have
679  * re-gotten a reference to the dentry and change that, but our work is done -
680  * we can leave the dentry around with a zero refcount.
681  */
682 static inline bool retain_dentry(struct dentry *dentry, bool locked)
683 {
684 	unsigned int d_flags;
685 
686 	smp_rmb();
687 	d_flags = READ_ONCE(dentry->d_flags);
688 
689 	// Unreachable? Nobody would be able to look it up, no point retaining
690 	if (unlikely(d_unhashed(dentry)))
691 		return false;
692 
693 	// Same if it's disconnected
694 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
695 		return false;
696 
697 	// ->d_delete() might tell us not to bother, but that requires
698 	// ->d_lock; can't decide without it
699 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
700 		if (!locked || dentry->d_op->d_delete(dentry))
701 			return false;
702 	}
703 
704 	// Explicitly told not to bother
705 	if (unlikely(d_flags & DCACHE_DONTCACHE))
706 		return false;
707 
708 	// At this point it looks like we ought to keep it.  We also might
709 	// need to do something - put it on LRU if it wasn't there already
710 	// and mark it referenced if it was on LRU, but not marked yet.
711 	// Unfortunately, both actions require ->d_lock, so in lockless
712 	// case we'd have to punt rather than doing those.
713 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
714 		if (!locked)
715 			return false;
716 		d_lru_add(dentry);
717 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
718 		if (!locked)
719 			return false;
720 		dentry->d_flags |= DCACHE_REFERENCED;
721 	}
722 	return true;
723 }
724 
725 void d_mark_dontcache(struct inode *inode)
726 {
727 	struct dentry *de;
728 
729 	spin_lock(&inode->i_lock);
730 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
731 		spin_lock(&de->d_lock);
732 		de->d_flags |= DCACHE_DONTCACHE;
733 		spin_unlock(&de->d_lock);
734 	}
735 	inode->i_state |= I_DONTCACHE;
736 	spin_unlock(&inode->i_lock);
737 }
738 EXPORT_SYMBOL(d_mark_dontcache);
739 
740 /*
741  * Try to do a lockless dput(), and return whether that was successful.
742  *
743  * If unsuccessful, we return false, having already taken the dentry lock.
744  * In that case refcount is guaranteed to be zero and we have already
745  * decided that it's not worth keeping around.
746  *
747  * The caller needs to hold the RCU read lock, so that the dentry is
748  * guaranteed to stay around even if the refcount goes down to zero!
749  */
750 static inline bool fast_dput(struct dentry *dentry)
751 {
752 	int ret;
753 
754 	/*
755 	 * try to decrement the lockref optimistically.
756 	 */
757 	ret = lockref_put_return(&dentry->d_lockref);
758 
759 	/*
760 	 * If the lockref_put_return() failed due to the lock being held
761 	 * by somebody else, the fast path has failed. We will need to
762 	 * get the lock, and then check the count again.
763 	 */
764 	if (unlikely(ret < 0)) {
765 		spin_lock(&dentry->d_lock);
766 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
767 			spin_unlock(&dentry->d_lock);
768 			return true;
769 		}
770 		dentry->d_lockref.count--;
771 		goto locked;
772 	}
773 
774 	/*
775 	 * If we weren't the last ref, we're done.
776 	 */
777 	if (ret)
778 		return true;
779 
780 	/*
781 	 * Can we decide that decrement of refcount is all we needed without
782 	 * taking the lock?  There's a very common case when it's all we need -
783 	 * dentry looks like it ought to be retained and there's nothing else
784 	 * to do.
785 	 */
786 	if (retain_dentry(dentry, false))
787 		return true;
788 
789 	/*
790 	 * Either not worth retaining or we can't tell without the lock.
791 	 * Get the lock, then.  We've already decremented the refcount to 0,
792 	 * but we'll need to re-check the situation after getting the lock.
793 	 */
794 	spin_lock(&dentry->d_lock);
795 
796 	/*
797 	 * Did somebody else grab a reference to it in the meantime, and
798 	 * we're no longer the last user after all? Alternatively, somebody
799 	 * else could have killed it and marked it dead. Either way, we
800 	 * don't need to do anything else.
801 	 */
802 locked:
803 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
804 		spin_unlock(&dentry->d_lock);
805 		return true;
806 	}
807 	return false;
808 }
809 
810 
811 /*
812  * This is dput
813  *
814  * This is complicated by the fact that we do not want to put
815  * dentries that are no longer on any hash chain on the unused
816  * list: we'd much rather just get rid of them immediately.
817  *
818  * However, that implies that we have to traverse the dentry
819  * tree upwards to the parents which might _also_ now be
820  * scheduled for deletion (it may have been only waiting for
821  * its last child to go away).
822  *
823  * This tail recursion is done by hand as we don't want to depend
824  * on the compiler to always get this right (gcc generally doesn't).
825  * Real recursion would eat up our stack space.
826  */
827 
828 /*
829  * dput - release a dentry
830  * @dentry: dentry to release
831  *
832  * Release a dentry. This will drop the usage count and if appropriate
833  * call the dentry unlink method as well as removing it from the queues and
834  * releasing its resources. If the parent dentries were scheduled for release
835  * they too may now get deleted.
836  */
837 void dput(struct dentry *dentry)
838 {
839 	if (!dentry)
840 		return;
841 	might_sleep();
842 	rcu_read_lock();
843 	if (likely(fast_dput(dentry))) {
844 		rcu_read_unlock();
845 		return;
846 	}
847 	while (lock_for_kill(dentry)) {
848 		rcu_read_unlock();
849 		dentry = __dentry_kill(dentry);
850 		if (!dentry)
851 			return;
852 		if (retain_dentry(dentry, true)) {
853 			spin_unlock(&dentry->d_lock);
854 			return;
855 		}
856 		rcu_read_lock();
857 	}
858 	rcu_read_unlock();
859 	spin_unlock(&dentry->d_lock);
860 }
861 EXPORT_SYMBOL(dput);
862 
863 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
864 __must_hold(&dentry->d_lock)
865 {
866 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
867 		if (dentry->d_flags & DCACHE_LRU_LIST)
868 			d_lru_del(dentry);
869 		d_shrink_add(dentry, list);
870 	}
871 }
872 
873 void dput_to_list(struct dentry *dentry, struct list_head *list)
874 {
875 	rcu_read_lock();
876 	if (likely(fast_dput(dentry))) {
877 		rcu_read_unlock();
878 		return;
879 	}
880 	rcu_read_unlock();
881 	to_shrink_list(dentry, list);
882 	spin_unlock(&dentry->d_lock);
883 }
884 
885 struct dentry *dget_parent(struct dentry *dentry)
886 {
887 	int gotref;
888 	struct dentry *ret;
889 	unsigned seq;
890 
891 	/*
892 	 * Do optimistic parent lookup without any
893 	 * locking.
894 	 */
895 	rcu_read_lock();
896 	seq = raw_seqcount_begin(&dentry->d_seq);
897 	ret = READ_ONCE(dentry->d_parent);
898 	gotref = lockref_get_not_zero(&ret->d_lockref);
899 	rcu_read_unlock();
900 	if (likely(gotref)) {
901 		if (!read_seqcount_retry(&dentry->d_seq, seq))
902 			return ret;
903 		dput(ret);
904 	}
905 
906 repeat:
907 	/*
908 	 * Don't need rcu_dereference because we re-check it was correct under
909 	 * the lock.
910 	 */
911 	rcu_read_lock();
912 	ret = dentry->d_parent;
913 	spin_lock(&ret->d_lock);
914 	if (unlikely(ret != dentry->d_parent)) {
915 		spin_unlock(&ret->d_lock);
916 		rcu_read_unlock();
917 		goto repeat;
918 	}
919 	rcu_read_unlock();
920 	BUG_ON(!ret->d_lockref.count);
921 	ret->d_lockref.count++;
922 	spin_unlock(&ret->d_lock);
923 	return ret;
924 }
925 EXPORT_SYMBOL(dget_parent);
926 
927 static struct dentry * __d_find_any_alias(struct inode *inode)
928 {
929 	struct dentry *alias;
930 
931 	if (hlist_empty(&inode->i_dentry))
932 		return NULL;
933 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
934 	lockref_get(&alias->d_lockref);
935 	return alias;
936 }
937 
938 /**
939  * d_find_any_alias - find any alias for a given inode
940  * @inode: inode to find an alias for
941  *
942  * If any aliases exist for the given inode, take and return a
943  * reference for one of them.  If no aliases exist, return %NULL.
944  */
945 struct dentry *d_find_any_alias(struct inode *inode)
946 {
947 	struct dentry *de;
948 
949 	spin_lock(&inode->i_lock);
950 	de = __d_find_any_alias(inode);
951 	spin_unlock(&inode->i_lock);
952 	return de;
953 }
954 EXPORT_SYMBOL(d_find_any_alias);
955 
956 static struct dentry *__d_find_alias(struct inode *inode)
957 {
958 	struct dentry *alias;
959 
960 	if (S_ISDIR(inode->i_mode))
961 		return __d_find_any_alias(inode);
962 
963 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
964 		spin_lock(&alias->d_lock);
965  		if (!d_unhashed(alias)) {
966 			dget_dlock(alias);
967 			spin_unlock(&alias->d_lock);
968 			return alias;
969 		}
970 		spin_unlock(&alias->d_lock);
971 	}
972 	return NULL;
973 }
974 
975 /**
976  * d_find_alias - grab a hashed alias of inode
977  * @inode: inode in question
978  *
979  * If inode has a hashed alias, or is a directory and has any alias,
980  * acquire the reference to alias and return it. Otherwise return NULL.
981  * Notice that if inode is a directory there can be only one alias and
982  * it can be unhashed only if it has no children, or if it is the root
983  * of a filesystem, or if the directory was renamed and d_revalidate
984  * was the first vfs operation to notice.
985  *
986  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
987  * any other hashed alias over that one.
988  */
989 struct dentry *d_find_alias(struct inode *inode)
990 {
991 	struct dentry *de = NULL;
992 
993 	if (!hlist_empty(&inode->i_dentry)) {
994 		spin_lock(&inode->i_lock);
995 		de = __d_find_alias(inode);
996 		spin_unlock(&inode->i_lock);
997 	}
998 	return de;
999 }
1000 EXPORT_SYMBOL(d_find_alias);
1001 
1002 /*
1003  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1004  *  that inode won't get freed until rcu_read_unlock().
1005  */
1006 struct dentry *d_find_alias_rcu(struct inode *inode)
1007 {
1008 	struct hlist_head *l = &inode->i_dentry;
1009 	struct dentry *de = NULL;
1010 
1011 	spin_lock(&inode->i_lock);
1012 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1013 	// used without having I_FREEING set, which means no aliases left
1014 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1015 		if (S_ISDIR(inode->i_mode)) {
1016 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1017 		} else {
1018 			hlist_for_each_entry(de, l, d_u.d_alias)
1019 				if (!d_unhashed(de))
1020 					break;
1021 		}
1022 	}
1023 	spin_unlock(&inode->i_lock);
1024 	return de;
1025 }
1026 
1027 /*
1028  *	Try to kill dentries associated with this inode.
1029  * WARNING: you must own a reference to inode.
1030  */
1031 void d_prune_aliases(struct inode *inode)
1032 {
1033 	LIST_HEAD(dispose);
1034 	struct dentry *dentry;
1035 
1036 	spin_lock(&inode->i_lock);
1037 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1038 		spin_lock(&dentry->d_lock);
1039 		if (!dentry->d_lockref.count)
1040 			to_shrink_list(dentry, &dispose);
1041 		spin_unlock(&dentry->d_lock);
1042 	}
1043 	spin_unlock(&inode->i_lock);
1044 	shrink_dentry_list(&dispose);
1045 }
1046 EXPORT_SYMBOL(d_prune_aliases);
1047 
1048 static inline void shrink_kill(struct dentry *victim)
1049 {
1050 	do {
1051 		rcu_read_unlock();
1052 		victim = __dentry_kill(victim);
1053 		rcu_read_lock();
1054 	} while (victim && lock_for_kill(victim));
1055 	rcu_read_unlock();
1056 	if (victim)
1057 		spin_unlock(&victim->d_lock);
1058 }
1059 
1060 void shrink_dentry_list(struct list_head *list)
1061 {
1062 	while (!list_empty(list)) {
1063 		struct dentry *dentry;
1064 
1065 		dentry = list_entry(list->prev, struct dentry, d_lru);
1066 		spin_lock(&dentry->d_lock);
1067 		rcu_read_lock();
1068 		if (!lock_for_kill(dentry)) {
1069 			bool can_free;
1070 			rcu_read_unlock();
1071 			d_shrink_del(dentry);
1072 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1073 			spin_unlock(&dentry->d_lock);
1074 			if (can_free)
1075 				dentry_free(dentry);
1076 			continue;
1077 		}
1078 		d_shrink_del(dentry);
1079 		shrink_kill(dentry);
1080 	}
1081 }
1082 
1083 static enum lru_status dentry_lru_isolate(struct list_head *item,
1084 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1085 {
1086 	struct list_head *freeable = arg;
1087 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1088 
1089 
1090 	/*
1091 	 * we are inverting the lru lock/dentry->d_lock here,
1092 	 * so use a trylock. If we fail to get the lock, just skip
1093 	 * it
1094 	 */
1095 	if (!spin_trylock(&dentry->d_lock))
1096 		return LRU_SKIP;
1097 
1098 	/*
1099 	 * Referenced dentries are still in use. If they have active
1100 	 * counts, just remove them from the LRU. Otherwise give them
1101 	 * another pass through the LRU.
1102 	 */
1103 	if (dentry->d_lockref.count) {
1104 		d_lru_isolate(lru, dentry);
1105 		spin_unlock(&dentry->d_lock);
1106 		return LRU_REMOVED;
1107 	}
1108 
1109 	if (dentry->d_flags & DCACHE_REFERENCED) {
1110 		dentry->d_flags &= ~DCACHE_REFERENCED;
1111 		spin_unlock(&dentry->d_lock);
1112 
1113 		/*
1114 		 * The list move itself will be made by the common LRU code. At
1115 		 * this point, we've dropped the dentry->d_lock but keep the
1116 		 * lru lock. This is safe to do, since every list movement is
1117 		 * protected by the lru lock even if both locks are held.
1118 		 *
1119 		 * This is guaranteed by the fact that all LRU management
1120 		 * functions are intermediated by the LRU API calls like
1121 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1122 		 * only ever occur through this functions or through callbacks
1123 		 * like this one, that are called from the LRU API.
1124 		 *
1125 		 * The only exceptions to this are functions like
1126 		 * shrink_dentry_list, and code that first checks for the
1127 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1128 		 * operating only with stack provided lists after they are
1129 		 * properly isolated from the main list.  It is thus, always a
1130 		 * local access.
1131 		 */
1132 		return LRU_ROTATE;
1133 	}
1134 
1135 	d_lru_shrink_move(lru, dentry, freeable);
1136 	spin_unlock(&dentry->d_lock);
1137 
1138 	return LRU_REMOVED;
1139 }
1140 
1141 /**
1142  * prune_dcache_sb - shrink the dcache
1143  * @sb: superblock
1144  * @sc: shrink control, passed to list_lru_shrink_walk()
1145  *
1146  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1147  * is done when we need more memory and called from the superblock shrinker
1148  * function.
1149  *
1150  * This function may fail to free any resources if all the dentries are in
1151  * use.
1152  */
1153 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1154 {
1155 	LIST_HEAD(dispose);
1156 	long freed;
1157 
1158 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1159 				     dentry_lru_isolate, &dispose);
1160 	shrink_dentry_list(&dispose);
1161 	return freed;
1162 }
1163 
1164 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1165 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1166 {
1167 	struct list_head *freeable = arg;
1168 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1169 
1170 	/*
1171 	 * we are inverting the lru lock/dentry->d_lock here,
1172 	 * so use a trylock. If we fail to get the lock, just skip
1173 	 * it
1174 	 */
1175 	if (!spin_trylock(&dentry->d_lock))
1176 		return LRU_SKIP;
1177 
1178 	d_lru_shrink_move(lru, dentry, freeable);
1179 	spin_unlock(&dentry->d_lock);
1180 
1181 	return LRU_REMOVED;
1182 }
1183 
1184 
1185 /**
1186  * shrink_dcache_sb - shrink dcache for a superblock
1187  * @sb: superblock
1188  *
1189  * Shrink the dcache for the specified super block. This is used to free
1190  * the dcache before unmounting a file system.
1191  */
1192 void shrink_dcache_sb(struct super_block *sb)
1193 {
1194 	do {
1195 		LIST_HEAD(dispose);
1196 
1197 		list_lru_walk(&sb->s_dentry_lru,
1198 			dentry_lru_isolate_shrink, &dispose, 1024);
1199 		shrink_dentry_list(&dispose);
1200 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1201 }
1202 EXPORT_SYMBOL(shrink_dcache_sb);
1203 
1204 /**
1205  * enum d_walk_ret - action to talke during tree walk
1206  * @D_WALK_CONTINUE:	contrinue walk
1207  * @D_WALK_QUIT:	quit walk
1208  * @D_WALK_NORETRY:	quit when retry is needed
1209  * @D_WALK_SKIP:	skip this dentry and its children
1210  */
1211 enum d_walk_ret {
1212 	D_WALK_CONTINUE,
1213 	D_WALK_QUIT,
1214 	D_WALK_NORETRY,
1215 	D_WALK_SKIP,
1216 };
1217 
1218 /**
1219  * d_walk - walk the dentry tree
1220  * @parent:	start of walk
1221  * @data:	data passed to @enter() and @finish()
1222  * @enter:	callback when first entering the dentry
1223  *
1224  * The @enter() callbacks are called with d_lock held.
1225  */
1226 static void d_walk(struct dentry *parent, void *data,
1227 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1228 {
1229 	struct dentry *this_parent, *dentry;
1230 	unsigned seq = 0;
1231 	enum d_walk_ret ret;
1232 	bool retry = true;
1233 
1234 again:
1235 	read_seqbegin_or_lock(&rename_lock, &seq);
1236 	this_parent = parent;
1237 	spin_lock(&this_parent->d_lock);
1238 
1239 	ret = enter(data, this_parent);
1240 	switch (ret) {
1241 	case D_WALK_CONTINUE:
1242 		break;
1243 	case D_WALK_QUIT:
1244 	case D_WALK_SKIP:
1245 		goto out_unlock;
1246 	case D_WALK_NORETRY:
1247 		retry = false;
1248 		break;
1249 	}
1250 repeat:
1251 	dentry = d_first_child(this_parent);
1252 resume:
1253 	hlist_for_each_entry_from(dentry, d_sib) {
1254 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1255 			continue;
1256 
1257 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1258 
1259 		ret = enter(data, dentry);
1260 		switch (ret) {
1261 		case D_WALK_CONTINUE:
1262 			break;
1263 		case D_WALK_QUIT:
1264 			spin_unlock(&dentry->d_lock);
1265 			goto out_unlock;
1266 		case D_WALK_NORETRY:
1267 			retry = false;
1268 			break;
1269 		case D_WALK_SKIP:
1270 			spin_unlock(&dentry->d_lock);
1271 			continue;
1272 		}
1273 
1274 		if (!hlist_empty(&dentry->d_children)) {
1275 			spin_unlock(&this_parent->d_lock);
1276 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1277 			this_parent = dentry;
1278 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1279 			goto repeat;
1280 		}
1281 		spin_unlock(&dentry->d_lock);
1282 	}
1283 	/*
1284 	 * All done at this level ... ascend and resume the search.
1285 	 */
1286 	rcu_read_lock();
1287 ascend:
1288 	if (this_parent != parent) {
1289 		dentry = this_parent;
1290 		this_parent = dentry->d_parent;
1291 
1292 		spin_unlock(&dentry->d_lock);
1293 		spin_lock(&this_parent->d_lock);
1294 
1295 		/* might go back up the wrong parent if we have had a rename. */
1296 		if (need_seqretry(&rename_lock, seq))
1297 			goto rename_retry;
1298 		/* go into the first sibling still alive */
1299 		hlist_for_each_entry_continue(dentry, d_sib) {
1300 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1301 				rcu_read_unlock();
1302 				goto resume;
1303 			}
1304 		}
1305 		goto ascend;
1306 	}
1307 	if (need_seqretry(&rename_lock, seq))
1308 		goto rename_retry;
1309 	rcu_read_unlock();
1310 
1311 out_unlock:
1312 	spin_unlock(&this_parent->d_lock);
1313 	done_seqretry(&rename_lock, seq);
1314 	return;
1315 
1316 rename_retry:
1317 	spin_unlock(&this_parent->d_lock);
1318 	rcu_read_unlock();
1319 	BUG_ON(seq & 1);
1320 	if (!retry)
1321 		return;
1322 	seq = 1;
1323 	goto again;
1324 }
1325 
1326 struct check_mount {
1327 	struct vfsmount *mnt;
1328 	unsigned int mounted;
1329 };
1330 
1331 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1332 {
1333 	struct check_mount *info = data;
1334 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1335 
1336 	if (likely(!d_mountpoint(dentry)))
1337 		return D_WALK_CONTINUE;
1338 	if (__path_is_mountpoint(&path)) {
1339 		info->mounted = 1;
1340 		return D_WALK_QUIT;
1341 	}
1342 	return D_WALK_CONTINUE;
1343 }
1344 
1345 /**
1346  * path_has_submounts - check for mounts over a dentry in the
1347  *                      current namespace.
1348  * @parent: path to check.
1349  *
1350  * Return true if the parent or its subdirectories contain
1351  * a mount point in the current namespace.
1352  */
1353 int path_has_submounts(const struct path *parent)
1354 {
1355 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1356 
1357 	read_seqlock_excl(&mount_lock);
1358 	d_walk(parent->dentry, &data, path_check_mount);
1359 	read_sequnlock_excl(&mount_lock);
1360 
1361 	return data.mounted;
1362 }
1363 EXPORT_SYMBOL(path_has_submounts);
1364 
1365 /*
1366  * Called by mount code to set a mountpoint and check if the mountpoint is
1367  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1368  * subtree can become unreachable).
1369  *
1370  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1371  * this reason take rename_lock and d_lock on dentry and ancestors.
1372  */
1373 int d_set_mounted(struct dentry *dentry)
1374 {
1375 	struct dentry *p;
1376 	int ret = -ENOENT;
1377 	write_seqlock(&rename_lock);
1378 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1379 		/* Need exclusion wrt. d_invalidate() */
1380 		spin_lock(&p->d_lock);
1381 		if (unlikely(d_unhashed(p))) {
1382 			spin_unlock(&p->d_lock);
1383 			goto out;
1384 		}
1385 		spin_unlock(&p->d_lock);
1386 	}
1387 	spin_lock(&dentry->d_lock);
1388 	if (!d_unlinked(dentry)) {
1389 		ret = -EBUSY;
1390 		if (!d_mountpoint(dentry)) {
1391 			dentry->d_flags |= DCACHE_MOUNTED;
1392 			ret = 0;
1393 		}
1394 	}
1395  	spin_unlock(&dentry->d_lock);
1396 out:
1397 	write_sequnlock(&rename_lock);
1398 	return ret;
1399 }
1400 
1401 /*
1402  * Search the dentry child list of the specified parent,
1403  * and move any unused dentries to the end of the unused
1404  * list for prune_dcache(). We descend to the next level
1405  * whenever the d_children list is non-empty and continue
1406  * searching.
1407  *
1408  * It returns zero iff there are no unused children,
1409  * otherwise  it returns the number of children moved to
1410  * the end of the unused list. This may not be the total
1411  * number of unused children, because select_parent can
1412  * drop the lock and return early due to latency
1413  * constraints.
1414  */
1415 
1416 struct select_data {
1417 	struct dentry *start;
1418 	union {
1419 		long found;
1420 		struct dentry *victim;
1421 	};
1422 	struct list_head dispose;
1423 };
1424 
1425 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1426 {
1427 	struct select_data *data = _data;
1428 	enum d_walk_ret ret = D_WALK_CONTINUE;
1429 
1430 	if (data->start == dentry)
1431 		goto out;
1432 
1433 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1434 		data->found++;
1435 	} else if (!dentry->d_lockref.count) {
1436 		to_shrink_list(dentry, &data->dispose);
1437 		data->found++;
1438 	} else if (dentry->d_lockref.count < 0) {
1439 		data->found++;
1440 	}
1441 	/*
1442 	 * We can return to the caller if we have found some (this
1443 	 * ensures forward progress). We'll be coming back to find
1444 	 * the rest.
1445 	 */
1446 	if (!list_empty(&data->dispose))
1447 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1448 out:
1449 	return ret;
1450 }
1451 
1452 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1453 {
1454 	struct select_data *data = _data;
1455 	enum d_walk_ret ret = D_WALK_CONTINUE;
1456 
1457 	if (data->start == dentry)
1458 		goto out;
1459 
1460 	if (!dentry->d_lockref.count) {
1461 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1462 			rcu_read_lock();
1463 			data->victim = dentry;
1464 			return D_WALK_QUIT;
1465 		}
1466 		to_shrink_list(dentry, &data->dispose);
1467 	}
1468 	/*
1469 	 * We can return to the caller if we have found some (this
1470 	 * ensures forward progress). We'll be coming back to find
1471 	 * the rest.
1472 	 */
1473 	if (!list_empty(&data->dispose))
1474 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1475 out:
1476 	return ret;
1477 }
1478 
1479 /**
1480  * shrink_dcache_parent - prune dcache
1481  * @parent: parent of entries to prune
1482  *
1483  * Prune the dcache to remove unused children of the parent dentry.
1484  */
1485 void shrink_dcache_parent(struct dentry *parent)
1486 {
1487 	for (;;) {
1488 		struct select_data data = {.start = parent};
1489 
1490 		INIT_LIST_HEAD(&data.dispose);
1491 		d_walk(parent, &data, select_collect);
1492 
1493 		if (!list_empty(&data.dispose)) {
1494 			shrink_dentry_list(&data.dispose);
1495 			continue;
1496 		}
1497 
1498 		cond_resched();
1499 		if (!data.found)
1500 			break;
1501 		data.victim = NULL;
1502 		d_walk(parent, &data, select_collect2);
1503 		if (data.victim) {
1504 			spin_lock(&data.victim->d_lock);
1505 			if (!lock_for_kill(data.victim)) {
1506 				spin_unlock(&data.victim->d_lock);
1507 				rcu_read_unlock();
1508 			} else {
1509 				shrink_kill(data.victim);
1510 			}
1511 		}
1512 		if (!list_empty(&data.dispose))
1513 			shrink_dentry_list(&data.dispose);
1514 	}
1515 }
1516 EXPORT_SYMBOL(shrink_dcache_parent);
1517 
1518 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1519 {
1520 	/* it has busy descendents; complain about those instead */
1521 	if (!hlist_empty(&dentry->d_children))
1522 		return D_WALK_CONTINUE;
1523 
1524 	/* root with refcount 1 is fine */
1525 	if (dentry == _data && dentry->d_lockref.count == 1)
1526 		return D_WALK_CONTINUE;
1527 
1528 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1529 			" still in use (%d) [unmount of %s %s]\n",
1530 		       dentry,
1531 		       dentry->d_inode ?
1532 		       dentry->d_inode->i_ino : 0UL,
1533 		       dentry,
1534 		       dentry->d_lockref.count,
1535 		       dentry->d_sb->s_type->name,
1536 		       dentry->d_sb->s_id);
1537 	return D_WALK_CONTINUE;
1538 }
1539 
1540 static void do_one_tree(struct dentry *dentry)
1541 {
1542 	shrink_dcache_parent(dentry);
1543 	d_walk(dentry, dentry, umount_check);
1544 	d_drop(dentry);
1545 	dput(dentry);
1546 }
1547 
1548 /*
1549  * destroy the dentries attached to a superblock on unmounting
1550  */
1551 void shrink_dcache_for_umount(struct super_block *sb)
1552 {
1553 	struct dentry *dentry;
1554 
1555 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1556 
1557 	dentry = sb->s_root;
1558 	sb->s_root = NULL;
1559 	do_one_tree(dentry);
1560 
1561 	while (!hlist_bl_empty(&sb->s_roots)) {
1562 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1563 		do_one_tree(dentry);
1564 	}
1565 }
1566 
1567 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1568 {
1569 	struct dentry **victim = _data;
1570 	if (d_mountpoint(dentry)) {
1571 		*victim = dget_dlock(dentry);
1572 		return D_WALK_QUIT;
1573 	}
1574 	return D_WALK_CONTINUE;
1575 }
1576 
1577 /**
1578  * d_invalidate - detach submounts, prune dcache, and drop
1579  * @dentry: dentry to invalidate (aka detach, prune and drop)
1580  */
1581 void d_invalidate(struct dentry *dentry)
1582 {
1583 	bool had_submounts = false;
1584 	spin_lock(&dentry->d_lock);
1585 	if (d_unhashed(dentry)) {
1586 		spin_unlock(&dentry->d_lock);
1587 		return;
1588 	}
1589 	__d_drop(dentry);
1590 	spin_unlock(&dentry->d_lock);
1591 
1592 	/* Negative dentries can be dropped without further checks */
1593 	if (!dentry->d_inode)
1594 		return;
1595 
1596 	shrink_dcache_parent(dentry);
1597 	for (;;) {
1598 		struct dentry *victim = NULL;
1599 		d_walk(dentry, &victim, find_submount);
1600 		if (!victim) {
1601 			if (had_submounts)
1602 				shrink_dcache_parent(dentry);
1603 			return;
1604 		}
1605 		had_submounts = true;
1606 		detach_mounts(victim);
1607 		dput(victim);
1608 	}
1609 }
1610 EXPORT_SYMBOL(d_invalidate);
1611 
1612 /**
1613  * __d_alloc	-	allocate a dcache entry
1614  * @sb: filesystem it will belong to
1615  * @name: qstr of the name
1616  *
1617  * Allocates a dentry. It returns %NULL if there is insufficient memory
1618  * available. On a success the dentry is returned. The name passed in is
1619  * copied and the copy passed in may be reused after this call.
1620  */
1621 
1622 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1623 {
1624 	struct dentry *dentry;
1625 	char *dname;
1626 	int err;
1627 
1628 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1629 				      GFP_KERNEL);
1630 	if (!dentry)
1631 		return NULL;
1632 
1633 	/*
1634 	 * We guarantee that the inline name is always NUL-terminated.
1635 	 * This way the memcpy() done by the name switching in rename
1636 	 * will still always have a NUL at the end, even if we might
1637 	 * be overwriting an internal NUL character
1638 	 */
1639 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1640 	if (unlikely(!name)) {
1641 		name = &slash_name;
1642 		dname = dentry->d_iname;
1643 	} else if (name->len > DNAME_INLINE_LEN-1) {
1644 		size_t size = offsetof(struct external_name, name[1]);
1645 		struct external_name *p = kmalloc(size + name->len,
1646 						  GFP_KERNEL_ACCOUNT |
1647 						  __GFP_RECLAIMABLE);
1648 		if (!p) {
1649 			kmem_cache_free(dentry_cache, dentry);
1650 			return NULL;
1651 		}
1652 		atomic_set(&p->u.count, 1);
1653 		dname = p->name;
1654 	} else  {
1655 		dname = dentry->d_iname;
1656 	}
1657 
1658 	dentry->d_name.len = name->len;
1659 	dentry->d_name.hash = name->hash;
1660 	memcpy(dname, name->name, name->len);
1661 	dname[name->len] = 0;
1662 
1663 	/* Make sure we always see the terminating NUL character */
1664 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1665 
1666 	dentry->d_lockref.count = 1;
1667 	dentry->d_flags = 0;
1668 	spin_lock_init(&dentry->d_lock);
1669 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1670 	dentry->d_inode = NULL;
1671 	dentry->d_parent = dentry;
1672 	dentry->d_sb = sb;
1673 	dentry->d_op = NULL;
1674 	dentry->d_fsdata = NULL;
1675 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1676 	INIT_LIST_HEAD(&dentry->d_lru);
1677 	INIT_HLIST_HEAD(&dentry->d_children);
1678 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1679 	INIT_HLIST_NODE(&dentry->d_sib);
1680 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1681 
1682 	if (dentry->d_op && dentry->d_op->d_init) {
1683 		err = dentry->d_op->d_init(dentry);
1684 		if (err) {
1685 			if (dname_external(dentry))
1686 				kfree(external_name(dentry));
1687 			kmem_cache_free(dentry_cache, dentry);
1688 			return NULL;
1689 		}
1690 	}
1691 
1692 	this_cpu_inc(nr_dentry);
1693 
1694 	return dentry;
1695 }
1696 
1697 /**
1698  * d_alloc	-	allocate a dcache entry
1699  * @parent: parent of entry to allocate
1700  * @name: qstr of the name
1701  *
1702  * Allocates a dentry. It returns %NULL if there is insufficient memory
1703  * available. On a success the dentry is returned. The name passed in is
1704  * copied and the copy passed in may be reused after this call.
1705  */
1706 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1707 {
1708 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1709 	if (!dentry)
1710 		return NULL;
1711 	spin_lock(&parent->d_lock);
1712 	/*
1713 	 * don't need child lock because it is not subject
1714 	 * to concurrency here
1715 	 */
1716 	dentry->d_parent = dget_dlock(parent);
1717 	hlist_add_head(&dentry->d_sib, &parent->d_children);
1718 	spin_unlock(&parent->d_lock);
1719 
1720 	return dentry;
1721 }
1722 EXPORT_SYMBOL(d_alloc);
1723 
1724 struct dentry *d_alloc_anon(struct super_block *sb)
1725 {
1726 	return __d_alloc(sb, NULL);
1727 }
1728 EXPORT_SYMBOL(d_alloc_anon);
1729 
1730 struct dentry *d_alloc_cursor(struct dentry * parent)
1731 {
1732 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1733 	if (dentry) {
1734 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1735 		dentry->d_parent = dget(parent);
1736 	}
1737 	return dentry;
1738 }
1739 
1740 /**
1741  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1742  * @sb: the superblock
1743  * @name: qstr of the name
1744  *
1745  * For a filesystem that just pins its dentries in memory and never
1746  * performs lookups at all, return an unhashed IS_ROOT dentry.
1747  * This is used for pipes, sockets et.al. - the stuff that should
1748  * never be anyone's children or parents.  Unlike all other
1749  * dentries, these will not have RCU delay between dropping the
1750  * last reference and freeing them.
1751  *
1752  * The only user is alloc_file_pseudo() and that's what should
1753  * be considered a public interface.  Don't use directly.
1754  */
1755 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1756 {
1757 	static const struct dentry_operations anon_ops = {
1758 		.d_dname = simple_dname
1759 	};
1760 	struct dentry *dentry = __d_alloc(sb, name);
1761 	if (likely(dentry)) {
1762 		dentry->d_flags |= DCACHE_NORCU;
1763 		if (!sb->s_d_op)
1764 			d_set_d_op(dentry, &anon_ops);
1765 	}
1766 	return dentry;
1767 }
1768 
1769 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1770 {
1771 	struct qstr q;
1772 
1773 	q.name = name;
1774 	q.hash_len = hashlen_string(parent, name);
1775 	return d_alloc(parent, &q);
1776 }
1777 EXPORT_SYMBOL(d_alloc_name);
1778 
1779 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1780 {
1781 	WARN_ON_ONCE(dentry->d_op);
1782 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1783 				DCACHE_OP_COMPARE	|
1784 				DCACHE_OP_REVALIDATE	|
1785 				DCACHE_OP_WEAK_REVALIDATE	|
1786 				DCACHE_OP_DELETE	|
1787 				DCACHE_OP_REAL));
1788 	dentry->d_op = op;
1789 	if (!op)
1790 		return;
1791 	if (op->d_hash)
1792 		dentry->d_flags |= DCACHE_OP_HASH;
1793 	if (op->d_compare)
1794 		dentry->d_flags |= DCACHE_OP_COMPARE;
1795 	if (op->d_revalidate)
1796 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1797 	if (op->d_weak_revalidate)
1798 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1799 	if (op->d_delete)
1800 		dentry->d_flags |= DCACHE_OP_DELETE;
1801 	if (op->d_prune)
1802 		dentry->d_flags |= DCACHE_OP_PRUNE;
1803 	if (op->d_real)
1804 		dentry->d_flags |= DCACHE_OP_REAL;
1805 
1806 }
1807 EXPORT_SYMBOL(d_set_d_op);
1808 
1809 static unsigned d_flags_for_inode(struct inode *inode)
1810 {
1811 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1812 
1813 	if (!inode)
1814 		return DCACHE_MISS_TYPE;
1815 
1816 	if (S_ISDIR(inode->i_mode)) {
1817 		add_flags = DCACHE_DIRECTORY_TYPE;
1818 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1819 			if (unlikely(!inode->i_op->lookup))
1820 				add_flags = DCACHE_AUTODIR_TYPE;
1821 			else
1822 				inode->i_opflags |= IOP_LOOKUP;
1823 		}
1824 		goto type_determined;
1825 	}
1826 
1827 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1828 		if (unlikely(inode->i_op->get_link)) {
1829 			add_flags = DCACHE_SYMLINK_TYPE;
1830 			goto type_determined;
1831 		}
1832 		inode->i_opflags |= IOP_NOFOLLOW;
1833 	}
1834 
1835 	if (unlikely(!S_ISREG(inode->i_mode)))
1836 		add_flags = DCACHE_SPECIAL_TYPE;
1837 
1838 type_determined:
1839 	if (unlikely(IS_AUTOMOUNT(inode)))
1840 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1841 	return add_flags;
1842 }
1843 
1844 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1845 {
1846 	unsigned add_flags = d_flags_for_inode(inode);
1847 	WARN_ON(d_in_lookup(dentry));
1848 
1849 	spin_lock(&dentry->d_lock);
1850 	/*
1851 	 * The negative counter only tracks dentries on the LRU. Don't dec if
1852 	 * d_lru is on another list.
1853 	 */
1854 	if ((dentry->d_flags &
1855 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1856 		this_cpu_dec(nr_dentry_negative);
1857 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1858 	raw_write_seqcount_begin(&dentry->d_seq);
1859 	__d_set_inode_and_type(dentry, inode, add_flags);
1860 	raw_write_seqcount_end(&dentry->d_seq);
1861 	fsnotify_update_flags(dentry);
1862 	spin_unlock(&dentry->d_lock);
1863 }
1864 
1865 /**
1866  * d_instantiate - fill in inode information for a dentry
1867  * @entry: dentry to complete
1868  * @inode: inode to attach to this dentry
1869  *
1870  * Fill in inode information in the entry.
1871  *
1872  * This turns negative dentries into productive full members
1873  * of society.
1874  *
1875  * NOTE! This assumes that the inode count has been incremented
1876  * (or otherwise set) by the caller to indicate that it is now
1877  * in use by the dcache.
1878  */
1879 
1880 void d_instantiate(struct dentry *entry, struct inode * inode)
1881 {
1882 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1883 	if (inode) {
1884 		security_d_instantiate(entry, inode);
1885 		spin_lock(&inode->i_lock);
1886 		__d_instantiate(entry, inode);
1887 		spin_unlock(&inode->i_lock);
1888 	}
1889 }
1890 EXPORT_SYMBOL(d_instantiate);
1891 
1892 /*
1893  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1894  * with lockdep-related part of unlock_new_inode() done before
1895  * anything else.  Use that instead of open-coding d_instantiate()/
1896  * unlock_new_inode() combinations.
1897  */
1898 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1899 {
1900 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1901 	BUG_ON(!inode);
1902 	lockdep_annotate_inode_mutex_key(inode);
1903 	security_d_instantiate(entry, inode);
1904 	spin_lock(&inode->i_lock);
1905 	__d_instantiate(entry, inode);
1906 	WARN_ON(!(inode->i_state & I_NEW));
1907 	inode->i_state &= ~I_NEW & ~I_CREATING;
1908 	smp_mb();
1909 	wake_up_bit(&inode->i_state, __I_NEW);
1910 	spin_unlock(&inode->i_lock);
1911 }
1912 EXPORT_SYMBOL(d_instantiate_new);
1913 
1914 struct dentry *d_make_root(struct inode *root_inode)
1915 {
1916 	struct dentry *res = NULL;
1917 
1918 	if (root_inode) {
1919 		res = d_alloc_anon(root_inode->i_sb);
1920 		if (res)
1921 			d_instantiate(res, root_inode);
1922 		else
1923 			iput(root_inode);
1924 	}
1925 	return res;
1926 }
1927 EXPORT_SYMBOL(d_make_root);
1928 
1929 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1930 {
1931 	struct super_block *sb;
1932 	struct dentry *new, *res;
1933 
1934 	if (!inode)
1935 		return ERR_PTR(-ESTALE);
1936 	if (IS_ERR(inode))
1937 		return ERR_CAST(inode);
1938 
1939 	sb = inode->i_sb;
1940 
1941 	res = d_find_any_alias(inode); /* existing alias? */
1942 	if (res)
1943 		goto out;
1944 
1945 	new = d_alloc_anon(sb);
1946 	if (!new) {
1947 		res = ERR_PTR(-ENOMEM);
1948 		goto out;
1949 	}
1950 
1951 	security_d_instantiate(new, inode);
1952 	spin_lock(&inode->i_lock);
1953 	res = __d_find_any_alias(inode); /* recheck under lock */
1954 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1955 		unsigned add_flags = d_flags_for_inode(inode);
1956 
1957 		if (disconnected)
1958 			add_flags |= DCACHE_DISCONNECTED;
1959 
1960 		spin_lock(&new->d_lock);
1961 		__d_set_inode_and_type(new, inode, add_flags);
1962 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1963 		if (!disconnected) {
1964 			hlist_bl_lock(&sb->s_roots);
1965 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1966 			hlist_bl_unlock(&sb->s_roots);
1967 		}
1968 		spin_unlock(&new->d_lock);
1969 		spin_unlock(&inode->i_lock);
1970 		inode = NULL; /* consumed by new->d_inode */
1971 		res = new;
1972 	} else {
1973 		spin_unlock(&inode->i_lock);
1974 		dput(new);
1975 	}
1976 
1977  out:
1978 	iput(inode);
1979 	return res;
1980 }
1981 
1982 /**
1983  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1984  * @inode: inode to allocate the dentry for
1985  *
1986  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1987  * similar open by handle operations.  The returned dentry may be anonymous,
1988  * or may have a full name (if the inode was already in the cache).
1989  *
1990  * When called on a directory inode, we must ensure that the inode only ever
1991  * has one dentry.  If a dentry is found, that is returned instead of
1992  * allocating a new one.
1993  *
1994  * On successful return, the reference to the inode has been transferred
1995  * to the dentry.  In case of an error the reference on the inode is released.
1996  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1997  * be passed in and the error will be propagated to the return value,
1998  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1999  */
2000 struct dentry *d_obtain_alias(struct inode *inode)
2001 {
2002 	return __d_obtain_alias(inode, true);
2003 }
2004 EXPORT_SYMBOL(d_obtain_alias);
2005 
2006 /**
2007  * d_obtain_root - find or allocate a dentry for a given inode
2008  * @inode: inode to allocate the dentry for
2009  *
2010  * Obtain an IS_ROOT dentry for the root of a filesystem.
2011  *
2012  * We must ensure that directory inodes only ever have one dentry.  If a
2013  * dentry is found, that is returned instead of allocating a new one.
2014  *
2015  * On successful return, the reference to the inode has been transferred
2016  * to the dentry.  In case of an error the reference on the inode is
2017  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2018  * error will be propagate to the return value, with a %NULL @inode
2019  * replaced by ERR_PTR(-ESTALE).
2020  */
2021 struct dentry *d_obtain_root(struct inode *inode)
2022 {
2023 	return __d_obtain_alias(inode, false);
2024 }
2025 EXPORT_SYMBOL(d_obtain_root);
2026 
2027 /**
2028  * d_add_ci - lookup or allocate new dentry with case-exact name
2029  * @inode:  the inode case-insensitive lookup has found
2030  * @dentry: the negative dentry that was passed to the parent's lookup func
2031  * @name:   the case-exact name to be associated with the returned dentry
2032  *
2033  * This is to avoid filling the dcache with case-insensitive names to the
2034  * same inode, only the actual correct case is stored in the dcache for
2035  * case-insensitive filesystems.
2036  *
2037  * For a case-insensitive lookup match and if the case-exact dentry
2038  * already exists in the dcache, use it and return it.
2039  *
2040  * If no entry exists with the exact case name, allocate new dentry with
2041  * the exact case, and return the spliced entry.
2042  */
2043 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2044 			struct qstr *name)
2045 {
2046 	struct dentry *found, *res;
2047 
2048 	/*
2049 	 * First check if a dentry matching the name already exists,
2050 	 * if not go ahead and create it now.
2051 	 */
2052 	found = d_hash_and_lookup(dentry->d_parent, name);
2053 	if (found) {
2054 		iput(inode);
2055 		return found;
2056 	}
2057 	if (d_in_lookup(dentry)) {
2058 		found = d_alloc_parallel(dentry->d_parent, name,
2059 					dentry->d_wait);
2060 		if (IS_ERR(found) || !d_in_lookup(found)) {
2061 			iput(inode);
2062 			return found;
2063 		}
2064 	} else {
2065 		found = d_alloc(dentry->d_parent, name);
2066 		if (!found) {
2067 			iput(inode);
2068 			return ERR_PTR(-ENOMEM);
2069 		}
2070 	}
2071 	res = d_splice_alias(inode, found);
2072 	if (res) {
2073 		d_lookup_done(found);
2074 		dput(found);
2075 		return res;
2076 	}
2077 	return found;
2078 }
2079 EXPORT_SYMBOL(d_add_ci);
2080 
2081 /**
2082  * d_same_name - compare dentry name with case-exact name
2083  * @parent: parent dentry
2084  * @dentry: the negative dentry that was passed to the parent's lookup func
2085  * @name:   the case-exact name to be associated with the returned dentry
2086  *
2087  * Return: true if names are same, or false
2088  */
2089 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2090 		 const struct qstr *name)
2091 {
2092 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2093 		if (dentry->d_name.len != name->len)
2094 			return false;
2095 		return dentry_cmp(dentry, name->name, name->len) == 0;
2096 	}
2097 	return parent->d_op->d_compare(dentry,
2098 				       dentry->d_name.len, dentry->d_name.name,
2099 				       name) == 0;
2100 }
2101 EXPORT_SYMBOL_GPL(d_same_name);
2102 
2103 /*
2104  * This is __d_lookup_rcu() when the parent dentry has
2105  * DCACHE_OP_COMPARE, which makes things much nastier.
2106  */
2107 static noinline struct dentry *__d_lookup_rcu_op_compare(
2108 	const struct dentry *parent,
2109 	const struct qstr *name,
2110 	unsigned *seqp)
2111 {
2112 	u64 hashlen = name->hash_len;
2113 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2114 	struct hlist_bl_node *node;
2115 	struct dentry *dentry;
2116 
2117 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2118 		int tlen;
2119 		const char *tname;
2120 		unsigned seq;
2121 
2122 seqretry:
2123 		seq = raw_seqcount_begin(&dentry->d_seq);
2124 		if (dentry->d_parent != parent)
2125 			continue;
2126 		if (d_unhashed(dentry))
2127 			continue;
2128 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2129 			continue;
2130 		tlen = dentry->d_name.len;
2131 		tname = dentry->d_name.name;
2132 		/* we want a consistent (name,len) pair */
2133 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2134 			cpu_relax();
2135 			goto seqretry;
2136 		}
2137 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2138 			continue;
2139 		*seqp = seq;
2140 		return dentry;
2141 	}
2142 	return NULL;
2143 }
2144 
2145 /**
2146  * __d_lookup_rcu - search for a dentry (racy, store-free)
2147  * @parent: parent dentry
2148  * @name: qstr of name we wish to find
2149  * @seqp: returns d_seq value at the point where the dentry was found
2150  * Returns: dentry, or NULL
2151  *
2152  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2153  * resolution (store-free path walking) design described in
2154  * Documentation/filesystems/path-lookup.txt.
2155  *
2156  * This is not to be used outside core vfs.
2157  *
2158  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2159  * held, and rcu_read_lock held. The returned dentry must not be stored into
2160  * without taking d_lock and checking d_seq sequence count against @seq
2161  * returned here.
2162  *
2163  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2164  * function.
2165  *
2166  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2167  * the returned dentry, so long as its parent's seqlock is checked after the
2168  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2169  * is formed, giving integrity down the path walk.
2170  *
2171  * NOTE! The caller *has* to check the resulting dentry against the sequence
2172  * number we've returned before using any of the resulting dentry state!
2173  */
2174 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2175 				const struct qstr *name,
2176 				unsigned *seqp)
2177 {
2178 	u64 hashlen = name->hash_len;
2179 	const unsigned char *str = name->name;
2180 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2181 	struct hlist_bl_node *node;
2182 	struct dentry *dentry;
2183 
2184 	/*
2185 	 * Note: There is significant duplication with __d_lookup_rcu which is
2186 	 * required to prevent single threaded performance regressions
2187 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2188 	 * Keep the two functions in sync.
2189 	 */
2190 
2191 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2192 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2193 
2194 	/*
2195 	 * The hash list is protected using RCU.
2196 	 *
2197 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2198 	 * races with d_move().
2199 	 *
2200 	 * It is possible that concurrent renames can mess up our list
2201 	 * walk here and result in missing our dentry, resulting in the
2202 	 * false-negative result. d_lookup() protects against concurrent
2203 	 * renames using rename_lock seqlock.
2204 	 *
2205 	 * See Documentation/filesystems/path-lookup.txt for more details.
2206 	 */
2207 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2208 		unsigned seq;
2209 
2210 		/*
2211 		 * The dentry sequence count protects us from concurrent
2212 		 * renames, and thus protects parent and name fields.
2213 		 *
2214 		 * The caller must perform a seqcount check in order
2215 		 * to do anything useful with the returned dentry.
2216 		 *
2217 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2218 		 * we don't wait for the sequence count to stabilize if it
2219 		 * is in the middle of a sequence change. If we do the slow
2220 		 * dentry compare, we will do seqretries until it is stable,
2221 		 * and if we end up with a successful lookup, we actually
2222 		 * want to exit RCU lookup anyway.
2223 		 *
2224 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2225 		 * we are still guaranteed NUL-termination of ->d_name.name.
2226 		 */
2227 		seq = raw_seqcount_begin(&dentry->d_seq);
2228 		if (dentry->d_parent != parent)
2229 			continue;
2230 		if (d_unhashed(dentry))
2231 			continue;
2232 		if (dentry->d_name.hash_len != hashlen)
2233 			continue;
2234 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2235 			continue;
2236 		*seqp = seq;
2237 		return dentry;
2238 	}
2239 	return NULL;
2240 }
2241 
2242 /**
2243  * d_lookup - search for a dentry
2244  * @parent: parent dentry
2245  * @name: qstr of name we wish to find
2246  * Returns: dentry, or NULL
2247  *
2248  * d_lookup searches the children of the parent dentry for the name in
2249  * question. If the dentry is found its reference count is incremented and the
2250  * dentry is returned. The caller must use dput to free the entry when it has
2251  * finished using it. %NULL is returned if the dentry does not exist.
2252  */
2253 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2254 {
2255 	struct dentry *dentry;
2256 	unsigned seq;
2257 
2258 	do {
2259 		seq = read_seqbegin(&rename_lock);
2260 		dentry = __d_lookup(parent, name);
2261 		if (dentry)
2262 			break;
2263 	} while (read_seqretry(&rename_lock, seq));
2264 	return dentry;
2265 }
2266 EXPORT_SYMBOL(d_lookup);
2267 
2268 /**
2269  * __d_lookup - search for a dentry (racy)
2270  * @parent: parent dentry
2271  * @name: qstr of name we wish to find
2272  * Returns: dentry, or NULL
2273  *
2274  * __d_lookup is like d_lookup, however it may (rarely) return a
2275  * false-negative result due to unrelated rename activity.
2276  *
2277  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2278  * however it must be used carefully, eg. with a following d_lookup in
2279  * the case of failure.
2280  *
2281  * __d_lookup callers must be commented.
2282  */
2283 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2284 {
2285 	unsigned int hash = name->hash;
2286 	struct hlist_bl_head *b = d_hash(hash);
2287 	struct hlist_bl_node *node;
2288 	struct dentry *found = NULL;
2289 	struct dentry *dentry;
2290 
2291 	/*
2292 	 * Note: There is significant duplication with __d_lookup_rcu which is
2293 	 * required to prevent single threaded performance regressions
2294 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2295 	 * Keep the two functions in sync.
2296 	 */
2297 
2298 	/*
2299 	 * The hash list is protected using RCU.
2300 	 *
2301 	 * Take d_lock when comparing a candidate dentry, to avoid races
2302 	 * with d_move().
2303 	 *
2304 	 * It is possible that concurrent renames can mess up our list
2305 	 * walk here and result in missing our dentry, resulting in the
2306 	 * false-negative result. d_lookup() protects against concurrent
2307 	 * renames using rename_lock seqlock.
2308 	 *
2309 	 * See Documentation/filesystems/path-lookup.txt for more details.
2310 	 */
2311 	rcu_read_lock();
2312 
2313 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2314 
2315 		if (dentry->d_name.hash != hash)
2316 			continue;
2317 
2318 		spin_lock(&dentry->d_lock);
2319 		if (dentry->d_parent != parent)
2320 			goto next;
2321 		if (d_unhashed(dentry))
2322 			goto next;
2323 
2324 		if (!d_same_name(dentry, parent, name))
2325 			goto next;
2326 
2327 		dentry->d_lockref.count++;
2328 		found = dentry;
2329 		spin_unlock(&dentry->d_lock);
2330 		break;
2331 next:
2332 		spin_unlock(&dentry->d_lock);
2333  	}
2334  	rcu_read_unlock();
2335 
2336  	return found;
2337 }
2338 
2339 /**
2340  * d_hash_and_lookup - hash the qstr then search for a dentry
2341  * @dir: Directory to search in
2342  * @name: qstr of name we wish to find
2343  *
2344  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2345  */
2346 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2347 {
2348 	/*
2349 	 * Check for a fs-specific hash function. Note that we must
2350 	 * calculate the standard hash first, as the d_op->d_hash()
2351 	 * routine may choose to leave the hash value unchanged.
2352 	 */
2353 	name->hash = full_name_hash(dir, name->name, name->len);
2354 	if (dir->d_flags & DCACHE_OP_HASH) {
2355 		int err = dir->d_op->d_hash(dir, name);
2356 		if (unlikely(err < 0))
2357 			return ERR_PTR(err);
2358 	}
2359 	return d_lookup(dir, name);
2360 }
2361 EXPORT_SYMBOL(d_hash_and_lookup);
2362 
2363 /*
2364  * When a file is deleted, we have two options:
2365  * - turn this dentry into a negative dentry
2366  * - unhash this dentry and free it.
2367  *
2368  * Usually, we want to just turn this into
2369  * a negative dentry, but if anybody else is
2370  * currently using the dentry or the inode
2371  * we can't do that and we fall back on removing
2372  * it from the hash queues and waiting for
2373  * it to be deleted later when it has no users
2374  */
2375 
2376 /**
2377  * d_delete - delete a dentry
2378  * @dentry: The dentry to delete
2379  *
2380  * Turn the dentry into a negative dentry if possible, otherwise
2381  * remove it from the hash queues so it can be deleted later
2382  */
2383 
2384 void d_delete(struct dentry * dentry)
2385 {
2386 	struct inode *inode = dentry->d_inode;
2387 
2388 	spin_lock(&inode->i_lock);
2389 	spin_lock(&dentry->d_lock);
2390 	/*
2391 	 * Are we the only user?
2392 	 */
2393 	if (dentry->d_lockref.count == 1) {
2394 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2395 		dentry_unlink_inode(dentry);
2396 	} else {
2397 		__d_drop(dentry);
2398 		spin_unlock(&dentry->d_lock);
2399 		spin_unlock(&inode->i_lock);
2400 	}
2401 }
2402 EXPORT_SYMBOL(d_delete);
2403 
2404 static void __d_rehash(struct dentry *entry)
2405 {
2406 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2407 
2408 	hlist_bl_lock(b);
2409 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2410 	hlist_bl_unlock(b);
2411 }
2412 
2413 /**
2414  * d_rehash	- add an entry back to the hash
2415  * @entry: dentry to add to the hash
2416  *
2417  * Adds a dentry to the hash according to its name.
2418  */
2419 
2420 void d_rehash(struct dentry * entry)
2421 {
2422 	spin_lock(&entry->d_lock);
2423 	__d_rehash(entry);
2424 	spin_unlock(&entry->d_lock);
2425 }
2426 EXPORT_SYMBOL(d_rehash);
2427 
2428 static inline unsigned start_dir_add(struct inode *dir)
2429 {
2430 	preempt_disable_nested();
2431 	for (;;) {
2432 		unsigned n = dir->i_dir_seq;
2433 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2434 			return n;
2435 		cpu_relax();
2436 	}
2437 }
2438 
2439 static inline void end_dir_add(struct inode *dir, unsigned int n,
2440 			       wait_queue_head_t *d_wait)
2441 {
2442 	smp_store_release(&dir->i_dir_seq, n + 2);
2443 	preempt_enable_nested();
2444 	wake_up_all(d_wait);
2445 }
2446 
2447 static void d_wait_lookup(struct dentry *dentry)
2448 {
2449 	if (d_in_lookup(dentry)) {
2450 		DECLARE_WAITQUEUE(wait, current);
2451 		add_wait_queue(dentry->d_wait, &wait);
2452 		do {
2453 			set_current_state(TASK_UNINTERRUPTIBLE);
2454 			spin_unlock(&dentry->d_lock);
2455 			schedule();
2456 			spin_lock(&dentry->d_lock);
2457 		} while (d_in_lookup(dentry));
2458 	}
2459 }
2460 
2461 struct dentry *d_alloc_parallel(struct dentry *parent,
2462 				const struct qstr *name,
2463 				wait_queue_head_t *wq)
2464 {
2465 	unsigned int hash = name->hash;
2466 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2467 	struct hlist_bl_node *node;
2468 	struct dentry *new = d_alloc(parent, name);
2469 	struct dentry *dentry;
2470 	unsigned seq, r_seq, d_seq;
2471 
2472 	if (unlikely(!new))
2473 		return ERR_PTR(-ENOMEM);
2474 
2475 retry:
2476 	rcu_read_lock();
2477 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2478 	r_seq = read_seqbegin(&rename_lock);
2479 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2480 	if (unlikely(dentry)) {
2481 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2482 			rcu_read_unlock();
2483 			goto retry;
2484 		}
2485 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2486 			rcu_read_unlock();
2487 			dput(dentry);
2488 			goto retry;
2489 		}
2490 		rcu_read_unlock();
2491 		dput(new);
2492 		return dentry;
2493 	}
2494 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2495 		rcu_read_unlock();
2496 		goto retry;
2497 	}
2498 
2499 	if (unlikely(seq & 1)) {
2500 		rcu_read_unlock();
2501 		goto retry;
2502 	}
2503 
2504 	hlist_bl_lock(b);
2505 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2506 		hlist_bl_unlock(b);
2507 		rcu_read_unlock();
2508 		goto retry;
2509 	}
2510 	/*
2511 	 * No changes for the parent since the beginning of d_lookup().
2512 	 * Since all removals from the chain happen with hlist_bl_lock(),
2513 	 * any potential in-lookup matches are going to stay here until
2514 	 * we unlock the chain.  All fields are stable in everything
2515 	 * we encounter.
2516 	 */
2517 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2518 		if (dentry->d_name.hash != hash)
2519 			continue;
2520 		if (dentry->d_parent != parent)
2521 			continue;
2522 		if (!d_same_name(dentry, parent, name))
2523 			continue;
2524 		hlist_bl_unlock(b);
2525 		/* now we can try to grab a reference */
2526 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2527 			rcu_read_unlock();
2528 			goto retry;
2529 		}
2530 
2531 		rcu_read_unlock();
2532 		/*
2533 		 * somebody is likely to be still doing lookup for it;
2534 		 * wait for them to finish
2535 		 */
2536 		spin_lock(&dentry->d_lock);
2537 		d_wait_lookup(dentry);
2538 		/*
2539 		 * it's not in-lookup anymore; in principle we should repeat
2540 		 * everything from dcache lookup, but it's likely to be what
2541 		 * d_lookup() would've found anyway.  If it is, just return it;
2542 		 * otherwise we really have to repeat the whole thing.
2543 		 */
2544 		if (unlikely(dentry->d_name.hash != hash))
2545 			goto mismatch;
2546 		if (unlikely(dentry->d_parent != parent))
2547 			goto mismatch;
2548 		if (unlikely(d_unhashed(dentry)))
2549 			goto mismatch;
2550 		if (unlikely(!d_same_name(dentry, parent, name)))
2551 			goto mismatch;
2552 		/* OK, it *is* a hashed match; return it */
2553 		spin_unlock(&dentry->d_lock);
2554 		dput(new);
2555 		return dentry;
2556 	}
2557 	rcu_read_unlock();
2558 	/* we can't take ->d_lock here; it's OK, though. */
2559 	new->d_flags |= DCACHE_PAR_LOOKUP;
2560 	new->d_wait = wq;
2561 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2562 	hlist_bl_unlock(b);
2563 	return new;
2564 mismatch:
2565 	spin_unlock(&dentry->d_lock);
2566 	dput(dentry);
2567 	goto retry;
2568 }
2569 EXPORT_SYMBOL(d_alloc_parallel);
2570 
2571 /*
2572  * - Unhash the dentry
2573  * - Retrieve and clear the waitqueue head in dentry
2574  * - Return the waitqueue head
2575  */
2576 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2577 {
2578 	wait_queue_head_t *d_wait;
2579 	struct hlist_bl_head *b;
2580 
2581 	lockdep_assert_held(&dentry->d_lock);
2582 
2583 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2584 	hlist_bl_lock(b);
2585 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2586 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2587 	d_wait = dentry->d_wait;
2588 	dentry->d_wait = NULL;
2589 	hlist_bl_unlock(b);
2590 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2591 	INIT_LIST_HEAD(&dentry->d_lru);
2592 	return d_wait;
2593 }
2594 
2595 void __d_lookup_unhash_wake(struct dentry *dentry)
2596 {
2597 	spin_lock(&dentry->d_lock);
2598 	wake_up_all(__d_lookup_unhash(dentry));
2599 	spin_unlock(&dentry->d_lock);
2600 }
2601 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2602 
2603 /* inode->i_lock held if inode is non-NULL */
2604 
2605 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2606 {
2607 	wait_queue_head_t *d_wait;
2608 	struct inode *dir = NULL;
2609 	unsigned n;
2610 	spin_lock(&dentry->d_lock);
2611 	if (unlikely(d_in_lookup(dentry))) {
2612 		dir = dentry->d_parent->d_inode;
2613 		n = start_dir_add(dir);
2614 		d_wait = __d_lookup_unhash(dentry);
2615 	}
2616 	if (inode) {
2617 		unsigned add_flags = d_flags_for_inode(inode);
2618 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2619 		raw_write_seqcount_begin(&dentry->d_seq);
2620 		__d_set_inode_and_type(dentry, inode, add_flags);
2621 		raw_write_seqcount_end(&dentry->d_seq);
2622 		fsnotify_update_flags(dentry);
2623 	}
2624 	__d_rehash(dentry);
2625 	if (dir)
2626 		end_dir_add(dir, n, d_wait);
2627 	spin_unlock(&dentry->d_lock);
2628 	if (inode)
2629 		spin_unlock(&inode->i_lock);
2630 }
2631 
2632 /**
2633  * d_add - add dentry to hash queues
2634  * @entry: dentry to add
2635  * @inode: The inode to attach to this dentry
2636  *
2637  * This adds the entry to the hash queues and initializes @inode.
2638  * The entry was actually filled in earlier during d_alloc().
2639  */
2640 
2641 void d_add(struct dentry *entry, struct inode *inode)
2642 {
2643 	if (inode) {
2644 		security_d_instantiate(entry, inode);
2645 		spin_lock(&inode->i_lock);
2646 	}
2647 	__d_add(entry, inode);
2648 }
2649 EXPORT_SYMBOL(d_add);
2650 
2651 /**
2652  * d_exact_alias - find and hash an exact unhashed alias
2653  * @entry: dentry to add
2654  * @inode: The inode to go with this dentry
2655  *
2656  * If an unhashed dentry with the same name/parent and desired
2657  * inode already exists, hash and return it.  Otherwise, return
2658  * NULL.
2659  *
2660  * Parent directory should be locked.
2661  */
2662 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2663 {
2664 	struct dentry *alias;
2665 	unsigned int hash = entry->d_name.hash;
2666 
2667 	spin_lock(&inode->i_lock);
2668 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2669 		/*
2670 		 * Don't need alias->d_lock here, because aliases with
2671 		 * d_parent == entry->d_parent are not subject to name or
2672 		 * parent changes, because the parent inode i_mutex is held.
2673 		 */
2674 		if (alias->d_name.hash != hash)
2675 			continue;
2676 		if (alias->d_parent != entry->d_parent)
2677 			continue;
2678 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2679 			continue;
2680 		spin_lock(&alias->d_lock);
2681 		if (!d_unhashed(alias)) {
2682 			spin_unlock(&alias->d_lock);
2683 			alias = NULL;
2684 		} else {
2685 			dget_dlock(alias);
2686 			__d_rehash(alias);
2687 			spin_unlock(&alias->d_lock);
2688 		}
2689 		spin_unlock(&inode->i_lock);
2690 		return alias;
2691 	}
2692 	spin_unlock(&inode->i_lock);
2693 	return NULL;
2694 }
2695 EXPORT_SYMBOL(d_exact_alias);
2696 
2697 static void swap_names(struct dentry *dentry, struct dentry *target)
2698 {
2699 	if (unlikely(dname_external(target))) {
2700 		if (unlikely(dname_external(dentry))) {
2701 			/*
2702 			 * Both external: swap the pointers
2703 			 */
2704 			swap(target->d_name.name, dentry->d_name.name);
2705 		} else {
2706 			/*
2707 			 * dentry:internal, target:external.  Steal target's
2708 			 * storage and make target internal.
2709 			 */
2710 			memcpy(target->d_iname, dentry->d_name.name,
2711 					dentry->d_name.len + 1);
2712 			dentry->d_name.name = target->d_name.name;
2713 			target->d_name.name = target->d_iname;
2714 		}
2715 	} else {
2716 		if (unlikely(dname_external(dentry))) {
2717 			/*
2718 			 * dentry:external, target:internal.  Give dentry's
2719 			 * storage to target and make dentry internal
2720 			 */
2721 			memcpy(dentry->d_iname, target->d_name.name,
2722 					target->d_name.len + 1);
2723 			target->d_name.name = dentry->d_name.name;
2724 			dentry->d_name.name = dentry->d_iname;
2725 		} else {
2726 			/*
2727 			 * Both are internal.
2728 			 */
2729 			unsigned int i;
2730 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2731 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2732 				swap(((long *) &dentry->d_iname)[i],
2733 				     ((long *) &target->d_iname)[i]);
2734 			}
2735 		}
2736 	}
2737 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2738 }
2739 
2740 static void copy_name(struct dentry *dentry, struct dentry *target)
2741 {
2742 	struct external_name *old_name = NULL;
2743 	if (unlikely(dname_external(dentry)))
2744 		old_name = external_name(dentry);
2745 	if (unlikely(dname_external(target))) {
2746 		atomic_inc(&external_name(target)->u.count);
2747 		dentry->d_name = target->d_name;
2748 	} else {
2749 		memcpy(dentry->d_iname, target->d_name.name,
2750 				target->d_name.len + 1);
2751 		dentry->d_name.name = dentry->d_iname;
2752 		dentry->d_name.hash_len = target->d_name.hash_len;
2753 	}
2754 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2755 		kfree_rcu(old_name, u.head);
2756 }
2757 
2758 /*
2759  * __d_move - move a dentry
2760  * @dentry: entry to move
2761  * @target: new dentry
2762  * @exchange: exchange the two dentries
2763  *
2764  * Update the dcache to reflect the move of a file name. Negative
2765  * dcache entries should not be moved in this way. Caller must hold
2766  * rename_lock, the i_mutex of the source and target directories,
2767  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2768  */
2769 static void __d_move(struct dentry *dentry, struct dentry *target,
2770 		     bool exchange)
2771 {
2772 	struct dentry *old_parent, *p;
2773 	wait_queue_head_t *d_wait;
2774 	struct inode *dir = NULL;
2775 	unsigned n;
2776 
2777 	WARN_ON(!dentry->d_inode);
2778 	if (WARN_ON(dentry == target))
2779 		return;
2780 
2781 	BUG_ON(d_ancestor(target, dentry));
2782 	old_parent = dentry->d_parent;
2783 	p = d_ancestor(old_parent, target);
2784 	if (IS_ROOT(dentry)) {
2785 		BUG_ON(p);
2786 		spin_lock(&target->d_parent->d_lock);
2787 	} else if (!p) {
2788 		/* target is not a descendent of dentry->d_parent */
2789 		spin_lock(&target->d_parent->d_lock);
2790 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2791 	} else {
2792 		BUG_ON(p == dentry);
2793 		spin_lock(&old_parent->d_lock);
2794 		if (p != target)
2795 			spin_lock_nested(&target->d_parent->d_lock,
2796 					DENTRY_D_LOCK_NESTED);
2797 	}
2798 	spin_lock_nested(&dentry->d_lock, 2);
2799 	spin_lock_nested(&target->d_lock, 3);
2800 
2801 	if (unlikely(d_in_lookup(target))) {
2802 		dir = target->d_parent->d_inode;
2803 		n = start_dir_add(dir);
2804 		d_wait = __d_lookup_unhash(target);
2805 	}
2806 
2807 	write_seqcount_begin(&dentry->d_seq);
2808 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2809 
2810 	/* unhash both */
2811 	if (!d_unhashed(dentry))
2812 		___d_drop(dentry);
2813 	if (!d_unhashed(target))
2814 		___d_drop(target);
2815 
2816 	/* ... and switch them in the tree */
2817 	dentry->d_parent = target->d_parent;
2818 	if (!exchange) {
2819 		copy_name(dentry, target);
2820 		target->d_hash.pprev = NULL;
2821 		dentry->d_parent->d_lockref.count++;
2822 		if (dentry != old_parent) /* wasn't IS_ROOT */
2823 			WARN_ON(!--old_parent->d_lockref.count);
2824 	} else {
2825 		target->d_parent = old_parent;
2826 		swap_names(dentry, target);
2827 		if (!hlist_unhashed(&target->d_sib))
2828 			__hlist_del(&target->d_sib);
2829 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2830 		__d_rehash(target);
2831 		fsnotify_update_flags(target);
2832 	}
2833 	if (!hlist_unhashed(&dentry->d_sib))
2834 		__hlist_del(&dentry->d_sib);
2835 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2836 	__d_rehash(dentry);
2837 	fsnotify_update_flags(dentry);
2838 	fscrypt_handle_d_move(dentry);
2839 
2840 	write_seqcount_end(&target->d_seq);
2841 	write_seqcount_end(&dentry->d_seq);
2842 
2843 	if (dir)
2844 		end_dir_add(dir, n, d_wait);
2845 
2846 	if (dentry->d_parent != old_parent)
2847 		spin_unlock(&dentry->d_parent->d_lock);
2848 	if (dentry != old_parent)
2849 		spin_unlock(&old_parent->d_lock);
2850 	spin_unlock(&target->d_lock);
2851 	spin_unlock(&dentry->d_lock);
2852 }
2853 
2854 /*
2855  * d_move - move a dentry
2856  * @dentry: entry to move
2857  * @target: new dentry
2858  *
2859  * Update the dcache to reflect the move of a file name. Negative
2860  * dcache entries should not be moved in this way. See the locking
2861  * requirements for __d_move.
2862  */
2863 void d_move(struct dentry *dentry, struct dentry *target)
2864 {
2865 	write_seqlock(&rename_lock);
2866 	__d_move(dentry, target, false);
2867 	write_sequnlock(&rename_lock);
2868 }
2869 EXPORT_SYMBOL(d_move);
2870 
2871 /*
2872  * d_exchange - exchange two dentries
2873  * @dentry1: first dentry
2874  * @dentry2: second dentry
2875  */
2876 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2877 {
2878 	write_seqlock(&rename_lock);
2879 
2880 	WARN_ON(!dentry1->d_inode);
2881 	WARN_ON(!dentry2->d_inode);
2882 	WARN_ON(IS_ROOT(dentry1));
2883 	WARN_ON(IS_ROOT(dentry2));
2884 
2885 	__d_move(dentry1, dentry2, true);
2886 
2887 	write_sequnlock(&rename_lock);
2888 }
2889 
2890 /**
2891  * d_ancestor - search for an ancestor
2892  * @p1: ancestor dentry
2893  * @p2: child dentry
2894  *
2895  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2896  * an ancestor of p2, else NULL.
2897  */
2898 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2899 {
2900 	struct dentry *p;
2901 
2902 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2903 		if (p->d_parent == p1)
2904 			return p;
2905 	}
2906 	return NULL;
2907 }
2908 
2909 /*
2910  * This helper attempts to cope with remotely renamed directories
2911  *
2912  * It assumes that the caller is already holding
2913  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2914  *
2915  * Note: If ever the locking in lock_rename() changes, then please
2916  * remember to update this too...
2917  */
2918 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2919 {
2920 	struct mutex *m1 = NULL;
2921 	struct rw_semaphore *m2 = NULL;
2922 	int ret = -ESTALE;
2923 
2924 	/* If alias and dentry share a parent, then no extra locks required */
2925 	if (alias->d_parent == dentry->d_parent)
2926 		goto out_unalias;
2927 
2928 	/* See lock_rename() */
2929 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2930 		goto out_err;
2931 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2932 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2933 		goto out_err;
2934 	m2 = &alias->d_parent->d_inode->i_rwsem;
2935 out_unalias:
2936 	__d_move(alias, dentry, false);
2937 	ret = 0;
2938 out_err:
2939 	if (m2)
2940 		up_read(m2);
2941 	if (m1)
2942 		mutex_unlock(m1);
2943 	return ret;
2944 }
2945 
2946 /**
2947  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2948  * @inode:  the inode which may have a disconnected dentry
2949  * @dentry: a negative dentry which we want to point to the inode.
2950  *
2951  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2952  * place of the given dentry and return it, else simply d_add the inode
2953  * to the dentry and return NULL.
2954  *
2955  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2956  * we should error out: directories can't have multiple aliases.
2957  *
2958  * This is needed in the lookup routine of any filesystem that is exportable
2959  * (via knfsd) so that we can build dcache paths to directories effectively.
2960  *
2961  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2962  * is returned.  This matches the expected return value of ->lookup.
2963  *
2964  * Cluster filesystems may call this function with a negative, hashed dentry.
2965  * In that case, we know that the inode will be a regular file, and also this
2966  * will only occur during atomic_open. So we need to check for the dentry
2967  * being already hashed only in the final case.
2968  */
2969 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2970 {
2971 	if (IS_ERR(inode))
2972 		return ERR_CAST(inode);
2973 
2974 	BUG_ON(!d_unhashed(dentry));
2975 
2976 	if (!inode)
2977 		goto out;
2978 
2979 	security_d_instantiate(dentry, inode);
2980 	spin_lock(&inode->i_lock);
2981 	if (S_ISDIR(inode->i_mode)) {
2982 		struct dentry *new = __d_find_any_alias(inode);
2983 		if (unlikely(new)) {
2984 			/* The reference to new ensures it remains an alias */
2985 			spin_unlock(&inode->i_lock);
2986 			write_seqlock(&rename_lock);
2987 			if (unlikely(d_ancestor(new, dentry))) {
2988 				write_sequnlock(&rename_lock);
2989 				dput(new);
2990 				new = ERR_PTR(-ELOOP);
2991 				pr_warn_ratelimited(
2992 					"VFS: Lookup of '%s' in %s %s"
2993 					" would have caused loop\n",
2994 					dentry->d_name.name,
2995 					inode->i_sb->s_type->name,
2996 					inode->i_sb->s_id);
2997 			} else if (!IS_ROOT(new)) {
2998 				struct dentry *old_parent = dget(new->d_parent);
2999 				int err = __d_unalias(dentry, new);
3000 				write_sequnlock(&rename_lock);
3001 				if (err) {
3002 					dput(new);
3003 					new = ERR_PTR(err);
3004 				}
3005 				dput(old_parent);
3006 			} else {
3007 				__d_move(new, dentry, false);
3008 				write_sequnlock(&rename_lock);
3009 			}
3010 			iput(inode);
3011 			return new;
3012 		}
3013 	}
3014 out:
3015 	__d_add(dentry, inode);
3016 	return NULL;
3017 }
3018 EXPORT_SYMBOL(d_splice_alias);
3019 
3020 /*
3021  * Test whether new_dentry is a subdirectory of old_dentry.
3022  *
3023  * Trivially implemented using the dcache structure
3024  */
3025 
3026 /**
3027  * is_subdir - is new dentry a subdirectory of old_dentry
3028  * @new_dentry: new dentry
3029  * @old_dentry: old dentry
3030  *
3031  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3032  * Returns false otherwise.
3033  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3034  */
3035 
3036 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3037 {
3038 	bool subdir;
3039 	unsigned seq;
3040 
3041 	if (new_dentry == old_dentry)
3042 		return true;
3043 
3044 	/* Access d_parent under rcu as d_move() may change it. */
3045 	rcu_read_lock();
3046 	seq = read_seqbegin(&rename_lock);
3047 	subdir = d_ancestor(old_dentry, new_dentry);
3048 	 /* Try lockless once... */
3049 	if (read_seqretry(&rename_lock, seq)) {
3050 		/* ...else acquire lock for progress even on deep chains. */
3051 		read_seqlock_excl(&rename_lock);
3052 		subdir = d_ancestor(old_dentry, new_dentry);
3053 		read_sequnlock_excl(&rename_lock);
3054 	}
3055 	rcu_read_unlock();
3056 	return subdir;
3057 }
3058 EXPORT_SYMBOL(is_subdir);
3059 
3060 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3061 {
3062 	struct dentry *root = data;
3063 	if (dentry != root) {
3064 		if (d_unhashed(dentry) || !dentry->d_inode)
3065 			return D_WALK_SKIP;
3066 
3067 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3068 			dentry->d_flags |= DCACHE_GENOCIDE;
3069 			dentry->d_lockref.count--;
3070 		}
3071 	}
3072 	return D_WALK_CONTINUE;
3073 }
3074 
3075 void d_genocide(struct dentry *parent)
3076 {
3077 	d_walk(parent, parent, d_genocide_kill);
3078 }
3079 
3080 void d_mark_tmpfile(struct file *file, struct inode *inode)
3081 {
3082 	struct dentry *dentry = file->f_path.dentry;
3083 
3084 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3085 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3086 		!d_unlinked(dentry));
3087 	spin_lock(&dentry->d_parent->d_lock);
3088 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3089 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3090 				(unsigned long long)inode->i_ino);
3091 	spin_unlock(&dentry->d_lock);
3092 	spin_unlock(&dentry->d_parent->d_lock);
3093 }
3094 EXPORT_SYMBOL(d_mark_tmpfile);
3095 
3096 void d_tmpfile(struct file *file, struct inode *inode)
3097 {
3098 	struct dentry *dentry = file->f_path.dentry;
3099 
3100 	inode_dec_link_count(inode);
3101 	d_mark_tmpfile(file, inode);
3102 	d_instantiate(dentry, inode);
3103 }
3104 EXPORT_SYMBOL(d_tmpfile);
3105 
3106 static __initdata unsigned long dhash_entries;
3107 static int __init set_dhash_entries(char *str)
3108 {
3109 	if (!str)
3110 		return 0;
3111 	dhash_entries = simple_strtoul(str, &str, 0);
3112 	return 1;
3113 }
3114 __setup("dhash_entries=", set_dhash_entries);
3115 
3116 static void __init dcache_init_early(void)
3117 {
3118 	/* If hashes are distributed across NUMA nodes, defer
3119 	 * hash allocation until vmalloc space is available.
3120 	 */
3121 	if (hashdist)
3122 		return;
3123 
3124 	dentry_hashtable =
3125 		alloc_large_system_hash("Dentry cache",
3126 					sizeof(struct hlist_bl_head),
3127 					dhash_entries,
3128 					13,
3129 					HASH_EARLY | HASH_ZERO,
3130 					&d_hash_shift,
3131 					NULL,
3132 					0,
3133 					0);
3134 	d_hash_shift = 32 - d_hash_shift;
3135 }
3136 
3137 static void __init dcache_init(void)
3138 {
3139 	/*
3140 	 * A constructor could be added for stable state like the lists,
3141 	 * but it is probably not worth it because of the cache nature
3142 	 * of the dcache.
3143 	 */
3144 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3145 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3146 		d_iname);
3147 
3148 	/* Hash may have been set up in dcache_init_early */
3149 	if (!hashdist)
3150 		return;
3151 
3152 	dentry_hashtable =
3153 		alloc_large_system_hash("Dentry cache",
3154 					sizeof(struct hlist_bl_head),
3155 					dhash_entries,
3156 					13,
3157 					HASH_ZERO,
3158 					&d_hash_shift,
3159 					NULL,
3160 					0,
3161 					0);
3162 	d_hash_shift = 32 - d_hash_shift;
3163 }
3164 
3165 /* SLAB cache for __getname() consumers */
3166 struct kmem_cache *names_cachep __ro_after_init;
3167 EXPORT_SYMBOL(names_cachep);
3168 
3169 void __init vfs_caches_init_early(void)
3170 {
3171 	int i;
3172 
3173 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3174 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3175 
3176 	dcache_init_early();
3177 	inode_init_early();
3178 }
3179 
3180 void __init vfs_caches_init(void)
3181 {
3182 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3183 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3184 
3185 	dcache_init();
3186 	inode_init();
3187 	files_init();
3188 	files_maxfiles_init();
3189 	mnt_init();
3190 	bdev_cache_init();
3191 	chrdev_init();
3192 }
3193