xref: /linux/fs/dcache.c (revision c6ed444fd6fffaaf2e3857d926ed18bf3df81e8e)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35 
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74 
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76 
77 EXPORT_SYMBOL(rename_lock);
78 
79 static struct kmem_cache *dentry_cache __read_mostly;
80 
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85 
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94 
95 static unsigned int d_hash_shift __read_mostly;
96 
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98 
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101 	return dentry_hashtable + (hash >> d_hash_shift);
102 }
103 
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106 
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113 
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139 	int i;
140 	long sum = 0;
141 	for_each_possible_cpu(i)
142 		sum += per_cpu(nr_dentry, i);
143 	return sum < 0 ? 0 : sum;
144 }
145 
146 static long get_nr_dentry_unused(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry_unused, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 		   size_t *lenp, loff_t *ppos)
157 {
158 	dentry_stat.nr_dentry = get_nr_dentry();
159 	dentry_stat.nr_unused = get_nr_dentry_unused();
160 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163 
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182 	unsigned long a,b,mask;
183 
184 	for (;;) {
185 		a = read_word_at_a_time(cs);
186 		b = load_unaligned_zeropad(ct);
187 		if (tcount < sizeof(unsigned long))
188 			break;
189 		if (unlikely(a != b))
190 			return 1;
191 		cs += sizeof(unsigned long);
192 		ct += sizeof(unsigned long);
193 		tcount -= sizeof(unsigned long);
194 		if (!tcount)
195 			return 0;
196 	}
197 	mask = bytemask_from_count(tcount);
198 	return unlikely(!!((a ^ b) & mask));
199 }
200 
201 #else
202 
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205 	do {
206 		if (*cs != *ct)
207 			return 1;
208 		cs++;
209 		ct++;
210 		tcount--;
211 	} while (tcount);
212 	return 0;
213 }
214 
215 #endif
216 
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use 'READ_ONCE' to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236 
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external_name(struct rcu_head *head)
261 {
262 	struct external_name *name = container_of(head, struct external_name,
263 						  u.head);
264 
265 	mod_node_page_state(page_pgdat(virt_to_page(name)),
266 			    NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 			    -ksize(name));
268 
269 	kfree(name);
270 }
271 
272 static void __d_free_external(struct rcu_head *head)
273 {
274 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275 
276 	__d_free_external_name(&external_name(dentry)->u.head);
277 
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	if (unlikely(dname_external(dentry))) {
290 		struct external_name *p = external_name(dentry);
291 		atomic_inc(&p->u.count);
292 		spin_unlock(&dentry->d_lock);
293 		name->name = p->name;
294 	} else {
295 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 		spin_unlock(&dentry->d_lock);
297 		name->name = name->inline_name;
298 	}
299 }
300 EXPORT_SYMBOL(take_dentry_name_snapshot);
301 
302 void release_dentry_name_snapshot(struct name_snapshot *name)
303 {
304 	if (unlikely(name->name != name->inline_name)) {
305 		struct external_name *p;
306 		p = container_of(name->name, struct external_name, name[0]);
307 		if (unlikely(atomic_dec_and_test(&p->u.count)))
308 			call_rcu(&p->u.head, __d_free_external_name);
309 	}
310 }
311 EXPORT_SYMBOL(release_dentry_name_snapshot);
312 
313 static inline void __d_set_inode_and_type(struct dentry *dentry,
314 					  struct inode *inode,
315 					  unsigned type_flags)
316 {
317 	unsigned flags;
318 
319 	dentry->d_inode = inode;
320 	flags = READ_ONCE(dentry->d_flags);
321 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 	flags |= type_flags;
323 	WRITE_ONCE(dentry->d_flags, flags);
324 }
325 
326 static inline void __d_clear_type_and_inode(struct dentry *dentry)
327 {
328 	unsigned flags = READ_ONCE(dentry->d_flags);
329 
330 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 	WRITE_ONCE(dentry->d_flags, flags);
332 	dentry->d_inode = NULL;
333 }
334 
335 static void dentry_free(struct dentry *dentry)
336 {
337 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338 	if (unlikely(dname_external(dentry))) {
339 		struct external_name *p = external_name(dentry);
340 		if (likely(atomic_dec_and_test(&p->u.count))) {
341 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 			return;
343 		}
344 	}
345 	/* if dentry was never visible to RCU, immediate free is OK */
346 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 		__d_free(&dentry->d_u.d_rcu);
348 	else
349 		call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351 
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357 	__releases(dentry->d_lock)
358 	__releases(dentry->d_inode->i_lock)
359 {
360 	struct inode *inode = dentry->d_inode;
361 
362 	raw_write_seqcount_begin(&dentry->d_seq);
363 	__d_clear_type_and_inode(dentry);
364 	hlist_del_init(&dentry->d_u.d_alias);
365 	raw_write_seqcount_end(&dentry->d_seq);
366 	spin_unlock(&dentry->d_lock);
367 	spin_unlock(&inode->i_lock);
368 	if (!inode->i_nlink)
369 		fsnotify_inoderemove(inode);
370 	if (dentry->d_op && dentry->d_op->d_iput)
371 		dentry->d_op->d_iput(dentry, inode);
372 	else
373 		iput(inode);
374 }
375 
376 /*
377  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378  * is in use - which includes both the "real" per-superblock
379  * LRU list _and_ the DCACHE_SHRINK_LIST use.
380  *
381  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382  * on the shrink list (ie not on the superblock LRU list).
383  *
384  * The per-cpu "nr_dentry_unused" counters are updated with
385  * the DCACHE_LRU_LIST bit.
386  *
387  * These helper functions make sure we always follow the
388  * rules. d_lock must be held by the caller.
389  */
390 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
391 static void d_lru_add(struct dentry *dentry)
392 {
393 	D_FLAG_VERIFY(dentry, 0);
394 	dentry->d_flags |= DCACHE_LRU_LIST;
395 	this_cpu_inc(nr_dentry_unused);
396 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 }
398 
399 static void d_lru_del(struct dentry *dentry)
400 {
401 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 	dentry->d_flags &= ~DCACHE_LRU_LIST;
403 	this_cpu_dec(nr_dentry_unused);
404 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_shrink_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 	list_del_init(&dentry->d_lru);
411 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 	this_cpu_dec(nr_dentry_unused);
413 }
414 
415 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
416 {
417 	D_FLAG_VERIFY(dentry, 0);
418 	list_add(&dentry->d_lru, list);
419 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
420 	this_cpu_inc(nr_dentry_unused);
421 }
422 
423 /*
424  * These can only be called under the global LRU lock, ie during the
425  * callback for freeing the LRU list. "isolate" removes it from the
426  * LRU lists entirely, while shrink_move moves it to the indicated
427  * private list.
428  */
429 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
430 {
431 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
432 	dentry->d_flags &= ~DCACHE_LRU_LIST;
433 	this_cpu_dec(nr_dentry_unused);
434 	list_lru_isolate(lru, &dentry->d_lru);
435 }
436 
437 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
438 			      struct list_head *list)
439 {
440 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 	dentry->d_flags |= DCACHE_SHRINK_LIST;
442 	list_lru_isolate_move(lru, &dentry->d_lru, list);
443 }
444 
445 /**
446  * d_drop - drop a dentry
447  * @dentry: dentry to drop
448  *
449  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
450  * be found through a VFS lookup any more. Note that this is different from
451  * deleting the dentry - d_delete will try to mark the dentry negative if
452  * possible, giving a successful _negative_ lookup, while d_drop will
453  * just make the cache lookup fail.
454  *
455  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
456  * reason (NFS timeouts or autofs deletes).
457  *
458  * __d_drop requires dentry->d_lock
459  * ___d_drop doesn't mark dentry as "unhashed"
460  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
461  */
462 static void ___d_drop(struct dentry *dentry)
463 {
464 	struct hlist_bl_head *b;
465 	/*
466 	 * Hashed dentries are normally on the dentry hashtable,
467 	 * with the exception of those newly allocated by
468 	 * d_obtain_root, which are always IS_ROOT:
469 	 */
470 	if (unlikely(IS_ROOT(dentry)))
471 		b = &dentry->d_sb->s_roots;
472 	else
473 		b = d_hash(dentry->d_name.hash);
474 
475 	hlist_bl_lock(b);
476 	__hlist_bl_del(&dentry->d_hash);
477 	hlist_bl_unlock(b);
478 }
479 
480 void __d_drop(struct dentry *dentry)
481 {
482 	if (!d_unhashed(dentry)) {
483 		___d_drop(dentry);
484 		dentry->d_hash.pprev = NULL;
485 		write_seqcount_invalidate(&dentry->d_seq);
486 	}
487 }
488 EXPORT_SYMBOL(__d_drop);
489 
490 void d_drop(struct dentry *dentry)
491 {
492 	spin_lock(&dentry->d_lock);
493 	__d_drop(dentry);
494 	spin_unlock(&dentry->d_lock);
495 }
496 EXPORT_SYMBOL(d_drop);
497 
498 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
499 {
500 	struct dentry *next;
501 	/*
502 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
503 	 * attached to the dentry tree
504 	 */
505 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
506 	if (unlikely(list_empty(&dentry->d_child)))
507 		return;
508 	__list_del_entry(&dentry->d_child);
509 	/*
510 	 * Cursors can move around the list of children.  While we'd been
511 	 * a normal list member, it didn't matter - ->d_child.next would've
512 	 * been updated.  However, from now on it won't be and for the
513 	 * things like d_walk() it might end up with a nasty surprise.
514 	 * Normally d_walk() doesn't care about cursors moving around -
515 	 * ->d_lock on parent prevents that and since a cursor has no children
516 	 * of its own, we get through it without ever unlocking the parent.
517 	 * There is one exception, though - if we ascend from a child that
518 	 * gets killed as soon as we unlock it, the next sibling is found
519 	 * using the value left in its ->d_child.next.  And if _that_
520 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
521 	 * before d_walk() regains parent->d_lock, we'll end up skipping
522 	 * everything the cursor had been moved past.
523 	 *
524 	 * Solution: make sure that the pointer left behind in ->d_child.next
525 	 * points to something that won't be moving around.  I.e. skip the
526 	 * cursors.
527 	 */
528 	while (dentry->d_child.next != &parent->d_subdirs) {
529 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
530 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
531 			break;
532 		dentry->d_child.next = next->d_child.next;
533 	}
534 }
535 
536 static void __dentry_kill(struct dentry *dentry)
537 {
538 	struct dentry *parent = NULL;
539 	bool can_free = true;
540 	if (!IS_ROOT(dentry))
541 		parent = dentry->d_parent;
542 
543 	/*
544 	 * The dentry is now unrecoverably dead to the world.
545 	 */
546 	lockref_mark_dead(&dentry->d_lockref);
547 
548 	/*
549 	 * inform the fs via d_prune that this dentry is about to be
550 	 * unhashed and destroyed.
551 	 */
552 	if (dentry->d_flags & DCACHE_OP_PRUNE)
553 		dentry->d_op->d_prune(dentry);
554 
555 	if (dentry->d_flags & DCACHE_LRU_LIST) {
556 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
557 			d_lru_del(dentry);
558 	}
559 	/* if it was on the hash then remove it */
560 	__d_drop(dentry);
561 	dentry_unlist(dentry, parent);
562 	if (parent)
563 		spin_unlock(&parent->d_lock);
564 	if (dentry->d_inode)
565 		dentry_unlink_inode(dentry);
566 	else
567 		spin_unlock(&dentry->d_lock);
568 	this_cpu_dec(nr_dentry);
569 	if (dentry->d_op && dentry->d_op->d_release)
570 		dentry->d_op->d_release(dentry);
571 
572 	spin_lock(&dentry->d_lock);
573 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
574 		dentry->d_flags |= DCACHE_MAY_FREE;
575 		can_free = false;
576 	}
577 	spin_unlock(&dentry->d_lock);
578 	if (likely(can_free))
579 		dentry_free(dentry);
580 	cond_resched();
581 }
582 
583 static struct dentry *__lock_parent(struct dentry *dentry)
584 {
585 	struct dentry *parent;
586 	rcu_read_lock();
587 	spin_unlock(&dentry->d_lock);
588 again:
589 	parent = READ_ONCE(dentry->d_parent);
590 	spin_lock(&parent->d_lock);
591 	/*
592 	 * We can't blindly lock dentry until we are sure
593 	 * that we won't violate the locking order.
594 	 * Any changes of dentry->d_parent must have
595 	 * been done with parent->d_lock held, so
596 	 * spin_lock() above is enough of a barrier
597 	 * for checking if it's still our child.
598 	 */
599 	if (unlikely(parent != dentry->d_parent)) {
600 		spin_unlock(&parent->d_lock);
601 		goto again;
602 	}
603 	rcu_read_unlock();
604 	if (parent != dentry)
605 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
606 	else
607 		parent = NULL;
608 	return parent;
609 }
610 
611 static inline struct dentry *lock_parent(struct dentry *dentry)
612 {
613 	struct dentry *parent = dentry->d_parent;
614 	if (IS_ROOT(dentry))
615 		return NULL;
616 	if (likely(spin_trylock(&parent->d_lock)))
617 		return parent;
618 	return __lock_parent(dentry);
619 }
620 
621 static inline bool retain_dentry(struct dentry *dentry)
622 {
623 	WARN_ON(d_in_lookup(dentry));
624 
625 	/* Unreachable? Get rid of it */
626 	if (unlikely(d_unhashed(dentry)))
627 		return false;
628 
629 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
630 		return false;
631 
632 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
633 		if (dentry->d_op->d_delete(dentry))
634 			return false;
635 	}
636 	/* retain; LRU fodder */
637 	dentry->d_lockref.count--;
638 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
639 		d_lru_add(dentry);
640 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
641 		dentry->d_flags |= DCACHE_REFERENCED;
642 	return true;
643 }
644 
645 /*
646  * Finish off a dentry we've decided to kill.
647  * dentry->d_lock must be held, returns with it unlocked.
648  * Returns dentry requiring refcount drop, or NULL if we're done.
649  */
650 static struct dentry *dentry_kill(struct dentry *dentry)
651 	__releases(dentry->d_lock)
652 {
653 	struct inode *inode = dentry->d_inode;
654 	struct dentry *parent = NULL;
655 
656 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
657 		goto slow_positive;
658 
659 	if (!IS_ROOT(dentry)) {
660 		parent = dentry->d_parent;
661 		if (unlikely(!spin_trylock(&parent->d_lock))) {
662 			parent = __lock_parent(dentry);
663 			if (likely(inode || !dentry->d_inode))
664 				goto got_locks;
665 			/* negative that became positive */
666 			if (parent)
667 				spin_unlock(&parent->d_lock);
668 			inode = dentry->d_inode;
669 			goto slow_positive;
670 		}
671 	}
672 	__dentry_kill(dentry);
673 	return parent;
674 
675 slow_positive:
676 	spin_unlock(&dentry->d_lock);
677 	spin_lock(&inode->i_lock);
678 	spin_lock(&dentry->d_lock);
679 	parent = lock_parent(dentry);
680 got_locks:
681 	if (unlikely(dentry->d_lockref.count != 1)) {
682 		dentry->d_lockref.count--;
683 	} else if (likely(!retain_dentry(dentry))) {
684 		__dentry_kill(dentry);
685 		return parent;
686 	}
687 	/* we are keeping it, after all */
688 	if (inode)
689 		spin_unlock(&inode->i_lock);
690 	if (parent)
691 		spin_unlock(&parent->d_lock);
692 	spin_unlock(&dentry->d_lock);
693 	return NULL;
694 }
695 
696 /*
697  * Try to do a lockless dput(), and return whether that was successful.
698  *
699  * If unsuccessful, we return false, having already taken the dentry lock.
700  *
701  * The caller needs to hold the RCU read lock, so that the dentry is
702  * guaranteed to stay around even if the refcount goes down to zero!
703  */
704 static inline bool fast_dput(struct dentry *dentry)
705 {
706 	int ret;
707 	unsigned int d_flags;
708 
709 	/*
710 	 * If we have a d_op->d_delete() operation, we sould not
711 	 * let the dentry count go to zero, so use "put_or_lock".
712 	 */
713 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
714 		return lockref_put_or_lock(&dentry->d_lockref);
715 
716 	/*
717 	 * .. otherwise, we can try to just decrement the
718 	 * lockref optimistically.
719 	 */
720 	ret = lockref_put_return(&dentry->d_lockref);
721 
722 	/*
723 	 * If the lockref_put_return() failed due to the lock being held
724 	 * by somebody else, the fast path has failed. We will need to
725 	 * get the lock, and then check the count again.
726 	 */
727 	if (unlikely(ret < 0)) {
728 		spin_lock(&dentry->d_lock);
729 		if (dentry->d_lockref.count > 1) {
730 			dentry->d_lockref.count--;
731 			spin_unlock(&dentry->d_lock);
732 			return true;
733 		}
734 		return false;
735 	}
736 
737 	/*
738 	 * If we weren't the last ref, we're done.
739 	 */
740 	if (ret)
741 		return true;
742 
743 	/*
744 	 * Careful, careful. The reference count went down
745 	 * to zero, but we don't hold the dentry lock, so
746 	 * somebody else could get it again, and do another
747 	 * dput(), and we need to not race with that.
748 	 *
749 	 * However, there is a very special and common case
750 	 * where we don't care, because there is nothing to
751 	 * do: the dentry is still hashed, it does not have
752 	 * a 'delete' op, and it's referenced and already on
753 	 * the LRU list.
754 	 *
755 	 * NOTE! Since we aren't locked, these values are
756 	 * not "stable". However, it is sufficient that at
757 	 * some point after we dropped the reference the
758 	 * dentry was hashed and the flags had the proper
759 	 * value. Other dentry users may have re-gotten
760 	 * a reference to the dentry and change that, but
761 	 * our work is done - we can leave the dentry
762 	 * around with a zero refcount.
763 	 */
764 	smp_rmb();
765 	d_flags = READ_ONCE(dentry->d_flags);
766 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
767 
768 	/* Nothing to do? Dropping the reference was all we needed? */
769 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
770 		return true;
771 
772 	/*
773 	 * Not the fast normal case? Get the lock. We've already decremented
774 	 * the refcount, but we'll need to re-check the situation after
775 	 * getting the lock.
776 	 */
777 	spin_lock(&dentry->d_lock);
778 
779 	/*
780 	 * Did somebody else grab a reference to it in the meantime, and
781 	 * we're no longer the last user after all? Alternatively, somebody
782 	 * else could have killed it and marked it dead. Either way, we
783 	 * don't need to do anything else.
784 	 */
785 	if (dentry->d_lockref.count) {
786 		spin_unlock(&dentry->d_lock);
787 		return true;
788 	}
789 
790 	/*
791 	 * Re-get the reference we optimistically dropped. We hold the
792 	 * lock, and we just tested that it was zero, so we can just
793 	 * set it to 1.
794 	 */
795 	dentry->d_lockref.count = 1;
796 	return false;
797 }
798 
799 
800 /*
801  * This is dput
802  *
803  * This is complicated by the fact that we do not want to put
804  * dentries that are no longer on any hash chain on the unused
805  * list: we'd much rather just get rid of them immediately.
806  *
807  * However, that implies that we have to traverse the dentry
808  * tree upwards to the parents which might _also_ now be
809  * scheduled for deletion (it may have been only waiting for
810  * its last child to go away).
811  *
812  * This tail recursion is done by hand as we don't want to depend
813  * on the compiler to always get this right (gcc generally doesn't).
814  * Real recursion would eat up our stack space.
815  */
816 
817 /*
818  * dput - release a dentry
819  * @dentry: dentry to release
820  *
821  * Release a dentry. This will drop the usage count and if appropriate
822  * call the dentry unlink method as well as removing it from the queues and
823  * releasing its resources. If the parent dentries were scheduled for release
824  * they too may now get deleted.
825  */
826 void dput(struct dentry *dentry)
827 {
828 	while (dentry) {
829 		might_sleep();
830 
831 		rcu_read_lock();
832 		if (likely(fast_dput(dentry))) {
833 			rcu_read_unlock();
834 			return;
835 		}
836 
837 		/* Slow case: now with the dentry lock held */
838 		rcu_read_unlock();
839 
840 		if (likely(retain_dentry(dentry))) {
841 			spin_unlock(&dentry->d_lock);
842 			return;
843 		}
844 
845 		dentry = dentry_kill(dentry);
846 	}
847 }
848 EXPORT_SYMBOL(dput);
849 
850 
851 /* This must be called with d_lock held */
852 static inline void __dget_dlock(struct dentry *dentry)
853 {
854 	dentry->d_lockref.count++;
855 }
856 
857 static inline void __dget(struct dentry *dentry)
858 {
859 	lockref_get(&dentry->d_lockref);
860 }
861 
862 struct dentry *dget_parent(struct dentry *dentry)
863 {
864 	int gotref;
865 	struct dentry *ret;
866 
867 	/*
868 	 * Do optimistic parent lookup without any
869 	 * locking.
870 	 */
871 	rcu_read_lock();
872 	ret = READ_ONCE(dentry->d_parent);
873 	gotref = lockref_get_not_zero(&ret->d_lockref);
874 	rcu_read_unlock();
875 	if (likely(gotref)) {
876 		if (likely(ret == READ_ONCE(dentry->d_parent)))
877 			return ret;
878 		dput(ret);
879 	}
880 
881 repeat:
882 	/*
883 	 * Don't need rcu_dereference because we re-check it was correct under
884 	 * the lock.
885 	 */
886 	rcu_read_lock();
887 	ret = dentry->d_parent;
888 	spin_lock(&ret->d_lock);
889 	if (unlikely(ret != dentry->d_parent)) {
890 		spin_unlock(&ret->d_lock);
891 		rcu_read_unlock();
892 		goto repeat;
893 	}
894 	rcu_read_unlock();
895 	BUG_ON(!ret->d_lockref.count);
896 	ret->d_lockref.count++;
897 	spin_unlock(&ret->d_lock);
898 	return ret;
899 }
900 EXPORT_SYMBOL(dget_parent);
901 
902 static struct dentry * __d_find_any_alias(struct inode *inode)
903 {
904 	struct dentry *alias;
905 
906 	if (hlist_empty(&inode->i_dentry))
907 		return NULL;
908 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
909 	__dget(alias);
910 	return alias;
911 }
912 
913 /**
914  * d_find_any_alias - find any alias for a given inode
915  * @inode: inode to find an alias for
916  *
917  * If any aliases exist for the given inode, take and return a
918  * reference for one of them.  If no aliases exist, return %NULL.
919  */
920 struct dentry *d_find_any_alias(struct inode *inode)
921 {
922 	struct dentry *de;
923 
924 	spin_lock(&inode->i_lock);
925 	de = __d_find_any_alias(inode);
926 	spin_unlock(&inode->i_lock);
927 	return de;
928 }
929 EXPORT_SYMBOL(d_find_any_alias);
930 
931 /**
932  * d_find_alias - grab a hashed alias of inode
933  * @inode: inode in question
934  *
935  * If inode has a hashed alias, or is a directory and has any alias,
936  * acquire the reference to alias and return it. Otherwise return NULL.
937  * Notice that if inode is a directory there can be only one alias and
938  * it can be unhashed only if it has no children, or if it is the root
939  * of a filesystem, or if the directory was renamed and d_revalidate
940  * was the first vfs operation to notice.
941  *
942  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
943  * any other hashed alias over that one.
944  */
945 static struct dentry *__d_find_alias(struct inode *inode)
946 {
947 	struct dentry *alias;
948 
949 	if (S_ISDIR(inode->i_mode))
950 		return __d_find_any_alias(inode);
951 
952 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
953 		spin_lock(&alias->d_lock);
954  		if (!d_unhashed(alias)) {
955 			__dget_dlock(alias);
956 			spin_unlock(&alias->d_lock);
957 			return alias;
958 		}
959 		spin_unlock(&alias->d_lock);
960 	}
961 	return NULL;
962 }
963 
964 struct dentry *d_find_alias(struct inode *inode)
965 {
966 	struct dentry *de = NULL;
967 
968 	if (!hlist_empty(&inode->i_dentry)) {
969 		spin_lock(&inode->i_lock);
970 		de = __d_find_alias(inode);
971 		spin_unlock(&inode->i_lock);
972 	}
973 	return de;
974 }
975 EXPORT_SYMBOL(d_find_alias);
976 
977 /*
978  *	Try to kill dentries associated with this inode.
979  * WARNING: you must own a reference to inode.
980  */
981 void d_prune_aliases(struct inode *inode)
982 {
983 	struct dentry *dentry;
984 restart:
985 	spin_lock(&inode->i_lock);
986 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
987 		spin_lock(&dentry->d_lock);
988 		if (!dentry->d_lockref.count) {
989 			struct dentry *parent = lock_parent(dentry);
990 			if (likely(!dentry->d_lockref.count)) {
991 				__dentry_kill(dentry);
992 				dput(parent);
993 				goto restart;
994 			}
995 			if (parent)
996 				spin_unlock(&parent->d_lock);
997 		}
998 		spin_unlock(&dentry->d_lock);
999 	}
1000 	spin_unlock(&inode->i_lock);
1001 }
1002 EXPORT_SYMBOL(d_prune_aliases);
1003 
1004 /*
1005  * Lock a dentry from shrink list.
1006  * Called under rcu_read_lock() and dentry->d_lock; the former
1007  * guarantees that nothing we access will be freed under us.
1008  * Note that dentry is *not* protected from concurrent dentry_kill(),
1009  * d_delete(), etc.
1010  *
1011  * Return false if dentry has been disrupted or grabbed, leaving
1012  * the caller to kick it off-list.  Otherwise, return true and have
1013  * that dentry's inode and parent both locked.
1014  */
1015 static bool shrink_lock_dentry(struct dentry *dentry)
1016 {
1017 	struct inode *inode;
1018 	struct dentry *parent;
1019 
1020 	if (dentry->d_lockref.count)
1021 		return false;
1022 
1023 	inode = dentry->d_inode;
1024 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1025 		spin_unlock(&dentry->d_lock);
1026 		spin_lock(&inode->i_lock);
1027 		spin_lock(&dentry->d_lock);
1028 		if (unlikely(dentry->d_lockref.count))
1029 			goto out;
1030 		/* changed inode means that somebody had grabbed it */
1031 		if (unlikely(inode != dentry->d_inode))
1032 			goto out;
1033 	}
1034 
1035 	parent = dentry->d_parent;
1036 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1037 		return true;
1038 
1039 	spin_unlock(&dentry->d_lock);
1040 	spin_lock(&parent->d_lock);
1041 	if (unlikely(parent != dentry->d_parent)) {
1042 		spin_unlock(&parent->d_lock);
1043 		spin_lock(&dentry->d_lock);
1044 		goto out;
1045 	}
1046 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1047 	if (likely(!dentry->d_lockref.count))
1048 		return true;
1049 	spin_unlock(&parent->d_lock);
1050 out:
1051 	if (inode)
1052 		spin_unlock(&inode->i_lock);
1053 	return false;
1054 }
1055 
1056 static void shrink_dentry_list(struct list_head *list)
1057 {
1058 	while (!list_empty(list)) {
1059 		struct dentry *dentry, *parent;
1060 
1061 		dentry = list_entry(list->prev, struct dentry, d_lru);
1062 		spin_lock(&dentry->d_lock);
1063 		rcu_read_lock();
1064 		if (!shrink_lock_dentry(dentry)) {
1065 			bool can_free = false;
1066 			rcu_read_unlock();
1067 			d_shrink_del(dentry);
1068 			if (dentry->d_lockref.count < 0)
1069 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1070 			spin_unlock(&dentry->d_lock);
1071 			if (can_free)
1072 				dentry_free(dentry);
1073 			continue;
1074 		}
1075 		rcu_read_unlock();
1076 		d_shrink_del(dentry);
1077 		parent = dentry->d_parent;
1078 		__dentry_kill(dentry);
1079 		if (parent == dentry)
1080 			continue;
1081 		/*
1082 		 * We need to prune ancestors too. This is necessary to prevent
1083 		 * quadratic behavior of shrink_dcache_parent(), but is also
1084 		 * expected to be beneficial in reducing dentry cache
1085 		 * fragmentation.
1086 		 */
1087 		dentry = parent;
1088 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1089 			dentry = dentry_kill(dentry);
1090 	}
1091 }
1092 
1093 static enum lru_status dentry_lru_isolate(struct list_head *item,
1094 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1095 {
1096 	struct list_head *freeable = arg;
1097 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1098 
1099 
1100 	/*
1101 	 * we are inverting the lru lock/dentry->d_lock here,
1102 	 * so use a trylock. If we fail to get the lock, just skip
1103 	 * it
1104 	 */
1105 	if (!spin_trylock(&dentry->d_lock))
1106 		return LRU_SKIP;
1107 
1108 	/*
1109 	 * Referenced dentries are still in use. If they have active
1110 	 * counts, just remove them from the LRU. Otherwise give them
1111 	 * another pass through the LRU.
1112 	 */
1113 	if (dentry->d_lockref.count) {
1114 		d_lru_isolate(lru, dentry);
1115 		spin_unlock(&dentry->d_lock);
1116 		return LRU_REMOVED;
1117 	}
1118 
1119 	if (dentry->d_flags & DCACHE_REFERENCED) {
1120 		dentry->d_flags &= ~DCACHE_REFERENCED;
1121 		spin_unlock(&dentry->d_lock);
1122 
1123 		/*
1124 		 * The list move itself will be made by the common LRU code. At
1125 		 * this point, we've dropped the dentry->d_lock but keep the
1126 		 * lru lock. This is safe to do, since every list movement is
1127 		 * protected by the lru lock even if both locks are held.
1128 		 *
1129 		 * This is guaranteed by the fact that all LRU management
1130 		 * functions are intermediated by the LRU API calls like
1131 		 * list_lru_add and list_lru_del. List movement in this file
1132 		 * only ever occur through this functions or through callbacks
1133 		 * like this one, that are called from the LRU API.
1134 		 *
1135 		 * The only exceptions to this are functions like
1136 		 * shrink_dentry_list, and code that first checks for the
1137 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1138 		 * operating only with stack provided lists after they are
1139 		 * properly isolated from the main list.  It is thus, always a
1140 		 * local access.
1141 		 */
1142 		return LRU_ROTATE;
1143 	}
1144 
1145 	d_lru_shrink_move(lru, dentry, freeable);
1146 	spin_unlock(&dentry->d_lock);
1147 
1148 	return LRU_REMOVED;
1149 }
1150 
1151 /**
1152  * prune_dcache_sb - shrink the dcache
1153  * @sb: superblock
1154  * @sc: shrink control, passed to list_lru_shrink_walk()
1155  *
1156  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1157  * is done when we need more memory and called from the superblock shrinker
1158  * function.
1159  *
1160  * This function may fail to free any resources if all the dentries are in
1161  * use.
1162  */
1163 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1164 {
1165 	LIST_HEAD(dispose);
1166 	long freed;
1167 
1168 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1169 				     dentry_lru_isolate, &dispose);
1170 	shrink_dentry_list(&dispose);
1171 	return freed;
1172 }
1173 
1174 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1175 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1176 {
1177 	struct list_head *freeable = arg;
1178 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1179 
1180 	/*
1181 	 * we are inverting the lru lock/dentry->d_lock here,
1182 	 * so use a trylock. If we fail to get the lock, just skip
1183 	 * it
1184 	 */
1185 	if (!spin_trylock(&dentry->d_lock))
1186 		return LRU_SKIP;
1187 
1188 	d_lru_shrink_move(lru, dentry, freeable);
1189 	spin_unlock(&dentry->d_lock);
1190 
1191 	return LRU_REMOVED;
1192 }
1193 
1194 
1195 /**
1196  * shrink_dcache_sb - shrink dcache for a superblock
1197  * @sb: superblock
1198  *
1199  * Shrink the dcache for the specified super block. This is used to free
1200  * the dcache before unmounting a file system.
1201  */
1202 void shrink_dcache_sb(struct super_block *sb)
1203 {
1204 	long freed;
1205 
1206 	do {
1207 		LIST_HEAD(dispose);
1208 
1209 		freed = list_lru_walk(&sb->s_dentry_lru,
1210 			dentry_lru_isolate_shrink, &dispose, 1024);
1211 
1212 		this_cpu_sub(nr_dentry_unused, freed);
1213 		shrink_dentry_list(&dispose);
1214 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1215 }
1216 EXPORT_SYMBOL(shrink_dcache_sb);
1217 
1218 /**
1219  * enum d_walk_ret - action to talke during tree walk
1220  * @D_WALK_CONTINUE:	contrinue walk
1221  * @D_WALK_QUIT:	quit walk
1222  * @D_WALK_NORETRY:	quit when retry is needed
1223  * @D_WALK_SKIP:	skip this dentry and its children
1224  */
1225 enum d_walk_ret {
1226 	D_WALK_CONTINUE,
1227 	D_WALK_QUIT,
1228 	D_WALK_NORETRY,
1229 	D_WALK_SKIP,
1230 };
1231 
1232 /**
1233  * d_walk - walk the dentry tree
1234  * @parent:	start of walk
1235  * @data:	data passed to @enter() and @finish()
1236  * @enter:	callback when first entering the dentry
1237  *
1238  * The @enter() callbacks are called with d_lock held.
1239  */
1240 static void d_walk(struct dentry *parent, void *data,
1241 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1242 {
1243 	struct dentry *this_parent;
1244 	struct list_head *next;
1245 	unsigned seq = 0;
1246 	enum d_walk_ret ret;
1247 	bool retry = true;
1248 
1249 again:
1250 	read_seqbegin_or_lock(&rename_lock, &seq);
1251 	this_parent = parent;
1252 	spin_lock(&this_parent->d_lock);
1253 
1254 	ret = enter(data, this_parent);
1255 	switch (ret) {
1256 	case D_WALK_CONTINUE:
1257 		break;
1258 	case D_WALK_QUIT:
1259 	case D_WALK_SKIP:
1260 		goto out_unlock;
1261 	case D_WALK_NORETRY:
1262 		retry = false;
1263 		break;
1264 	}
1265 repeat:
1266 	next = this_parent->d_subdirs.next;
1267 resume:
1268 	while (next != &this_parent->d_subdirs) {
1269 		struct list_head *tmp = next;
1270 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1271 		next = tmp->next;
1272 
1273 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1274 			continue;
1275 
1276 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1277 
1278 		ret = enter(data, dentry);
1279 		switch (ret) {
1280 		case D_WALK_CONTINUE:
1281 			break;
1282 		case D_WALK_QUIT:
1283 			spin_unlock(&dentry->d_lock);
1284 			goto out_unlock;
1285 		case D_WALK_NORETRY:
1286 			retry = false;
1287 			break;
1288 		case D_WALK_SKIP:
1289 			spin_unlock(&dentry->d_lock);
1290 			continue;
1291 		}
1292 
1293 		if (!list_empty(&dentry->d_subdirs)) {
1294 			spin_unlock(&this_parent->d_lock);
1295 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1296 			this_parent = dentry;
1297 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1298 			goto repeat;
1299 		}
1300 		spin_unlock(&dentry->d_lock);
1301 	}
1302 	/*
1303 	 * All done at this level ... ascend and resume the search.
1304 	 */
1305 	rcu_read_lock();
1306 ascend:
1307 	if (this_parent != parent) {
1308 		struct dentry *child = this_parent;
1309 		this_parent = child->d_parent;
1310 
1311 		spin_unlock(&child->d_lock);
1312 		spin_lock(&this_parent->d_lock);
1313 
1314 		/* might go back up the wrong parent if we have had a rename. */
1315 		if (need_seqretry(&rename_lock, seq))
1316 			goto rename_retry;
1317 		/* go into the first sibling still alive */
1318 		do {
1319 			next = child->d_child.next;
1320 			if (next == &this_parent->d_subdirs)
1321 				goto ascend;
1322 			child = list_entry(next, struct dentry, d_child);
1323 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1324 		rcu_read_unlock();
1325 		goto resume;
1326 	}
1327 	if (need_seqretry(&rename_lock, seq))
1328 		goto rename_retry;
1329 	rcu_read_unlock();
1330 
1331 out_unlock:
1332 	spin_unlock(&this_parent->d_lock);
1333 	done_seqretry(&rename_lock, seq);
1334 	return;
1335 
1336 rename_retry:
1337 	spin_unlock(&this_parent->d_lock);
1338 	rcu_read_unlock();
1339 	BUG_ON(seq & 1);
1340 	if (!retry)
1341 		return;
1342 	seq = 1;
1343 	goto again;
1344 }
1345 
1346 struct check_mount {
1347 	struct vfsmount *mnt;
1348 	unsigned int mounted;
1349 };
1350 
1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1352 {
1353 	struct check_mount *info = data;
1354 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1355 
1356 	if (likely(!d_mountpoint(dentry)))
1357 		return D_WALK_CONTINUE;
1358 	if (__path_is_mountpoint(&path)) {
1359 		info->mounted = 1;
1360 		return D_WALK_QUIT;
1361 	}
1362 	return D_WALK_CONTINUE;
1363 }
1364 
1365 /**
1366  * path_has_submounts - check for mounts over a dentry in the
1367  *                      current namespace.
1368  * @parent: path to check.
1369  *
1370  * Return true if the parent or its subdirectories contain
1371  * a mount point in the current namespace.
1372  */
1373 int path_has_submounts(const struct path *parent)
1374 {
1375 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1376 
1377 	read_seqlock_excl(&mount_lock);
1378 	d_walk(parent->dentry, &data, path_check_mount);
1379 	read_sequnlock_excl(&mount_lock);
1380 
1381 	return data.mounted;
1382 }
1383 EXPORT_SYMBOL(path_has_submounts);
1384 
1385 /*
1386  * Called by mount code to set a mountpoint and check if the mountpoint is
1387  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388  * subtree can become unreachable).
1389  *
1390  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1391  * this reason take rename_lock and d_lock on dentry and ancestors.
1392  */
1393 int d_set_mounted(struct dentry *dentry)
1394 {
1395 	struct dentry *p;
1396 	int ret = -ENOENT;
1397 	write_seqlock(&rename_lock);
1398 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1399 		/* Need exclusion wrt. d_invalidate() */
1400 		spin_lock(&p->d_lock);
1401 		if (unlikely(d_unhashed(p))) {
1402 			spin_unlock(&p->d_lock);
1403 			goto out;
1404 		}
1405 		spin_unlock(&p->d_lock);
1406 	}
1407 	spin_lock(&dentry->d_lock);
1408 	if (!d_unlinked(dentry)) {
1409 		ret = -EBUSY;
1410 		if (!d_mountpoint(dentry)) {
1411 			dentry->d_flags |= DCACHE_MOUNTED;
1412 			ret = 0;
1413 		}
1414 	}
1415  	spin_unlock(&dentry->d_lock);
1416 out:
1417 	write_sequnlock(&rename_lock);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * Search the dentry child list of the specified parent,
1423  * and move any unused dentries to the end of the unused
1424  * list for prune_dcache(). We descend to the next level
1425  * whenever the d_subdirs list is non-empty and continue
1426  * searching.
1427  *
1428  * It returns zero iff there are no unused children,
1429  * otherwise  it returns the number of children moved to
1430  * the end of the unused list. This may not be the total
1431  * number of unused children, because select_parent can
1432  * drop the lock and return early due to latency
1433  * constraints.
1434  */
1435 
1436 struct select_data {
1437 	struct dentry *start;
1438 	struct list_head dispose;
1439 	int found;
1440 };
1441 
1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1443 {
1444 	struct select_data *data = _data;
1445 	enum d_walk_ret ret = D_WALK_CONTINUE;
1446 
1447 	if (data->start == dentry)
1448 		goto out;
1449 
1450 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1451 		data->found++;
1452 	} else {
1453 		if (dentry->d_flags & DCACHE_LRU_LIST)
1454 			d_lru_del(dentry);
1455 		if (!dentry->d_lockref.count) {
1456 			d_shrink_add(dentry, &data->dispose);
1457 			data->found++;
1458 		}
1459 	}
1460 	/*
1461 	 * We can return to the caller if we have found some (this
1462 	 * ensures forward progress). We'll be coming back to find
1463 	 * the rest.
1464 	 */
1465 	if (!list_empty(&data->dispose))
1466 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1467 out:
1468 	return ret;
1469 }
1470 
1471 /**
1472  * shrink_dcache_parent - prune dcache
1473  * @parent: parent of entries to prune
1474  *
1475  * Prune the dcache to remove unused children of the parent dentry.
1476  */
1477 void shrink_dcache_parent(struct dentry *parent)
1478 {
1479 	for (;;) {
1480 		struct select_data data;
1481 
1482 		INIT_LIST_HEAD(&data.dispose);
1483 		data.start = parent;
1484 		data.found = 0;
1485 
1486 		d_walk(parent, &data, select_collect);
1487 
1488 		if (!list_empty(&data.dispose)) {
1489 			shrink_dentry_list(&data.dispose);
1490 			continue;
1491 		}
1492 
1493 		cond_resched();
1494 		if (!data.found)
1495 			break;
1496 	}
1497 }
1498 EXPORT_SYMBOL(shrink_dcache_parent);
1499 
1500 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1501 {
1502 	/* it has busy descendents; complain about those instead */
1503 	if (!list_empty(&dentry->d_subdirs))
1504 		return D_WALK_CONTINUE;
1505 
1506 	/* root with refcount 1 is fine */
1507 	if (dentry == _data && dentry->d_lockref.count == 1)
1508 		return D_WALK_CONTINUE;
1509 
1510 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1511 			" still in use (%d) [unmount of %s %s]\n",
1512 		       dentry,
1513 		       dentry->d_inode ?
1514 		       dentry->d_inode->i_ino : 0UL,
1515 		       dentry,
1516 		       dentry->d_lockref.count,
1517 		       dentry->d_sb->s_type->name,
1518 		       dentry->d_sb->s_id);
1519 	WARN_ON(1);
1520 	return D_WALK_CONTINUE;
1521 }
1522 
1523 static void do_one_tree(struct dentry *dentry)
1524 {
1525 	shrink_dcache_parent(dentry);
1526 	d_walk(dentry, dentry, umount_check);
1527 	d_drop(dentry);
1528 	dput(dentry);
1529 }
1530 
1531 /*
1532  * destroy the dentries attached to a superblock on unmounting
1533  */
1534 void shrink_dcache_for_umount(struct super_block *sb)
1535 {
1536 	struct dentry *dentry;
1537 
1538 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1539 
1540 	dentry = sb->s_root;
1541 	sb->s_root = NULL;
1542 	do_one_tree(dentry);
1543 
1544 	while (!hlist_bl_empty(&sb->s_roots)) {
1545 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1546 		do_one_tree(dentry);
1547 	}
1548 }
1549 
1550 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1551 {
1552 	struct dentry **victim = _data;
1553 	if (d_mountpoint(dentry)) {
1554 		__dget_dlock(dentry);
1555 		*victim = dentry;
1556 		return D_WALK_QUIT;
1557 	}
1558 	return D_WALK_CONTINUE;
1559 }
1560 
1561 /**
1562  * d_invalidate - detach submounts, prune dcache, and drop
1563  * @dentry: dentry to invalidate (aka detach, prune and drop)
1564  */
1565 void d_invalidate(struct dentry *dentry)
1566 {
1567 	bool had_submounts = false;
1568 	spin_lock(&dentry->d_lock);
1569 	if (d_unhashed(dentry)) {
1570 		spin_unlock(&dentry->d_lock);
1571 		return;
1572 	}
1573 	__d_drop(dentry);
1574 	spin_unlock(&dentry->d_lock);
1575 
1576 	/* Negative dentries can be dropped without further checks */
1577 	if (!dentry->d_inode)
1578 		return;
1579 
1580 	shrink_dcache_parent(dentry);
1581 	for (;;) {
1582 		struct dentry *victim = NULL;
1583 		d_walk(dentry, &victim, find_submount);
1584 		if (!victim) {
1585 			if (had_submounts)
1586 				shrink_dcache_parent(dentry);
1587 			return;
1588 		}
1589 		had_submounts = true;
1590 		detach_mounts(victim);
1591 		dput(victim);
1592 	}
1593 }
1594 EXPORT_SYMBOL(d_invalidate);
1595 
1596 /**
1597  * __d_alloc	-	allocate a dcache entry
1598  * @sb: filesystem it will belong to
1599  * @name: qstr of the name
1600  *
1601  * Allocates a dentry. It returns %NULL if there is insufficient memory
1602  * available. On a success the dentry is returned. The name passed in is
1603  * copied and the copy passed in may be reused after this call.
1604  */
1605 
1606 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1607 {
1608 	struct external_name *ext = NULL;
1609 	struct dentry *dentry;
1610 	char *dname;
1611 	int err;
1612 
1613 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1614 	if (!dentry)
1615 		return NULL;
1616 
1617 	/*
1618 	 * We guarantee that the inline name is always NUL-terminated.
1619 	 * This way the memcpy() done by the name switching in rename
1620 	 * will still always have a NUL at the end, even if we might
1621 	 * be overwriting an internal NUL character
1622 	 */
1623 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1624 	if (unlikely(!name)) {
1625 		name = &slash_name;
1626 		dname = dentry->d_iname;
1627 	} else if (name->len > DNAME_INLINE_LEN-1) {
1628 		size_t size = offsetof(struct external_name, name[1]);
1629 
1630 		ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1631 		if (!ext) {
1632 			kmem_cache_free(dentry_cache, dentry);
1633 			return NULL;
1634 		}
1635 		atomic_set(&ext->u.count, 1);
1636 		dname = ext->name;
1637 	} else  {
1638 		dname = dentry->d_iname;
1639 	}
1640 
1641 	dentry->d_name.len = name->len;
1642 	dentry->d_name.hash = name->hash;
1643 	memcpy(dname, name->name, name->len);
1644 	dname[name->len] = 0;
1645 
1646 	/* Make sure we always see the terminating NUL character */
1647 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1648 
1649 	dentry->d_lockref.count = 1;
1650 	dentry->d_flags = 0;
1651 	spin_lock_init(&dentry->d_lock);
1652 	seqcount_init(&dentry->d_seq);
1653 	dentry->d_inode = NULL;
1654 	dentry->d_parent = dentry;
1655 	dentry->d_sb = sb;
1656 	dentry->d_op = NULL;
1657 	dentry->d_fsdata = NULL;
1658 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1659 	INIT_LIST_HEAD(&dentry->d_lru);
1660 	INIT_LIST_HEAD(&dentry->d_subdirs);
1661 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1662 	INIT_LIST_HEAD(&dentry->d_child);
1663 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1664 
1665 	if (dentry->d_op && dentry->d_op->d_init) {
1666 		err = dentry->d_op->d_init(dentry);
1667 		if (err) {
1668 			if (dname_external(dentry))
1669 				kfree(external_name(dentry));
1670 			kmem_cache_free(dentry_cache, dentry);
1671 			return NULL;
1672 		}
1673 	}
1674 
1675 	if (unlikely(ext)) {
1676 		pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1677 		mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1678 				    ksize(ext));
1679 	}
1680 
1681 	this_cpu_inc(nr_dentry);
1682 
1683 	return dentry;
1684 }
1685 
1686 /**
1687  * d_alloc	-	allocate a dcache entry
1688  * @parent: parent of entry to allocate
1689  * @name: qstr of the name
1690  *
1691  * Allocates a dentry. It returns %NULL if there is insufficient memory
1692  * available. On a success the dentry is returned. The name passed in is
1693  * copied and the copy passed in may be reused after this call.
1694  */
1695 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1696 {
1697 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1698 	if (!dentry)
1699 		return NULL;
1700 	dentry->d_flags |= DCACHE_RCUACCESS;
1701 	spin_lock(&parent->d_lock);
1702 	/*
1703 	 * don't need child lock because it is not subject
1704 	 * to concurrency here
1705 	 */
1706 	__dget_dlock(parent);
1707 	dentry->d_parent = parent;
1708 	list_add(&dentry->d_child, &parent->d_subdirs);
1709 	spin_unlock(&parent->d_lock);
1710 
1711 	return dentry;
1712 }
1713 EXPORT_SYMBOL(d_alloc);
1714 
1715 struct dentry *d_alloc_anon(struct super_block *sb)
1716 {
1717 	return __d_alloc(sb, NULL);
1718 }
1719 EXPORT_SYMBOL(d_alloc_anon);
1720 
1721 struct dentry *d_alloc_cursor(struct dentry * parent)
1722 {
1723 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1724 	if (dentry) {
1725 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1726 		dentry->d_parent = dget(parent);
1727 	}
1728 	return dentry;
1729 }
1730 
1731 /**
1732  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1733  * @sb: the superblock
1734  * @name: qstr of the name
1735  *
1736  * For a filesystem that just pins its dentries in memory and never
1737  * performs lookups at all, return an unhashed IS_ROOT dentry.
1738  */
1739 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1740 {
1741 	return __d_alloc(sb, name);
1742 }
1743 EXPORT_SYMBOL(d_alloc_pseudo);
1744 
1745 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1746 {
1747 	struct qstr q;
1748 
1749 	q.name = name;
1750 	q.hash_len = hashlen_string(parent, name);
1751 	return d_alloc(parent, &q);
1752 }
1753 EXPORT_SYMBOL(d_alloc_name);
1754 
1755 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1756 {
1757 	WARN_ON_ONCE(dentry->d_op);
1758 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1759 				DCACHE_OP_COMPARE	|
1760 				DCACHE_OP_REVALIDATE	|
1761 				DCACHE_OP_WEAK_REVALIDATE	|
1762 				DCACHE_OP_DELETE	|
1763 				DCACHE_OP_REAL));
1764 	dentry->d_op = op;
1765 	if (!op)
1766 		return;
1767 	if (op->d_hash)
1768 		dentry->d_flags |= DCACHE_OP_HASH;
1769 	if (op->d_compare)
1770 		dentry->d_flags |= DCACHE_OP_COMPARE;
1771 	if (op->d_revalidate)
1772 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1773 	if (op->d_weak_revalidate)
1774 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1775 	if (op->d_delete)
1776 		dentry->d_flags |= DCACHE_OP_DELETE;
1777 	if (op->d_prune)
1778 		dentry->d_flags |= DCACHE_OP_PRUNE;
1779 	if (op->d_real)
1780 		dentry->d_flags |= DCACHE_OP_REAL;
1781 
1782 }
1783 EXPORT_SYMBOL(d_set_d_op);
1784 
1785 
1786 /*
1787  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1788  * @dentry - The dentry to mark
1789  *
1790  * Mark a dentry as falling through to the lower layer (as set with
1791  * d_pin_lower()).  This flag may be recorded on the medium.
1792  */
1793 void d_set_fallthru(struct dentry *dentry)
1794 {
1795 	spin_lock(&dentry->d_lock);
1796 	dentry->d_flags |= DCACHE_FALLTHRU;
1797 	spin_unlock(&dentry->d_lock);
1798 }
1799 EXPORT_SYMBOL(d_set_fallthru);
1800 
1801 static unsigned d_flags_for_inode(struct inode *inode)
1802 {
1803 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1804 
1805 	if (!inode)
1806 		return DCACHE_MISS_TYPE;
1807 
1808 	if (S_ISDIR(inode->i_mode)) {
1809 		add_flags = DCACHE_DIRECTORY_TYPE;
1810 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1811 			if (unlikely(!inode->i_op->lookup))
1812 				add_flags = DCACHE_AUTODIR_TYPE;
1813 			else
1814 				inode->i_opflags |= IOP_LOOKUP;
1815 		}
1816 		goto type_determined;
1817 	}
1818 
1819 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1820 		if (unlikely(inode->i_op->get_link)) {
1821 			add_flags = DCACHE_SYMLINK_TYPE;
1822 			goto type_determined;
1823 		}
1824 		inode->i_opflags |= IOP_NOFOLLOW;
1825 	}
1826 
1827 	if (unlikely(!S_ISREG(inode->i_mode)))
1828 		add_flags = DCACHE_SPECIAL_TYPE;
1829 
1830 type_determined:
1831 	if (unlikely(IS_AUTOMOUNT(inode)))
1832 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1833 	return add_flags;
1834 }
1835 
1836 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1837 {
1838 	unsigned add_flags = d_flags_for_inode(inode);
1839 	WARN_ON(d_in_lookup(dentry));
1840 
1841 	spin_lock(&dentry->d_lock);
1842 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1843 	raw_write_seqcount_begin(&dentry->d_seq);
1844 	__d_set_inode_and_type(dentry, inode, add_flags);
1845 	raw_write_seqcount_end(&dentry->d_seq);
1846 	fsnotify_update_flags(dentry);
1847 	spin_unlock(&dentry->d_lock);
1848 }
1849 
1850 /**
1851  * d_instantiate - fill in inode information for a dentry
1852  * @entry: dentry to complete
1853  * @inode: inode to attach to this dentry
1854  *
1855  * Fill in inode information in the entry.
1856  *
1857  * This turns negative dentries into productive full members
1858  * of society.
1859  *
1860  * NOTE! This assumes that the inode count has been incremented
1861  * (or otherwise set) by the caller to indicate that it is now
1862  * in use by the dcache.
1863  */
1864 
1865 void d_instantiate(struct dentry *entry, struct inode * inode)
1866 {
1867 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1868 	if (inode) {
1869 		security_d_instantiate(entry, inode);
1870 		spin_lock(&inode->i_lock);
1871 		__d_instantiate(entry, inode);
1872 		spin_unlock(&inode->i_lock);
1873 	}
1874 }
1875 EXPORT_SYMBOL(d_instantiate);
1876 
1877 /*
1878  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1879  * with lockdep-related part of unlock_new_inode() done before
1880  * anything else.  Use that instead of open-coding d_instantiate()/
1881  * unlock_new_inode() combinations.
1882  */
1883 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1884 {
1885 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1886 	BUG_ON(!inode);
1887 	lockdep_annotate_inode_mutex_key(inode);
1888 	security_d_instantiate(entry, inode);
1889 	spin_lock(&inode->i_lock);
1890 	__d_instantiate(entry, inode);
1891 	WARN_ON(!(inode->i_state & I_NEW));
1892 	inode->i_state &= ~I_NEW & ~I_CREATING;
1893 	smp_mb();
1894 	wake_up_bit(&inode->i_state, __I_NEW);
1895 	spin_unlock(&inode->i_lock);
1896 }
1897 EXPORT_SYMBOL(d_instantiate_new);
1898 
1899 struct dentry *d_make_root(struct inode *root_inode)
1900 {
1901 	struct dentry *res = NULL;
1902 
1903 	if (root_inode) {
1904 		res = d_alloc_anon(root_inode->i_sb);
1905 		if (res) {
1906 			res->d_flags |= DCACHE_RCUACCESS;
1907 			d_instantiate(res, root_inode);
1908 		} else {
1909 			iput(root_inode);
1910 		}
1911 	}
1912 	return res;
1913 }
1914 EXPORT_SYMBOL(d_make_root);
1915 
1916 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1917 					   struct inode *inode,
1918 					   bool disconnected)
1919 {
1920 	struct dentry *res;
1921 	unsigned add_flags;
1922 
1923 	security_d_instantiate(dentry, inode);
1924 	spin_lock(&inode->i_lock);
1925 	res = __d_find_any_alias(inode);
1926 	if (res) {
1927 		spin_unlock(&inode->i_lock);
1928 		dput(dentry);
1929 		goto out_iput;
1930 	}
1931 
1932 	/* attach a disconnected dentry */
1933 	add_flags = d_flags_for_inode(inode);
1934 
1935 	if (disconnected)
1936 		add_flags |= DCACHE_DISCONNECTED;
1937 
1938 	spin_lock(&dentry->d_lock);
1939 	__d_set_inode_and_type(dentry, inode, add_flags);
1940 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1941 	if (!disconnected) {
1942 		hlist_bl_lock(&dentry->d_sb->s_roots);
1943 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1944 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1945 	}
1946 	spin_unlock(&dentry->d_lock);
1947 	spin_unlock(&inode->i_lock);
1948 
1949 	return dentry;
1950 
1951  out_iput:
1952 	iput(inode);
1953 	return res;
1954 }
1955 
1956 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1957 {
1958 	return __d_instantiate_anon(dentry, inode, true);
1959 }
1960 EXPORT_SYMBOL(d_instantiate_anon);
1961 
1962 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1963 {
1964 	struct dentry *tmp;
1965 	struct dentry *res;
1966 
1967 	if (!inode)
1968 		return ERR_PTR(-ESTALE);
1969 	if (IS_ERR(inode))
1970 		return ERR_CAST(inode);
1971 
1972 	res = d_find_any_alias(inode);
1973 	if (res)
1974 		goto out_iput;
1975 
1976 	tmp = d_alloc_anon(inode->i_sb);
1977 	if (!tmp) {
1978 		res = ERR_PTR(-ENOMEM);
1979 		goto out_iput;
1980 	}
1981 
1982 	return __d_instantiate_anon(tmp, inode, disconnected);
1983 
1984 out_iput:
1985 	iput(inode);
1986 	return res;
1987 }
1988 
1989 /**
1990  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1991  * @inode: inode to allocate the dentry for
1992  *
1993  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1994  * similar open by handle operations.  The returned dentry may be anonymous,
1995  * or may have a full name (if the inode was already in the cache).
1996  *
1997  * When called on a directory inode, we must ensure that the inode only ever
1998  * has one dentry.  If a dentry is found, that is returned instead of
1999  * allocating a new one.
2000  *
2001  * On successful return, the reference to the inode has been transferred
2002  * to the dentry.  In case of an error the reference on the inode is released.
2003  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2004  * be passed in and the error will be propagated to the return value,
2005  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2006  */
2007 struct dentry *d_obtain_alias(struct inode *inode)
2008 {
2009 	return __d_obtain_alias(inode, true);
2010 }
2011 EXPORT_SYMBOL(d_obtain_alias);
2012 
2013 /**
2014  * d_obtain_root - find or allocate a dentry for a given inode
2015  * @inode: inode to allocate the dentry for
2016  *
2017  * Obtain an IS_ROOT dentry for the root of a filesystem.
2018  *
2019  * We must ensure that directory inodes only ever have one dentry.  If a
2020  * dentry is found, that is returned instead of allocating a new one.
2021  *
2022  * On successful return, the reference to the inode has been transferred
2023  * to the dentry.  In case of an error the reference on the inode is
2024  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2025  * error will be propagate to the return value, with a %NULL @inode
2026  * replaced by ERR_PTR(-ESTALE).
2027  */
2028 struct dentry *d_obtain_root(struct inode *inode)
2029 {
2030 	return __d_obtain_alias(inode, false);
2031 }
2032 EXPORT_SYMBOL(d_obtain_root);
2033 
2034 /**
2035  * d_add_ci - lookup or allocate new dentry with case-exact name
2036  * @inode:  the inode case-insensitive lookup has found
2037  * @dentry: the negative dentry that was passed to the parent's lookup func
2038  * @name:   the case-exact name to be associated with the returned dentry
2039  *
2040  * This is to avoid filling the dcache with case-insensitive names to the
2041  * same inode, only the actual correct case is stored in the dcache for
2042  * case-insensitive filesystems.
2043  *
2044  * For a case-insensitive lookup match and if the the case-exact dentry
2045  * already exists in in the dcache, use it and return it.
2046  *
2047  * If no entry exists with the exact case name, allocate new dentry with
2048  * the exact case, and return the spliced entry.
2049  */
2050 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2051 			struct qstr *name)
2052 {
2053 	struct dentry *found, *res;
2054 
2055 	/*
2056 	 * First check if a dentry matching the name already exists,
2057 	 * if not go ahead and create it now.
2058 	 */
2059 	found = d_hash_and_lookup(dentry->d_parent, name);
2060 	if (found) {
2061 		iput(inode);
2062 		return found;
2063 	}
2064 	if (d_in_lookup(dentry)) {
2065 		found = d_alloc_parallel(dentry->d_parent, name,
2066 					dentry->d_wait);
2067 		if (IS_ERR(found) || !d_in_lookup(found)) {
2068 			iput(inode);
2069 			return found;
2070 		}
2071 	} else {
2072 		found = d_alloc(dentry->d_parent, name);
2073 		if (!found) {
2074 			iput(inode);
2075 			return ERR_PTR(-ENOMEM);
2076 		}
2077 	}
2078 	res = d_splice_alias(inode, found);
2079 	if (res) {
2080 		dput(found);
2081 		return res;
2082 	}
2083 	return found;
2084 }
2085 EXPORT_SYMBOL(d_add_ci);
2086 
2087 
2088 static inline bool d_same_name(const struct dentry *dentry,
2089 				const struct dentry *parent,
2090 				const struct qstr *name)
2091 {
2092 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2093 		if (dentry->d_name.len != name->len)
2094 			return false;
2095 		return dentry_cmp(dentry, name->name, name->len) == 0;
2096 	}
2097 	return parent->d_op->d_compare(dentry,
2098 				       dentry->d_name.len, dentry->d_name.name,
2099 				       name) == 0;
2100 }
2101 
2102 /**
2103  * __d_lookup_rcu - search for a dentry (racy, store-free)
2104  * @parent: parent dentry
2105  * @name: qstr of name we wish to find
2106  * @seqp: returns d_seq value at the point where the dentry was found
2107  * Returns: dentry, or NULL
2108  *
2109  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2110  * resolution (store-free path walking) design described in
2111  * Documentation/filesystems/path-lookup.txt.
2112  *
2113  * This is not to be used outside core vfs.
2114  *
2115  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2116  * held, and rcu_read_lock held. The returned dentry must not be stored into
2117  * without taking d_lock and checking d_seq sequence count against @seq
2118  * returned here.
2119  *
2120  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2121  * function.
2122  *
2123  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2124  * the returned dentry, so long as its parent's seqlock is checked after the
2125  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2126  * is formed, giving integrity down the path walk.
2127  *
2128  * NOTE! The caller *has* to check the resulting dentry against the sequence
2129  * number we've returned before using any of the resulting dentry state!
2130  */
2131 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2132 				const struct qstr *name,
2133 				unsigned *seqp)
2134 {
2135 	u64 hashlen = name->hash_len;
2136 	const unsigned char *str = name->name;
2137 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2138 	struct hlist_bl_node *node;
2139 	struct dentry *dentry;
2140 
2141 	/*
2142 	 * Note: There is significant duplication with __d_lookup_rcu which is
2143 	 * required to prevent single threaded performance regressions
2144 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2145 	 * Keep the two functions in sync.
2146 	 */
2147 
2148 	/*
2149 	 * The hash list is protected using RCU.
2150 	 *
2151 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2152 	 * races with d_move().
2153 	 *
2154 	 * It is possible that concurrent renames can mess up our list
2155 	 * walk here and result in missing our dentry, resulting in the
2156 	 * false-negative result. d_lookup() protects against concurrent
2157 	 * renames using rename_lock seqlock.
2158 	 *
2159 	 * See Documentation/filesystems/path-lookup.txt for more details.
2160 	 */
2161 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2162 		unsigned seq;
2163 
2164 seqretry:
2165 		/*
2166 		 * The dentry sequence count protects us from concurrent
2167 		 * renames, and thus protects parent and name fields.
2168 		 *
2169 		 * The caller must perform a seqcount check in order
2170 		 * to do anything useful with the returned dentry.
2171 		 *
2172 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2173 		 * we don't wait for the sequence count to stabilize if it
2174 		 * is in the middle of a sequence change. If we do the slow
2175 		 * dentry compare, we will do seqretries until it is stable,
2176 		 * and if we end up with a successful lookup, we actually
2177 		 * want to exit RCU lookup anyway.
2178 		 *
2179 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2180 		 * we are still guaranteed NUL-termination of ->d_name.name.
2181 		 */
2182 		seq = raw_seqcount_begin(&dentry->d_seq);
2183 		if (dentry->d_parent != parent)
2184 			continue;
2185 		if (d_unhashed(dentry))
2186 			continue;
2187 
2188 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2189 			int tlen;
2190 			const char *tname;
2191 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2192 				continue;
2193 			tlen = dentry->d_name.len;
2194 			tname = dentry->d_name.name;
2195 			/* we want a consistent (name,len) pair */
2196 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2197 				cpu_relax();
2198 				goto seqretry;
2199 			}
2200 			if (parent->d_op->d_compare(dentry,
2201 						    tlen, tname, name) != 0)
2202 				continue;
2203 		} else {
2204 			if (dentry->d_name.hash_len != hashlen)
2205 				continue;
2206 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2207 				continue;
2208 		}
2209 		*seqp = seq;
2210 		return dentry;
2211 	}
2212 	return NULL;
2213 }
2214 
2215 /**
2216  * d_lookup - search for a dentry
2217  * @parent: parent dentry
2218  * @name: qstr of name we wish to find
2219  * Returns: dentry, or NULL
2220  *
2221  * d_lookup searches the children of the parent dentry for the name in
2222  * question. If the dentry is found its reference count is incremented and the
2223  * dentry is returned. The caller must use dput to free the entry when it has
2224  * finished using it. %NULL is returned if the dentry does not exist.
2225  */
2226 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2227 {
2228 	struct dentry *dentry;
2229 	unsigned seq;
2230 
2231 	do {
2232 		seq = read_seqbegin(&rename_lock);
2233 		dentry = __d_lookup(parent, name);
2234 		if (dentry)
2235 			break;
2236 	} while (read_seqretry(&rename_lock, seq));
2237 	return dentry;
2238 }
2239 EXPORT_SYMBOL(d_lookup);
2240 
2241 /**
2242  * __d_lookup - search for a dentry (racy)
2243  * @parent: parent dentry
2244  * @name: qstr of name we wish to find
2245  * Returns: dentry, or NULL
2246  *
2247  * __d_lookup is like d_lookup, however it may (rarely) return a
2248  * false-negative result due to unrelated rename activity.
2249  *
2250  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2251  * however it must be used carefully, eg. with a following d_lookup in
2252  * the case of failure.
2253  *
2254  * __d_lookup callers must be commented.
2255  */
2256 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2257 {
2258 	unsigned int hash = name->hash;
2259 	struct hlist_bl_head *b = d_hash(hash);
2260 	struct hlist_bl_node *node;
2261 	struct dentry *found = NULL;
2262 	struct dentry *dentry;
2263 
2264 	/*
2265 	 * Note: There is significant duplication with __d_lookup_rcu which is
2266 	 * required to prevent single threaded performance regressions
2267 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2268 	 * Keep the two functions in sync.
2269 	 */
2270 
2271 	/*
2272 	 * The hash list is protected using RCU.
2273 	 *
2274 	 * Take d_lock when comparing a candidate dentry, to avoid races
2275 	 * with d_move().
2276 	 *
2277 	 * It is possible that concurrent renames can mess up our list
2278 	 * walk here and result in missing our dentry, resulting in the
2279 	 * false-negative result. d_lookup() protects against concurrent
2280 	 * renames using rename_lock seqlock.
2281 	 *
2282 	 * See Documentation/filesystems/path-lookup.txt for more details.
2283 	 */
2284 	rcu_read_lock();
2285 
2286 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2287 
2288 		if (dentry->d_name.hash != hash)
2289 			continue;
2290 
2291 		spin_lock(&dentry->d_lock);
2292 		if (dentry->d_parent != parent)
2293 			goto next;
2294 		if (d_unhashed(dentry))
2295 			goto next;
2296 
2297 		if (!d_same_name(dentry, parent, name))
2298 			goto next;
2299 
2300 		dentry->d_lockref.count++;
2301 		found = dentry;
2302 		spin_unlock(&dentry->d_lock);
2303 		break;
2304 next:
2305 		spin_unlock(&dentry->d_lock);
2306  	}
2307  	rcu_read_unlock();
2308 
2309  	return found;
2310 }
2311 
2312 /**
2313  * d_hash_and_lookup - hash the qstr then search for a dentry
2314  * @dir: Directory to search in
2315  * @name: qstr of name we wish to find
2316  *
2317  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2318  */
2319 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2320 {
2321 	/*
2322 	 * Check for a fs-specific hash function. Note that we must
2323 	 * calculate the standard hash first, as the d_op->d_hash()
2324 	 * routine may choose to leave the hash value unchanged.
2325 	 */
2326 	name->hash = full_name_hash(dir, name->name, name->len);
2327 	if (dir->d_flags & DCACHE_OP_HASH) {
2328 		int err = dir->d_op->d_hash(dir, name);
2329 		if (unlikely(err < 0))
2330 			return ERR_PTR(err);
2331 	}
2332 	return d_lookup(dir, name);
2333 }
2334 EXPORT_SYMBOL(d_hash_and_lookup);
2335 
2336 /*
2337  * When a file is deleted, we have two options:
2338  * - turn this dentry into a negative dentry
2339  * - unhash this dentry and free it.
2340  *
2341  * Usually, we want to just turn this into
2342  * a negative dentry, but if anybody else is
2343  * currently using the dentry or the inode
2344  * we can't do that and we fall back on removing
2345  * it from the hash queues and waiting for
2346  * it to be deleted later when it has no users
2347  */
2348 
2349 /**
2350  * d_delete - delete a dentry
2351  * @dentry: The dentry to delete
2352  *
2353  * Turn the dentry into a negative dentry if possible, otherwise
2354  * remove it from the hash queues so it can be deleted later
2355  */
2356 
2357 void d_delete(struct dentry * dentry)
2358 {
2359 	struct inode *inode = dentry->d_inode;
2360 	int isdir = d_is_dir(dentry);
2361 
2362 	spin_lock(&inode->i_lock);
2363 	spin_lock(&dentry->d_lock);
2364 	/*
2365 	 * Are we the only user?
2366 	 */
2367 	if (dentry->d_lockref.count == 1) {
2368 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2369 		dentry_unlink_inode(dentry);
2370 	} else {
2371 		__d_drop(dentry);
2372 		spin_unlock(&dentry->d_lock);
2373 		spin_unlock(&inode->i_lock);
2374 	}
2375 	fsnotify_nameremove(dentry, isdir);
2376 }
2377 EXPORT_SYMBOL(d_delete);
2378 
2379 static void __d_rehash(struct dentry *entry)
2380 {
2381 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2382 
2383 	hlist_bl_lock(b);
2384 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2385 	hlist_bl_unlock(b);
2386 }
2387 
2388 /**
2389  * d_rehash	- add an entry back to the hash
2390  * @entry: dentry to add to the hash
2391  *
2392  * Adds a dentry to the hash according to its name.
2393  */
2394 
2395 void d_rehash(struct dentry * entry)
2396 {
2397 	spin_lock(&entry->d_lock);
2398 	__d_rehash(entry);
2399 	spin_unlock(&entry->d_lock);
2400 }
2401 EXPORT_SYMBOL(d_rehash);
2402 
2403 static inline unsigned start_dir_add(struct inode *dir)
2404 {
2405 
2406 	for (;;) {
2407 		unsigned n = dir->i_dir_seq;
2408 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2409 			return n;
2410 		cpu_relax();
2411 	}
2412 }
2413 
2414 static inline void end_dir_add(struct inode *dir, unsigned n)
2415 {
2416 	smp_store_release(&dir->i_dir_seq, n + 2);
2417 }
2418 
2419 static void d_wait_lookup(struct dentry *dentry)
2420 {
2421 	if (d_in_lookup(dentry)) {
2422 		DECLARE_WAITQUEUE(wait, current);
2423 		add_wait_queue(dentry->d_wait, &wait);
2424 		do {
2425 			set_current_state(TASK_UNINTERRUPTIBLE);
2426 			spin_unlock(&dentry->d_lock);
2427 			schedule();
2428 			spin_lock(&dentry->d_lock);
2429 		} while (d_in_lookup(dentry));
2430 	}
2431 }
2432 
2433 struct dentry *d_alloc_parallel(struct dentry *parent,
2434 				const struct qstr *name,
2435 				wait_queue_head_t *wq)
2436 {
2437 	unsigned int hash = name->hash;
2438 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2439 	struct hlist_bl_node *node;
2440 	struct dentry *new = d_alloc(parent, name);
2441 	struct dentry *dentry;
2442 	unsigned seq, r_seq, d_seq;
2443 
2444 	if (unlikely(!new))
2445 		return ERR_PTR(-ENOMEM);
2446 
2447 retry:
2448 	rcu_read_lock();
2449 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2450 	r_seq = read_seqbegin(&rename_lock);
2451 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2452 	if (unlikely(dentry)) {
2453 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2454 			rcu_read_unlock();
2455 			goto retry;
2456 		}
2457 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2458 			rcu_read_unlock();
2459 			dput(dentry);
2460 			goto retry;
2461 		}
2462 		rcu_read_unlock();
2463 		dput(new);
2464 		return dentry;
2465 	}
2466 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2467 		rcu_read_unlock();
2468 		goto retry;
2469 	}
2470 
2471 	if (unlikely(seq & 1)) {
2472 		rcu_read_unlock();
2473 		goto retry;
2474 	}
2475 
2476 	hlist_bl_lock(b);
2477 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2478 		hlist_bl_unlock(b);
2479 		rcu_read_unlock();
2480 		goto retry;
2481 	}
2482 	/*
2483 	 * No changes for the parent since the beginning of d_lookup().
2484 	 * Since all removals from the chain happen with hlist_bl_lock(),
2485 	 * any potential in-lookup matches are going to stay here until
2486 	 * we unlock the chain.  All fields are stable in everything
2487 	 * we encounter.
2488 	 */
2489 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2490 		if (dentry->d_name.hash != hash)
2491 			continue;
2492 		if (dentry->d_parent != parent)
2493 			continue;
2494 		if (!d_same_name(dentry, parent, name))
2495 			continue;
2496 		hlist_bl_unlock(b);
2497 		/* now we can try to grab a reference */
2498 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2499 			rcu_read_unlock();
2500 			goto retry;
2501 		}
2502 
2503 		rcu_read_unlock();
2504 		/*
2505 		 * somebody is likely to be still doing lookup for it;
2506 		 * wait for them to finish
2507 		 */
2508 		spin_lock(&dentry->d_lock);
2509 		d_wait_lookup(dentry);
2510 		/*
2511 		 * it's not in-lookup anymore; in principle we should repeat
2512 		 * everything from dcache lookup, but it's likely to be what
2513 		 * d_lookup() would've found anyway.  If it is, just return it;
2514 		 * otherwise we really have to repeat the whole thing.
2515 		 */
2516 		if (unlikely(dentry->d_name.hash != hash))
2517 			goto mismatch;
2518 		if (unlikely(dentry->d_parent != parent))
2519 			goto mismatch;
2520 		if (unlikely(d_unhashed(dentry)))
2521 			goto mismatch;
2522 		if (unlikely(!d_same_name(dentry, parent, name)))
2523 			goto mismatch;
2524 		/* OK, it *is* a hashed match; return it */
2525 		spin_unlock(&dentry->d_lock);
2526 		dput(new);
2527 		return dentry;
2528 	}
2529 	rcu_read_unlock();
2530 	/* we can't take ->d_lock here; it's OK, though. */
2531 	new->d_flags |= DCACHE_PAR_LOOKUP;
2532 	new->d_wait = wq;
2533 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2534 	hlist_bl_unlock(b);
2535 	return new;
2536 mismatch:
2537 	spin_unlock(&dentry->d_lock);
2538 	dput(dentry);
2539 	goto retry;
2540 }
2541 EXPORT_SYMBOL(d_alloc_parallel);
2542 
2543 void __d_lookup_done(struct dentry *dentry)
2544 {
2545 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2546 						 dentry->d_name.hash);
2547 	hlist_bl_lock(b);
2548 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2549 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2550 	wake_up_all(dentry->d_wait);
2551 	dentry->d_wait = NULL;
2552 	hlist_bl_unlock(b);
2553 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2554 	INIT_LIST_HEAD(&dentry->d_lru);
2555 }
2556 EXPORT_SYMBOL(__d_lookup_done);
2557 
2558 /* inode->i_lock held if inode is non-NULL */
2559 
2560 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2561 {
2562 	struct inode *dir = NULL;
2563 	unsigned n;
2564 	spin_lock(&dentry->d_lock);
2565 	if (unlikely(d_in_lookup(dentry))) {
2566 		dir = dentry->d_parent->d_inode;
2567 		n = start_dir_add(dir);
2568 		__d_lookup_done(dentry);
2569 	}
2570 	if (inode) {
2571 		unsigned add_flags = d_flags_for_inode(inode);
2572 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2573 		raw_write_seqcount_begin(&dentry->d_seq);
2574 		__d_set_inode_and_type(dentry, inode, add_flags);
2575 		raw_write_seqcount_end(&dentry->d_seq);
2576 		fsnotify_update_flags(dentry);
2577 	}
2578 	__d_rehash(dentry);
2579 	if (dir)
2580 		end_dir_add(dir, n);
2581 	spin_unlock(&dentry->d_lock);
2582 	if (inode)
2583 		spin_unlock(&inode->i_lock);
2584 }
2585 
2586 /**
2587  * d_add - add dentry to hash queues
2588  * @entry: dentry to add
2589  * @inode: The inode to attach to this dentry
2590  *
2591  * This adds the entry to the hash queues and initializes @inode.
2592  * The entry was actually filled in earlier during d_alloc().
2593  */
2594 
2595 void d_add(struct dentry *entry, struct inode *inode)
2596 {
2597 	if (inode) {
2598 		security_d_instantiate(entry, inode);
2599 		spin_lock(&inode->i_lock);
2600 	}
2601 	__d_add(entry, inode);
2602 }
2603 EXPORT_SYMBOL(d_add);
2604 
2605 /**
2606  * d_exact_alias - find and hash an exact unhashed alias
2607  * @entry: dentry to add
2608  * @inode: The inode to go with this dentry
2609  *
2610  * If an unhashed dentry with the same name/parent and desired
2611  * inode already exists, hash and return it.  Otherwise, return
2612  * NULL.
2613  *
2614  * Parent directory should be locked.
2615  */
2616 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2617 {
2618 	struct dentry *alias;
2619 	unsigned int hash = entry->d_name.hash;
2620 
2621 	spin_lock(&inode->i_lock);
2622 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2623 		/*
2624 		 * Don't need alias->d_lock here, because aliases with
2625 		 * d_parent == entry->d_parent are not subject to name or
2626 		 * parent changes, because the parent inode i_mutex is held.
2627 		 */
2628 		if (alias->d_name.hash != hash)
2629 			continue;
2630 		if (alias->d_parent != entry->d_parent)
2631 			continue;
2632 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2633 			continue;
2634 		spin_lock(&alias->d_lock);
2635 		if (!d_unhashed(alias)) {
2636 			spin_unlock(&alias->d_lock);
2637 			alias = NULL;
2638 		} else {
2639 			__dget_dlock(alias);
2640 			__d_rehash(alias);
2641 			spin_unlock(&alias->d_lock);
2642 		}
2643 		spin_unlock(&inode->i_lock);
2644 		return alias;
2645 	}
2646 	spin_unlock(&inode->i_lock);
2647 	return NULL;
2648 }
2649 EXPORT_SYMBOL(d_exact_alias);
2650 
2651 static void swap_names(struct dentry *dentry, struct dentry *target)
2652 {
2653 	if (unlikely(dname_external(target))) {
2654 		if (unlikely(dname_external(dentry))) {
2655 			/*
2656 			 * Both external: swap the pointers
2657 			 */
2658 			swap(target->d_name.name, dentry->d_name.name);
2659 		} else {
2660 			/*
2661 			 * dentry:internal, target:external.  Steal target's
2662 			 * storage and make target internal.
2663 			 */
2664 			memcpy(target->d_iname, dentry->d_name.name,
2665 					dentry->d_name.len + 1);
2666 			dentry->d_name.name = target->d_name.name;
2667 			target->d_name.name = target->d_iname;
2668 		}
2669 	} else {
2670 		if (unlikely(dname_external(dentry))) {
2671 			/*
2672 			 * dentry:external, target:internal.  Give dentry's
2673 			 * storage to target and make dentry internal
2674 			 */
2675 			memcpy(dentry->d_iname, target->d_name.name,
2676 					target->d_name.len + 1);
2677 			target->d_name.name = dentry->d_name.name;
2678 			dentry->d_name.name = dentry->d_iname;
2679 		} else {
2680 			/*
2681 			 * Both are internal.
2682 			 */
2683 			unsigned int i;
2684 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2685 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2686 				swap(((long *) &dentry->d_iname)[i],
2687 				     ((long *) &target->d_iname)[i]);
2688 			}
2689 		}
2690 	}
2691 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2692 }
2693 
2694 static void copy_name(struct dentry *dentry, struct dentry *target)
2695 {
2696 	struct external_name *old_name = NULL;
2697 	if (unlikely(dname_external(dentry)))
2698 		old_name = external_name(dentry);
2699 	if (unlikely(dname_external(target))) {
2700 		atomic_inc(&external_name(target)->u.count);
2701 		dentry->d_name = target->d_name;
2702 	} else {
2703 		memcpy(dentry->d_iname, target->d_name.name,
2704 				target->d_name.len + 1);
2705 		dentry->d_name.name = dentry->d_iname;
2706 		dentry->d_name.hash_len = target->d_name.hash_len;
2707 	}
2708 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2709 		call_rcu(&old_name->u.head, __d_free_external_name);
2710 }
2711 
2712 /*
2713  * __d_move - move a dentry
2714  * @dentry: entry to move
2715  * @target: new dentry
2716  * @exchange: exchange the two dentries
2717  *
2718  * Update the dcache to reflect the move of a file name. Negative
2719  * dcache entries should not be moved in this way. Caller must hold
2720  * rename_lock, the i_mutex of the source and target directories,
2721  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2722  */
2723 static void __d_move(struct dentry *dentry, struct dentry *target,
2724 		     bool exchange)
2725 {
2726 	struct dentry *old_parent, *p;
2727 	struct inode *dir = NULL;
2728 	unsigned n;
2729 
2730 	WARN_ON(!dentry->d_inode);
2731 	if (WARN_ON(dentry == target))
2732 		return;
2733 
2734 	BUG_ON(d_ancestor(target, dentry));
2735 	old_parent = dentry->d_parent;
2736 	p = d_ancestor(old_parent, target);
2737 	if (IS_ROOT(dentry)) {
2738 		BUG_ON(p);
2739 		spin_lock(&target->d_parent->d_lock);
2740 	} else if (!p) {
2741 		/* target is not a descendent of dentry->d_parent */
2742 		spin_lock(&target->d_parent->d_lock);
2743 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2744 	} else {
2745 		BUG_ON(p == dentry);
2746 		spin_lock(&old_parent->d_lock);
2747 		if (p != target)
2748 			spin_lock_nested(&target->d_parent->d_lock,
2749 					DENTRY_D_LOCK_NESTED);
2750 	}
2751 	spin_lock_nested(&dentry->d_lock, 2);
2752 	spin_lock_nested(&target->d_lock, 3);
2753 
2754 	if (unlikely(d_in_lookup(target))) {
2755 		dir = target->d_parent->d_inode;
2756 		n = start_dir_add(dir);
2757 		__d_lookup_done(target);
2758 	}
2759 
2760 	write_seqcount_begin(&dentry->d_seq);
2761 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2762 
2763 	/* unhash both */
2764 	if (!d_unhashed(dentry))
2765 		___d_drop(dentry);
2766 	if (!d_unhashed(target))
2767 		___d_drop(target);
2768 
2769 	/* ... and switch them in the tree */
2770 	dentry->d_parent = target->d_parent;
2771 	if (!exchange) {
2772 		copy_name(dentry, target);
2773 		target->d_hash.pprev = NULL;
2774 		dentry->d_parent->d_lockref.count++;
2775 		if (dentry == old_parent)
2776 			dentry->d_flags |= DCACHE_RCUACCESS;
2777 		else
2778 			WARN_ON(!--old_parent->d_lockref.count);
2779 	} else {
2780 		target->d_parent = old_parent;
2781 		swap_names(dentry, target);
2782 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2783 		__d_rehash(target);
2784 		fsnotify_update_flags(target);
2785 	}
2786 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2787 	__d_rehash(dentry);
2788 	fsnotify_update_flags(dentry);
2789 
2790 	write_seqcount_end(&target->d_seq);
2791 	write_seqcount_end(&dentry->d_seq);
2792 
2793 	if (dir)
2794 		end_dir_add(dir, n);
2795 
2796 	if (dentry->d_parent != old_parent)
2797 		spin_unlock(&dentry->d_parent->d_lock);
2798 	if (dentry != old_parent)
2799 		spin_unlock(&old_parent->d_lock);
2800 	spin_unlock(&target->d_lock);
2801 	spin_unlock(&dentry->d_lock);
2802 }
2803 
2804 /*
2805  * d_move - move a dentry
2806  * @dentry: entry to move
2807  * @target: new dentry
2808  *
2809  * Update the dcache to reflect the move of a file name. Negative
2810  * dcache entries should not be moved in this way. See the locking
2811  * requirements for __d_move.
2812  */
2813 void d_move(struct dentry *dentry, struct dentry *target)
2814 {
2815 	write_seqlock(&rename_lock);
2816 	__d_move(dentry, target, false);
2817 	write_sequnlock(&rename_lock);
2818 }
2819 EXPORT_SYMBOL(d_move);
2820 
2821 /*
2822  * d_exchange - exchange two dentries
2823  * @dentry1: first dentry
2824  * @dentry2: second dentry
2825  */
2826 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2827 {
2828 	write_seqlock(&rename_lock);
2829 
2830 	WARN_ON(!dentry1->d_inode);
2831 	WARN_ON(!dentry2->d_inode);
2832 	WARN_ON(IS_ROOT(dentry1));
2833 	WARN_ON(IS_ROOT(dentry2));
2834 
2835 	__d_move(dentry1, dentry2, true);
2836 
2837 	write_sequnlock(&rename_lock);
2838 }
2839 
2840 /**
2841  * d_ancestor - search for an ancestor
2842  * @p1: ancestor dentry
2843  * @p2: child dentry
2844  *
2845  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2846  * an ancestor of p2, else NULL.
2847  */
2848 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2849 {
2850 	struct dentry *p;
2851 
2852 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2853 		if (p->d_parent == p1)
2854 			return p;
2855 	}
2856 	return NULL;
2857 }
2858 
2859 /*
2860  * This helper attempts to cope with remotely renamed directories
2861  *
2862  * It assumes that the caller is already holding
2863  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2864  *
2865  * Note: If ever the locking in lock_rename() changes, then please
2866  * remember to update this too...
2867  */
2868 static int __d_unalias(struct inode *inode,
2869 		struct dentry *dentry, struct dentry *alias)
2870 {
2871 	struct mutex *m1 = NULL;
2872 	struct rw_semaphore *m2 = NULL;
2873 	int ret = -ESTALE;
2874 
2875 	/* If alias and dentry share a parent, then no extra locks required */
2876 	if (alias->d_parent == dentry->d_parent)
2877 		goto out_unalias;
2878 
2879 	/* See lock_rename() */
2880 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2881 		goto out_err;
2882 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2883 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2884 		goto out_err;
2885 	m2 = &alias->d_parent->d_inode->i_rwsem;
2886 out_unalias:
2887 	__d_move(alias, dentry, false);
2888 	ret = 0;
2889 out_err:
2890 	if (m2)
2891 		up_read(m2);
2892 	if (m1)
2893 		mutex_unlock(m1);
2894 	return ret;
2895 }
2896 
2897 /**
2898  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2899  * @inode:  the inode which may have a disconnected dentry
2900  * @dentry: a negative dentry which we want to point to the inode.
2901  *
2902  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2903  * place of the given dentry and return it, else simply d_add the inode
2904  * to the dentry and return NULL.
2905  *
2906  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2907  * we should error out: directories can't have multiple aliases.
2908  *
2909  * This is needed in the lookup routine of any filesystem that is exportable
2910  * (via knfsd) so that we can build dcache paths to directories effectively.
2911  *
2912  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2913  * is returned.  This matches the expected return value of ->lookup.
2914  *
2915  * Cluster filesystems may call this function with a negative, hashed dentry.
2916  * In that case, we know that the inode will be a regular file, and also this
2917  * will only occur during atomic_open. So we need to check for the dentry
2918  * being already hashed only in the final case.
2919  */
2920 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2921 {
2922 	if (IS_ERR(inode))
2923 		return ERR_CAST(inode);
2924 
2925 	BUG_ON(!d_unhashed(dentry));
2926 
2927 	if (!inode)
2928 		goto out;
2929 
2930 	security_d_instantiate(dentry, inode);
2931 	spin_lock(&inode->i_lock);
2932 	if (S_ISDIR(inode->i_mode)) {
2933 		struct dentry *new = __d_find_any_alias(inode);
2934 		if (unlikely(new)) {
2935 			/* The reference to new ensures it remains an alias */
2936 			spin_unlock(&inode->i_lock);
2937 			write_seqlock(&rename_lock);
2938 			if (unlikely(d_ancestor(new, dentry))) {
2939 				write_sequnlock(&rename_lock);
2940 				dput(new);
2941 				new = ERR_PTR(-ELOOP);
2942 				pr_warn_ratelimited(
2943 					"VFS: Lookup of '%s' in %s %s"
2944 					" would have caused loop\n",
2945 					dentry->d_name.name,
2946 					inode->i_sb->s_type->name,
2947 					inode->i_sb->s_id);
2948 			} else if (!IS_ROOT(new)) {
2949 				struct dentry *old_parent = dget(new->d_parent);
2950 				int err = __d_unalias(inode, dentry, new);
2951 				write_sequnlock(&rename_lock);
2952 				if (err) {
2953 					dput(new);
2954 					new = ERR_PTR(err);
2955 				}
2956 				dput(old_parent);
2957 			} else {
2958 				__d_move(new, dentry, false);
2959 				write_sequnlock(&rename_lock);
2960 			}
2961 			iput(inode);
2962 			return new;
2963 		}
2964 	}
2965 out:
2966 	__d_add(dentry, inode);
2967 	return NULL;
2968 }
2969 EXPORT_SYMBOL(d_splice_alias);
2970 
2971 /*
2972  * Test whether new_dentry is a subdirectory of old_dentry.
2973  *
2974  * Trivially implemented using the dcache structure
2975  */
2976 
2977 /**
2978  * is_subdir - is new dentry a subdirectory of old_dentry
2979  * @new_dentry: new dentry
2980  * @old_dentry: old dentry
2981  *
2982  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2983  * Returns false otherwise.
2984  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2985  */
2986 
2987 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2988 {
2989 	bool result;
2990 	unsigned seq;
2991 
2992 	if (new_dentry == old_dentry)
2993 		return true;
2994 
2995 	do {
2996 		/* for restarting inner loop in case of seq retry */
2997 		seq = read_seqbegin(&rename_lock);
2998 		/*
2999 		 * Need rcu_readlock to protect against the d_parent trashing
3000 		 * due to d_move
3001 		 */
3002 		rcu_read_lock();
3003 		if (d_ancestor(old_dentry, new_dentry))
3004 			result = true;
3005 		else
3006 			result = false;
3007 		rcu_read_unlock();
3008 	} while (read_seqretry(&rename_lock, seq));
3009 
3010 	return result;
3011 }
3012 EXPORT_SYMBOL(is_subdir);
3013 
3014 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3015 {
3016 	struct dentry *root = data;
3017 	if (dentry != root) {
3018 		if (d_unhashed(dentry) || !dentry->d_inode)
3019 			return D_WALK_SKIP;
3020 
3021 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3022 			dentry->d_flags |= DCACHE_GENOCIDE;
3023 			dentry->d_lockref.count--;
3024 		}
3025 	}
3026 	return D_WALK_CONTINUE;
3027 }
3028 
3029 void d_genocide(struct dentry *parent)
3030 {
3031 	d_walk(parent, parent, d_genocide_kill);
3032 }
3033 
3034 EXPORT_SYMBOL(d_genocide);
3035 
3036 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3037 {
3038 	inode_dec_link_count(inode);
3039 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3040 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3041 		!d_unlinked(dentry));
3042 	spin_lock(&dentry->d_parent->d_lock);
3043 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3044 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3045 				(unsigned long long)inode->i_ino);
3046 	spin_unlock(&dentry->d_lock);
3047 	spin_unlock(&dentry->d_parent->d_lock);
3048 	d_instantiate(dentry, inode);
3049 }
3050 EXPORT_SYMBOL(d_tmpfile);
3051 
3052 static __initdata unsigned long dhash_entries;
3053 static int __init set_dhash_entries(char *str)
3054 {
3055 	if (!str)
3056 		return 0;
3057 	dhash_entries = simple_strtoul(str, &str, 0);
3058 	return 1;
3059 }
3060 __setup("dhash_entries=", set_dhash_entries);
3061 
3062 static void __init dcache_init_early(void)
3063 {
3064 	/* If hashes are distributed across NUMA nodes, defer
3065 	 * hash allocation until vmalloc space is available.
3066 	 */
3067 	if (hashdist)
3068 		return;
3069 
3070 	dentry_hashtable =
3071 		alloc_large_system_hash("Dentry cache",
3072 					sizeof(struct hlist_bl_head),
3073 					dhash_entries,
3074 					13,
3075 					HASH_EARLY | HASH_ZERO,
3076 					&d_hash_shift,
3077 					NULL,
3078 					0,
3079 					0);
3080 	d_hash_shift = 32 - d_hash_shift;
3081 }
3082 
3083 static void __init dcache_init(void)
3084 {
3085 	/*
3086 	 * A constructor could be added for stable state like the lists,
3087 	 * but it is probably not worth it because of the cache nature
3088 	 * of the dcache.
3089 	 */
3090 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3091 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3092 		d_iname);
3093 
3094 	/* Hash may have been set up in dcache_init_early */
3095 	if (!hashdist)
3096 		return;
3097 
3098 	dentry_hashtable =
3099 		alloc_large_system_hash("Dentry cache",
3100 					sizeof(struct hlist_bl_head),
3101 					dhash_entries,
3102 					13,
3103 					HASH_ZERO,
3104 					&d_hash_shift,
3105 					NULL,
3106 					0,
3107 					0);
3108 	d_hash_shift = 32 - d_hash_shift;
3109 }
3110 
3111 /* SLAB cache for __getname() consumers */
3112 struct kmem_cache *names_cachep __read_mostly;
3113 EXPORT_SYMBOL(names_cachep);
3114 
3115 void __init vfs_caches_init_early(void)
3116 {
3117 	int i;
3118 
3119 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3120 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3121 
3122 	dcache_init_early();
3123 	inode_init_early();
3124 }
3125 
3126 void __init vfs_caches_init(void)
3127 {
3128 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3129 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3130 
3131 	dcache_init();
3132 	inode_init();
3133 	files_init();
3134 	files_maxfiles_init();
3135 	mnt_init();
3136 	bdev_cache_init();
3137 	chrdev_init();
3138 }
3139