1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 88 /* 89 * This is the single most critical data structure when it comes 90 * to the dcache: the hashtable for lookups. Somebody should try 91 * to make this good - I've just made it work. 92 * 93 * This hash-function tries to avoid losing too many bits of hash 94 * information, yet avoid using a prime hash-size or similar. 95 */ 96 97 static unsigned int d_hash_shift __read_mostly; 98 99 static struct hlist_bl_head *dentry_hashtable __read_mostly; 100 101 static inline struct hlist_bl_head *d_hash(unsigned int hash) 102 { 103 return dentry_hashtable + (hash >> d_hash_shift); 104 } 105 106 #define IN_LOOKUP_SHIFT 10 107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 108 109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 110 unsigned int hash) 111 { 112 hash += (unsigned long) parent / L1_CACHE_BYTES; 113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 114 } 115 116 117 /* Statistics gathering. */ 118 struct dentry_stat_t dentry_stat = { 119 .age_limit = 45, 120 }; 121 122 static DEFINE_PER_CPU(long, nr_dentry); 123 static DEFINE_PER_CPU(long, nr_dentry_unused); 124 static DEFINE_PER_CPU(long, nr_dentry_negative); 125 126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 127 128 /* 129 * Here we resort to our own counters instead of using generic per-cpu counters 130 * for consistency with what the vfs inode code does. We are expected to harvest 131 * better code and performance by having our own specialized counters. 132 * 133 * Please note that the loop is done over all possible CPUs, not over all online 134 * CPUs. The reason for this is that we don't want to play games with CPUs going 135 * on and off. If one of them goes off, we will just keep their counters. 136 * 137 * glommer: See cffbc8a for details, and if you ever intend to change this, 138 * please update all vfs counters to match. 139 */ 140 static long get_nr_dentry(void) 141 { 142 int i; 143 long sum = 0; 144 for_each_possible_cpu(i) 145 sum += per_cpu(nr_dentry, i); 146 return sum < 0 ? 0 : sum; 147 } 148 149 static long get_nr_dentry_unused(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry_unused, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_negative(void) 159 { 160 int i; 161 long sum = 0; 162 163 for_each_possible_cpu(i) 164 sum += per_cpu(nr_dentry_negative, i); 165 return sum < 0 ? 0 : sum; 166 } 167 168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 169 size_t *lenp, loff_t *ppos) 170 { 171 dentry_stat.nr_dentry = get_nr_dentry(); 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 173 dentry_stat.nr_negative = get_nr_dentry_negative(); 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 175 } 176 #endif 177 178 /* 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 180 * The strings are both count bytes long, and count is non-zero. 181 */ 182 #ifdef CONFIG_DCACHE_WORD_ACCESS 183 184 #include <asm/word-at-a-time.h> 185 /* 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 187 * aligned allocation for this particular component. We don't 188 * strictly need the load_unaligned_zeropad() safety, but it 189 * doesn't hurt either. 190 * 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 192 * need the careful unaligned handling. 193 */ 194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 195 { 196 unsigned long a,b,mask; 197 198 for (;;) { 199 a = read_word_at_a_time(cs); 200 b = load_unaligned_zeropad(ct); 201 if (tcount < sizeof(unsigned long)) 202 break; 203 if (unlikely(a != b)) 204 return 1; 205 cs += sizeof(unsigned long); 206 ct += sizeof(unsigned long); 207 tcount -= sizeof(unsigned long); 208 if (!tcount) 209 return 0; 210 } 211 mask = bytemask_from_count(tcount); 212 return unlikely(!!((a ^ b) & mask)); 213 } 214 215 #else 216 217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 218 { 219 do { 220 if (*cs != *ct) 221 return 1; 222 cs++; 223 ct++; 224 tcount--; 225 } while (tcount); 226 return 0; 227 } 228 229 #endif 230 231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 232 { 233 /* 234 * Be careful about RCU walk racing with rename: 235 * use 'READ_ONCE' to fetch the name pointer. 236 * 237 * NOTE! Even if a rename will mean that the length 238 * was not loaded atomically, we don't care. The 239 * RCU walk will check the sequence count eventually, 240 * and catch it. And we won't overrun the buffer, 241 * because we're reading the name pointer atomically, 242 * and a dentry name is guaranteed to be properly 243 * terminated with a NUL byte. 244 * 245 * End result: even if 'len' is wrong, we'll exit 246 * early because the data cannot match (there can 247 * be no NUL in the ct/tcount data) 248 */ 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 250 251 return dentry_string_cmp(cs, ct, tcount); 252 } 253 254 struct external_name { 255 union { 256 atomic_t count; 257 struct rcu_head head; 258 } u; 259 unsigned char name[]; 260 }; 261 262 static inline struct external_name *external_name(struct dentry *dentry) 263 { 264 return container_of(dentry->d_name.name, struct external_name, name[0]); 265 } 266 267 static void __d_free(struct rcu_head *head) 268 { 269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 270 271 kmem_cache_free(dentry_cache, dentry); 272 } 273 274 static void __d_free_external(struct rcu_head *head) 275 { 276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 277 kfree(external_name(dentry)); 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 name->name = dentry->d_name; 290 if (unlikely(dname_external(dentry))) { 291 atomic_inc(&external_name(dentry)->u.count); 292 } else { 293 memcpy(name->inline_name, dentry->d_iname, 294 dentry->d_name.len + 1); 295 name->name.name = name->inline_name; 296 } 297 spin_unlock(&dentry->d_lock); 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name.name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name.name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 smp_store_release(&dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 if (dentry->d_flags & DCACHE_LRU_LIST) 333 this_cpu_inc(nr_dentry_negative); 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (dentry->d_flags & DCACHE_NORCU) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * The per-cpu "nr_dentry_negative" counters are only updated 389 * when deleted from or added to the per-superblock LRU list, not 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 391 * pair when moving from LRU to shrink list in select_collect(). 392 * 393 * These helper functions make sure we always follow the 394 * rules. d_lock must be held by the caller. 395 */ 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 397 static void d_lru_add(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, 0); 400 dentry->d_flags |= DCACHE_LRU_LIST; 401 this_cpu_inc(nr_dentry_unused); 402 if (d_is_negative(dentry)) 403 this_cpu_inc(nr_dentry_negative); 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_lru_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 411 this_cpu_dec(nr_dentry_unused); 412 if (d_is_negative(dentry)) 413 this_cpu_dec(nr_dentry_negative); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 if (d_is_negative(dentry)) 445 this_cpu_dec(nr_dentry_negative); 446 list_lru_isolate(lru, &dentry->d_lru); 447 } 448 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 450 struct list_head *list) 451 { 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 454 if (d_is_negative(dentry)) 455 this_cpu_dec(nr_dentry_negative); 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 457 } 458 459 static void ___d_drop(struct dentry *dentry) 460 { 461 struct hlist_bl_head *b; 462 /* 463 * Hashed dentries are normally on the dentry hashtable, 464 * with the exception of those newly allocated by 465 * d_obtain_root, which are always IS_ROOT: 466 */ 467 if (unlikely(IS_ROOT(dentry))) 468 b = &dentry->d_sb->s_roots; 469 else 470 b = d_hash(dentry->d_name.hash); 471 472 hlist_bl_lock(b); 473 __hlist_bl_del(&dentry->d_hash); 474 hlist_bl_unlock(b); 475 } 476 477 void __d_drop(struct dentry *dentry) 478 { 479 if (!d_unhashed(dentry)) { 480 ___d_drop(dentry); 481 dentry->d_hash.pprev = NULL; 482 write_seqcount_invalidate(&dentry->d_seq); 483 } 484 } 485 EXPORT_SYMBOL(__d_drop); 486 487 /** 488 * d_drop - drop a dentry 489 * @dentry: dentry to drop 490 * 491 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 492 * be found through a VFS lookup any more. Note that this is different from 493 * deleting the dentry - d_delete will try to mark the dentry negative if 494 * possible, giving a successful _negative_ lookup, while d_drop will 495 * just make the cache lookup fail. 496 * 497 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 498 * reason (NFS timeouts or autofs deletes). 499 * 500 * __d_drop requires dentry->d_lock 501 * 502 * ___d_drop doesn't mark dentry as "unhashed" 503 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 504 */ 505 void d_drop(struct dentry *dentry) 506 { 507 spin_lock(&dentry->d_lock); 508 __d_drop(dentry); 509 spin_unlock(&dentry->d_lock); 510 } 511 EXPORT_SYMBOL(d_drop); 512 513 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 514 { 515 struct dentry *next; 516 /* 517 * Inform d_walk() and shrink_dentry_list() that we are no longer 518 * attached to the dentry tree 519 */ 520 dentry->d_flags |= DCACHE_DENTRY_KILLED; 521 if (unlikely(list_empty(&dentry->d_child))) 522 return; 523 __list_del_entry(&dentry->d_child); 524 /* 525 * Cursors can move around the list of children. While we'd been 526 * a normal list member, it didn't matter - ->d_child.next would've 527 * been updated. However, from now on it won't be and for the 528 * things like d_walk() it might end up with a nasty surprise. 529 * Normally d_walk() doesn't care about cursors moving around - 530 * ->d_lock on parent prevents that and since a cursor has no children 531 * of its own, we get through it without ever unlocking the parent. 532 * There is one exception, though - if we ascend from a child that 533 * gets killed as soon as we unlock it, the next sibling is found 534 * using the value left in its ->d_child.next. And if _that_ 535 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 536 * before d_walk() regains parent->d_lock, we'll end up skipping 537 * everything the cursor had been moved past. 538 * 539 * Solution: make sure that the pointer left behind in ->d_child.next 540 * points to something that won't be moving around. I.e. skip the 541 * cursors. 542 */ 543 while (dentry->d_child.next != &parent->d_subdirs) { 544 next = list_entry(dentry->d_child.next, struct dentry, d_child); 545 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 546 break; 547 dentry->d_child.next = next->d_child.next; 548 } 549 } 550 551 static void __dentry_kill(struct dentry *dentry) 552 { 553 struct dentry *parent = NULL; 554 bool can_free = true; 555 if (!IS_ROOT(dentry)) 556 parent = dentry->d_parent; 557 558 /* 559 * The dentry is now unrecoverably dead to the world. 560 */ 561 lockref_mark_dead(&dentry->d_lockref); 562 563 /* 564 * inform the fs via d_prune that this dentry is about to be 565 * unhashed and destroyed. 566 */ 567 if (dentry->d_flags & DCACHE_OP_PRUNE) 568 dentry->d_op->d_prune(dentry); 569 570 if (dentry->d_flags & DCACHE_LRU_LIST) { 571 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 572 d_lru_del(dentry); 573 } 574 /* if it was on the hash then remove it */ 575 __d_drop(dentry); 576 dentry_unlist(dentry, parent); 577 if (parent) 578 spin_unlock(&parent->d_lock); 579 if (dentry->d_inode) 580 dentry_unlink_inode(dentry); 581 else 582 spin_unlock(&dentry->d_lock); 583 this_cpu_dec(nr_dentry); 584 if (dentry->d_op && dentry->d_op->d_release) 585 dentry->d_op->d_release(dentry); 586 587 spin_lock(&dentry->d_lock); 588 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 589 dentry->d_flags |= DCACHE_MAY_FREE; 590 can_free = false; 591 } 592 spin_unlock(&dentry->d_lock); 593 if (likely(can_free)) 594 dentry_free(dentry); 595 cond_resched(); 596 } 597 598 static struct dentry *__lock_parent(struct dentry *dentry) 599 { 600 struct dentry *parent; 601 rcu_read_lock(); 602 spin_unlock(&dentry->d_lock); 603 again: 604 parent = READ_ONCE(dentry->d_parent); 605 spin_lock(&parent->d_lock); 606 /* 607 * We can't blindly lock dentry until we are sure 608 * that we won't violate the locking order. 609 * Any changes of dentry->d_parent must have 610 * been done with parent->d_lock held, so 611 * spin_lock() above is enough of a barrier 612 * for checking if it's still our child. 613 */ 614 if (unlikely(parent != dentry->d_parent)) { 615 spin_unlock(&parent->d_lock); 616 goto again; 617 } 618 rcu_read_unlock(); 619 if (parent != dentry) 620 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 621 else 622 parent = NULL; 623 return parent; 624 } 625 626 static inline struct dentry *lock_parent(struct dentry *dentry) 627 { 628 struct dentry *parent = dentry->d_parent; 629 if (IS_ROOT(dentry)) 630 return NULL; 631 if (likely(spin_trylock(&parent->d_lock))) 632 return parent; 633 return __lock_parent(dentry); 634 } 635 636 static inline bool retain_dentry(struct dentry *dentry) 637 { 638 WARN_ON(d_in_lookup(dentry)); 639 640 /* Unreachable? Get rid of it */ 641 if (unlikely(d_unhashed(dentry))) 642 return false; 643 644 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 645 return false; 646 647 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 648 if (dentry->d_op->d_delete(dentry)) 649 return false; 650 } 651 652 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 653 return false; 654 655 /* retain; LRU fodder */ 656 dentry->d_lockref.count--; 657 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 658 d_lru_add(dentry); 659 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 660 dentry->d_flags |= DCACHE_REFERENCED; 661 return true; 662 } 663 664 void d_mark_dontcache(struct inode *inode) 665 { 666 struct dentry *de; 667 668 spin_lock(&inode->i_lock); 669 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 670 spin_lock(&de->d_lock); 671 de->d_flags |= DCACHE_DONTCACHE; 672 spin_unlock(&de->d_lock); 673 } 674 inode->i_state |= I_DONTCACHE; 675 spin_unlock(&inode->i_lock); 676 } 677 EXPORT_SYMBOL(d_mark_dontcache); 678 679 /* 680 * Finish off a dentry we've decided to kill. 681 * dentry->d_lock must be held, returns with it unlocked. 682 * Returns dentry requiring refcount drop, or NULL if we're done. 683 */ 684 static struct dentry *dentry_kill(struct dentry *dentry) 685 __releases(dentry->d_lock) 686 { 687 struct inode *inode = dentry->d_inode; 688 struct dentry *parent = NULL; 689 690 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 691 goto slow_positive; 692 693 if (!IS_ROOT(dentry)) { 694 parent = dentry->d_parent; 695 if (unlikely(!spin_trylock(&parent->d_lock))) { 696 parent = __lock_parent(dentry); 697 if (likely(inode || !dentry->d_inode)) 698 goto got_locks; 699 /* negative that became positive */ 700 if (parent) 701 spin_unlock(&parent->d_lock); 702 inode = dentry->d_inode; 703 goto slow_positive; 704 } 705 } 706 __dentry_kill(dentry); 707 return parent; 708 709 slow_positive: 710 spin_unlock(&dentry->d_lock); 711 spin_lock(&inode->i_lock); 712 spin_lock(&dentry->d_lock); 713 parent = lock_parent(dentry); 714 got_locks: 715 if (unlikely(dentry->d_lockref.count != 1)) { 716 dentry->d_lockref.count--; 717 } else if (likely(!retain_dentry(dentry))) { 718 __dentry_kill(dentry); 719 return parent; 720 } 721 /* we are keeping it, after all */ 722 if (inode) 723 spin_unlock(&inode->i_lock); 724 if (parent) 725 spin_unlock(&parent->d_lock); 726 spin_unlock(&dentry->d_lock); 727 return NULL; 728 } 729 730 /* 731 * Try to do a lockless dput(), and return whether that was successful. 732 * 733 * If unsuccessful, we return false, having already taken the dentry lock. 734 * 735 * The caller needs to hold the RCU read lock, so that the dentry is 736 * guaranteed to stay around even if the refcount goes down to zero! 737 */ 738 static inline bool fast_dput(struct dentry *dentry) 739 { 740 int ret; 741 unsigned int d_flags; 742 743 /* 744 * If we have a d_op->d_delete() operation, we sould not 745 * let the dentry count go to zero, so use "put_or_lock". 746 */ 747 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 748 return lockref_put_or_lock(&dentry->d_lockref); 749 750 /* 751 * .. otherwise, we can try to just decrement the 752 * lockref optimistically. 753 */ 754 ret = lockref_put_return(&dentry->d_lockref); 755 756 /* 757 * If the lockref_put_return() failed due to the lock being held 758 * by somebody else, the fast path has failed. We will need to 759 * get the lock, and then check the count again. 760 */ 761 if (unlikely(ret < 0)) { 762 spin_lock(&dentry->d_lock); 763 if (dentry->d_lockref.count > 1) { 764 dentry->d_lockref.count--; 765 spin_unlock(&dentry->d_lock); 766 return true; 767 } 768 return false; 769 } 770 771 /* 772 * If we weren't the last ref, we're done. 773 */ 774 if (ret) 775 return true; 776 777 /* 778 * Careful, careful. The reference count went down 779 * to zero, but we don't hold the dentry lock, so 780 * somebody else could get it again, and do another 781 * dput(), and we need to not race with that. 782 * 783 * However, there is a very special and common case 784 * where we don't care, because there is nothing to 785 * do: the dentry is still hashed, it does not have 786 * a 'delete' op, and it's referenced and already on 787 * the LRU list. 788 * 789 * NOTE! Since we aren't locked, these values are 790 * not "stable". However, it is sufficient that at 791 * some point after we dropped the reference the 792 * dentry was hashed and the flags had the proper 793 * value. Other dentry users may have re-gotten 794 * a reference to the dentry and change that, but 795 * our work is done - we can leave the dentry 796 * around with a zero refcount. 797 * 798 * Nevertheless, there are two cases that we should kill 799 * the dentry anyway. 800 * 1. free disconnected dentries as soon as their refcount 801 * reached zero. 802 * 2. free dentries if they should not be cached. 803 */ 804 smp_rmb(); 805 d_flags = READ_ONCE(dentry->d_flags); 806 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | 807 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; 808 809 /* Nothing to do? Dropping the reference was all we needed? */ 810 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 811 return true; 812 813 /* 814 * Not the fast normal case? Get the lock. We've already decremented 815 * the refcount, but we'll need to re-check the situation after 816 * getting the lock. 817 */ 818 spin_lock(&dentry->d_lock); 819 820 /* 821 * Did somebody else grab a reference to it in the meantime, and 822 * we're no longer the last user after all? Alternatively, somebody 823 * else could have killed it and marked it dead. Either way, we 824 * don't need to do anything else. 825 */ 826 if (dentry->d_lockref.count) { 827 spin_unlock(&dentry->d_lock); 828 return true; 829 } 830 831 /* 832 * Re-get the reference we optimistically dropped. We hold the 833 * lock, and we just tested that it was zero, so we can just 834 * set it to 1. 835 */ 836 dentry->d_lockref.count = 1; 837 return false; 838 } 839 840 841 /* 842 * This is dput 843 * 844 * This is complicated by the fact that we do not want to put 845 * dentries that are no longer on any hash chain on the unused 846 * list: we'd much rather just get rid of them immediately. 847 * 848 * However, that implies that we have to traverse the dentry 849 * tree upwards to the parents which might _also_ now be 850 * scheduled for deletion (it may have been only waiting for 851 * its last child to go away). 852 * 853 * This tail recursion is done by hand as we don't want to depend 854 * on the compiler to always get this right (gcc generally doesn't). 855 * Real recursion would eat up our stack space. 856 */ 857 858 /* 859 * dput - release a dentry 860 * @dentry: dentry to release 861 * 862 * Release a dentry. This will drop the usage count and if appropriate 863 * call the dentry unlink method as well as removing it from the queues and 864 * releasing its resources. If the parent dentries were scheduled for release 865 * they too may now get deleted. 866 */ 867 void dput(struct dentry *dentry) 868 { 869 while (dentry) { 870 might_sleep(); 871 872 rcu_read_lock(); 873 if (likely(fast_dput(dentry))) { 874 rcu_read_unlock(); 875 return; 876 } 877 878 /* Slow case: now with the dentry lock held */ 879 rcu_read_unlock(); 880 881 if (likely(retain_dentry(dentry))) { 882 spin_unlock(&dentry->d_lock); 883 return; 884 } 885 886 dentry = dentry_kill(dentry); 887 } 888 } 889 EXPORT_SYMBOL(dput); 890 891 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 892 __must_hold(&dentry->d_lock) 893 { 894 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 895 /* let the owner of the list it's on deal with it */ 896 --dentry->d_lockref.count; 897 } else { 898 if (dentry->d_flags & DCACHE_LRU_LIST) 899 d_lru_del(dentry); 900 if (!--dentry->d_lockref.count) 901 d_shrink_add(dentry, list); 902 } 903 } 904 905 void dput_to_list(struct dentry *dentry, struct list_head *list) 906 { 907 rcu_read_lock(); 908 if (likely(fast_dput(dentry))) { 909 rcu_read_unlock(); 910 return; 911 } 912 rcu_read_unlock(); 913 if (!retain_dentry(dentry)) 914 __dput_to_list(dentry, list); 915 spin_unlock(&dentry->d_lock); 916 } 917 918 /* This must be called with d_lock held */ 919 static inline void __dget_dlock(struct dentry *dentry) 920 { 921 dentry->d_lockref.count++; 922 } 923 924 static inline void __dget(struct dentry *dentry) 925 { 926 lockref_get(&dentry->d_lockref); 927 } 928 929 struct dentry *dget_parent(struct dentry *dentry) 930 { 931 int gotref; 932 struct dentry *ret; 933 unsigned seq; 934 935 /* 936 * Do optimistic parent lookup without any 937 * locking. 938 */ 939 rcu_read_lock(); 940 seq = raw_seqcount_begin(&dentry->d_seq); 941 ret = READ_ONCE(dentry->d_parent); 942 gotref = lockref_get_not_zero(&ret->d_lockref); 943 rcu_read_unlock(); 944 if (likely(gotref)) { 945 if (!read_seqcount_retry(&dentry->d_seq, seq)) 946 return ret; 947 dput(ret); 948 } 949 950 repeat: 951 /* 952 * Don't need rcu_dereference because we re-check it was correct under 953 * the lock. 954 */ 955 rcu_read_lock(); 956 ret = dentry->d_parent; 957 spin_lock(&ret->d_lock); 958 if (unlikely(ret != dentry->d_parent)) { 959 spin_unlock(&ret->d_lock); 960 rcu_read_unlock(); 961 goto repeat; 962 } 963 rcu_read_unlock(); 964 BUG_ON(!ret->d_lockref.count); 965 ret->d_lockref.count++; 966 spin_unlock(&ret->d_lock); 967 return ret; 968 } 969 EXPORT_SYMBOL(dget_parent); 970 971 static struct dentry * __d_find_any_alias(struct inode *inode) 972 { 973 struct dentry *alias; 974 975 if (hlist_empty(&inode->i_dentry)) 976 return NULL; 977 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 978 __dget(alias); 979 return alias; 980 } 981 982 /** 983 * d_find_any_alias - find any alias for a given inode 984 * @inode: inode to find an alias for 985 * 986 * If any aliases exist for the given inode, take and return a 987 * reference for one of them. If no aliases exist, return %NULL. 988 */ 989 struct dentry *d_find_any_alias(struct inode *inode) 990 { 991 struct dentry *de; 992 993 spin_lock(&inode->i_lock); 994 de = __d_find_any_alias(inode); 995 spin_unlock(&inode->i_lock); 996 return de; 997 } 998 EXPORT_SYMBOL(d_find_any_alias); 999 1000 static struct dentry *__d_find_alias(struct inode *inode) 1001 { 1002 struct dentry *alias; 1003 1004 if (S_ISDIR(inode->i_mode)) 1005 return __d_find_any_alias(inode); 1006 1007 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1008 spin_lock(&alias->d_lock); 1009 if (!d_unhashed(alias)) { 1010 __dget_dlock(alias); 1011 spin_unlock(&alias->d_lock); 1012 return alias; 1013 } 1014 spin_unlock(&alias->d_lock); 1015 } 1016 return NULL; 1017 } 1018 1019 /** 1020 * d_find_alias - grab a hashed alias of inode 1021 * @inode: inode in question 1022 * 1023 * If inode has a hashed alias, or is a directory and has any alias, 1024 * acquire the reference to alias and return it. Otherwise return NULL. 1025 * Notice that if inode is a directory there can be only one alias and 1026 * it can be unhashed only if it has no children, or if it is the root 1027 * of a filesystem, or if the directory was renamed and d_revalidate 1028 * was the first vfs operation to notice. 1029 * 1030 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1031 * any other hashed alias over that one. 1032 */ 1033 struct dentry *d_find_alias(struct inode *inode) 1034 { 1035 struct dentry *de = NULL; 1036 1037 if (!hlist_empty(&inode->i_dentry)) { 1038 spin_lock(&inode->i_lock); 1039 de = __d_find_alias(inode); 1040 spin_unlock(&inode->i_lock); 1041 } 1042 return de; 1043 } 1044 EXPORT_SYMBOL(d_find_alias); 1045 1046 /* 1047 * Caller MUST be holding rcu_read_lock() and be guaranteed 1048 * that inode won't get freed until rcu_read_unlock(). 1049 */ 1050 struct dentry *d_find_alias_rcu(struct inode *inode) 1051 { 1052 struct hlist_head *l = &inode->i_dentry; 1053 struct dentry *de = NULL; 1054 1055 spin_lock(&inode->i_lock); 1056 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1057 // used without having I_FREEING set, which means no aliases left 1058 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1059 if (S_ISDIR(inode->i_mode)) { 1060 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1061 } else { 1062 hlist_for_each_entry(de, l, d_u.d_alias) 1063 if (!d_unhashed(de)) 1064 break; 1065 } 1066 } 1067 spin_unlock(&inode->i_lock); 1068 return de; 1069 } 1070 1071 /* 1072 * Try to kill dentries associated with this inode. 1073 * WARNING: you must own a reference to inode. 1074 */ 1075 void d_prune_aliases(struct inode *inode) 1076 { 1077 struct dentry *dentry; 1078 restart: 1079 spin_lock(&inode->i_lock); 1080 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1081 spin_lock(&dentry->d_lock); 1082 if (!dentry->d_lockref.count) { 1083 struct dentry *parent = lock_parent(dentry); 1084 if (likely(!dentry->d_lockref.count)) { 1085 __dentry_kill(dentry); 1086 dput(parent); 1087 goto restart; 1088 } 1089 if (parent) 1090 spin_unlock(&parent->d_lock); 1091 } 1092 spin_unlock(&dentry->d_lock); 1093 } 1094 spin_unlock(&inode->i_lock); 1095 } 1096 EXPORT_SYMBOL(d_prune_aliases); 1097 1098 /* 1099 * Lock a dentry from shrink list. 1100 * Called under rcu_read_lock() and dentry->d_lock; the former 1101 * guarantees that nothing we access will be freed under us. 1102 * Note that dentry is *not* protected from concurrent dentry_kill(), 1103 * d_delete(), etc. 1104 * 1105 * Return false if dentry has been disrupted or grabbed, leaving 1106 * the caller to kick it off-list. Otherwise, return true and have 1107 * that dentry's inode and parent both locked. 1108 */ 1109 static bool shrink_lock_dentry(struct dentry *dentry) 1110 { 1111 struct inode *inode; 1112 struct dentry *parent; 1113 1114 if (dentry->d_lockref.count) 1115 return false; 1116 1117 inode = dentry->d_inode; 1118 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1119 spin_unlock(&dentry->d_lock); 1120 spin_lock(&inode->i_lock); 1121 spin_lock(&dentry->d_lock); 1122 if (unlikely(dentry->d_lockref.count)) 1123 goto out; 1124 /* changed inode means that somebody had grabbed it */ 1125 if (unlikely(inode != dentry->d_inode)) 1126 goto out; 1127 } 1128 1129 parent = dentry->d_parent; 1130 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1131 return true; 1132 1133 spin_unlock(&dentry->d_lock); 1134 spin_lock(&parent->d_lock); 1135 if (unlikely(parent != dentry->d_parent)) { 1136 spin_unlock(&parent->d_lock); 1137 spin_lock(&dentry->d_lock); 1138 goto out; 1139 } 1140 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1141 if (likely(!dentry->d_lockref.count)) 1142 return true; 1143 spin_unlock(&parent->d_lock); 1144 out: 1145 if (inode) 1146 spin_unlock(&inode->i_lock); 1147 return false; 1148 } 1149 1150 void shrink_dentry_list(struct list_head *list) 1151 { 1152 while (!list_empty(list)) { 1153 struct dentry *dentry, *parent; 1154 1155 dentry = list_entry(list->prev, struct dentry, d_lru); 1156 spin_lock(&dentry->d_lock); 1157 rcu_read_lock(); 1158 if (!shrink_lock_dentry(dentry)) { 1159 bool can_free = false; 1160 rcu_read_unlock(); 1161 d_shrink_del(dentry); 1162 if (dentry->d_lockref.count < 0) 1163 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1164 spin_unlock(&dentry->d_lock); 1165 if (can_free) 1166 dentry_free(dentry); 1167 continue; 1168 } 1169 rcu_read_unlock(); 1170 d_shrink_del(dentry); 1171 parent = dentry->d_parent; 1172 if (parent != dentry) 1173 __dput_to_list(parent, list); 1174 __dentry_kill(dentry); 1175 } 1176 } 1177 1178 static enum lru_status dentry_lru_isolate(struct list_head *item, 1179 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1180 { 1181 struct list_head *freeable = arg; 1182 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1183 1184 1185 /* 1186 * we are inverting the lru lock/dentry->d_lock here, 1187 * so use a trylock. If we fail to get the lock, just skip 1188 * it 1189 */ 1190 if (!spin_trylock(&dentry->d_lock)) 1191 return LRU_SKIP; 1192 1193 /* 1194 * Referenced dentries are still in use. If they have active 1195 * counts, just remove them from the LRU. Otherwise give them 1196 * another pass through the LRU. 1197 */ 1198 if (dentry->d_lockref.count) { 1199 d_lru_isolate(lru, dentry); 1200 spin_unlock(&dentry->d_lock); 1201 return LRU_REMOVED; 1202 } 1203 1204 if (dentry->d_flags & DCACHE_REFERENCED) { 1205 dentry->d_flags &= ~DCACHE_REFERENCED; 1206 spin_unlock(&dentry->d_lock); 1207 1208 /* 1209 * The list move itself will be made by the common LRU code. At 1210 * this point, we've dropped the dentry->d_lock but keep the 1211 * lru lock. This is safe to do, since every list movement is 1212 * protected by the lru lock even if both locks are held. 1213 * 1214 * This is guaranteed by the fact that all LRU management 1215 * functions are intermediated by the LRU API calls like 1216 * list_lru_add and list_lru_del. List movement in this file 1217 * only ever occur through this functions or through callbacks 1218 * like this one, that are called from the LRU API. 1219 * 1220 * The only exceptions to this are functions like 1221 * shrink_dentry_list, and code that first checks for the 1222 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1223 * operating only with stack provided lists after they are 1224 * properly isolated from the main list. It is thus, always a 1225 * local access. 1226 */ 1227 return LRU_ROTATE; 1228 } 1229 1230 d_lru_shrink_move(lru, dentry, freeable); 1231 spin_unlock(&dentry->d_lock); 1232 1233 return LRU_REMOVED; 1234 } 1235 1236 /** 1237 * prune_dcache_sb - shrink the dcache 1238 * @sb: superblock 1239 * @sc: shrink control, passed to list_lru_shrink_walk() 1240 * 1241 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1242 * is done when we need more memory and called from the superblock shrinker 1243 * function. 1244 * 1245 * This function may fail to free any resources if all the dentries are in 1246 * use. 1247 */ 1248 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1249 { 1250 LIST_HEAD(dispose); 1251 long freed; 1252 1253 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1254 dentry_lru_isolate, &dispose); 1255 shrink_dentry_list(&dispose); 1256 return freed; 1257 } 1258 1259 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1260 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1261 { 1262 struct list_head *freeable = arg; 1263 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1264 1265 /* 1266 * we are inverting the lru lock/dentry->d_lock here, 1267 * so use a trylock. If we fail to get the lock, just skip 1268 * it 1269 */ 1270 if (!spin_trylock(&dentry->d_lock)) 1271 return LRU_SKIP; 1272 1273 d_lru_shrink_move(lru, dentry, freeable); 1274 spin_unlock(&dentry->d_lock); 1275 1276 return LRU_REMOVED; 1277 } 1278 1279 1280 /** 1281 * shrink_dcache_sb - shrink dcache for a superblock 1282 * @sb: superblock 1283 * 1284 * Shrink the dcache for the specified super block. This is used to free 1285 * the dcache before unmounting a file system. 1286 */ 1287 void shrink_dcache_sb(struct super_block *sb) 1288 { 1289 do { 1290 LIST_HEAD(dispose); 1291 1292 list_lru_walk(&sb->s_dentry_lru, 1293 dentry_lru_isolate_shrink, &dispose, 1024); 1294 shrink_dentry_list(&dispose); 1295 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1296 } 1297 EXPORT_SYMBOL(shrink_dcache_sb); 1298 1299 /** 1300 * enum d_walk_ret - action to talke during tree walk 1301 * @D_WALK_CONTINUE: contrinue walk 1302 * @D_WALK_QUIT: quit walk 1303 * @D_WALK_NORETRY: quit when retry is needed 1304 * @D_WALK_SKIP: skip this dentry and its children 1305 */ 1306 enum d_walk_ret { 1307 D_WALK_CONTINUE, 1308 D_WALK_QUIT, 1309 D_WALK_NORETRY, 1310 D_WALK_SKIP, 1311 }; 1312 1313 /** 1314 * d_walk - walk the dentry tree 1315 * @parent: start of walk 1316 * @data: data passed to @enter() and @finish() 1317 * @enter: callback when first entering the dentry 1318 * 1319 * The @enter() callbacks are called with d_lock held. 1320 */ 1321 static void d_walk(struct dentry *parent, void *data, 1322 enum d_walk_ret (*enter)(void *, struct dentry *)) 1323 { 1324 struct dentry *this_parent; 1325 struct list_head *next; 1326 unsigned seq = 0; 1327 enum d_walk_ret ret; 1328 bool retry = true; 1329 1330 again: 1331 read_seqbegin_or_lock(&rename_lock, &seq); 1332 this_parent = parent; 1333 spin_lock(&this_parent->d_lock); 1334 1335 ret = enter(data, this_parent); 1336 switch (ret) { 1337 case D_WALK_CONTINUE: 1338 break; 1339 case D_WALK_QUIT: 1340 case D_WALK_SKIP: 1341 goto out_unlock; 1342 case D_WALK_NORETRY: 1343 retry = false; 1344 break; 1345 } 1346 repeat: 1347 next = this_parent->d_subdirs.next; 1348 resume: 1349 while (next != &this_parent->d_subdirs) { 1350 struct list_head *tmp = next; 1351 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1352 next = tmp->next; 1353 1354 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1355 continue; 1356 1357 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1358 1359 ret = enter(data, dentry); 1360 switch (ret) { 1361 case D_WALK_CONTINUE: 1362 break; 1363 case D_WALK_QUIT: 1364 spin_unlock(&dentry->d_lock); 1365 goto out_unlock; 1366 case D_WALK_NORETRY: 1367 retry = false; 1368 break; 1369 case D_WALK_SKIP: 1370 spin_unlock(&dentry->d_lock); 1371 continue; 1372 } 1373 1374 if (!list_empty(&dentry->d_subdirs)) { 1375 spin_unlock(&this_parent->d_lock); 1376 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1377 this_parent = dentry; 1378 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1379 goto repeat; 1380 } 1381 spin_unlock(&dentry->d_lock); 1382 } 1383 /* 1384 * All done at this level ... ascend and resume the search. 1385 */ 1386 rcu_read_lock(); 1387 ascend: 1388 if (this_parent != parent) { 1389 struct dentry *child = this_parent; 1390 this_parent = child->d_parent; 1391 1392 spin_unlock(&child->d_lock); 1393 spin_lock(&this_parent->d_lock); 1394 1395 /* might go back up the wrong parent if we have had a rename. */ 1396 if (need_seqretry(&rename_lock, seq)) 1397 goto rename_retry; 1398 /* go into the first sibling still alive */ 1399 do { 1400 next = child->d_child.next; 1401 if (next == &this_parent->d_subdirs) 1402 goto ascend; 1403 child = list_entry(next, struct dentry, d_child); 1404 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1405 rcu_read_unlock(); 1406 goto resume; 1407 } 1408 if (need_seqretry(&rename_lock, seq)) 1409 goto rename_retry; 1410 rcu_read_unlock(); 1411 1412 out_unlock: 1413 spin_unlock(&this_parent->d_lock); 1414 done_seqretry(&rename_lock, seq); 1415 return; 1416 1417 rename_retry: 1418 spin_unlock(&this_parent->d_lock); 1419 rcu_read_unlock(); 1420 BUG_ON(seq & 1); 1421 if (!retry) 1422 return; 1423 seq = 1; 1424 goto again; 1425 } 1426 1427 struct check_mount { 1428 struct vfsmount *mnt; 1429 unsigned int mounted; 1430 }; 1431 1432 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1433 { 1434 struct check_mount *info = data; 1435 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1436 1437 if (likely(!d_mountpoint(dentry))) 1438 return D_WALK_CONTINUE; 1439 if (__path_is_mountpoint(&path)) { 1440 info->mounted = 1; 1441 return D_WALK_QUIT; 1442 } 1443 return D_WALK_CONTINUE; 1444 } 1445 1446 /** 1447 * path_has_submounts - check for mounts over a dentry in the 1448 * current namespace. 1449 * @parent: path to check. 1450 * 1451 * Return true if the parent or its subdirectories contain 1452 * a mount point in the current namespace. 1453 */ 1454 int path_has_submounts(const struct path *parent) 1455 { 1456 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1457 1458 read_seqlock_excl(&mount_lock); 1459 d_walk(parent->dentry, &data, path_check_mount); 1460 read_sequnlock_excl(&mount_lock); 1461 1462 return data.mounted; 1463 } 1464 EXPORT_SYMBOL(path_has_submounts); 1465 1466 /* 1467 * Called by mount code to set a mountpoint and check if the mountpoint is 1468 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1469 * subtree can become unreachable). 1470 * 1471 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1472 * this reason take rename_lock and d_lock on dentry and ancestors. 1473 */ 1474 int d_set_mounted(struct dentry *dentry) 1475 { 1476 struct dentry *p; 1477 int ret = -ENOENT; 1478 write_seqlock(&rename_lock); 1479 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1480 /* Need exclusion wrt. d_invalidate() */ 1481 spin_lock(&p->d_lock); 1482 if (unlikely(d_unhashed(p))) { 1483 spin_unlock(&p->d_lock); 1484 goto out; 1485 } 1486 spin_unlock(&p->d_lock); 1487 } 1488 spin_lock(&dentry->d_lock); 1489 if (!d_unlinked(dentry)) { 1490 ret = -EBUSY; 1491 if (!d_mountpoint(dentry)) { 1492 dentry->d_flags |= DCACHE_MOUNTED; 1493 ret = 0; 1494 } 1495 } 1496 spin_unlock(&dentry->d_lock); 1497 out: 1498 write_sequnlock(&rename_lock); 1499 return ret; 1500 } 1501 1502 /* 1503 * Search the dentry child list of the specified parent, 1504 * and move any unused dentries to the end of the unused 1505 * list for prune_dcache(). We descend to the next level 1506 * whenever the d_subdirs list is non-empty and continue 1507 * searching. 1508 * 1509 * It returns zero iff there are no unused children, 1510 * otherwise it returns the number of children moved to 1511 * the end of the unused list. This may not be the total 1512 * number of unused children, because select_parent can 1513 * drop the lock and return early due to latency 1514 * constraints. 1515 */ 1516 1517 struct select_data { 1518 struct dentry *start; 1519 union { 1520 long found; 1521 struct dentry *victim; 1522 }; 1523 struct list_head dispose; 1524 }; 1525 1526 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1527 { 1528 struct select_data *data = _data; 1529 enum d_walk_ret ret = D_WALK_CONTINUE; 1530 1531 if (data->start == dentry) 1532 goto out; 1533 1534 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1535 data->found++; 1536 } else { 1537 if (dentry->d_flags & DCACHE_LRU_LIST) 1538 d_lru_del(dentry); 1539 if (!dentry->d_lockref.count) { 1540 d_shrink_add(dentry, &data->dispose); 1541 data->found++; 1542 } 1543 } 1544 /* 1545 * We can return to the caller if we have found some (this 1546 * ensures forward progress). We'll be coming back to find 1547 * the rest. 1548 */ 1549 if (!list_empty(&data->dispose)) 1550 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1551 out: 1552 return ret; 1553 } 1554 1555 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1556 { 1557 struct select_data *data = _data; 1558 enum d_walk_ret ret = D_WALK_CONTINUE; 1559 1560 if (data->start == dentry) 1561 goto out; 1562 1563 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1564 if (!dentry->d_lockref.count) { 1565 rcu_read_lock(); 1566 data->victim = dentry; 1567 return D_WALK_QUIT; 1568 } 1569 } else { 1570 if (dentry->d_flags & DCACHE_LRU_LIST) 1571 d_lru_del(dentry); 1572 if (!dentry->d_lockref.count) 1573 d_shrink_add(dentry, &data->dispose); 1574 } 1575 /* 1576 * We can return to the caller if we have found some (this 1577 * ensures forward progress). We'll be coming back to find 1578 * the rest. 1579 */ 1580 if (!list_empty(&data->dispose)) 1581 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1582 out: 1583 return ret; 1584 } 1585 1586 /** 1587 * shrink_dcache_parent - prune dcache 1588 * @parent: parent of entries to prune 1589 * 1590 * Prune the dcache to remove unused children of the parent dentry. 1591 */ 1592 void shrink_dcache_parent(struct dentry *parent) 1593 { 1594 for (;;) { 1595 struct select_data data = {.start = parent}; 1596 1597 INIT_LIST_HEAD(&data.dispose); 1598 d_walk(parent, &data, select_collect); 1599 1600 if (!list_empty(&data.dispose)) { 1601 shrink_dentry_list(&data.dispose); 1602 continue; 1603 } 1604 1605 cond_resched(); 1606 if (!data.found) 1607 break; 1608 data.victim = NULL; 1609 d_walk(parent, &data, select_collect2); 1610 if (data.victim) { 1611 struct dentry *parent; 1612 spin_lock(&data.victim->d_lock); 1613 if (!shrink_lock_dentry(data.victim)) { 1614 spin_unlock(&data.victim->d_lock); 1615 rcu_read_unlock(); 1616 } else { 1617 rcu_read_unlock(); 1618 parent = data.victim->d_parent; 1619 if (parent != data.victim) 1620 __dput_to_list(parent, &data.dispose); 1621 __dentry_kill(data.victim); 1622 } 1623 } 1624 if (!list_empty(&data.dispose)) 1625 shrink_dentry_list(&data.dispose); 1626 } 1627 } 1628 EXPORT_SYMBOL(shrink_dcache_parent); 1629 1630 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1631 { 1632 /* it has busy descendents; complain about those instead */ 1633 if (!list_empty(&dentry->d_subdirs)) 1634 return D_WALK_CONTINUE; 1635 1636 /* root with refcount 1 is fine */ 1637 if (dentry == _data && dentry->d_lockref.count == 1) 1638 return D_WALK_CONTINUE; 1639 1640 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1641 " still in use (%d) [unmount of %s %s]\n", 1642 dentry, 1643 dentry->d_inode ? 1644 dentry->d_inode->i_ino : 0UL, 1645 dentry, 1646 dentry->d_lockref.count, 1647 dentry->d_sb->s_type->name, 1648 dentry->d_sb->s_id); 1649 WARN_ON(1); 1650 return D_WALK_CONTINUE; 1651 } 1652 1653 static void do_one_tree(struct dentry *dentry) 1654 { 1655 shrink_dcache_parent(dentry); 1656 d_walk(dentry, dentry, umount_check); 1657 d_drop(dentry); 1658 dput(dentry); 1659 } 1660 1661 /* 1662 * destroy the dentries attached to a superblock on unmounting 1663 */ 1664 void shrink_dcache_for_umount(struct super_block *sb) 1665 { 1666 struct dentry *dentry; 1667 1668 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1669 1670 dentry = sb->s_root; 1671 sb->s_root = NULL; 1672 do_one_tree(dentry); 1673 1674 while (!hlist_bl_empty(&sb->s_roots)) { 1675 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1676 do_one_tree(dentry); 1677 } 1678 } 1679 1680 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1681 { 1682 struct dentry **victim = _data; 1683 if (d_mountpoint(dentry)) { 1684 __dget_dlock(dentry); 1685 *victim = dentry; 1686 return D_WALK_QUIT; 1687 } 1688 return D_WALK_CONTINUE; 1689 } 1690 1691 /** 1692 * d_invalidate - detach submounts, prune dcache, and drop 1693 * @dentry: dentry to invalidate (aka detach, prune and drop) 1694 */ 1695 void d_invalidate(struct dentry *dentry) 1696 { 1697 bool had_submounts = false; 1698 spin_lock(&dentry->d_lock); 1699 if (d_unhashed(dentry)) { 1700 spin_unlock(&dentry->d_lock); 1701 return; 1702 } 1703 __d_drop(dentry); 1704 spin_unlock(&dentry->d_lock); 1705 1706 /* Negative dentries can be dropped without further checks */ 1707 if (!dentry->d_inode) 1708 return; 1709 1710 shrink_dcache_parent(dentry); 1711 for (;;) { 1712 struct dentry *victim = NULL; 1713 d_walk(dentry, &victim, find_submount); 1714 if (!victim) { 1715 if (had_submounts) 1716 shrink_dcache_parent(dentry); 1717 return; 1718 } 1719 had_submounts = true; 1720 detach_mounts(victim); 1721 dput(victim); 1722 } 1723 } 1724 EXPORT_SYMBOL(d_invalidate); 1725 1726 /** 1727 * __d_alloc - allocate a dcache entry 1728 * @sb: filesystem it will belong to 1729 * @name: qstr of the name 1730 * 1731 * Allocates a dentry. It returns %NULL if there is insufficient memory 1732 * available. On a success the dentry is returned. The name passed in is 1733 * copied and the copy passed in may be reused after this call. 1734 */ 1735 1736 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1737 { 1738 struct dentry *dentry; 1739 char *dname; 1740 int err; 1741 1742 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1743 if (!dentry) 1744 return NULL; 1745 1746 /* 1747 * We guarantee that the inline name is always NUL-terminated. 1748 * This way the memcpy() done by the name switching in rename 1749 * will still always have a NUL at the end, even if we might 1750 * be overwriting an internal NUL character 1751 */ 1752 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1753 if (unlikely(!name)) { 1754 name = &slash_name; 1755 dname = dentry->d_iname; 1756 } else if (name->len > DNAME_INLINE_LEN-1) { 1757 size_t size = offsetof(struct external_name, name[1]); 1758 struct external_name *p = kmalloc(size + name->len, 1759 GFP_KERNEL_ACCOUNT | 1760 __GFP_RECLAIMABLE); 1761 if (!p) { 1762 kmem_cache_free(dentry_cache, dentry); 1763 return NULL; 1764 } 1765 atomic_set(&p->u.count, 1); 1766 dname = p->name; 1767 } else { 1768 dname = dentry->d_iname; 1769 } 1770 1771 dentry->d_name.len = name->len; 1772 dentry->d_name.hash = name->hash; 1773 memcpy(dname, name->name, name->len); 1774 dname[name->len] = 0; 1775 1776 /* Make sure we always see the terminating NUL character */ 1777 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1778 1779 dentry->d_lockref.count = 1; 1780 dentry->d_flags = 0; 1781 spin_lock_init(&dentry->d_lock); 1782 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1783 dentry->d_inode = NULL; 1784 dentry->d_parent = dentry; 1785 dentry->d_sb = sb; 1786 dentry->d_op = NULL; 1787 dentry->d_fsdata = NULL; 1788 INIT_HLIST_BL_NODE(&dentry->d_hash); 1789 INIT_LIST_HEAD(&dentry->d_lru); 1790 INIT_LIST_HEAD(&dentry->d_subdirs); 1791 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1792 INIT_LIST_HEAD(&dentry->d_child); 1793 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1794 1795 if (dentry->d_op && dentry->d_op->d_init) { 1796 err = dentry->d_op->d_init(dentry); 1797 if (err) { 1798 if (dname_external(dentry)) 1799 kfree(external_name(dentry)); 1800 kmem_cache_free(dentry_cache, dentry); 1801 return NULL; 1802 } 1803 } 1804 1805 this_cpu_inc(nr_dentry); 1806 1807 return dentry; 1808 } 1809 1810 /** 1811 * d_alloc - allocate a dcache entry 1812 * @parent: parent of entry to allocate 1813 * @name: qstr of the name 1814 * 1815 * Allocates a dentry. It returns %NULL if there is insufficient memory 1816 * available. On a success the dentry is returned. The name passed in is 1817 * copied and the copy passed in may be reused after this call. 1818 */ 1819 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1820 { 1821 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1822 if (!dentry) 1823 return NULL; 1824 spin_lock(&parent->d_lock); 1825 /* 1826 * don't need child lock because it is not subject 1827 * to concurrency here 1828 */ 1829 __dget_dlock(parent); 1830 dentry->d_parent = parent; 1831 list_add(&dentry->d_child, &parent->d_subdirs); 1832 spin_unlock(&parent->d_lock); 1833 1834 return dentry; 1835 } 1836 EXPORT_SYMBOL(d_alloc); 1837 1838 struct dentry *d_alloc_anon(struct super_block *sb) 1839 { 1840 return __d_alloc(sb, NULL); 1841 } 1842 EXPORT_SYMBOL(d_alloc_anon); 1843 1844 struct dentry *d_alloc_cursor(struct dentry * parent) 1845 { 1846 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1847 if (dentry) { 1848 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1849 dentry->d_parent = dget(parent); 1850 } 1851 return dentry; 1852 } 1853 1854 /** 1855 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1856 * @sb: the superblock 1857 * @name: qstr of the name 1858 * 1859 * For a filesystem that just pins its dentries in memory and never 1860 * performs lookups at all, return an unhashed IS_ROOT dentry. 1861 * This is used for pipes, sockets et.al. - the stuff that should 1862 * never be anyone's children or parents. Unlike all other 1863 * dentries, these will not have RCU delay between dropping the 1864 * last reference and freeing them. 1865 * 1866 * The only user is alloc_file_pseudo() and that's what should 1867 * be considered a public interface. Don't use directly. 1868 */ 1869 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1870 { 1871 struct dentry *dentry = __d_alloc(sb, name); 1872 if (likely(dentry)) 1873 dentry->d_flags |= DCACHE_NORCU; 1874 return dentry; 1875 } 1876 1877 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1878 { 1879 struct qstr q; 1880 1881 q.name = name; 1882 q.hash_len = hashlen_string(parent, name); 1883 return d_alloc(parent, &q); 1884 } 1885 EXPORT_SYMBOL(d_alloc_name); 1886 1887 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1888 { 1889 WARN_ON_ONCE(dentry->d_op); 1890 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1891 DCACHE_OP_COMPARE | 1892 DCACHE_OP_REVALIDATE | 1893 DCACHE_OP_WEAK_REVALIDATE | 1894 DCACHE_OP_DELETE | 1895 DCACHE_OP_REAL)); 1896 dentry->d_op = op; 1897 if (!op) 1898 return; 1899 if (op->d_hash) 1900 dentry->d_flags |= DCACHE_OP_HASH; 1901 if (op->d_compare) 1902 dentry->d_flags |= DCACHE_OP_COMPARE; 1903 if (op->d_revalidate) 1904 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1905 if (op->d_weak_revalidate) 1906 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1907 if (op->d_delete) 1908 dentry->d_flags |= DCACHE_OP_DELETE; 1909 if (op->d_prune) 1910 dentry->d_flags |= DCACHE_OP_PRUNE; 1911 if (op->d_real) 1912 dentry->d_flags |= DCACHE_OP_REAL; 1913 1914 } 1915 EXPORT_SYMBOL(d_set_d_op); 1916 1917 1918 /* 1919 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1920 * @dentry - The dentry to mark 1921 * 1922 * Mark a dentry as falling through to the lower layer (as set with 1923 * d_pin_lower()). This flag may be recorded on the medium. 1924 */ 1925 void d_set_fallthru(struct dentry *dentry) 1926 { 1927 spin_lock(&dentry->d_lock); 1928 dentry->d_flags |= DCACHE_FALLTHRU; 1929 spin_unlock(&dentry->d_lock); 1930 } 1931 EXPORT_SYMBOL(d_set_fallthru); 1932 1933 static unsigned d_flags_for_inode(struct inode *inode) 1934 { 1935 unsigned add_flags = DCACHE_REGULAR_TYPE; 1936 1937 if (!inode) 1938 return DCACHE_MISS_TYPE; 1939 1940 if (S_ISDIR(inode->i_mode)) { 1941 add_flags = DCACHE_DIRECTORY_TYPE; 1942 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1943 if (unlikely(!inode->i_op->lookup)) 1944 add_flags = DCACHE_AUTODIR_TYPE; 1945 else 1946 inode->i_opflags |= IOP_LOOKUP; 1947 } 1948 goto type_determined; 1949 } 1950 1951 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1952 if (unlikely(inode->i_op->get_link)) { 1953 add_flags = DCACHE_SYMLINK_TYPE; 1954 goto type_determined; 1955 } 1956 inode->i_opflags |= IOP_NOFOLLOW; 1957 } 1958 1959 if (unlikely(!S_ISREG(inode->i_mode))) 1960 add_flags = DCACHE_SPECIAL_TYPE; 1961 1962 type_determined: 1963 if (unlikely(IS_AUTOMOUNT(inode))) 1964 add_flags |= DCACHE_NEED_AUTOMOUNT; 1965 return add_flags; 1966 } 1967 1968 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1969 { 1970 unsigned add_flags = d_flags_for_inode(inode); 1971 WARN_ON(d_in_lookup(dentry)); 1972 1973 spin_lock(&dentry->d_lock); 1974 /* 1975 * Decrement negative dentry count if it was in the LRU list. 1976 */ 1977 if (dentry->d_flags & DCACHE_LRU_LIST) 1978 this_cpu_dec(nr_dentry_negative); 1979 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1980 raw_write_seqcount_begin(&dentry->d_seq); 1981 __d_set_inode_and_type(dentry, inode, add_flags); 1982 raw_write_seqcount_end(&dentry->d_seq); 1983 fsnotify_update_flags(dentry); 1984 spin_unlock(&dentry->d_lock); 1985 } 1986 1987 /** 1988 * d_instantiate - fill in inode information for a dentry 1989 * @entry: dentry to complete 1990 * @inode: inode to attach to this dentry 1991 * 1992 * Fill in inode information in the entry. 1993 * 1994 * This turns negative dentries into productive full members 1995 * of society. 1996 * 1997 * NOTE! This assumes that the inode count has been incremented 1998 * (or otherwise set) by the caller to indicate that it is now 1999 * in use by the dcache. 2000 */ 2001 2002 void d_instantiate(struct dentry *entry, struct inode * inode) 2003 { 2004 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2005 if (inode) { 2006 security_d_instantiate(entry, inode); 2007 spin_lock(&inode->i_lock); 2008 __d_instantiate(entry, inode); 2009 spin_unlock(&inode->i_lock); 2010 } 2011 } 2012 EXPORT_SYMBOL(d_instantiate); 2013 2014 /* 2015 * This should be equivalent to d_instantiate() + unlock_new_inode(), 2016 * with lockdep-related part of unlock_new_inode() done before 2017 * anything else. Use that instead of open-coding d_instantiate()/ 2018 * unlock_new_inode() combinations. 2019 */ 2020 void d_instantiate_new(struct dentry *entry, struct inode *inode) 2021 { 2022 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2023 BUG_ON(!inode); 2024 lockdep_annotate_inode_mutex_key(inode); 2025 security_d_instantiate(entry, inode); 2026 spin_lock(&inode->i_lock); 2027 __d_instantiate(entry, inode); 2028 WARN_ON(!(inode->i_state & I_NEW)); 2029 inode->i_state &= ~I_NEW & ~I_CREATING; 2030 smp_mb(); 2031 wake_up_bit(&inode->i_state, __I_NEW); 2032 spin_unlock(&inode->i_lock); 2033 } 2034 EXPORT_SYMBOL(d_instantiate_new); 2035 2036 struct dentry *d_make_root(struct inode *root_inode) 2037 { 2038 struct dentry *res = NULL; 2039 2040 if (root_inode) { 2041 res = d_alloc_anon(root_inode->i_sb); 2042 if (res) 2043 d_instantiate(res, root_inode); 2044 else 2045 iput(root_inode); 2046 } 2047 return res; 2048 } 2049 EXPORT_SYMBOL(d_make_root); 2050 2051 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2052 struct inode *inode, 2053 bool disconnected) 2054 { 2055 struct dentry *res; 2056 unsigned add_flags; 2057 2058 security_d_instantiate(dentry, inode); 2059 spin_lock(&inode->i_lock); 2060 res = __d_find_any_alias(inode); 2061 if (res) { 2062 spin_unlock(&inode->i_lock); 2063 dput(dentry); 2064 goto out_iput; 2065 } 2066 2067 /* attach a disconnected dentry */ 2068 add_flags = d_flags_for_inode(inode); 2069 2070 if (disconnected) 2071 add_flags |= DCACHE_DISCONNECTED; 2072 2073 spin_lock(&dentry->d_lock); 2074 __d_set_inode_and_type(dentry, inode, add_flags); 2075 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2076 if (!disconnected) { 2077 hlist_bl_lock(&dentry->d_sb->s_roots); 2078 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2079 hlist_bl_unlock(&dentry->d_sb->s_roots); 2080 } 2081 spin_unlock(&dentry->d_lock); 2082 spin_unlock(&inode->i_lock); 2083 2084 return dentry; 2085 2086 out_iput: 2087 iput(inode); 2088 return res; 2089 } 2090 2091 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2092 { 2093 return __d_instantiate_anon(dentry, inode, true); 2094 } 2095 EXPORT_SYMBOL(d_instantiate_anon); 2096 2097 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2098 { 2099 struct dentry *tmp; 2100 struct dentry *res; 2101 2102 if (!inode) 2103 return ERR_PTR(-ESTALE); 2104 if (IS_ERR(inode)) 2105 return ERR_CAST(inode); 2106 2107 res = d_find_any_alias(inode); 2108 if (res) 2109 goto out_iput; 2110 2111 tmp = d_alloc_anon(inode->i_sb); 2112 if (!tmp) { 2113 res = ERR_PTR(-ENOMEM); 2114 goto out_iput; 2115 } 2116 2117 return __d_instantiate_anon(tmp, inode, disconnected); 2118 2119 out_iput: 2120 iput(inode); 2121 return res; 2122 } 2123 2124 /** 2125 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2126 * @inode: inode to allocate the dentry for 2127 * 2128 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2129 * similar open by handle operations. The returned dentry may be anonymous, 2130 * or may have a full name (if the inode was already in the cache). 2131 * 2132 * When called on a directory inode, we must ensure that the inode only ever 2133 * has one dentry. If a dentry is found, that is returned instead of 2134 * allocating a new one. 2135 * 2136 * On successful return, the reference to the inode has been transferred 2137 * to the dentry. In case of an error the reference on the inode is released. 2138 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2139 * be passed in and the error will be propagated to the return value, 2140 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2141 */ 2142 struct dentry *d_obtain_alias(struct inode *inode) 2143 { 2144 return __d_obtain_alias(inode, true); 2145 } 2146 EXPORT_SYMBOL(d_obtain_alias); 2147 2148 /** 2149 * d_obtain_root - find or allocate a dentry for a given inode 2150 * @inode: inode to allocate the dentry for 2151 * 2152 * Obtain an IS_ROOT dentry for the root of a filesystem. 2153 * 2154 * We must ensure that directory inodes only ever have one dentry. If a 2155 * dentry is found, that is returned instead of allocating a new one. 2156 * 2157 * On successful return, the reference to the inode has been transferred 2158 * to the dentry. In case of an error the reference on the inode is 2159 * released. A %NULL or IS_ERR inode may be passed in and will be the 2160 * error will be propagate to the return value, with a %NULL @inode 2161 * replaced by ERR_PTR(-ESTALE). 2162 */ 2163 struct dentry *d_obtain_root(struct inode *inode) 2164 { 2165 return __d_obtain_alias(inode, false); 2166 } 2167 EXPORT_SYMBOL(d_obtain_root); 2168 2169 /** 2170 * d_add_ci - lookup or allocate new dentry with case-exact name 2171 * @inode: the inode case-insensitive lookup has found 2172 * @dentry: the negative dentry that was passed to the parent's lookup func 2173 * @name: the case-exact name to be associated with the returned dentry 2174 * 2175 * This is to avoid filling the dcache with case-insensitive names to the 2176 * same inode, only the actual correct case is stored in the dcache for 2177 * case-insensitive filesystems. 2178 * 2179 * For a case-insensitive lookup match and if the the case-exact dentry 2180 * already exists in in the dcache, use it and return it. 2181 * 2182 * If no entry exists with the exact case name, allocate new dentry with 2183 * the exact case, and return the spliced entry. 2184 */ 2185 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2186 struct qstr *name) 2187 { 2188 struct dentry *found, *res; 2189 2190 /* 2191 * First check if a dentry matching the name already exists, 2192 * if not go ahead and create it now. 2193 */ 2194 found = d_hash_and_lookup(dentry->d_parent, name); 2195 if (found) { 2196 iput(inode); 2197 return found; 2198 } 2199 if (d_in_lookup(dentry)) { 2200 found = d_alloc_parallel(dentry->d_parent, name, 2201 dentry->d_wait); 2202 if (IS_ERR(found) || !d_in_lookup(found)) { 2203 iput(inode); 2204 return found; 2205 } 2206 } else { 2207 found = d_alloc(dentry->d_parent, name); 2208 if (!found) { 2209 iput(inode); 2210 return ERR_PTR(-ENOMEM); 2211 } 2212 } 2213 res = d_splice_alias(inode, found); 2214 if (res) { 2215 dput(found); 2216 return res; 2217 } 2218 return found; 2219 } 2220 EXPORT_SYMBOL(d_add_ci); 2221 2222 2223 static inline bool d_same_name(const struct dentry *dentry, 2224 const struct dentry *parent, 2225 const struct qstr *name) 2226 { 2227 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2228 if (dentry->d_name.len != name->len) 2229 return false; 2230 return dentry_cmp(dentry, name->name, name->len) == 0; 2231 } 2232 return parent->d_op->d_compare(dentry, 2233 dentry->d_name.len, dentry->d_name.name, 2234 name) == 0; 2235 } 2236 2237 /** 2238 * __d_lookup_rcu - search for a dentry (racy, store-free) 2239 * @parent: parent dentry 2240 * @name: qstr of name we wish to find 2241 * @seqp: returns d_seq value at the point where the dentry was found 2242 * Returns: dentry, or NULL 2243 * 2244 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2245 * resolution (store-free path walking) design described in 2246 * Documentation/filesystems/path-lookup.txt. 2247 * 2248 * This is not to be used outside core vfs. 2249 * 2250 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2251 * held, and rcu_read_lock held. The returned dentry must not be stored into 2252 * without taking d_lock and checking d_seq sequence count against @seq 2253 * returned here. 2254 * 2255 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2256 * function. 2257 * 2258 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2259 * the returned dentry, so long as its parent's seqlock is checked after the 2260 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2261 * is formed, giving integrity down the path walk. 2262 * 2263 * NOTE! The caller *has* to check the resulting dentry against the sequence 2264 * number we've returned before using any of the resulting dentry state! 2265 */ 2266 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2267 const struct qstr *name, 2268 unsigned *seqp) 2269 { 2270 u64 hashlen = name->hash_len; 2271 const unsigned char *str = name->name; 2272 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2273 struct hlist_bl_node *node; 2274 struct dentry *dentry; 2275 2276 /* 2277 * Note: There is significant duplication with __d_lookup_rcu which is 2278 * required to prevent single threaded performance regressions 2279 * especially on architectures where smp_rmb (in seqcounts) are costly. 2280 * Keep the two functions in sync. 2281 */ 2282 2283 /* 2284 * The hash list is protected using RCU. 2285 * 2286 * Carefully use d_seq when comparing a candidate dentry, to avoid 2287 * races with d_move(). 2288 * 2289 * It is possible that concurrent renames can mess up our list 2290 * walk here and result in missing our dentry, resulting in the 2291 * false-negative result. d_lookup() protects against concurrent 2292 * renames using rename_lock seqlock. 2293 * 2294 * See Documentation/filesystems/path-lookup.txt for more details. 2295 */ 2296 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2297 unsigned seq; 2298 2299 seqretry: 2300 /* 2301 * The dentry sequence count protects us from concurrent 2302 * renames, and thus protects parent and name fields. 2303 * 2304 * The caller must perform a seqcount check in order 2305 * to do anything useful with the returned dentry. 2306 * 2307 * NOTE! We do a "raw" seqcount_begin here. That means that 2308 * we don't wait for the sequence count to stabilize if it 2309 * is in the middle of a sequence change. If we do the slow 2310 * dentry compare, we will do seqretries until it is stable, 2311 * and if we end up with a successful lookup, we actually 2312 * want to exit RCU lookup anyway. 2313 * 2314 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2315 * we are still guaranteed NUL-termination of ->d_name.name. 2316 */ 2317 seq = raw_seqcount_begin(&dentry->d_seq); 2318 if (dentry->d_parent != parent) 2319 continue; 2320 if (d_unhashed(dentry)) 2321 continue; 2322 2323 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2324 int tlen; 2325 const char *tname; 2326 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2327 continue; 2328 tlen = dentry->d_name.len; 2329 tname = dentry->d_name.name; 2330 /* we want a consistent (name,len) pair */ 2331 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2332 cpu_relax(); 2333 goto seqretry; 2334 } 2335 if (parent->d_op->d_compare(dentry, 2336 tlen, tname, name) != 0) 2337 continue; 2338 } else { 2339 if (dentry->d_name.hash_len != hashlen) 2340 continue; 2341 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2342 continue; 2343 } 2344 *seqp = seq; 2345 return dentry; 2346 } 2347 return NULL; 2348 } 2349 2350 /** 2351 * d_lookup - search for a dentry 2352 * @parent: parent dentry 2353 * @name: qstr of name we wish to find 2354 * Returns: dentry, or NULL 2355 * 2356 * d_lookup searches the children of the parent dentry for the name in 2357 * question. If the dentry is found its reference count is incremented and the 2358 * dentry is returned. The caller must use dput to free the entry when it has 2359 * finished using it. %NULL is returned if the dentry does not exist. 2360 */ 2361 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2362 { 2363 struct dentry *dentry; 2364 unsigned seq; 2365 2366 do { 2367 seq = read_seqbegin(&rename_lock); 2368 dentry = __d_lookup(parent, name); 2369 if (dentry) 2370 break; 2371 } while (read_seqretry(&rename_lock, seq)); 2372 return dentry; 2373 } 2374 EXPORT_SYMBOL(d_lookup); 2375 2376 /** 2377 * __d_lookup - search for a dentry (racy) 2378 * @parent: parent dentry 2379 * @name: qstr of name we wish to find 2380 * Returns: dentry, or NULL 2381 * 2382 * __d_lookup is like d_lookup, however it may (rarely) return a 2383 * false-negative result due to unrelated rename activity. 2384 * 2385 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2386 * however it must be used carefully, eg. with a following d_lookup in 2387 * the case of failure. 2388 * 2389 * __d_lookup callers must be commented. 2390 */ 2391 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2392 { 2393 unsigned int hash = name->hash; 2394 struct hlist_bl_head *b = d_hash(hash); 2395 struct hlist_bl_node *node; 2396 struct dentry *found = NULL; 2397 struct dentry *dentry; 2398 2399 /* 2400 * Note: There is significant duplication with __d_lookup_rcu which is 2401 * required to prevent single threaded performance regressions 2402 * especially on architectures where smp_rmb (in seqcounts) are costly. 2403 * Keep the two functions in sync. 2404 */ 2405 2406 /* 2407 * The hash list is protected using RCU. 2408 * 2409 * Take d_lock when comparing a candidate dentry, to avoid races 2410 * with d_move(). 2411 * 2412 * It is possible that concurrent renames can mess up our list 2413 * walk here and result in missing our dentry, resulting in the 2414 * false-negative result. d_lookup() protects against concurrent 2415 * renames using rename_lock seqlock. 2416 * 2417 * See Documentation/filesystems/path-lookup.txt for more details. 2418 */ 2419 rcu_read_lock(); 2420 2421 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2422 2423 if (dentry->d_name.hash != hash) 2424 continue; 2425 2426 spin_lock(&dentry->d_lock); 2427 if (dentry->d_parent != parent) 2428 goto next; 2429 if (d_unhashed(dentry)) 2430 goto next; 2431 2432 if (!d_same_name(dentry, parent, name)) 2433 goto next; 2434 2435 dentry->d_lockref.count++; 2436 found = dentry; 2437 spin_unlock(&dentry->d_lock); 2438 break; 2439 next: 2440 spin_unlock(&dentry->d_lock); 2441 } 2442 rcu_read_unlock(); 2443 2444 return found; 2445 } 2446 2447 /** 2448 * d_hash_and_lookup - hash the qstr then search for a dentry 2449 * @dir: Directory to search in 2450 * @name: qstr of name we wish to find 2451 * 2452 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2453 */ 2454 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2455 { 2456 /* 2457 * Check for a fs-specific hash function. Note that we must 2458 * calculate the standard hash first, as the d_op->d_hash() 2459 * routine may choose to leave the hash value unchanged. 2460 */ 2461 name->hash = full_name_hash(dir, name->name, name->len); 2462 if (dir->d_flags & DCACHE_OP_HASH) { 2463 int err = dir->d_op->d_hash(dir, name); 2464 if (unlikely(err < 0)) 2465 return ERR_PTR(err); 2466 } 2467 return d_lookup(dir, name); 2468 } 2469 EXPORT_SYMBOL(d_hash_and_lookup); 2470 2471 /* 2472 * When a file is deleted, we have two options: 2473 * - turn this dentry into a negative dentry 2474 * - unhash this dentry and free it. 2475 * 2476 * Usually, we want to just turn this into 2477 * a negative dentry, but if anybody else is 2478 * currently using the dentry or the inode 2479 * we can't do that and we fall back on removing 2480 * it from the hash queues and waiting for 2481 * it to be deleted later when it has no users 2482 */ 2483 2484 /** 2485 * d_delete - delete a dentry 2486 * @dentry: The dentry to delete 2487 * 2488 * Turn the dentry into a negative dentry if possible, otherwise 2489 * remove it from the hash queues so it can be deleted later 2490 */ 2491 2492 void d_delete(struct dentry * dentry) 2493 { 2494 struct inode *inode = dentry->d_inode; 2495 2496 spin_lock(&inode->i_lock); 2497 spin_lock(&dentry->d_lock); 2498 /* 2499 * Are we the only user? 2500 */ 2501 if (dentry->d_lockref.count == 1) { 2502 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2503 dentry_unlink_inode(dentry); 2504 } else { 2505 __d_drop(dentry); 2506 spin_unlock(&dentry->d_lock); 2507 spin_unlock(&inode->i_lock); 2508 } 2509 } 2510 EXPORT_SYMBOL(d_delete); 2511 2512 static void __d_rehash(struct dentry *entry) 2513 { 2514 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2515 2516 hlist_bl_lock(b); 2517 hlist_bl_add_head_rcu(&entry->d_hash, b); 2518 hlist_bl_unlock(b); 2519 } 2520 2521 /** 2522 * d_rehash - add an entry back to the hash 2523 * @entry: dentry to add to the hash 2524 * 2525 * Adds a dentry to the hash according to its name. 2526 */ 2527 2528 void d_rehash(struct dentry * entry) 2529 { 2530 spin_lock(&entry->d_lock); 2531 __d_rehash(entry); 2532 spin_unlock(&entry->d_lock); 2533 } 2534 EXPORT_SYMBOL(d_rehash); 2535 2536 static inline unsigned start_dir_add(struct inode *dir) 2537 { 2538 2539 for (;;) { 2540 unsigned n = dir->i_dir_seq; 2541 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2542 return n; 2543 cpu_relax(); 2544 } 2545 } 2546 2547 static inline void end_dir_add(struct inode *dir, unsigned n) 2548 { 2549 smp_store_release(&dir->i_dir_seq, n + 2); 2550 } 2551 2552 static void d_wait_lookup(struct dentry *dentry) 2553 { 2554 if (d_in_lookup(dentry)) { 2555 DECLARE_WAITQUEUE(wait, current); 2556 add_wait_queue(dentry->d_wait, &wait); 2557 do { 2558 set_current_state(TASK_UNINTERRUPTIBLE); 2559 spin_unlock(&dentry->d_lock); 2560 schedule(); 2561 spin_lock(&dentry->d_lock); 2562 } while (d_in_lookup(dentry)); 2563 } 2564 } 2565 2566 struct dentry *d_alloc_parallel(struct dentry *parent, 2567 const struct qstr *name, 2568 wait_queue_head_t *wq) 2569 { 2570 unsigned int hash = name->hash; 2571 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2572 struct hlist_bl_node *node; 2573 struct dentry *new = d_alloc(parent, name); 2574 struct dentry *dentry; 2575 unsigned seq, r_seq, d_seq; 2576 2577 if (unlikely(!new)) 2578 return ERR_PTR(-ENOMEM); 2579 2580 retry: 2581 rcu_read_lock(); 2582 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2583 r_seq = read_seqbegin(&rename_lock); 2584 dentry = __d_lookup_rcu(parent, name, &d_seq); 2585 if (unlikely(dentry)) { 2586 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2587 rcu_read_unlock(); 2588 goto retry; 2589 } 2590 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2591 rcu_read_unlock(); 2592 dput(dentry); 2593 goto retry; 2594 } 2595 rcu_read_unlock(); 2596 dput(new); 2597 return dentry; 2598 } 2599 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2600 rcu_read_unlock(); 2601 goto retry; 2602 } 2603 2604 if (unlikely(seq & 1)) { 2605 rcu_read_unlock(); 2606 goto retry; 2607 } 2608 2609 hlist_bl_lock(b); 2610 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2611 hlist_bl_unlock(b); 2612 rcu_read_unlock(); 2613 goto retry; 2614 } 2615 /* 2616 * No changes for the parent since the beginning of d_lookup(). 2617 * Since all removals from the chain happen with hlist_bl_lock(), 2618 * any potential in-lookup matches are going to stay here until 2619 * we unlock the chain. All fields are stable in everything 2620 * we encounter. 2621 */ 2622 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2623 if (dentry->d_name.hash != hash) 2624 continue; 2625 if (dentry->d_parent != parent) 2626 continue; 2627 if (!d_same_name(dentry, parent, name)) 2628 continue; 2629 hlist_bl_unlock(b); 2630 /* now we can try to grab a reference */ 2631 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2632 rcu_read_unlock(); 2633 goto retry; 2634 } 2635 2636 rcu_read_unlock(); 2637 /* 2638 * somebody is likely to be still doing lookup for it; 2639 * wait for them to finish 2640 */ 2641 spin_lock(&dentry->d_lock); 2642 d_wait_lookup(dentry); 2643 /* 2644 * it's not in-lookup anymore; in principle we should repeat 2645 * everything from dcache lookup, but it's likely to be what 2646 * d_lookup() would've found anyway. If it is, just return it; 2647 * otherwise we really have to repeat the whole thing. 2648 */ 2649 if (unlikely(dentry->d_name.hash != hash)) 2650 goto mismatch; 2651 if (unlikely(dentry->d_parent != parent)) 2652 goto mismatch; 2653 if (unlikely(d_unhashed(dentry))) 2654 goto mismatch; 2655 if (unlikely(!d_same_name(dentry, parent, name))) 2656 goto mismatch; 2657 /* OK, it *is* a hashed match; return it */ 2658 spin_unlock(&dentry->d_lock); 2659 dput(new); 2660 return dentry; 2661 } 2662 rcu_read_unlock(); 2663 /* we can't take ->d_lock here; it's OK, though. */ 2664 new->d_flags |= DCACHE_PAR_LOOKUP; 2665 new->d_wait = wq; 2666 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2667 hlist_bl_unlock(b); 2668 return new; 2669 mismatch: 2670 spin_unlock(&dentry->d_lock); 2671 dput(dentry); 2672 goto retry; 2673 } 2674 EXPORT_SYMBOL(d_alloc_parallel); 2675 2676 void __d_lookup_done(struct dentry *dentry) 2677 { 2678 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2679 dentry->d_name.hash); 2680 hlist_bl_lock(b); 2681 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2682 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2683 wake_up_all(dentry->d_wait); 2684 dentry->d_wait = NULL; 2685 hlist_bl_unlock(b); 2686 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2687 INIT_LIST_HEAD(&dentry->d_lru); 2688 } 2689 EXPORT_SYMBOL(__d_lookup_done); 2690 2691 /* inode->i_lock held if inode is non-NULL */ 2692 2693 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2694 { 2695 struct inode *dir = NULL; 2696 unsigned n; 2697 spin_lock(&dentry->d_lock); 2698 if (unlikely(d_in_lookup(dentry))) { 2699 dir = dentry->d_parent->d_inode; 2700 n = start_dir_add(dir); 2701 __d_lookup_done(dentry); 2702 } 2703 if (inode) { 2704 unsigned add_flags = d_flags_for_inode(inode); 2705 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2706 raw_write_seqcount_begin(&dentry->d_seq); 2707 __d_set_inode_and_type(dentry, inode, add_flags); 2708 raw_write_seqcount_end(&dentry->d_seq); 2709 fsnotify_update_flags(dentry); 2710 } 2711 __d_rehash(dentry); 2712 if (dir) 2713 end_dir_add(dir, n); 2714 spin_unlock(&dentry->d_lock); 2715 if (inode) 2716 spin_unlock(&inode->i_lock); 2717 } 2718 2719 /** 2720 * d_add - add dentry to hash queues 2721 * @entry: dentry to add 2722 * @inode: The inode to attach to this dentry 2723 * 2724 * This adds the entry to the hash queues and initializes @inode. 2725 * The entry was actually filled in earlier during d_alloc(). 2726 */ 2727 2728 void d_add(struct dentry *entry, struct inode *inode) 2729 { 2730 if (inode) { 2731 security_d_instantiate(entry, inode); 2732 spin_lock(&inode->i_lock); 2733 } 2734 __d_add(entry, inode); 2735 } 2736 EXPORT_SYMBOL(d_add); 2737 2738 /** 2739 * d_exact_alias - find and hash an exact unhashed alias 2740 * @entry: dentry to add 2741 * @inode: The inode to go with this dentry 2742 * 2743 * If an unhashed dentry with the same name/parent and desired 2744 * inode already exists, hash and return it. Otherwise, return 2745 * NULL. 2746 * 2747 * Parent directory should be locked. 2748 */ 2749 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2750 { 2751 struct dentry *alias; 2752 unsigned int hash = entry->d_name.hash; 2753 2754 spin_lock(&inode->i_lock); 2755 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2756 /* 2757 * Don't need alias->d_lock here, because aliases with 2758 * d_parent == entry->d_parent are not subject to name or 2759 * parent changes, because the parent inode i_mutex is held. 2760 */ 2761 if (alias->d_name.hash != hash) 2762 continue; 2763 if (alias->d_parent != entry->d_parent) 2764 continue; 2765 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2766 continue; 2767 spin_lock(&alias->d_lock); 2768 if (!d_unhashed(alias)) { 2769 spin_unlock(&alias->d_lock); 2770 alias = NULL; 2771 } else { 2772 __dget_dlock(alias); 2773 __d_rehash(alias); 2774 spin_unlock(&alias->d_lock); 2775 } 2776 spin_unlock(&inode->i_lock); 2777 return alias; 2778 } 2779 spin_unlock(&inode->i_lock); 2780 return NULL; 2781 } 2782 EXPORT_SYMBOL(d_exact_alias); 2783 2784 static void swap_names(struct dentry *dentry, struct dentry *target) 2785 { 2786 if (unlikely(dname_external(target))) { 2787 if (unlikely(dname_external(dentry))) { 2788 /* 2789 * Both external: swap the pointers 2790 */ 2791 swap(target->d_name.name, dentry->d_name.name); 2792 } else { 2793 /* 2794 * dentry:internal, target:external. Steal target's 2795 * storage and make target internal. 2796 */ 2797 memcpy(target->d_iname, dentry->d_name.name, 2798 dentry->d_name.len + 1); 2799 dentry->d_name.name = target->d_name.name; 2800 target->d_name.name = target->d_iname; 2801 } 2802 } else { 2803 if (unlikely(dname_external(dentry))) { 2804 /* 2805 * dentry:external, target:internal. Give dentry's 2806 * storage to target and make dentry internal 2807 */ 2808 memcpy(dentry->d_iname, target->d_name.name, 2809 target->d_name.len + 1); 2810 target->d_name.name = dentry->d_name.name; 2811 dentry->d_name.name = dentry->d_iname; 2812 } else { 2813 /* 2814 * Both are internal. 2815 */ 2816 unsigned int i; 2817 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2818 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2819 swap(((long *) &dentry->d_iname)[i], 2820 ((long *) &target->d_iname)[i]); 2821 } 2822 } 2823 } 2824 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2825 } 2826 2827 static void copy_name(struct dentry *dentry, struct dentry *target) 2828 { 2829 struct external_name *old_name = NULL; 2830 if (unlikely(dname_external(dentry))) 2831 old_name = external_name(dentry); 2832 if (unlikely(dname_external(target))) { 2833 atomic_inc(&external_name(target)->u.count); 2834 dentry->d_name = target->d_name; 2835 } else { 2836 memcpy(dentry->d_iname, target->d_name.name, 2837 target->d_name.len + 1); 2838 dentry->d_name.name = dentry->d_iname; 2839 dentry->d_name.hash_len = target->d_name.hash_len; 2840 } 2841 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2842 kfree_rcu(old_name, u.head); 2843 } 2844 2845 /* 2846 * __d_move - move a dentry 2847 * @dentry: entry to move 2848 * @target: new dentry 2849 * @exchange: exchange the two dentries 2850 * 2851 * Update the dcache to reflect the move of a file name. Negative 2852 * dcache entries should not be moved in this way. Caller must hold 2853 * rename_lock, the i_mutex of the source and target directories, 2854 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2855 */ 2856 static void __d_move(struct dentry *dentry, struct dentry *target, 2857 bool exchange) 2858 { 2859 struct dentry *old_parent, *p; 2860 struct inode *dir = NULL; 2861 unsigned n; 2862 2863 WARN_ON(!dentry->d_inode); 2864 if (WARN_ON(dentry == target)) 2865 return; 2866 2867 BUG_ON(d_ancestor(target, dentry)); 2868 old_parent = dentry->d_parent; 2869 p = d_ancestor(old_parent, target); 2870 if (IS_ROOT(dentry)) { 2871 BUG_ON(p); 2872 spin_lock(&target->d_parent->d_lock); 2873 } else if (!p) { 2874 /* target is not a descendent of dentry->d_parent */ 2875 spin_lock(&target->d_parent->d_lock); 2876 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2877 } else { 2878 BUG_ON(p == dentry); 2879 spin_lock(&old_parent->d_lock); 2880 if (p != target) 2881 spin_lock_nested(&target->d_parent->d_lock, 2882 DENTRY_D_LOCK_NESTED); 2883 } 2884 spin_lock_nested(&dentry->d_lock, 2); 2885 spin_lock_nested(&target->d_lock, 3); 2886 2887 if (unlikely(d_in_lookup(target))) { 2888 dir = target->d_parent->d_inode; 2889 n = start_dir_add(dir); 2890 __d_lookup_done(target); 2891 } 2892 2893 write_seqcount_begin(&dentry->d_seq); 2894 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2895 2896 /* unhash both */ 2897 if (!d_unhashed(dentry)) 2898 ___d_drop(dentry); 2899 if (!d_unhashed(target)) 2900 ___d_drop(target); 2901 2902 /* ... and switch them in the tree */ 2903 dentry->d_parent = target->d_parent; 2904 if (!exchange) { 2905 copy_name(dentry, target); 2906 target->d_hash.pprev = NULL; 2907 dentry->d_parent->d_lockref.count++; 2908 if (dentry != old_parent) /* wasn't IS_ROOT */ 2909 WARN_ON(!--old_parent->d_lockref.count); 2910 } else { 2911 target->d_parent = old_parent; 2912 swap_names(dentry, target); 2913 list_move(&target->d_child, &target->d_parent->d_subdirs); 2914 __d_rehash(target); 2915 fsnotify_update_flags(target); 2916 } 2917 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2918 __d_rehash(dentry); 2919 fsnotify_update_flags(dentry); 2920 fscrypt_handle_d_move(dentry); 2921 2922 write_seqcount_end(&target->d_seq); 2923 write_seqcount_end(&dentry->d_seq); 2924 2925 if (dir) 2926 end_dir_add(dir, n); 2927 2928 if (dentry->d_parent != old_parent) 2929 spin_unlock(&dentry->d_parent->d_lock); 2930 if (dentry != old_parent) 2931 spin_unlock(&old_parent->d_lock); 2932 spin_unlock(&target->d_lock); 2933 spin_unlock(&dentry->d_lock); 2934 } 2935 2936 /* 2937 * d_move - move a dentry 2938 * @dentry: entry to move 2939 * @target: new dentry 2940 * 2941 * Update the dcache to reflect the move of a file name. Negative 2942 * dcache entries should not be moved in this way. See the locking 2943 * requirements for __d_move. 2944 */ 2945 void d_move(struct dentry *dentry, struct dentry *target) 2946 { 2947 write_seqlock(&rename_lock); 2948 __d_move(dentry, target, false); 2949 write_sequnlock(&rename_lock); 2950 } 2951 EXPORT_SYMBOL(d_move); 2952 2953 /* 2954 * d_exchange - exchange two dentries 2955 * @dentry1: first dentry 2956 * @dentry2: second dentry 2957 */ 2958 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2959 { 2960 write_seqlock(&rename_lock); 2961 2962 WARN_ON(!dentry1->d_inode); 2963 WARN_ON(!dentry2->d_inode); 2964 WARN_ON(IS_ROOT(dentry1)); 2965 WARN_ON(IS_ROOT(dentry2)); 2966 2967 __d_move(dentry1, dentry2, true); 2968 2969 write_sequnlock(&rename_lock); 2970 } 2971 2972 /** 2973 * d_ancestor - search for an ancestor 2974 * @p1: ancestor dentry 2975 * @p2: child dentry 2976 * 2977 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2978 * an ancestor of p2, else NULL. 2979 */ 2980 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2981 { 2982 struct dentry *p; 2983 2984 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2985 if (p->d_parent == p1) 2986 return p; 2987 } 2988 return NULL; 2989 } 2990 2991 /* 2992 * This helper attempts to cope with remotely renamed directories 2993 * 2994 * It assumes that the caller is already holding 2995 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2996 * 2997 * Note: If ever the locking in lock_rename() changes, then please 2998 * remember to update this too... 2999 */ 3000 static int __d_unalias(struct inode *inode, 3001 struct dentry *dentry, struct dentry *alias) 3002 { 3003 struct mutex *m1 = NULL; 3004 struct rw_semaphore *m2 = NULL; 3005 int ret = -ESTALE; 3006 3007 /* If alias and dentry share a parent, then no extra locks required */ 3008 if (alias->d_parent == dentry->d_parent) 3009 goto out_unalias; 3010 3011 /* See lock_rename() */ 3012 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 3013 goto out_err; 3014 m1 = &dentry->d_sb->s_vfs_rename_mutex; 3015 if (!inode_trylock_shared(alias->d_parent->d_inode)) 3016 goto out_err; 3017 m2 = &alias->d_parent->d_inode->i_rwsem; 3018 out_unalias: 3019 __d_move(alias, dentry, false); 3020 ret = 0; 3021 out_err: 3022 if (m2) 3023 up_read(m2); 3024 if (m1) 3025 mutex_unlock(m1); 3026 return ret; 3027 } 3028 3029 /** 3030 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3031 * @inode: the inode which may have a disconnected dentry 3032 * @dentry: a negative dentry which we want to point to the inode. 3033 * 3034 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3035 * place of the given dentry and return it, else simply d_add the inode 3036 * to the dentry and return NULL. 3037 * 3038 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3039 * we should error out: directories can't have multiple aliases. 3040 * 3041 * This is needed in the lookup routine of any filesystem that is exportable 3042 * (via knfsd) so that we can build dcache paths to directories effectively. 3043 * 3044 * If a dentry was found and moved, then it is returned. Otherwise NULL 3045 * is returned. This matches the expected return value of ->lookup. 3046 * 3047 * Cluster filesystems may call this function with a negative, hashed dentry. 3048 * In that case, we know that the inode will be a regular file, and also this 3049 * will only occur during atomic_open. So we need to check for the dentry 3050 * being already hashed only in the final case. 3051 */ 3052 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3053 { 3054 if (IS_ERR(inode)) 3055 return ERR_CAST(inode); 3056 3057 BUG_ON(!d_unhashed(dentry)); 3058 3059 if (!inode) 3060 goto out; 3061 3062 security_d_instantiate(dentry, inode); 3063 spin_lock(&inode->i_lock); 3064 if (S_ISDIR(inode->i_mode)) { 3065 struct dentry *new = __d_find_any_alias(inode); 3066 if (unlikely(new)) { 3067 /* The reference to new ensures it remains an alias */ 3068 spin_unlock(&inode->i_lock); 3069 write_seqlock(&rename_lock); 3070 if (unlikely(d_ancestor(new, dentry))) { 3071 write_sequnlock(&rename_lock); 3072 dput(new); 3073 new = ERR_PTR(-ELOOP); 3074 pr_warn_ratelimited( 3075 "VFS: Lookup of '%s' in %s %s" 3076 " would have caused loop\n", 3077 dentry->d_name.name, 3078 inode->i_sb->s_type->name, 3079 inode->i_sb->s_id); 3080 } else if (!IS_ROOT(new)) { 3081 struct dentry *old_parent = dget(new->d_parent); 3082 int err = __d_unalias(inode, dentry, new); 3083 write_sequnlock(&rename_lock); 3084 if (err) { 3085 dput(new); 3086 new = ERR_PTR(err); 3087 } 3088 dput(old_parent); 3089 } else { 3090 __d_move(new, dentry, false); 3091 write_sequnlock(&rename_lock); 3092 } 3093 iput(inode); 3094 return new; 3095 } 3096 } 3097 out: 3098 __d_add(dentry, inode); 3099 return NULL; 3100 } 3101 EXPORT_SYMBOL(d_splice_alias); 3102 3103 /* 3104 * Test whether new_dentry is a subdirectory of old_dentry. 3105 * 3106 * Trivially implemented using the dcache structure 3107 */ 3108 3109 /** 3110 * is_subdir - is new dentry a subdirectory of old_dentry 3111 * @new_dentry: new dentry 3112 * @old_dentry: old dentry 3113 * 3114 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3115 * Returns false otherwise. 3116 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3117 */ 3118 3119 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3120 { 3121 bool result; 3122 unsigned seq; 3123 3124 if (new_dentry == old_dentry) 3125 return true; 3126 3127 do { 3128 /* for restarting inner loop in case of seq retry */ 3129 seq = read_seqbegin(&rename_lock); 3130 /* 3131 * Need rcu_readlock to protect against the d_parent trashing 3132 * due to d_move 3133 */ 3134 rcu_read_lock(); 3135 if (d_ancestor(old_dentry, new_dentry)) 3136 result = true; 3137 else 3138 result = false; 3139 rcu_read_unlock(); 3140 } while (read_seqretry(&rename_lock, seq)); 3141 3142 return result; 3143 } 3144 EXPORT_SYMBOL(is_subdir); 3145 3146 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3147 { 3148 struct dentry *root = data; 3149 if (dentry != root) { 3150 if (d_unhashed(dentry) || !dentry->d_inode) 3151 return D_WALK_SKIP; 3152 3153 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3154 dentry->d_flags |= DCACHE_GENOCIDE; 3155 dentry->d_lockref.count--; 3156 } 3157 } 3158 return D_WALK_CONTINUE; 3159 } 3160 3161 void d_genocide(struct dentry *parent) 3162 { 3163 d_walk(parent, parent, d_genocide_kill); 3164 } 3165 3166 EXPORT_SYMBOL(d_genocide); 3167 3168 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3169 { 3170 inode_dec_link_count(inode); 3171 BUG_ON(dentry->d_name.name != dentry->d_iname || 3172 !hlist_unhashed(&dentry->d_u.d_alias) || 3173 !d_unlinked(dentry)); 3174 spin_lock(&dentry->d_parent->d_lock); 3175 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3176 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3177 (unsigned long long)inode->i_ino); 3178 spin_unlock(&dentry->d_lock); 3179 spin_unlock(&dentry->d_parent->d_lock); 3180 d_instantiate(dentry, inode); 3181 } 3182 EXPORT_SYMBOL(d_tmpfile); 3183 3184 static __initdata unsigned long dhash_entries; 3185 static int __init set_dhash_entries(char *str) 3186 { 3187 if (!str) 3188 return 0; 3189 dhash_entries = simple_strtoul(str, &str, 0); 3190 return 1; 3191 } 3192 __setup("dhash_entries=", set_dhash_entries); 3193 3194 static void __init dcache_init_early(void) 3195 { 3196 /* If hashes are distributed across NUMA nodes, defer 3197 * hash allocation until vmalloc space is available. 3198 */ 3199 if (hashdist) 3200 return; 3201 3202 dentry_hashtable = 3203 alloc_large_system_hash("Dentry cache", 3204 sizeof(struct hlist_bl_head), 3205 dhash_entries, 3206 13, 3207 HASH_EARLY | HASH_ZERO, 3208 &d_hash_shift, 3209 NULL, 3210 0, 3211 0); 3212 d_hash_shift = 32 - d_hash_shift; 3213 } 3214 3215 static void __init dcache_init(void) 3216 { 3217 /* 3218 * A constructor could be added for stable state like the lists, 3219 * but it is probably not worth it because of the cache nature 3220 * of the dcache. 3221 */ 3222 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3223 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3224 d_iname); 3225 3226 /* Hash may have been set up in dcache_init_early */ 3227 if (!hashdist) 3228 return; 3229 3230 dentry_hashtable = 3231 alloc_large_system_hash("Dentry cache", 3232 sizeof(struct hlist_bl_head), 3233 dhash_entries, 3234 13, 3235 HASH_ZERO, 3236 &d_hash_shift, 3237 NULL, 3238 0, 3239 0); 3240 d_hash_shift = 32 - d_hash_shift; 3241 } 3242 3243 /* SLAB cache for __getname() consumers */ 3244 struct kmem_cache *names_cachep __read_mostly; 3245 EXPORT_SYMBOL(names_cachep); 3246 3247 void __init vfs_caches_init_early(void) 3248 { 3249 int i; 3250 3251 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3252 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3253 3254 dcache_init_early(); 3255 inode_init_early(); 3256 } 3257 3258 void __init vfs_caches_init(void) 3259 { 3260 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3261 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3262 3263 dcache_init(); 3264 inode_init(); 3265 files_init(); 3266 files_maxfiles_init(); 3267 mnt_init(); 3268 bdev_cache_init(); 3269 chrdev_init(); 3270 } 3271