1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/security.h> 28 #include <linux/seqlock.h> 29 #include <linux/bootmem.h> 30 #include <linux/bit_spinlock.h> 31 #include <linux/rculist_bl.h> 32 #include <linux/list_lru.h> 33 #include "internal.h" 34 #include "mount.h" 35 36 /* 37 * Usage: 38 * dcache->d_inode->i_lock protects: 39 * - i_dentry, d_u.d_alias, d_inode of aliases 40 * dcache_hash_bucket lock protects: 41 * - the dcache hash table 42 * s_roots bl list spinlock protects: 43 * - the s_roots list (see __d_drop) 44 * dentry->d_sb->s_dentry_lru_lock protects: 45 * - the dcache lru lists and counters 46 * d_lock protects: 47 * - d_flags 48 * - d_name 49 * - d_lru 50 * - d_count 51 * - d_unhashed() 52 * - d_parent and d_subdirs 53 * - childrens' d_child and d_parent 54 * - d_u.d_alias, d_inode 55 * 56 * Ordering: 57 * dentry->d_inode->i_lock 58 * dentry->d_lock 59 * dentry->d_sb->s_dentry_lru_lock 60 * dcache_hash_bucket lock 61 * s_roots lock 62 * 63 * If there is an ancestor relationship: 64 * dentry->d_parent->...->d_parent->d_lock 65 * ... 66 * dentry->d_parent->d_lock 67 * dentry->d_lock 68 * 69 * If no ancestor relationship: 70 * arbitrary, since it's serialized on rename_lock 71 */ 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 74 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 76 77 EXPORT_SYMBOL(rename_lock); 78 79 static struct kmem_cache *dentry_cache __read_mostly; 80 81 const struct qstr empty_name = QSTR_INIT("", 0); 82 EXPORT_SYMBOL(empty_name); 83 const struct qstr slash_name = QSTR_INIT("/", 1); 84 EXPORT_SYMBOL(slash_name); 85 86 /* 87 * This is the single most critical data structure when it comes 88 * to the dcache: the hashtable for lookups. Somebody should try 89 * to make this good - I've just made it work. 90 * 91 * This hash-function tries to avoid losing too many bits of hash 92 * information, yet avoid using a prime hash-size or similar. 93 */ 94 95 static unsigned int d_hash_shift __read_mostly; 96 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 98 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 100 { 101 return dentry_hashtable + (hash >> d_hash_shift); 102 } 103 104 #define IN_LOOKUP_SHIFT 10 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 106 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 112 } 113 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(long, nr_dentry); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 122 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 124 125 /* 126 * Here we resort to our own counters instead of using generic per-cpu counters 127 * for consistency with what the vfs inode code does. We are expected to harvest 128 * better code and performance by having our own specialized counters. 129 * 130 * Please note that the loop is done over all possible CPUs, not over all online 131 * CPUs. The reason for this is that we don't want to play games with CPUs going 132 * on and off. If one of them goes off, we will just keep their counters. 133 * 134 * glommer: See cffbc8a for details, and if you ever intend to change this, 135 * please update all vfs counters to match. 136 */ 137 static long get_nr_dentry(void) 138 { 139 int i; 140 long sum = 0; 141 for_each_possible_cpu(i) 142 sum += per_cpu(nr_dentry, i); 143 return sum < 0 ? 0 : sum; 144 } 145 146 static long get_nr_dentry_unused(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry_unused, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 156 size_t *lenp, loff_t *ppos) 157 { 158 dentry_stat.nr_dentry = get_nr_dentry(); 159 dentry_stat.nr_unused = get_nr_dentry_unused(); 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 161 } 162 #endif 163 164 /* 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 166 * The strings are both count bytes long, and count is non-zero. 167 */ 168 #ifdef CONFIG_DCACHE_WORD_ACCESS 169 170 #include <asm/word-at-a-time.h> 171 /* 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 173 * aligned allocation for this particular component. We don't 174 * strictly need the load_unaligned_zeropad() safety, but it 175 * doesn't hurt either. 176 * 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 178 * need the careful unaligned handling. 179 */ 180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 181 { 182 unsigned long a,b,mask; 183 184 for (;;) { 185 a = read_word_at_a_time(cs); 186 b = load_unaligned_zeropad(ct); 187 if (tcount < sizeof(unsigned long)) 188 break; 189 if (unlikely(a != b)) 190 return 1; 191 cs += sizeof(unsigned long); 192 ct += sizeof(unsigned long); 193 tcount -= sizeof(unsigned long); 194 if (!tcount) 195 return 0; 196 } 197 mask = bytemask_from_count(tcount); 198 return unlikely(!!((a ^ b) & mask)); 199 } 200 201 #else 202 203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 204 { 205 do { 206 if (*cs != *ct) 207 return 1; 208 cs++; 209 ct++; 210 tcount--; 211 } while (tcount); 212 return 0; 213 } 214 215 #endif 216 217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 218 { 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use 'READ_ONCE' to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 236 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external_name(struct rcu_head *head) 261 { 262 struct external_name *name = container_of(head, struct external_name, 263 u.head); 264 265 mod_node_page_state(page_pgdat(virt_to_page(name)), 266 NR_INDIRECTLY_RECLAIMABLE_BYTES, 267 -ksize(name)); 268 269 kfree(name); 270 } 271 272 static void __d_free_external(struct rcu_head *head) 273 { 274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 275 276 __d_free_external_name(&external_name(dentry)->u.head); 277 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 if (unlikely(dname_external(dentry))) { 290 struct external_name *p = external_name(dentry); 291 atomic_inc(&p->u.count); 292 spin_unlock(&dentry->d_lock); 293 name->name = p->name; 294 } else { 295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 296 spin_unlock(&dentry->d_lock); 297 name->name = name->inline_name; 298 } 299 } 300 EXPORT_SYMBOL(take_dentry_name_snapshot); 301 302 void release_dentry_name_snapshot(struct name_snapshot *name) 303 { 304 if (unlikely(name->name != name->inline_name)) { 305 struct external_name *p; 306 p = container_of(name->name, struct external_name, name[0]); 307 if (unlikely(atomic_dec_and_test(&p->u.count))) 308 call_rcu(&p->u.head, __d_free_external_name); 309 } 310 } 311 EXPORT_SYMBOL(release_dentry_name_snapshot); 312 313 static inline void __d_set_inode_and_type(struct dentry *dentry, 314 struct inode *inode, 315 unsigned type_flags) 316 { 317 unsigned flags; 318 319 dentry->d_inode = inode; 320 flags = READ_ONCE(dentry->d_flags); 321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 322 flags |= type_flags; 323 WRITE_ONCE(dentry->d_flags, flags); 324 } 325 326 static inline void __d_clear_type_and_inode(struct dentry *dentry) 327 { 328 unsigned flags = READ_ONCE(dentry->d_flags); 329 330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 331 WRITE_ONCE(dentry->d_flags, flags); 332 dentry->d_inode = NULL; 333 } 334 335 static void dentry_free(struct dentry *dentry) 336 { 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 338 if (unlikely(dname_external(dentry))) { 339 struct external_name *p = external_name(dentry); 340 if (likely(atomic_dec_and_test(&p->u.count))) { 341 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 342 return; 343 } 344 } 345 /* if dentry was never visible to RCU, immediate free is OK */ 346 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 347 __d_free(&dentry->d_u.d_rcu); 348 else 349 call_rcu(&dentry->d_u.d_rcu, __d_free); 350 } 351 352 /* 353 * Release the dentry's inode, using the filesystem 354 * d_iput() operation if defined. 355 */ 356 static void dentry_unlink_inode(struct dentry * dentry) 357 __releases(dentry->d_lock) 358 __releases(dentry->d_inode->i_lock) 359 { 360 struct inode *inode = dentry->d_inode; 361 362 raw_write_seqcount_begin(&dentry->d_seq); 363 __d_clear_type_and_inode(dentry); 364 hlist_del_init(&dentry->d_u.d_alias); 365 raw_write_seqcount_end(&dentry->d_seq); 366 spin_unlock(&dentry->d_lock); 367 spin_unlock(&inode->i_lock); 368 if (!inode->i_nlink) 369 fsnotify_inoderemove(inode); 370 if (dentry->d_op && dentry->d_op->d_iput) 371 dentry->d_op->d_iput(dentry, inode); 372 else 373 iput(inode); 374 } 375 376 /* 377 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 378 * is in use - which includes both the "real" per-superblock 379 * LRU list _and_ the DCACHE_SHRINK_LIST use. 380 * 381 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 382 * on the shrink list (ie not on the superblock LRU list). 383 * 384 * The per-cpu "nr_dentry_unused" counters are updated with 385 * the DCACHE_LRU_LIST bit. 386 * 387 * These helper functions make sure we always follow the 388 * rules. d_lock must be held by the caller. 389 */ 390 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 391 static void d_lru_add(struct dentry *dentry) 392 { 393 D_FLAG_VERIFY(dentry, 0); 394 dentry->d_flags |= DCACHE_LRU_LIST; 395 this_cpu_inc(nr_dentry_unused); 396 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 397 } 398 399 static void d_lru_del(struct dentry *dentry) 400 { 401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 402 dentry->d_flags &= ~DCACHE_LRU_LIST; 403 this_cpu_dec(nr_dentry_unused); 404 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_shrink_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 410 list_del_init(&dentry->d_lru); 411 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 412 this_cpu_dec(nr_dentry_unused); 413 } 414 415 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 416 { 417 D_FLAG_VERIFY(dentry, 0); 418 list_add(&dentry->d_lru, list); 419 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 420 this_cpu_inc(nr_dentry_unused); 421 } 422 423 /* 424 * These can only be called under the global LRU lock, ie during the 425 * callback for freeing the LRU list. "isolate" removes it from the 426 * LRU lists entirely, while shrink_move moves it to the indicated 427 * private list. 428 */ 429 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 430 { 431 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 432 dentry->d_flags &= ~DCACHE_LRU_LIST; 433 this_cpu_dec(nr_dentry_unused); 434 list_lru_isolate(lru, &dentry->d_lru); 435 } 436 437 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 438 struct list_head *list) 439 { 440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 441 dentry->d_flags |= DCACHE_SHRINK_LIST; 442 list_lru_isolate_move(lru, &dentry->d_lru, list); 443 } 444 445 /** 446 * d_drop - drop a dentry 447 * @dentry: dentry to drop 448 * 449 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 450 * be found through a VFS lookup any more. Note that this is different from 451 * deleting the dentry - d_delete will try to mark the dentry negative if 452 * possible, giving a successful _negative_ lookup, while d_drop will 453 * just make the cache lookup fail. 454 * 455 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 456 * reason (NFS timeouts or autofs deletes). 457 * 458 * __d_drop requires dentry->d_lock 459 * ___d_drop doesn't mark dentry as "unhashed" 460 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 461 */ 462 static void ___d_drop(struct dentry *dentry) 463 { 464 struct hlist_bl_head *b; 465 /* 466 * Hashed dentries are normally on the dentry hashtable, 467 * with the exception of those newly allocated by 468 * d_obtain_root, which are always IS_ROOT: 469 */ 470 if (unlikely(IS_ROOT(dentry))) 471 b = &dentry->d_sb->s_roots; 472 else 473 b = d_hash(dentry->d_name.hash); 474 475 hlist_bl_lock(b); 476 __hlist_bl_del(&dentry->d_hash); 477 hlist_bl_unlock(b); 478 } 479 480 void __d_drop(struct dentry *dentry) 481 { 482 if (!d_unhashed(dentry)) { 483 ___d_drop(dentry); 484 dentry->d_hash.pprev = NULL; 485 write_seqcount_invalidate(&dentry->d_seq); 486 } 487 } 488 EXPORT_SYMBOL(__d_drop); 489 490 void d_drop(struct dentry *dentry) 491 { 492 spin_lock(&dentry->d_lock); 493 __d_drop(dentry); 494 spin_unlock(&dentry->d_lock); 495 } 496 EXPORT_SYMBOL(d_drop); 497 498 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 499 { 500 struct dentry *next; 501 /* 502 * Inform d_walk() and shrink_dentry_list() that we are no longer 503 * attached to the dentry tree 504 */ 505 dentry->d_flags |= DCACHE_DENTRY_KILLED; 506 if (unlikely(list_empty(&dentry->d_child))) 507 return; 508 __list_del_entry(&dentry->d_child); 509 /* 510 * Cursors can move around the list of children. While we'd been 511 * a normal list member, it didn't matter - ->d_child.next would've 512 * been updated. However, from now on it won't be and for the 513 * things like d_walk() it might end up with a nasty surprise. 514 * Normally d_walk() doesn't care about cursors moving around - 515 * ->d_lock on parent prevents that and since a cursor has no children 516 * of its own, we get through it without ever unlocking the parent. 517 * There is one exception, though - if we ascend from a child that 518 * gets killed as soon as we unlock it, the next sibling is found 519 * using the value left in its ->d_child.next. And if _that_ 520 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 521 * before d_walk() regains parent->d_lock, we'll end up skipping 522 * everything the cursor had been moved past. 523 * 524 * Solution: make sure that the pointer left behind in ->d_child.next 525 * points to something that won't be moving around. I.e. skip the 526 * cursors. 527 */ 528 while (dentry->d_child.next != &parent->d_subdirs) { 529 next = list_entry(dentry->d_child.next, struct dentry, d_child); 530 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 531 break; 532 dentry->d_child.next = next->d_child.next; 533 } 534 } 535 536 static void __dentry_kill(struct dentry *dentry) 537 { 538 struct dentry *parent = NULL; 539 bool can_free = true; 540 if (!IS_ROOT(dentry)) 541 parent = dentry->d_parent; 542 543 /* 544 * The dentry is now unrecoverably dead to the world. 545 */ 546 lockref_mark_dead(&dentry->d_lockref); 547 548 /* 549 * inform the fs via d_prune that this dentry is about to be 550 * unhashed and destroyed. 551 */ 552 if (dentry->d_flags & DCACHE_OP_PRUNE) 553 dentry->d_op->d_prune(dentry); 554 555 if (dentry->d_flags & DCACHE_LRU_LIST) { 556 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 557 d_lru_del(dentry); 558 } 559 /* if it was on the hash then remove it */ 560 __d_drop(dentry); 561 dentry_unlist(dentry, parent); 562 if (parent) 563 spin_unlock(&parent->d_lock); 564 if (dentry->d_inode) 565 dentry_unlink_inode(dentry); 566 else 567 spin_unlock(&dentry->d_lock); 568 this_cpu_dec(nr_dentry); 569 if (dentry->d_op && dentry->d_op->d_release) 570 dentry->d_op->d_release(dentry); 571 572 spin_lock(&dentry->d_lock); 573 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 574 dentry->d_flags |= DCACHE_MAY_FREE; 575 can_free = false; 576 } 577 spin_unlock(&dentry->d_lock); 578 if (likely(can_free)) 579 dentry_free(dentry); 580 cond_resched(); 581 } 582 583 static struct dentry *__lock_parent(struct dentry *dentry) 584 { 585 struct dentry *parent; 586 rcu_read_lock(); 587 spin_unlock(&dentry->d_lock); 588 again: 589 parent = READ_ONCE(dentry->d_parent); 590 spin_lock(&parent->d_lock); 591 /* 592 * We can't blindly lock dentry until we are sure 593 * that we won't violate the locking order. 594 * Any changes of dentry->d_parent must have 595 * been done with parent->d_lock held, so 596 * spin_lock() above is enough of a barrier 597 * for checking if it's still our child. 598 */ 599 if (unlikely(parent != dentry->d_parent)) { 600 spin_unlock(&parent->d_lock); 601 goto again; 602 } 603 rcu_read_unlock(); 604 if (parent != dentry) 605 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 606 else 607 parent = NULL; 608 return parent; 609 } 610 611 static inline struct dentry *lock_parent(struct dentry *dentry) 612 { 613 struct dentry *parent = dentry->d_parent; 614 if (IS_ROOT(dentry)) 615 return NULL; 616 if (likely(spin_trylock(&parent->d_lock))) 617 return parent; 618 return __lock_parent(dentry); 619 } 620 621 static inline bool retain_dentry(struct dentry *dentry) 622 { 623 WARN_ON(d_in_lookup(dentry)); 624 625 /* Unreachable? Get rid of it */ 626 if (unlikely(d_unhashed(dentry))) 627 return false; 628 629 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 630 return false; 631 632 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 633 if (dentry->d_op->d_delete(dentry)) 634 return false; 635 } 636 /* retain; LRU fodder */ 637 dentry->d_lockref.count--; 638 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 639 d_lru_add(dentry); 640 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 641 dentry->d_flags |= DCACHE_REFERENCED; 642 return true; 643 } 644 645 /* 646 * Finish off a dentry we've decided to kill. 647 * dentry->d_lock must be held, returns with it unlocked. 648 * Returns dentry requiring refcount drop, or NULL if we're done. 649 */ 650 static struct dentry *dentry_kill(struct dentry *dentry) 651 __releases(dentry->d_lock) 652 { 653 struct inode *inode = dentry->d_inode; 654 struct dentry *parent = NULL; 655 656 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 657 goto slow_positive; 658 659 if (!IS_ROOT(dentry)) { 660 parent = dentry->d_parent; 661 if (unlikely(!spin_trylock(&parent->d_lock))) { 662 parent = __lock_parent(dentry); 663 if (likely(inode || !dentry->d_inode)) 664 goto got_locks; 665 /* negative that became positive */ 666 if (parent) 667 spin_unlock(&parent->d_lock); 668 inode = dentry->d_inode; 669 goto slow_positive; 670 } 671 } 672 __dentry_kill(dentry); 673 return parent; 674 675 slow_positive: 676 spin_unlock(&dentry->d_lock); 677 spin_lock(&inode->i_lock); 678 spin_lock(&dentry->d_lock); 679 parent = lock_parent(dentry); 680 got_locks: 681 if (unlikely(dentry->d_lockref.count != 1)) { 682 dentry->d_lockref.count--; 683 } else if (likely(!retain_dentry(dentry))) { 684 __dentry_kill(dentry); 685 return parent; 686 } 687 /* we are keeping it, after all */ 688 if (inode) 689 spin_unlock(&inode->i_lock); 690 if (parent) 691 spin_unlock(&parent->d_lock); 692 spin_unlock(&dentry->d_lock); 693 return NULL; 694 } 695 696 /* 697 * Try to do a lockless dput(), and return whether that was successful. 698 * 699 * If unsuccessful, we return false, having already taken the dentry lock. 700 * 701 * The caller needs to hold the RCU read lock, so that the dentry is 702 * guaranteed to stay around even if the refcount goes down to zero! 703 */ 704 static inline bool fast_dput(struct dentry *dentry) 705 { 706 int ret; 707 unsigned int d_flags; 708 709 /* 710 * If we have a d_op->d_delete() operation, we sould not 711 * let the dentry count go to zero, so use "put_or_lock". 712 */ 713 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 714 return lockref_put_or_lock(&dentry->d_lockref); 715 716 /* 717 * .. otherwise, we can try to just decrement the 718 * lockref optimistically. 719 */ 720 ret = lockref_put_return(&dentry->d_lockref); 721 722 /* 723 * If the lockref_put_return() failed due to the lock being held 724 * by somebody else, the fast path has failed. We will need to 725 * get the lock, and then check the count again. 726 */ 727 if (unlikely(ret < 0)) { 728 spin_lock(&dentry->d_lock); 729 if (dentry->d_lockref.count > 1) { 730 dentry->d_lockref.count--; 731 spin_unlock(&dentry->d_lock); 732 return true; 733 } 734 return false; 735 } 736 737 /* 738 * If we weren't the last ref, we're done. 739 */ 740 if (ret) 741 return true; 742 743 /* 744 * Careful, careful. The reference count went down 745 * to zero, but we don't hold the dentry lock, so 746 * somebody else could get it again, and do another 747 * dput(), and we need to not race with that. 748 * 749 * However, there is a very special and common case 750 * where we don't care, because there is nothing to 751 * do: the dentry is still hashed, it does not have 752 * a 'delete' op, and it's referenced and already on 753 * the LRU list. 754 * 755 * NOTE! Since we aren't locked, these values are 756 * not "stable". However, it is sufficient that at 757 * some point after we dropped the reference the 758 * dentry was hashed and the flags had the proper 759 * value. Other dentry users may have re-gotten 760 * a reference to the dentry and change that, but 761 * our work is done - we can leave the dentry 762 * around with a zero refcount. 763 */ 764 smp_rmb(); 765 d_flags = READ_ONCE(dentry->d_flags); 766 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 767 768 /* Nothing to do? Dropping the reference was all we needed? */ 769 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 770 return true; 771 772 /* 773 * Not the fast normal case? Get the lock. We've already decremented 774 * the refcount, but we'll need to re-check the situation after 775 * getting the lock. 776 */ 777 spin_lock(&dentry->d_lock); 778 779 /* 780 * Did somebody else grab a reference to it in the meantime, and 781 * we're no longer the last user after all? Alternatively, somebody 782 * else could have killed it and marked it dead. Either way, we 783 * don't need to do anything else. 784 */ 785 if (dentry->d_lockref.count) { 786 spin_unlock(&dentry->d_lock); 787 return true; 788 } 789 790 /* 791 * Re-get the reference we optimistically dropped. We hold the 792 * lock, and we just tested that it was zero, so we can just 793 * set it to 1. 794 */ 795 dentry->d_lockref.count = 1; 796 return false; 797 } 798 799 800 /* 801 * This is dput 802 * 803 * This is complicated by the fact that we do not want to put 804 * dentries that are no longer on any hash chain on the unused 805 * list: we'd much rather just get rid of them immediately. 806 * 807 * However, that implies that we have to traverse the dentry 808 * tree upwards to the parents which might _also_ now be 809 * scheduled for deletion (it may have been only waiting for 810 * its last child to go away). 811 * 812 * This tail recursion is done by hand as we don't want to depend 813 * on the compiler to always get this right (gcc generally doesn't). 814 * Real recursion would eat up our stack space. 815 */ 816 817 /* 818 * dput - release a dentry 819 * @dentry: dentry to release 820 * 821 * Release a dentry. This will drop the usage count and if appropriate 822 * call the dentry unlink method as well as removing it from the queues and 823 * releasing its resources. If the parent dentries were scheduled for release 824 * they too may now get deleted. 825 */ 826 void dput(struct dentry *dentry) 827 { 828 while (dentry) { 829 might_sleep(); 830 831 rcu_read_lock(); 832 if (likely(fast_dput(dentry))) { 833 rcu_read_unlock(); 834 return; 835 } 836 837 /* Slow case: now with the dentry lock held */ 838 rcu_read_unlock(); 839 840 if (likely(retain_dentry(dentry))) { 841 spin_unlock(&dentry->d_lock); 842 return; 843 } 844 845 dentry = dentry_kill(dentry); 846 } 847 } 848 EXPORT_SYMBOL(dput); 849 850 851 /* This must be called with d_lock held */ 852 static inline void __dget_dlock(struct dentry *dentry) 853 { 854 dentry->d_lockref.count++; 855 } 856 857 static inline void __dget(struct dentry *dentry) 858 { 859 lockref_get(&dentry->d_lockref); 860 } 861 862 struct dentry *dget_parent(struct dentry *dentry) 863 { 864 int gotref; 865 struct dentry *ret; 866 867 /* 868 * Do optimistic parent lookup without any 869 * locking. 870 */ 871 rcu_read_lock(); 872 ret = READ_ONCE(dentry->d_parent); 873 gotref = lockref_get_not_zero(&ret->d_lockref); 874 rcu_read_unlock(); 875 if (likely(gotref)) { 876 if (likely(ret == READ_ONCE(dentry->d_parent))) 877 return ret; 878 dput(ret); 879 } 880 881 repeat: 882 /* 883 * Don't need rcu_dereference because we re-check it was correct under 884 * the lock. 885 */ 886 rcu_read_lock(); 887 ret = dentry->d_parent; 888 spin_lock(&ret->d_lock); 889 if (unlikely(ret != dentry->d_parent)) { 890 spin_unlock(&ret->d_lock); 891 rcu_read_unlock(); 892 goto repeat; 893 } 894 rcu_read_unlock(); 895 BUG_ON(!ret->d_lockref.count); 896 ret->d_lockref.count++; 897 spin_unlock(&ret->d_lock); 898 return ret; 899 } 900 EXPORT_SYMBOL(dget_parent); 901 902 static struct dentry * __d_find_any_alias(struct inode *inode) 903 { 904 struct dentry *alias; 905 906 if (hlist_empty(&inode->i_dentry)) 907 return NULL; 908 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 909 __dget(alias); 910 return alias; 911 } 912 913 /** 914 * d_find_any_alias - find any alias for a given inode 915 * @inode: inode to find an alias for 916 * 917 * If any aliases exist for the given inode, take and return a 918 * reference for one of them. If no aliases exist, return %NULL. 919 */ 920 struct dentry *d_find_any_alias(struct inode *inode) 921 { 922 struct dentry *de; 923 924 spin_lock(&inode->i_lock); 925 de = __d_find_any_alias(inode); 926 spin_unlock(&inode->i_lock); 927 return de; 928 } 929 EXPORT_SYMBOL(d_find_any_alias); 930 931 /** 932 * d_find_alias - grab a hashed alias of inode 933 * @inode: inode in question 934 * 935 * If inode has a hashed alias, or is a directory and has any alias, 936 * acquire the reference to alias and return it. Otherwise return NULL. 937 * Notice that if inode is a directory there can be only one alias and 938 * it can be unhashed only if it has no children, or if it is the root 939 * of a filesystem, or if the directory was renamed and d_revalidate 940 * was the first vfs operation to notice. 941 * 942 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 943 * any other hashed alias over that one. 944 */ 945 static struct dentry *__d_find_alias(struct inode *inode) 946 { 947 struct dentry *alias; 948 949 if (S_ISDIR(inode->i_mode)) 950 return __d_find_any_alias(inode); 951 952 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 953 spin_lock(&alias->d_lock); 954 if (!d_unhashed(alias)) { 955 __dget_dlock(alias); 956 spin_unlock(&alias->d_lock); 957 return alias; 958 } 959 spin_unlock(&alias->d_lock); 960 } 961 return NULL; 962 } 963 964 struct dentry *d_find_alias(struct inode *inode) 965 { 966 struct dentry *de = NULL; 967 968 if (!hlist_empty(&inode->i_dentry)) { 969 spin_lock(&inode->i_lock); 970 de = __d_find_alias(inode); 971 spin_unlock(&inode->i_lock); 972 } 973 return de; 974 } 975 EXPORT_SYMBOL(d_find_alias); 976 977 /* 978 * Try to kill dentries associated with this inode. 979 * WARNING: you must own a reference to inode. 980 */ 981 void d_prune_aliases(struct inode *inode) 982 { 983 struct dentry *dentry; 984 restart: 985 spin_lock(&inode->i_lock); 986 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 987 spin_lock(&dentry->d_lock); 988 if (!dentry->d_lockref.count) { 989 struct dentry *parent = lock_parent(dentry); 990 if (likely(!dentry->d_lockref.count)) { 991 __dentry_kill(dentry); 992 dput(parent); 993 goto restart; 994 } 995 if (parent) 996 spin_unlock(&parent->d_lock); 997 } 998 spin_unlock(&dentry->d_lock); 999 } 1000 spin_unlock(&inode->i_lock); 1001 } 1002 EXPORT_SYMBOL(d_prune_aliases); 1003 1004 /* 1005 * Lock a dentry from shrink list. 1006 * Called under rcu_read_lock() and dentry->d_lock; the former 1007 * guarantees that nothing we access will be freed under us. 1008 * Note that dentry is *not* protected from concurrent dentry_kill(), 1009 * d_delete(), etc. 1010 * 1011 * Return false if dentry has been disrupted or grabbed, leaving 1012 * the caller to kick it off-list. Otherwise, return true and have 1013 * that dentry's inode and parent both locked. 1014 */ 1015 static bool shrink_lock_dentry(struct dentry *dentry) 1016 { 1017 struct inode *inode; 1018 struct dentry *parent; 1019 1020 if (dentry->d_lockref.count) 1021 return false; 1022 1023 inode = dentry->d_inode; 1024 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1025 spin_unlock(&dentry->d_lock); 1026 spin_lock(&inode->i_lock); 1027 spin_lock(&dentry->d_lock); 1028 if (unlikely(dentry->d_lockref.count)) 1029 goto out; 1030 /* changed inode means that somebody had grabbed it */ 1031 if (unlikely(inode != dentry->d_inode)) 1032 goto out; 1033 } 1034 1035 parent = dentry->d_parent; 1036 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1037 return true; 1038 1039 spin_unlock(&dentry->d_lock); 1040 spin_lock(&parent->d_lock); 1041 if (unlikely(parent != dentry->d_parent)) { 1042 spin_unlock(&parent->d_lock); 1043 spin_lock(&dentry->d_lock); 1044 goto out; 1045 } 1046 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1047 if (likely(!dentry->d_lockref.count)) 1048 return true; 1049 spin_unlock(&parent->d_lock); 1050 out: 1051 if (inode) 1052 spin_unlock(&inode->i_lock); 1053 return false; 1054 } 1055 1056 static void shrink_dentry_list(struct list_head *list) 1057 { 1058 while (!list_empty(list)) { 1059 struct dentry *dentry, *parent; 1060 1061 dentry = list_entry(list->prev, struct dentry, d_lru); 1062 spin_lock(&dentry->d_lock); 1063 rcu_read_lock(); 1064 if (!shrink_lock_dentry(dentry)) { 1065 bool can_free = false; 1066 rcu_read_unlock(); 1067 d_shrink_del(dentry); 1068 if (dentry->d_lockref.count < 0) 1069 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1070 spin_unlock(&dentry->d_lock); 1071 if (can_free) 1072 dentry_free(dentry); 1073 continue; 1074 } 1075 rcu_read_unlock(); 1076 d_shrink_del(dentry); 1077 parent = dentry->d_parent; 1078 __dentry_kill(dentry); 1079 if (parent == dentry) 1080 continue; 1081 /* 1082 * We need to prune ancestors too. This is necessary to prevent 1083 * quadratic behavior of shrink_dcache_parent(), but is also 1084 * expected to be beneficial in reducing dentry cache 1085 * fragmentation. 1086 */ 1087 dentry = parent; 1088 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1089 dentry = dentry_kill(dentry); 1090 } 1091 } 1092 1093 static enum lru_status dentry_lru_isolate(struct list_head *item, 1094 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1095 { 1096 struct list_head *freeable = arg; 1097 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1098 1099 1100 /* 1101 * we are inverting the lru lock/dentry->d_lock here, 1102 * so use a trylock. If we fail to get the lock, just skip 1103 * it 1104 */ 1105 if (!spin_trylock(&dentry->d_lock)) 1106 return LRU_SKIP; 1107 1108 /* 1109 * Referenced dentries are still in use. If they have active 1110 * counts, just remove them from the LRU. Otherwise give them 1111 * another pass through the LRU. 1112 */ 1113 if (dentry->d_lockref.count) { 1114 d_lru_isolate(lru, dentry); 1115 spin_unlock(&dentry->d_lock); 1116 return LRU_REMOVED; 1117 } 1118 1119 if (dentry->d_flags & DCACHE_REFERENCED) { 1120 dentry->d_flags &= ~DCACHE_REFERENCED; 1121 spin_unlock(&dentry->d_lock); 1122 1123 /* 1124 * The list move itself will be made by the common LRU code. At 1125 * this point, we've dropped the dentry->d_lock but keep the 1126 * lru lock. This is safe to do, since every list movement is 1127 * protected by the lru lock even if both locks are held. 1128 * 1129 * This is guaranteed by the fact that all LRU management 1130 * functions are intermediated by the LRU API calls like 1131 * list_lru_add and list_lru_del. List movement in this file 1132 * only ever occur through this functions or through callbacks 1133 * like this one, that are called from the LRU API. 1134 * 1135 * The only exceptions to this are functions like 1136 * shrink_dentry_list, and code that first checks for the 1137 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1138 * operating only with stack provided lists after they are 1139 * properly isolated from the main list. It is thus, always a 1140 * local access. 1141 */ 1142 return LRU_ROTATE; 1143 } 1144 1145 d_lru_shrink_move(lru, dentry, freeable); 1146 spin_unlock(&dentry->d_lock); 1147 1148 return LRU_REMOVED; 1149 } 1150 1151 /** 1152 * prune_dcache_sb - shrink the dcache 1153 * @sb: superblock 1154 * @sc: shrink control, passed to list_lru_shrink_walk() 1155 * 1156 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1157 * is done when we need more memory and called from the superblock shrinker 1158 * function. 1159 * 1160 * This function may fail to free any resources if all the dentries are in 1161 * use. 1162 */ 1163 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1164 { 1165 LIST_HEAD(dispose); 1166 long freed; 1167 1168 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1169 dentry_lru_isolate, &dispose); 1170 shrink_dentry_list(&dispose); 1171 return freed; 1172 } 1173 1174 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1175 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1176 { 1177 struct list_head *freeable = arg; 1178 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1179 1180 /* 1181 * we are inverting the lru lock/dentry->d_lock here, 1182 * so use a trylock. If we fail to get the lock, just skip 1183 * it 1184 */ 1185 if (!spin_trylock(&dentry->d_lock)) 1186 return LRU_SKIP; 1187 1188 d_lru_shrink_move(lru, dentry, freeable); 1189 spin_unlock(&dentry->d_lock); 1190 1191 return LRU_REMOVED; 1192 } 1193 1194 1195 /** 1196 * shrink_dcache_sb - shrink dcache for a superblock 1197 * @sb: superblock 1198 * 1199 * Shrink the dcache for the specified super block. This is used to free 1200 * the dcache before unmounting a file system. 1201 */ 1202 void shrink_dcache_sb(struct super_block *sb) 1203 { 1204 long freed; 1205 1206 do { 1207 LIST_HEAD(dispose); 1208 1209 freed = list_lru_walk(&sb->s_dentry_lru, 1210 dentry_lru_isolate_shrink, &dispose, 1024); 1211 1212 this_cpu_sub(nr_dentry_unused, freed); 1213 shrink_dentry_list(&dispose); 1214 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1215 } 1216 EXPORT_SYMBOL(shrink_dcache_sb); 1217 1218 /** 1219 * enum d_walk_ret - action to talke during tree walk 1220 * @D_WALK_CONTINUE: contrinue walk 1221 * @D_WALK_QUIT: quit walk 1222 * @D_WALK_NORETRY: quit when retry is needed 1223 * @D_WALK_SKIP: skip this dentry and its children 1224 */ 1225 enum d_walk_ret { 1226 D_WALK_CONTINUE, 1227 D_WALK_QUIT, 1228 D_WALK_NORETRY, 1229 D_WALK_SKIP, 1230 }; 1231 1232 /** 1233 * d_walk - walk the dentry tree 1234 * @parent: start of walk 1235 * @data: data passed to @enter() and @finish() 1236 * @enter: callback when first entering the dentry 1237 * 1238 * The @enter() callbacks are called with d_lock held. 1239 */ 1240 static void d_walk(struct dentry *parent, void *data, 1241 enum d_walk_ret (*enter)(void *, struct dentry *)) 1242 { 1243 struct dentry *this_parent; 1244 struct list_head *next; 1245 unsigned seq = 0; 1246 enum d_walk_ret ret; 1247 bool retry = true; 1248 1249 again: 1250 read_seqbegin_or_lock(&rename_lock, &seq); 1251 this_parent = parent; 1252 spin_lock(&this_parent->d_lock); 1253 1254 ret = enter(data, this_parent); 1255 switch (ret) { 1256 case D_WALK_CONTINUE: 1257 break; 1258 case D_WALK_QUIT: 1259 case D_WALK_SKIP: 1260 goto out_unlock; 1261 case D_WALK_NORETRY: 1262 retry = false; 1263 break; 1264 } 1265 repeat: 1266 next = this_parent->d_subdirs.next; 1267 resume: 1268 while (next != &this_parent->d_subdirs) { 1269 struct list_head *tmp = next; 1270 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1271 next = tmp->next; 1272 1273 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1274 continue; 1275 1276 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1277 1278 ret = enter(data, dentry); 1279 switch (ret) { 1280 case D_WALK_CONTINUE: 1281 break; 1282 case D_WALK_QUIT: 1283 spin_unlock(&dentry->d_lock); 1284 goto out_unlock; 1285 case D_WALK_NORETRY: 1286 retry = false; 1287 break; 1288 case D_WALK_SKIP: 1289 spin_unlock(&dentry->d_lock); 1290 continue; 1291 } 1292 1293 if (!list_empty(&dentry->d_subdirs)) { 1294 spin_unlock(&this_parent->d_lock); 1295 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1296 this_parent = dentry; 1297 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1298 goto repeat; 1299 } 1300 spin_unlock(&dentry->d_lock); 1301 } 1302 /* 1303 * All done at this level ... ascend and resume the search. 1304 */ 1305 rcu_read_lock(); 1306 ascend: 1307 if (this_parent != parent) { 1308 struct dentry *child = this_parent; 1309 this_parent = child->d_parent; 1310 1311 spin_unlock(&child->d_lock); 1312 spin_lock(&this_parent->d_lock); 1313 1314 /* might go back up the wrong parent if we have had a rename. */ 1315 if (need_seqretry(&rename_lock, seq)) 1316 goto rename_retry; 1317 /* go into the first sibling still alive */ 1318 do { 1319 next = child->d_child.next; 1320 if (next == &this_parent->d_subdirs) 1321 goto ascend; 1322 child = list_entry(next, struct dentry, d_child); 1323 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1324 rcu_read_unlock(); 1325 goto resume; 1326 } 1327 if (need_seqretry(&rename_lock, seq)) 1328 goto rename_retry; 1329 rcu_read_unlock(); 1330 1331 out_unlock: 1332 spin_unlock(&this_parent->d_lock); 1333 done_seqretry(&rename_lock, seq); 1334 return; 1335 1336 rename_retry: 1337 spin_unlock(&this_parent->d_lock); 1338 rcu_read_unlock(); 1339 BUG_ON(seq & 1); 1340 if (!retry) 1341 return; 1342 seq = 1; 1343 goto again; 1344 } 1345 1346 struct check_mount { 1347 struct vfsmount *mnt; 1348 unsigned int mounted; 1349 }; 1350 1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1352 { 1353 struct check_mount *info = data; 1354 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1355 1356 if (likely(!d_mountpoint(dentry))) 1357 return D_WALK_CONTINUE; 1358 if (__path_is_mountpoint(&path)) { 1359 info->mounted = 1; 1360 return D_WALK_QUIT; 1361 } 1362 return D_WALK_CONTINUE; 1363 } 1364 1365 /** 1366 * path_has_submounts - check for mounts over a dentry in the 1367 * current namespace. 1368 * @parent: path to check. 1369 * 1370 * Return true if the parent or its subdirectories contain 1371 * a mount point in the current namespace. 1372 */ 1373 int path_has_submounts(const struct path *parent) 1374 { 1375 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1376 1377 read_seqlock_excl(&mount_lock); 1378 d_walk(parent->dentry, &data, path_check_mount); 1379 read_sequnlock_excl(&mount_lock); 1380 1381 return data.mounted; 1382 } 1383 EXPORT_SYMBOL(path_has_submounts); 1384 1385 /* 1386 * Called by mount code to set a mountpoint and check if the mountpoint is 1387 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1388 * subtree can become unreachable). 1389 * 1390 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1391 * this reason take rename_lock and d_lock on dentry and ancestors. 1392 */ 1393 int d_set_mounted(struct dentry *dentry) 1394 { 1395 struct dentry *p; 1396 int ret = -ENOENT; 1397 write_seqlock(&rename_lock); 1398 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1399 /* Need exclusion wrt. d_invalidate() */ 1400 spin_lock(&p->d_lock); 1401 if (unlikely(d_unhashed(p))) { 1402 spin_unlock(&p->d_lock); 1403 goto out; 1404 } 1405 spin_unlock(&p->d_lock); 1406 } 1407 spin_lock(&dentry->d_lock); 1408 if (!d_unlinked(dentry)) { 1409 ret = -EBUSY; 1410 if (!d_mountpoint(dentry)) { 1411 dentry->d_flags |= DCACHE_MOUNTED; 1412 ret = 0; 1413 } 1414 } 1415 spin_unlock(&dentry->d_lock); 1416 out: 1417 write_sequnlock(&rename_lock); 1418 return ret; 1419 } 1420 1421 /* 1422 * Search the dentry child list of the specified parent, 1423 * and move any unused dentries to the end of the unused 1424 * list for prune_dcache(). We descend to the next level 1425 * whenever the d_subdirs list is non-empty and continue 1426 * searching. 1427 * 1428 * It returns zero iff there are no unused children, 1429 * otherwise it returns the number of children moved to 1430 * the end of the unused list. This may not be the total 1431 * number of unused children, because select_parent can 1432 * drop the lock and return early due to latency 1433 * constraints. 1434 */ 1435 1436 struct select_data { 1437 struct dentry *start; 1438 struct list_head dispose; 1439 int found; 1440 }; 1441 1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1443 { 1444 struct select_data *data = _data; 1445 enum d_walk_ret ret = D_WALK_CONTINUE; 1446 1447 if (data->start == dentry) 1448 goto out; 1449 1450 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1451 data->found++; 1452 } else { 1453 if (dentry->d_flags & DCACHE_LRU_LIST) 1454 d_lru_del(dentry); 1455 if (!dentry->d_lockref.count) { 1456 d_shrink_add(dentry, &data->dispose); 1457 data->found++; 1458 } 1459 } 1460 /* 1461 * We can return to the caller if we have found some (this 1462 * ensures forward progress). We'll be coming back to find 1463 * the rest. 1464 */ 1465 if (!list_empty(&data->dispose)) 1466 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1467 out: 1468 return ret; 1469 } 1470 1471 /** 1472 * shrink_dcache_parent - prune dcache 1473 * @parent: parent of entries to prune 1474 * 1475 * Prune the dcache to remove unused children of the parent dentry. 1476 */ 1477 void shrink_dcache_parent(struct dentry *parent) 1478 { 1479 for (;;) { 1480 struct select_data data; 1481 1482 INIT_LIST_HEAD(&data.dispose); 1483 data.start = parent; 1484 data.found = 0; 1485 1486 d_walk(parent, &data, select_collect); 1487 1488 if (!list_empty(&data.dispose)) { 1489 shrink_dentry_list(&data.dispose); 1490 continue; 1491 } 1492 1493 cond_resched(); 1494 if (!data.found) 1495 break; 1496 } 1497 } 1498 EXPORT_SYMBOL(shrink_dcache_parent); 1499 1500 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1501 { 1502 /* it has busy descendents; complain about those instead */ 1503 if (!list_empty(&dentry->d_subdirs)) 1504 return D_WALK_CONTINUE; 1505 1506 /* root with refcount 1 is fine */ 1507 if (dentry == _data && dentry->d_lockref.count == 1) 1508 return D_WALK_CONTINUE; 1509 1510 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1511 " still in use (%d) [unmount of %s %s]\n", 1512 dentry, 1513 dentry->d_inode ? 1514 dentry->d_inode->i_ino : 0UL, 1515 dentry, 1516 dentry->d_lockref.count, 1517 dentry->d_sb->s_type->name, 1518 dentry->d_sb->s_id); 1519 WARN_ON(1); 1520 return D_WALK_CONTINUE; 1521 } 1522 1523 static void do_one_tree(struct dentry *dentry) 1524 { 1525 shrink_dcache_parent(dentry); 1526 d_walk(dentry, dentry, umount_check); 1527 d_drop(dentry); 1528 dput(dentry); 1529 } 1530 1531 /* 1532 * destroy the dentries attached to a superblock on unmounting 1533 */ 1534 void shrink_dcache_for_umount(struct super_block *sb) 1535 { 1536 struct dentry *dentry; 1537 1538 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1539 1540 dentry = sb->s_root; 1541 sb->s_root = NULL; 1542 do_one_tree(dentry); 1543 1544 while (!hlist_bl_empty(&sb->s_roots)) { 1545 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1546 do_one_tree(dentry); 1547 } 1548 } 1549 1550 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1551 { 1552 struct dentry **victim = _data; 1553 if (d_mountpoint(dentry)) { 1554 __dget_dlock(dentry); 1555 *victim = dentry; 1556 return D_WALK_QUIT; 1557 } 1558 return D_WALK_CONTINUE; 1559 } 1560 1561 /** 1562 * d_invalidate - detach submounts, prune dcache, and drop 1563 * @dentry: dentry to invalidate (aka detach, prune and drop) 1564 */ 1565 void d_invalidate(struct dentry *dentry) 1566 { 1567 bool had_submounts = false; 1568 spin_lock(&dentry->d_lock); 1569 if (d_unhashed(dentry)) { 1570 spin_unlock(&dentry->d_lock); 1571 return; 1572 } 1573 __d_drop(dentry); 1574 spin_unlock(&dentry->d_lock); 1575 1576 /* Negative dentries can be dropped without further checks */ 1577 if (!dentry->d_inode) 1578 return; 1579 1580 shrink_dcache_parent(dentry); 1581 for (;;) { 1582 struct dentry *victim = NULL; 1583 d_walk(dentry, &victim, find_submount); 1584 if (!victim) { 1585 if (had_submounts) 1586 shrink_dcache_parent(dentry); 1587 return; 1588 } 1589 had_submounts = true; 1590 detach_mounts(victim); 1591 dput(victim); 1592 } 1593 } 1594 EXPORT_SYMBOL(d_invalidate); 1595 1596 /** 1597 * __d_alloc - allocate a dcache entry 1598 * @sb: filesystem it will belong to 1599 * @name: qstr of the name 1600 * 1601 * Allocates a dentry. It returns %NULL if there is insufficient memory 1602 * available. On a success the dentry is returned. The name passed in is 1603 * copied and the copy passed in may be reused after this call. 1604 */ 1605 1606 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1607 { 1608 struct external_name *ext = NULL; 1609 struct dentry *dentry; 1610 char *dname; 1611 int err; 1612 1613 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1614 if (!dentry) 1615 return NULL; 1616 1617 /* 1618 * We guarantee that the inline name is always NUL-terminated. 1619 * This way the memcpy() done by the name switching in rename 1620 * will still always have a NUL at the end, even if we might 1621 * be overwriting an internal NUL character 1622 */ 1623 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1624 if (unlikely(!name)) { 1625 name = &slash_name; 1626 dname = dentry->d_iname; 1627 } else if (name->len > DNAME_INLINE_LEN-1) { 1628 size_t size = offsetof(struct external_name, name[1]); 1629 1630 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT); 1631 if (!ext) { 1632 kmem_cache_free(dentry_cache, dentry); 1633 return NULL; 1634 } 1635 atomic_set(&ext->u.count, 1); 1636 dname = ext->name; 1637 } else { 1638 dname = dentry->d_iname; 1639 } 1640 1641 dentry->d_name.len = name->len; 1642 dentry->d_name.hash = name->hash; 1643 memcpy(dname, name->name, name->len); 1644 dname[name->len] = 0; 1645 1646 /* Make sure we always see the terminating NUL character */ 1647 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1648 1649 dentry->d_lockref.count = 1; 1650 dentry->d_flags = 0; 1651 spin_lock_init(&dentry->d_lock); 1652 seqcount_init(&dentry->d_seq); 1653 dentry->d_inode = NULL; 1654 dentry->d_parent = dentry; 1655 dentry->d_sb = sb; 1656 dentry->d_op = NULL; 1657 dentry->d_fsdata = NULL; 1658 INIT_HLIST_BL_NODE(&dentry->d_hash); 1659 INIT_LIST_HEAD(&dentry->d_lru); 1660 INIT_LIST_HEAD(&dentry->d_subdirs); 1661 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1662 INIT_LIST_HEAD(&dentry->d_child); 1663 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1664 1665 if (dentry->d_op && dentry->d_op->d_init) { 1666 err = dentry->d_op->d_init(dentry); 1667 if (err) { 1668 if (dname_external(dentry)) 1669 kfree(external_name(dentry)); 1670 kmem_cache_free(dentry_cache, dentry); 1671 return NULL; 1672 } 1673 } 1674 1675 if (unlikely(ext)) { 1676 pg_data_t *pgdat = page_pgdat(virt_to_page(ext)); 1677 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES, 1678 ksize(ext)); 1679 } 1680 1681 this_cpu_inc(nr_dentry); 1682 1683 return dentry; 1684 } 1685 1686 /** 1687 * d_alloc - allocate a dcache entry 1688 * @parent: parent of entry to allocate 1689 * @name: qstr of the name 1690 * 1691 * Allocates a dentry. It returns %NULL if there is insufficient memory 1692 * available. On a success the dentry is returned. The name passed in is 1693 * copied and the copy passed in may be reused after this call. 1694 */ 1695 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1696 { 1697 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1698 if (!dentry) 1699 return NULL; 1700 dentry->d_flags |= DCACHE_RCUACCESS; 1701 spin_lock(&parent->d_lock); 1702 /* 1703 * don't need child lock because it is not subject 1704 * to concurrency here 1705 */ 1706 __dget_dlock(parent); 1707 dentry->d_parent = parent; 1708 list_add(&dentry->d_child, &parent->d_subdirs); 1709 spin_unlock(&parent->d_lock); 1710 1711 return dentry; 1712 } 1713 EXPORT_SYMBOL(d_alloc); 1714 1715 struct dentry *d_alloc_anon(struct super_block *sb) 1716 { 1717 return __d_alloc(sb, NULL); 1718 } 1719 EXPORT_SYMBOL(d_alloc_anon); 1720 1721 struct dentry *d_alloc_cursor(struct dentry * parent) 1722 { 1723 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1724 if (dentry) { 1725 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1726 dentry->d_parent = dget(parent); 1727 } 1728 return dentry; 1729 } 1730 1731 /** 1732 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1733 * @sb: the superblock 1734 * @name: qstr of the name 1735 * 1736 * For a filesystem that just pins its dentries in memory and never 1737 * performs lookups at all, return an unhashed IS_ROOT dentry. 1738 */ 1739 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1740 { 1741 return __d_alloc(sb, name); 1742 } 1743 EXPORT_SYMBOL(d_alloc_pseudo); 1744 1745 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1746 { 1747 struct qstr q; 1748 1749 q.name = name; 1750 q.hash_len = hashlen_string(parent, name); 1751 return d_alloc(parent, &q); 1752 } 1753 EXPORT_SYMBOL(d_alloc_name); 1754 1755 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1756 { 1757 WARN_ON_ONCE(dentry->d_op); 1758 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1759 DCACHE_OP_COMPARE | 1760 DCACHE_OP_REVALIDATE | 1761 DCACHE_OP_WEAK_REVALIDATE | 1762 DCACHE_OP_DELETE | 1763 DCACHE_OP_REAL)); 1764 dentry->d_op = op; 1765 if (!op) 1766 return; 1767 if (op->d_hash) 1768 dentry->d_flags |= DCACHE_OP_HASH; 1769 if (op->d_compare) 1770 dentry->d_flags |= DCACHE_OP_COMPARE; 1771 if (op->d_revalidate) 1772 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1773 if (op->d_weak_revalidate) 1774 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1775 if (op->d_delete) 1776 dentry->d_flags |= DCACHE_OP_DELETE; 1777 if (op->d_prune) 1778 dentry->d_flags |= DCACHE_OP_PRUNE; 1779 if (op->d_real) 1780 dentry->d_flags |= DCACHE_OP_REAL; 1781 1782 } 1783 EXPORT_SYMBOL(d_set_d_op); 1784 1785 1786 /* 1787 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1788 * @dentry - The dentry to mark 1789 * 1790 * Mark a dentry as falling through to the lower layer (as set with 1791 * d_pin_lower()). This flag may be recorded on the medium. 1792 */ 1793 void d_set_fallthru(struct dentry *dentry) 1794 { 1795 spin_lock(&dentry->d_lock); 1796 dentry->d_flags |= DCACHE_FALLTHRU; 1797 spin_unlock(&dentry->d_lock); 1798 } 1799 EXPORT_SYMBOL(d_set_fallthru); 1800 1801 static unsigned d_flags_for_inode(struct inode *inode) 1802 { 1803 unsigned add_flags = DCACHE_REGULAR_TYPE; 1804 1805 if (!inode) 1806 return DCACHE_MISS_TYPE; 1807 1808 if (S_ISDIR(inode->i_mode)) { 1809 add_flags = DCACHE_DIRECTORY_TYPE; 1810 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1811 if (unlikely(!inode->i_op->lookup)) 1812 add_flags = DCACHE_AUTODIR_TYPE; 1813 else 1814 inode->i_opflags |= IOP_LOOKUP; 1815 } 1816 goto type_determined; 1817 } 1818 1819 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1820 if (unlikely(inode->i_op->get_link)) { 1821 add_flags = DCACHE_SYMLINK_TYPE; 1822 goto type_determined; 1823 } 1824 inode->i_opflags |= IOP_NOFOLLOW; 1825 } 1826 1827 if (unlikely(!S_ISREG(inode->i_mode))) 1828 add_flags = DCACHE_SPECIAL_TYPE; 1829 1830 type_determined: 1831 if (unlikely(IS_AUTOMOUNT(inode))) 1832 add_flags |= DCACHE_NEED_AUTOMOUNT; 1833 return add_flags; 1834 } 1835 1836 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1837 { 1838 unsigned add_flags = d_flags_for_inode(inode); 1839 WARN_ON(d_in_lookup(dentry)); 1840 1841 spin_lock(&dentry->d_lock); 1842 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1843 raw_write_seqcount_begin(&dentry->d_seq); 1844 __d_set_inode_and_type(dentry, inode, add_flags); 1845 raw_write_seqcount_end(&dentry->d_seq); 1846 fsnotify_update_flags(dentry); 1847 spin_unlock(&dentry->d_lock); 1848 } 1849 1850 /** 1851 * d_instantiate - fill in inode information for a dentry 1852 * @entry: dentry to complete 1853 * @inode: inode to attach to this dentry 1854 * 1855 * Fill in inode information in the entry. 1856 * 1857 * This turns negative dentries into productive full members 1858 * of society. 1859 * 1860 * NOTE! This assumes that the inode count has been incremented 1861 * (or otherwise set) by the caller to indicate that it is now 1862 * in use by the dcache. 1863 */ 1864 1865 void d_instantiate(struct dentry *entry, struct inode * inode) 1866 { 1867 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1868 if (inode) { 1869 security_d_instantiate(entry, inode); 1870 spin_lock(&inode->i_lock); 1871 __d_instantiate(entry, inode); 1872 spin_unlock(&inode->i_lock); 1873 } 1874 } 1875 EXPORT_SYMBOL(d_instantiate); 1876 1877 /* 1878 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1879 * with lockdep-related part of unlock_new_inode() done before 1880 * anything else. Use that instead of open-coding d_instantiate()/ 1881 * unlock_new_inode() combinations. 1882 */ 1883 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1884 { 1885 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1886 BUG_ON(!inode); 1887 lockdep_annotate_inode_mutex_key(inode); 1888 security_d_instantiate(entry, inode); 1889 spin_lock(&inode->i_lock); 1890 __d_instantiate(entry, inode); 1891 WARN_ON(!(inode->i_state & I_NEW)); 1892 inode->i_state &= ~I_NEW & ~I_CREATING; 1893 smp_mb(); 1894 wake_up_bit(&inode->i_state, __I_NEW); 1895 spin_unlock(&inode->i_lock); 1896 } 1897 EXPORT_SYMBOL(d_instantiate_new); 1898 1899 struct dentry *d_make_root(struct inode *root_inode) 1900 { 1901 struct dentry *res = NULL; 1902 1903 if (root_inode) { 1904 res = d_alloc_anon(root_inode->i_sb); 1905 if (res) { 1906 res->d_flags |= DCACHE_RCUACCESS; 1907 d_instantiate(res, root_inode); 1908 } else { 1909 iput(root_inode); 1910 } 1911 } 1912 return res; 1913 } 1914 EXPORT_SYMBOL(d_make_root); 1915 1916 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1917 struct inode *inode, 1918 bool disconnected) 1919 { 1920 struct dentry *res; 1921 unsigned add_flags; 1922 1923 security_d_instantiate(dentry, inode); 1924 spin_lock(&inode->i_lock); 1925 res = __d_find_any_alias(inode); 1926 if (res) { 1927 spin_unlock(&inode->i_lock); 1928 dput(dentry); 1929 goto out_iput; 1930 } 1931 1932 /* attach a disconnected dentry */ 1933 add_flags = d_flags_for_inode(inode); 1934 1935 if (disconnected) 1936 add_flags |= DCACHE_DISCONNECTED; 1937 1938 spin_lock(&dentry->d_lock); 1939 __d_set_inode_and_type(dentry, inode, add_flags); 1940 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1941 if (!disconnected) { 1942 hlist_bl_lock(&dentry->d_sb->s_roots); 1943 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1944 hlist_bl_unlock(&dentry->d_sb->s_roots); 1945 } 1946 spin_unlock(&dentry->d_lock); 1947 spin_unlock(&inode->i_lock); 1948 1949 return dentry; 1950 1951 out_iput: 1952 iput(inode); 1953 return res; 1954 } 1955 1956 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1957 { 1958 return __d_instantiate_anon(dentry, inode, true); 1959 } 1960 EXPORT_SYMBOL(d_instantiate_anon); 1961 1962 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1963 { 1964 struct dentry *tmp; 1965 struct dentry *res; 1966 1967 if (!inode) 1968 return ERR_PTR(-ESTALE); 1969 if (IS_ERR(inode)) 1970 return ERR_CAST(inode); 1971 1972 res = d_find_any_alias(inode); 1973 if (res) 1974 goto out_iput; 1975 1976 tmp = d_alloc_anon(inode->i_sb); 1977 if (!tmp) { 1978 res = ERR_PTR(-ENOMEM); 1979 goto out_iput; 1980 } 1981 1982 return __d_instantiate_anon(tmp, inode, disconnected); 1983 1984 out_iput: 1985 iput(inode); 1986 return res; 1987 } 1988 1989 /** 1990 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1991 * @inode: inode to allocate the dentry for 1992 * 1993 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1994 * similar open by handle operations. The returned dentry may be anonymous, 1995 * or may have a full name (if the inode was already in the cache). 1996 * 1997 * When called on a directory inode, we must ensure that the inode only ever 1998 * has one dentry. If a dentry is found, that is returned instead of 1999 * allocating a new one. 2000 * 2001 * On successful return, the reference to the inode has been transferred 2002 * to the dentry. In case of an error the reference on the inode is released. 2003 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2004 * be passed in and the error will be propagated to the return value, 2005 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2006 */ 2007 struct dentry *d_obtain_alias(struct inode *inode) 2008 { 2009 return __d_obtain_alias(inode, true); 2010 } 2011 EXPORT_SYMBOL(d_obtain_alias); 2012 2013 /** 2014 * d_obtain_root - find or allocate a dentry for a given inode 2015 * @inode: inode to allocate the dentry for 2016 * 2017 * Obtain an IS_ROOT dentry for the root of a filesystem. 2018 * 2019 * We must ensure that directory inodes only ever have one dentry. If a 2020 * dentry is found, that is returned instead of allocating a new one. 2021 * 2022 * On successful return, the reference to the inode has been transferred 2023 * to the dentry. In case of an error the reference on the inode is 2024 * released. A %NULL or IS_ERR inode may be passed in and will be the 2025 * error will be propagate to the return value, with a %NULL @inode 2026 * replaced by ERR_PTR(-ESTALE). 2027 */ 2028 struct dentry *d_obtain_root(struct inode *inode) 2029 { 2030 return __d_obtain_alias(inode, false); 2031 } 2032 EXPORT_SYMBOL(d_obtain_root); 2033 2034 /** 2035 * d_add_ci - lookup or allocate new dentry with case-exact name 2036 * @inode: the inode case-insensitive lookup has found 2037 * @dentry: the negative dentry that was passed to the parent's lookup func 2038 * @name: the case-exact name to be associated with the returned dentry 2039 * 2040 * This is to avoid filling the dcache with case-insensitive names to the 2041 * same inode, only the actual correct case is stored in the dcache for 2042 * case-insensitive filesystems. 2043 * 2044 * For a case-insensitive lookup match and if the the case-exact dentry 2045 * already exists in in the dcache, use it and return it. 2046 * 2047 * If no entry exists with the exact case name, allocate new dentry with 2048 * the exact case, and return the spliced entry. 2049 */ 2050 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2051 struct qstr *name) 2052 { 2053 struct dentry *found, *res; 2054 2055 /* 2056 * First check if a dentry matching the name already exists, 2057 * if not go ahead and create it now. 2058 */ 2059 found = d_hash_and_lookup(dentry->d_parent, name); 2060 if (found) { 2061 iput(inode); 2062 return found; 2063 } 2064 if (d_in_lookup(dentry)) { 2065 found = d_alloc_parallel(dentry->d_parent, name, 2066 dentry->d_wait); 2067 if (IS_ERR(found) || !d_in_lookup(found)) { 2068 iput(inode); 2069 return found; 2070 } 2071 } else { 2072 found = d_alloc(dentry->d_parent, name); 2073 if (!found) { 2074 iput(inode); 2075 return ERR_PTR(-ENOMEM); 2076 } 2077 } 2078 res = d_splice_alias(inode, found); 2079 if (res) { 2080 dput(found); 2081 return res; 2082 } 2083 return found; 2084 } 2085 EXPORT_SYMBOL(d_add_ci); 2086 2087 2088 static inline bool d_same_name(const struct dentry *dentry, 2089 const struct dentry *parent, 2090 const struct qstr *name) 2091 { 2092 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2093 if (dentry->d_name.len != name->len) 2094 return false; 2095 return dentry_cmp(dentry, name->name, name->len) == 0; 2096 } 2097 return parent->d_op->d_compare(dentry, 2098 dentry->d_name.len, dentry->d_name.name, 2099 name) == 0; 2100 } 2101 2102 /** 2103 * __d_lookup_rcu - search for a dentry (racy, store-free) 2104 * @parent: parent dentry 2105 * @name: qstr of name we wish to find 2106 * @seqp: returns d_seq value at the point where the dentry was found 2107 * Returns: dentry, or NULL 2108 * 2109 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2110 * resolution (store-free path walking) design described in 2111 * Documentation/filesystems/path-lookup.txt. 2112 * 2113 * This is not to be used outside core vfs. 2114 * 2115 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2116 * held, and rcu_read_lock held. The returned dentry must not be stored into 2117 * without taking d_lock and checking d_seq sequence count against @seq 2118 * returned here. 2119 * 2120 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2121 * function. 2122 * 2123 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2124 * the returned dentry, so long as its parent's seqlock is checked after the 2125 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2126 * is formed, giving integrity down the path walk. 2127 * 2128 * NOTE! The caller *has* to check the resulting dentry against the sequence 2129 * number we've returned before using any of the resulting dentry state! 2130 */ 2131 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2132 const struct qstr *name, 2133 unsigned *seqp) 2134 { 2135 u64 hashlen = name->hash_len; 2136 const unsigned char *str = name->name; 2137 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2138 struct hlist_bl_node *node; 2139 struct dentry *dentry; 2140 2141 /* 2142 * Note: There is significant duplication with __d_lookup_rcu which is 2143 * required to prevent single threaded performance regressions 2144 * especially on architectures where smp_rmb (in seqcounts) are costly. 2145 * Keep the two functions in sync. 2146 */ 2147 2148 /* 2149 * The hash list is protected using RCU. 2150 * 2151 * Carefully use d_seq when comparing a candidate dentry, to avoid 2152 * races with d_move(). 2153 * 2154 * It is possible that concurrent renames can mess up our list 2155 * walk here and result in missing our dentry, resulting in the 2156 * false-negative result. d_lookup() protects against concurrent 2157 * renames using rename_lock seqlock. 2158 * 2159 * See Documentation/filesystems/path-lookup.txt for more details. 2160 */ 2161 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2162 unsigned seq; 2163 2164 seqretry: 2165 /* 2166 * The dentry sequence count protects us from concurrent 2167 * renames, and thus protects parent and name fields. 2168 * 2169 * The caller must perform a seqcount check in order 2170 * to do anything useful with the returned dentry. 2171 * 2172 * NOTE! We do a "raw" seqcount_begin here. That means that 2173 * we don't wait for the sequence count to stabilize if it 2174 * is in the middle of a sequence change. If we do the slow 2175 * dentry compare, we will do seqretries until it is stable, 2176 * and if we end up with a successful lookup, we actually 2177 * want to exit RCU lookup anyway. 2178 * 2179 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2180 * we are still guaranteed NUL-termination of ->d_name.name. 2181 */ 2182 seq = raw_seqcount_begin(&dentry->d_seq); 2183 if (dentry->d_parent != parent) 2184 continue; 2185 if (d_unhashed(dentry)) 2186 continue; 2187 2188 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2189 int tlen; 2190 const char *tname; 2191 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2192 continue; 2193 tlen = dentry->d_name.len; 2194 tname = dentry->d_name.name; 2195 /* we want a consistent (name,len) pair */ 2196 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2197 cpu_relax(); 2198 goto seqretry; 2199 } 2200 if (parent->d_op->d_compare(dentry, 2201 tlen, tname, name) != 0) 2202 continue; 2203 } else { 2204 if (dentry->d_name.hash_len != hashlen) 2205 continue; 2206 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2207 continue; 2208 } 2209 *seqp = seq; 2210 return dentry; 2211 } 2212 return NULL; 2213 } 2214 2215 /** 2216 * d_lookup - search for a dentry 2217 * @parent: parent dentry 2218 * @name: qstr of name we wish to find 2219 * Returns: dentry, or NULL 2220 * 2221 * d_lookup searches the children of the parent dentry for the name in 2222 * question. If the dentry is found its reference count is incremented and the 2223 * dentry is returned. The caller must use dput to free the entry when it has 2224 * finished using it. %NULL is returned if the dentry does not exist. 2225 */ 2226 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2227 { 2228 struct dentry *dentry; 2229 unsigned seq; 2230 2231 do { 2232 seq = read_seqbegin(&rename_lock); 2233 dentry = __d_lookup(parent, name); 2234 if (dentry) 2235 break; 2236 } while (read_seqretry(&rename_lock, seq)); 2237 return dentry; 2238 } 2239 EXPORT_SYMBOL(d_lookup); 2240 2241 /** 2242 * __d_lookup - search for a dentry (racy) 2243 * @parent: parent dentry 2244 * @name: qstr of name we wish to find 2245 * Returns: dentry, or NULL 2246 * 2247 * __d_lookup is like d_lookup, however it may (rarely) return a 2248 * false-negative result due to unrelated rename activity. 2249 * 2250 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2251 * however it must be used carefully, eg. with a following d_lookup in 2252 * the case of failure. 2253 * 2254 * __d_lookup callers must be commented. 2255 */ 2256 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2257 { 2258 unsigned int hash = name->hash; 2259 struct hlist_bl_head *b = d_hash(hash); 2260 struct hlist_bl_node *node; 2261 struct dentry *found = NULL; 2262 struct dentry *dentry; 2263 2264 /* 2265 * Note: There is significant duplication with __d_lookup_rcu which is 2266 * required to prevent single threaded performance regressions 2267 * especially on architectures where smp_rmb (in seqcounts) are costly. 2268 * Keep the two functions in sync. 2269 */ 2270 2271 /* 2272 * The hash list is protected using RCU. 2273 * 2274 * Take d_lock when comparing a candidate dentry, to avoid races 2275 * with d_move(). 2276 * 2277 * It is possible that concurrent renames can mess up our list 2278 * walk here and result in missing our dentry, resulting in the 2279 * false-negative result. d_lookup() protects against concurrent 2280 * renames using rename_lock seqlock. 2281 * 2282 * See Documentation/filesystems/path-lookup.txt for more details. 2283 */ 2284 rcu_read_lock(); 2285 2286 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2287 2288 if (dentry->d_name.hash != hash) 2289 continue; 2290 2291 spin_lock(&dentry->d_lock); 2292 if (dentry->d_parent != parent) 2293 goto next; 2294 if (d_unhashed(dentry)) 2295 goto next; 2296 2297 if (!d_same_name(dentry, parent, name)) 2298 goto next; 2299 2300 dentry->d_lockref.count++; 2301 found = dentry; 2302 spin_unlock(&dentry->d_lock); 2303 break; 2304 next: 2305 spin_unlock(&dentry->d_lock); 2306 } 2307 rcu_read_unlock(); 2308 2309 return found; 2310 } 2311 2312 /** 2313 * d_hash_and_lookup - hash the qstr then search for a dentry 2314 * @dir: Directory to search in 2315 * @name: qstr of name we wish to find 2316 * 2317 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2318 */ 2319 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2320 { 2321 /* 2322 * Check for a fs-specific hash function. Note that we must 2323 * calculate the standard hash first, as the d_op->d_hash() 2324 * routine may choose to leave the hash value unchanged. 2325 */ 2326 name->hash = full_name_hash(dir, name->name, name->len); 2327 if (dir->d_flags & DCACHE_OP_HASH) { 2328 int err = dir->d_op->d_hash(dir, name); 2329 if (unlikely(err < 0)) 2330 return ERR_PTR(err); 2331 } 2332 return d_lookup(dir, name); 2333 } 2334 EXPORT_SYMBOL(d_hash_and_lookup); 2335 2336 /* 2337 * When a file is deleted, we have two options: 2338 * - turn this dentry into a negative dentry 2339 * - unhash this dentry and free it. 2340 * 2341 * Usually, we want to just turn this into 2342 * a negative dentry, but if anybody else is 2343 * currently using the dentry or the inode 2344 * we can't do that and we fall back on removing 2345 * it from the hash queues and waiting for 2346 * it to be deleted later when it has no users 2347 */ 2348 2349 /** 2350 * d_delete - delete a dentry 2351 * @dentry: The dentry to delete 2352 * 2353 * Turn the dentry into a negative dentry if possible, otherwise 2354 * remove it from the hash queues so it can be deleted later 2355 */ 2356 2357 void d_delete(struct dentry * dentry) 2358 { 2359 struct inode *inode = dentry->d_inode; 2360 int isdir = d_is_dir(dentry); 2361 2362 spin_lock(&inode->i_lock); 2363 spin_lock(&dentry->d_lock); 2364 /* 2365 * Are we the only user? 2366 */ 2367 if (dentry->d_lockref.count == 1) { 2368 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2369 dentry_unlink_inode(dentry); 2370 } else { 2371 __d_drop(dentry); 2372 spin_unlock(&dentry->d_lock); 2373 spin_unlock(&inode->i_lock); 2374 } 2375 fsnotify_nameremove(dentry, isdir); 2376 } 2377 EXPORT_SYMBOL(d_delete); 2378 2379 static void __d_rehash(struct dentry *entry) 2380 { 2381 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2382 2383 hlist_bl_lock(b); 2384 hlist_bl_add_head_rcu(&entry->d_hash, b); 2385 hlist_bl_unlock(b); 2386 } 2387 2388 /** 2389 * d_rehash - add an entry back to the hash 2390 * @entry: dentry to add to the hash 2391 * 2392 * Adds a dentry to the hash according to its name. 2393 */ 2394 2395 void d_rehash(struct dentry * entry) 2396 { 2397 spin_lock(&entry->d_lock); 2398 __d_rehash(entry); 2399 spin_unlock(&entry->d_lock); 2400 } 2401 EXPORT_SYMBOL(d_rehash); 2402 2403 static inline unsigned start_dir_add(struct inode *dir) 2404 { 2405 2406 for (;;) { 2407 unsigned n = dir->i_dir_seq; 2408 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2409 return n; 2410 cpu_relax(); 2411 } 2412 } 2413 2414 static inline void end_dir_add(struct inode *dir, unsigned n) 2415 { 2416 smp_store_release(&dir->i_dir_seq, n + 2); 2417 } 2418 2419 static void d_wait_lookup(struct dentry *dentry) 2420 { 2421 if (d_in_lookup(dentry)) { 2422 DECLARE_WAITQUEUE(wait, current); 2423 add_wait_queue(dentry->d_wait, &wait); 2424 do { 2425 set_current_state(TASK_UNINTERRUPTIBLE); 2426 spin_unlock(&dentry->d_lock); 2427 schedule(); 2428 spin_lock(&dentry->d_lock); 2429 } while (d_in_lookup(dentry)); 2430 } 2431 } 2432 2433 struct dentry *d_alloc_parallel(struct dentry *parent, 2434 const struct qstr *name, 2435 wait_queue_head_t *wq) 2436 { 2437 unsigned int hash = name->hash; 2438 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2439 struct hlist_bl_node *node; 2440 struct dentry *new = d_alloc(parent, name); 2441 struct dentry *dentry; 2442 unsigned seq, r_seq, d_seq; 2443 2444 if (unlikely(!new)) 2445 return ERR_PTR(-ENOMEM); 2446 2447 retry: 2448 rcu_read_lock(); 2449 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2450 r_seq = read_seqbegin(&rename_lock); 2451 dentry = __d_lookup_rcu(parent, name, &d_seq); 2452 if (unlikely(dentry)) { 2453 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2454 rcu_read_unlock(); 2455 goto retry; 2456 } 2457 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2458 rcu_read_unlock(); 2459 dput(dentry); 2460 goto retry; 2461 } 2462 rcu_read_unlock(); 2463 dput(new); 2464 return dentry; 2465 } 2466 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2467 rcu_read_unlock(); 2468 goto retry; 2469 } 2470 2471 if (unlikely(seq & 1)) { 2472 rcu_read_unlock(); 2473 goto retry; 2474 } 2475 2476 hlist_bl_lock(b); 2477 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2478 hlist_bl_unlock(b); 2479 rcu_read_unlock(); 2480 goto retry; 2481 } 2482 /* 2483 * No changes for the parent since the beginning of d_lookup(). 2484 * Since all removals from the chain happen with hlist_bl_lock(), 2485 * any potential in-lookup matches are going to stay here until 2486 * we unlock the chain. All fields are stable in everything 2487 * we encounter. 2488 */ 2489 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2490 if (dentry->d_name.hash != hash) 2491 continue; 2492 if (dentry->d_parent != parent) 2493 continue; 2494 if (!d_same_name(dentry, parent, name)) 2495 continue; 2496 hlist_bl_unlock(b); 2497 /* now we can try to grab a reference */ 2498 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2499 rcu_read_unlock(); 2500 goto retry; 2501 } 2502 2503 rcu_read_unlock(); 2504 /* 2505 * somebody is likely to be still doing lookup for it; 2506 * wait for them to finish 2507 */ 2508 spin_lock(&dentry->d_lock); 2509 d_wait_lookup(dentry); 2510 /* 2511 * it's not in-lookup anymore; in principle we should repeat 2512 * everything from dcache lookup, but it's likely to be what 2513 * d_lookup() would've found anyway. If it is, just return it; 2514 * otherwise we really have to repeat the whole thing. 2515 */ 2516 if (unlikely(dentry->d_name.hash != hash)) 2517 goto mismatch; 2518 if (unlikely(dentry->d_parent != parent)) 2519 goto mismatch; 2520 if (unlikely(d_unhashed(dentry))) 2521 goto mismatch; 2522 if (unlikely(!d_same_name(dentry, parent, name))) 2523 goto mismatch; 2524 /* OK, it *is* a hashed match; return it */ 2525 spin_unlock(&dentry->d_lock); 2526 dput(new); 2527 return dentry; 2528 } 2529 rcu_read_unlock(); 2530 /* we can't take ->d_lock here; it's OK, though. */ 2531 new->d_flags |= DCACHE_PAR_LOOKUP; 2532 new->d_wait = wq; 2533 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2534 hlist_bl_unlock(b); 2535 return new; 2536 mismatch: 2537 spin_unlock(&dentry->d_lock); 2538 dput(dentry); 2539 goto retry; 2540 } 2541 EXPORT_SYMBOL(d_alloc_parallel); 2542 2543 void __d_lookup_done(struct dentry *dentry) 2544 { 2545 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2546 dentry->d_name.hash); 2547 hlist_bl_lock(b); 2548 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2549 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2550 wake_up_all(dentry->d_wait); 2551 dentry->d_wait = NULL; 2552 hlist_bl_unlock(b); 2553 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2554 INIT_LIST_HEAD(&dentry->d_lru); 2555 } 2556 EXPORT_SYMBOL(__d_lookup_done); 2557 2558 /* inode->i_lock held if inode is non-NULL */ 2559 2560 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2561 { 2562 struct inode *dir = NULL; 2563 unsigned n; 2564 spin_lock(&dentry->d_lock); 2565 if (unlikely(d_in_lookup(dentry))) { 2566 dir = dentry->d_parent->d_inode; 2567 n = start_dir_add(dir); 2568 __d_lookup_done(dentry); 2569 } 2570 if (inode) { 2571 unsigned add_flags = d_flags_for_inode(inode); 2572 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2573 raw_write_seqcount_begin(&dentry->d_seq); 2574 __d_set_inode_and_type(dentry, inode, add_flags); 2575 raw_write_seqcount_end(&dentry->d_seq); 2576 fsnotify_update_flags(dentry); 2577 } 2578 __d_rehash(dentry); 2579 if (dir) 2580 end_dir_add(dir, n); 2581 spin_unlock(&dentry->d_lock); 2582 if (inode) 2583 spin_unlock(&inode->i_lock); 2584 } 2585 2586 /** 2587 * d_add - add dentry to hash queues 2588 * @entry: dentry to add 2589 * @inode: The inode to attach to this dentry 2590 * 2591 * This adds the entry to the hash queues and initializes @inode. 2592 * The entry was actually filled in earlier during d_alloc(). 2593 */ 2594 2595 void d_add(struct dentry *entry, struct inode *inode) 2596 { 2597 if (inode) { 2598 security_d_instantiate(entry, inode); 2599 spin_lock(&inode->i_lock); 2600 } 2601 __d_add(entry, inode); 2602 } 2603 EXPORT_SYMBOL(d_add); 2604 2605 /** 2606 * d_exact_alias - find and hash an exact unhashed alias 2607 * @entry: dentry to add 2608 * @inode: The inode to go with this dentry 2609 * 2610 * If an unhashed dentry with the same name/parent and desired 2611 * inode already exists, hash and return it. Otherwise, return 2612 * NULL. 2613 * 2614 * Parent directory should be locked. 2615 */ 2616 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2617 { 2618 struct dentry *alias; 2619 unsigned int hash = entry->d_name.hash; 2620 2621 spin_lock(&inode->i_lock); 2622 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2623 /* 2624 * Don't need alias->d_lock here, because aliases with 2625 * d_parent == entry->d_parent are not subject to name or 2626 * parent changes, because the parent inode i_mutex is held. 2627 */ 2628 if (alias->d_name.hash != hash) 2629 continue; 2630 if (alias->d_parent != entry->d_parent) 2631 continue; 2632 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2633 continue; 2634 spin_lock(&alias->d_lock); 2635 if (!d_unhashed(alias)) { 2636 spin_unlock(&alias->d_lock); 2637 alias = NULL; 2638 } else { 2639 __dget_dlock(alias); 2640 __d_rehash(alias); 2641 spin_unlock(&alias->d_lock); 2642 } 2643 spin_unlock(&inode->i_lock); 2644 return alias; 2645 } 2646 spin_unlock(&inode->i_lock); 2647 return NULL; 2648 } 2649 EXPORT_SYMBOL(d_exact_alias); 2650 2651 static void swap_names(struct dentry *dentry, struct dentry *target) 2652 { 2653 if (unlikely(dname_external(target))) { 2654 if (unlikely(dname_external(dentry))) { 2655 /* 2656 * Both external: swap the pointers 2657 */ 2658 swap(target->d_name.name, dentry->d_name.name); 2659 } else { 2660 /* 2661 * dentry:internal, target:external. Steal target's 2662 * storage and make target internal. 2663 */ 2664 memcpy(target->d_iname, dentry->d_name.name, 2665 dentry->d_name.len + 1); 2666 dentry->d_name.name = target->d_name.name; 2667 target->d_name.name = target->d_iname; 2668 } 2669 } else { 2670 if (unlikely(dname_external(dentry))) { 2671 /* 2672 * dentry:external, target:internal. Give dentry's 2673 * storage to target and make dentry internal 2674 */ 2675 memcpy(dentry->d_iname, target->d_name.name, 2676 target->d_name.len + 1); 2677 target->d_name.name = dentry->d_name.name; 2678 dentry->d_name.name = dentry->d_iname; 2679 } else { 2680 /* 2681 * Both are internal. 2682 */ 2683 unsigned int i; 2684 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2685 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2686 swap(((long *) &dentry->d_iname)[i], 2687 ((long *) &target->d_iname)[i]); 2688 } 2689 } 2690 } 2691 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2692 } 2693 2694 static void copy_name(struct dentry *dentry, struct dentry *target) 2695 { 2696 struct external_name *old_name = NULL; 2697 if (unlikely(dname_external(dentry))) 2698 old_name = external_name(dentry); 2699 if (unlikely(dname_external(target))) { 2700 atomic_inc(&external_name(target)->u.count); 2701 dentry->d_name = target->d_name; 2702 } else { 2703 memcpy(dentry->d_iname, target->d_name.name, 2704 target->d_name.len + 1); 2705 dentry->d_name.name = dentry->d_iname; 2706 dentry->d_name.hash_len = target->d_name.hash_len; 2707 } 2708 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2709 call_rcu(&old_name->u.head, __d_free_external_name); 2710 } 2711 2712 /* 2713 * __d_move - move a dentry 2714 * @dentry: entry to move 2715 * @target: new dentry 2716 * @exchange: exchange the two dentries 2717 * 2718 * Update the dcache to reflect the move of a file name. Negative 2719 * dcache entries should not be moved in this way. Caller must hold 2720 * rename_lock, the i_mutex of the source and target directories, 2721 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2722 */ 2723 static void __d_move(struct dentry *dentry, struct dentry *target, 2724 bool exchange) 2725 { 2726 struct dentry *old_parent, *p; 2727 struct inode *dir = NULL; 2728 unsigned n; 2729 2730 WARN_ON(!dentry->d_inode); 2731 if (WARN_ON(dentry == target)) 2732 return; 2733 2734 BUG_ON(d_ancestor(target, dentry)); 2735 old_parent = dentry->d_parent; 2736 p = d_ancestor(old_parent, target); 2737 if (IS_ROOT(dentry)) { 2738 BUG_ON(p); 2739 spin_lock(&target->d_parent->d_lock); 2740 } else if (!p) { 2741 /* target is not a descendent of dentry->d_parent */ 2742 spin_lock(&target->d_parent->d_lock); 2743 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2744 } else { 2745 BUG_ON(p == dentry); 2746 spin_lock(&old_parent->d_lock); 2747 if (p != target) 2748 spin_lock_nested(&target->d_parent->d_lock, 2749 DENTRY_D_LOCK_NESTED); 2750 } 2751 spin_lock_nested(&dentry->d_lock, 2); 2752 spin_lock_nested(&target->d_lock, 3); 2753 2754 if (unlikely(d_in_lookup(target))) { 2755 dir = target->d_parent->d_inode; 2756 n = start_dir_add(dir); 2757 __d_lookup_done(target); 2758 } 2759 2760 write_seqcount_begin(&dentry->d_seq); 2761 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2762 2763 /* unhash both */ 2764 if (!d_unhashed(dentry)) 2765 ___d_drop(dentry); 2766 if (!d_unhashed(target)) 2767 ___d_drop(target); 2768 2769 /* ... and switch them in the tree */ 2770 dentry->d_parent = target->d_parent; 2771 if (!exchange) { 2772 copy_name(dentry, target); 2773 target->d_hash.pprev = NULL; 2774 dentry->d_parent->d_lockref.count++; 2775 if (dentry == old_parent) 2776 dentry->d_flags |= DCACHE_RCUACCESS; 2777 else 2778 WARN_ON(!--old_parent->d_lockref.count); 2779 } else { 2780 target->d_parent = old_parent; 2781 swap_names(dentry, target); 2782 list_move(&target->d_child, &target->d_parent->d_subdirs); 2783 __d_rehash(target); 2784 fsnotify_update_flags(target); 2785 } 2786 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2787 __d_rehash(dentry); 2788 fsnotify_update_flags(dentry); 2789 2790 write_seqcount_end(&target->d_seq); 2791 write_seqcount_end(&dentry->d_seq); 2792 2793 if (dir) 2794 end_dir_add(dir, n); 2795 2796 if (dentry->d_parent != old_parent) 2797 spin_unlock(&dentry->d_parent->d_lock); 2798 if (dentry != old_parent) 2799 spin_unlock(&old_parent->d_lock); 2800 spin_unlock(&target->d_lock); 2801 spin_unlock(&dentry->d_lock); 2802 } 2803 2804 /* 2805 * d_move - move a dentry 2806 * @dentry: entry to move 2807 * @target: new dentry 2808 * 2809 * Update the dcache to reflect the move of a file name. Negative 2810 * dcache entries should not be moved in this way. See the locking 2811 * requirements for __d_move. 2812 */ 2813 void d_move(struct dentry *dentry, struct dentry *target) 2814 { 2815 write_seqlock(&rename_lock); 2816 __d_move(dentry, target, false); 2817 write_sequnlock(&rename_lock); 2818 } 2819 EXPORT_SYMBOL(d_move); 2820 2821 /* 2822 * d_exchange - exchange two dentries 2823 * @dentry1: first dentry 2824 * @dentry2: second dentry 2825 */ 2826 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2827 { 2828 write_seqlock(&rename_lock); 2829 2830 WARN_ON(!dentry1->d_inode); 2831 WARN_ON(!dentry2->d_inode); 2832 WARN_ON(IS_ROOT(dentry1)); 2833 WARN_ON(IS_ROOT(dentry2)); 2834 2835 __d_move(dentry1, dentry2, true); 2836 2837 write_sequnlock(&rename_lock); 2838 } 2839 2840 /** 2841 * d_ancestor - search for an ancestor 2842 * @p1: ancestor dentry 2843 * @p2: child dentry 2844 * 2845 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2846 * an ancestor of p2, else NULL. 2847 */ 2848 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2849 { 2850 struct dentry *p; 2851 2852 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2853 if (p->d_parent == p1) 2854 return p; 2855 } 2856 return NULL; 2857 } 2858 2859 /* 2860 * This helper attempts to cope with remotely renamed directories 2861 * 2862 * It assumes that the caller is already holding 2863 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2864 * 2865 * Note: If ever the locking in lock_rename() changes, then please 2866 * remember to update this too... 2867 */ 2868 static int __d_unalias(struct inode *inode, 2869 struct dentry *dentry, struct dentry *alias) 2870 { 2871 struct mutex *m1 = NULL; 2872 struct rw_semaphore *m2 = NULL; 2873 int ret = -ESTALE; 2874 2875 /* If alias and dentry share a parent, then no extra locks required */ 2876 if (alias->d_parent == dentry->d_parent) 2877 goto out_unalias; 2878 2879 /* See lock_rename() */ 2880 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2881 goto out_err; 2882 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2883 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2884 goto out_err; 2885 m2 = &alias->d_parent->d_inode->i_rwsem; 2886 out_unalias: 2887 __d_move(alias, dentry, false); 2888 ret = 0; 2889 out_err: 2890 if (m2) 2891 up_read(m2); 2892 if (m1) 2893 mutex_unlock(m1); 2894 return ret; 2895 } 2896 2897 /** 2898 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2899 * @inode: the inode which may have a disconnected dentry 2900 * @dentry: a negative dentry which we want to point to the inode. 2901 * 2902 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2903 * place of the given dentry and return it, else simply d_add the inode 2904 * to the dentry and return NULL. 2905 * 2906 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2907 * we should error out: directories can't have multiple aliases. 2908 * 2909 * This is needed in the lookup routine of any filesystem that is exportable 2910 * (via knfsd) so that we can build dcache paths to directories effectively. 2911 * 2912 * If a dentry was found and moved, then it is returned. Otherwise NULL 2913 * is returned. This matches the expected return value of ->lookup. 2914 * 2915 * Cluster filesystems may call this function with a negative, hashed dentry. 2916 * In that case, we know that the inode will be a regular file, and also this 2917 * will only occur during atomic_open. So we need to check for the dentry 2918 * being already hashed only in the final case. 2919 */ 2920 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2921 { 2922 if (IS_ERR(inode)) 2923 return ERR_CAST(inode); 2924 2925 BUG_ON(!d_unhashed(dentry)); 2926 2927 if (!inode) 2928 goto out; 2929 2930 security_d_instantiate(dentry, inode); 2931 spin_lock(&inode->i_lock); 2932 if (S_ISDIR(inode->i_mode)) { 2933 struct dentry *new = __d_find_any_alias(inode); 2934 if (unlikely(new)) { 2935 /* The reference to new ensures it remains an alias */ 2936 spin_unlock(&inode->i_lock); 2937 write_seqlock(&rename_lock); 2938 if (unlikely(d_ancestor(new, dentry))) { 2939 write_sequnlock(&rename_lock); 2940 dput(new); 2941 new = ERR_PTR(-ELOOP); 2942 pr_warn_ratelimited( 2943 "VFS: Lookup of '%s' in %s %s" 2944 " would have caused loop\n", 2945 dentry->d_name.name, 2946 inode->i_sb->s_type->name, 2947 inode->i_sb->s_id); 2948 } else if (!IS_ROOT(new)) { 2949 struct dentry *old_parent = dget(new->d_parent); 2950 int err = __d_unalias(inode, dentry, new); 2951 write_sequnlock(&rename_lock); 2952 if (err) { 2953 dput(new); 2954 new = ERR_PTR(err); 2955 } 2956 dput(old_parent); 2957 } else { 2958 __d_move(new, dentry, false); 2959 write_sequnlock(&rename_lock); 2960 } 2961 iput(inode); 2962 return new; 2963 } 2964 } 2965 out: 2966 __d_add(dentry, inode); 2967 return NULL; 2968 } 2969 EXPORT_SYMBOL(d_splice_alias); 2970 2971 /* 2972 * Test whether new_dentry is a subdirectory of old_dentry. 2973 * 2974 * Trivially implemented using the dcache structure 2975 */ 2976 2977 /** 2978 * is_subdir - is new dentry a subdirectory of old_dentry 2979 * @new_dentry: new dentry 2980 * @old_dentry: old dentry 2981 * 2982 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 2983 * Returns false otherwise. 2984 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2985 */ 2986 2987 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2988 { 2989 bool result; 2990 unsigned seq; 2991 2992 if (new_dentry == old_dentry) 2993 return true; 2994 2995 do { 2996 /* for restarting inner loop in case of seq retry */ 2997 seq = read_seqbegin(&rename_lock); 2998 /* 2999 * Need rcu_readlock to protect against the d_parent trashing 3000 * due to d_move 3001 */ 3002 rcu_read_lock(); 3003 if (d_ancestor(old_dentry, new_dentry)) 3004 result = true; 3005 else 3006 result = false; 3007 rcu_read_unlock(); 3008 } while (read_seqretry(&rename_lock, seq)); 3009 3010 return result; 3011 } 3012 EXPORT_SYMBOL(is_subdir); 3013 3014 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3015 { 3016 struct dentry *root = data; 3017 if (dentry != root) { 3018 if (d_unhashed(dentry) || !dentry->d_inode) 3019 return D_WALK_SKIP; 3020 3021 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3022 dentry->d_flags |= DCACHE_GENOCIDE; 3023 dentry->d_lockref.count--; 3024 } 3025 } 3026 return D_WALK_CONTINUE; 3027 } 3028 3029 void d_genocide(struct dentry *parent) 3030 { 3031 d_walk(parent, parent, d_genocide_kill); 3032 } 3033 3034 EXPORT_SYMBOL(d_genocide); 3035 3036 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3037 { 3038 inode_dec_link_count(inode); 3039 BUG_ON(dentry->d_name.name != dentry->d_iname || 3040 !hlist_unhashed(&dentry->d_u.d_alias) || 3041 !d_unlinked(dentry)); 3042 spin_lock(&dentry->d_parent->d_lock); 3043 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3044 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3045 (unsigned long long)inode->i_ino); 3046 spin_unlock(&dentry->d_lock); 3047 spin_unlock(&dentry->d_parent->d_lock); 3048 d_instantiate(dentry, inode); 3049 } 3050 EXPORT_SYMBOL(d_tmpfile); 3051 3052 static __initdata unsigned long dhash_entries; 3053 static int __init set_dhash_entries(char *str) 3054 { 3055 if (!str) 3056 return 0; 3057 dhash_entries = simple_strtoul(str, &str, 0); 3058 return 1; 3059 } 3060 __setup("dhash_entries=", set_dhash_entries); 3061 3062 static void __init dcache_init_early(void) 3063 { 3064 /* If hashes are distributed across NUMA nodes, defer 3065 * hash allocation until vmalloc space is available. 3066 */ 3067 if (hashdist) 3068 return; 3069 3070 dentry_hashtable = 3071 alloc_large_system_hash("Dentry cache", 3072 sizeof(struct hlist_bl_head), 3073 dhash_entries, 3074 13, 3075 HASH_EARLY | HASH_ZERO, 3076 &d_hash_shift, 3077 NULL, 3078 0, 3079 0); 3080 d_hash_shift = 32 - d_hash_shift; 3081 } 3082 3083 static void __init dcache_init(void) 3084 { 3085 /* 3086 * A constructor could be added for stable state like the lists, 3087 * but it is probably not worth it because of the cache nature 3088 * of the dcache. 3089 */ 3090 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3091 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3092 d_iname); 3093 3094 /* Hash may have been set up in dcache_init_early */ 3095 if (!hashdist) 3096 return; 3097 3098 dentry_hashtable = 3099 alloc_large_system_hash("Dentry cache", 3100 sizeof(struct hlist_bl_head), 3101 dhash_entries, 3102 13, 3103 HASH_ZERO, 3104 &d_hash_shift, 3105 NULL, 3106 0, 3107 0); 3108 d_hash_shift = 32 - d_hash_shift; 3109 } 3110 3111 /* SLAB cache for __getname() consumers */ 3112 struct kmem_cache *names_cachep __read_mostly; 3113 EXPORT_SYMBOL(names_cachep); 3114 3115 void __init vfs_caches_init_early(void) 3116 { 3117 int i; 3118 3119 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3120 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3121 3122 dcache_init_early(); 3123 inode_init_early(); 3124 } 3125 3126 void __init vfs_caches_init(void) 3127 { 3128 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3129 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3130 3131 dcache_init(); 3132 inode_init(); 3133 files_init(); 3134 files_maxfiles_init(); 3135 mnt_init(); 3136 bdev_cache_init(); 3137 chrdev_init(); 3138 } 3139