xref: /linux/fs/dcache.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/smp_lock.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 static LIST_HEAD(dentry_unused);
65 
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat = {
68 	.age_limit = 45,
69 };
70 
71 static void __d_free(struct dentry *dentry)
72 {
73 	if (dname_external(dentry))
74 		kfree(dentry->d_name.name);
75 	kmem_cache_free(dentry_cache, dentry);
76 }
77 
78 static void d_callback(struct rcu_head *head)
79 {
80 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 	__d_free(dentry);
82 }
83 
84 /*
85  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
86  * inside dcache_lock.
87  */
88 static void d_free(struct dentry *dentry)
89 {
90 	if (dentry->d_op && dentry->d_op->d_release)
91 		dentry->d_op->d_release(dentry);
92 	/* if dentry was never inserted into hash, immediate free is OK */
93 	if (dentry->d_hash.pprev == NULL)
94 		__d_free(dentry);
95 	else
96 		call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98 
99 /*
100  * Release the dentry's inode, using the filesystem
101  * d_iput() operation if defined.
102  * Called with dcache_lock and per dentry lock held, drops both.
103  */
104 static void dentry_iput(struct dentry * dentry)
105 {
106 	struct inode *inode = dentry->d_inode;
107 	if (inode) {
108 		dentry->d_inode = NULL;
109 		list_del_init(&dentry->d_alias);
110 		spin_unlock(&dentry->d_lock);
111 		spin_unlock(&dcache_lock);
112 		if (!inode->i_nlink)
113 			fsnotify_inoderemove(inode);
114 		if (dentry->d_op && dentry->d_op->d_iput)
115 			dentry->d_op->d_iput(dentry, inode);
116 		else
117 			iput(inode);
118 	} else {
119 		spin_unlock(&dentry->d_lock);
120 		spin_unlock(&dcache_lock);
121 	}
122 }
123 
124 /*
125  * This is dput
126  *
127  * This is complicated by the fact that we do not want to put
128  * dentries that are no longer on any hash chain on the unused
129  * list: we'd much rather just get rid of them immediately.
130  *
131  * However, that implies that we have to traverse the dentry
132  * tree upwards to the parents which might _also_ now be
133  * scheduled for deletion (it may have been only waiting for
134  * its last child to go away).
135  *
136  * This tail recursion is done by hand as we don't want to depend
137  * on the compiler to always get this right (gcc generally doesn't).
138  * Real recursion would eat up our stack space.
139  */
140 
141 /*
142  * dput - release a dentry
143  * @dentry: dentry to release
144  *
145  * Release a dentry. This will drop the usage count and if appropriate
146  * call the dentry unlink method as well as removing it from the queues and
147  * releasing its resources. If the parent dentries were scheduled for release
148  * they too may now get deleted.
149  *
150  * no dcache lock, please.
151  */
152 
153 void dput(struct dentry *dentry)
154 {
155 	if (!dentry)
156 		return;
157 
158 repeat:
159 	if (atomic_read(&dentry->d_count) == 1)
160 		might_sleep();
161 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
162 		return;
163 
164 	spin_lock(&dentry->d_lock);
165 	if (atomic_read(&dentry->d_count)) {
166 		spin_unlock(&dentry->d_lock);
167 		spin_unlock(&dcache_lock);
168 		return;
169 	}
170 
171 	/*
172 	 * AV: ->d_delete() is _NOT_ allowed to block now.
173 	 */
174 	if (dentry->d_op && dentry->d_op->d_delete) {
175 		if (dentry->d_op->d_delete(dentry))
176 			goto unhash_it;
177 	}
178 	/* Unreachable? Get rid of it */
179  	if (d_unhashed(dentry))
180 		goto kill_it;
181   	if (list_empty(&dentry->d_lru)) {
182   		dentry->d_flags |= DCACHE_REFERENCED;
183   		list_add(&dentry->d_lru, &dentry_unused);
184   		dentry_stat.nr_unused++;
185   	}
186  	spin_unlock(&dentry->d_lock);
187 	spin_unlock(&dcache_lock);
188 	return;
189 
190 unhash_it:
191 	__d_drop(dentry);
192 
193 kill_it: {
194 		struct dentry *parent;
195 
196 		/* If dentry was on d_lru list
197 		 * delete it from there
198 		 */
199   		if (!list_empty(&dentry->d_lru)) {
200   			list_del(&dentry->d_lru);
201   			dentry_stat.nr_unused--;
202   		}
203   		list_del(&dentry->d_u.d_child);
204 		dentry_stat.nr_dentry--;	/* For d_free, below */
205 		/*drops the locks, at that point nobody can reach this dentry */
206 		dentry_iput(dentry);
207 		parent = dentry->d_parent;
208 		d_free(dentry);
209 		if (dentry == parent)
210 			return;
211 		dentry = parent;
212 		goto repeat;
213 	}
214 }
215 
216 /**
217  * d_invalidate - invalidate a dentry
218  * @dentry: dentry to invalidate
219  *
220  * Try to invalidate the dentry if it turns out to be
221  * possible. If there are other dentries that can be
222  * reached through this one we can't delete it and we
223  * return -EBUSY. On success we return 0.
224  *
225  * no dcache lock.
226  */
227 
228 int d_invalidate(struct dentry * dentry)
229 {
230 	/*
231 	 * If it's already been dropped, return OK.
232 	 */
233 	spin_lock(&dcache_lock);
234 	if (d_unhashed(dentry)) {
235 		spin_unlock(&dcache_lock);
236 		return 0;
237 	}
238 	/*
239 	 * Check whether to do a partial shrink_dcache
240 	 * to get rid of unused child entries.
241 	 */
242 	if (!list_empty(&dentry->d_subdirs)) {
243 		spin_unlock(&dcache_lock);
244 		shrink_dcache_parent(dentry);
245 		spin_lock(&dcache_lock);
246 	}
247 
248 	/*
249 	 * Somebody else still using it?
250 	 *
251 	 * If it's a directory, we can't drop it
252 	 * for fear of somebody re-populating it
253 	 * with children (even though dropping it
254 	 * would make it unreachable from the root,
255 	 * we might still populate it if it was a
256 	 * working directory or similar).
257 	 */
258 	spin_lock(&dentry->d_lock);
259 	if (atomic_read(&dentry->d_count) > 1) {
260 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
261 			spin_unlock(&dentry->d_lock);
262 			spin_unlock(&dcache_lock);
263 			return -EBUSY;
264 		}
265 	}
266 
267 	__d_drop(dentry);
268 	spin_unlock(&dentry->d_lock);
269 	spin_unlock(&dcache_lock);
270 	return 0;
271 }
272 
273 /* This should be called _only_ with dcache_lock held */
274 
275 static inline struct dentry * __dget_locked(struct dentry *dentry)
276 {
277 	atomic_inc(&dentry->d_count);
278 	if (!list_empty(&dentry->d_lru)) {
279 		dentry_stat.nr_unused--;
280 		list_del_init(&dentry->d_lru);
281 	}
282 	return dentry;
283 }
284 
285 struct dentry * dget_locked(struct dentry *dentry)
286 {
287 	return __dget_locked(dentry);
288 }
289 
290 /**
291  * d_find_alias - grab a hashed alias of inode
292  * @inode: inode in question
293  * @want_discon:  flag, used by d_splice_alias, to request
294  *          that only a DISCONNECTED alias be returned.
295  *
296  * If inode has a hashed alias, or is a directory and has any alias,
297  * acquire the reference to alias and return it. Otherwise return NULL.
298  * Notice that if inode is a directory there can be only one alias and
299  * it can be unhashed only if it has no children, or if it is the root
300  * of a filesystem.
301  *
302  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
303  * any other hashed alias over that one unless @want_discon is set,
304  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
305  */
306 
307 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
308 {
309 	struct list_head *head, *next, *tmp;
310 	struct dentry *alias, *discon_alias=NULL;
311 
312 	head = &inode->i_dentry;
313 	next = inode->i_dentry.next;
314 	while (next != head) {
315 		tmp = next;
316 		next = tmp->next;
317 		prefetch(next);
318 		alias = list_entry(tmp, struct dentry, d_alias);
319  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
320 			if (IS_ROOT(alias) &&
321 			    (alias->d_flags & DCACHE_DISCONNECTED))
322 				discon_alias = alias;
323 			else if (!want_discon) {
324 				__dget_locked(alias);
325 				return alias;
326 			}
327 		}
328 	}
329 	if (discon_alias)
330 		__dget_locked(discon_alias);
331 	return discon_alias;
332 }
333 
334 struct dentry * d_find_alias(struct inode *inode)
335 {
336 	struct dentry *de = NULL;
337 
338 	if (!list_empty(&inode->i_dentry)) {
339 		spin_lock(&dcache_lock);
340 		de = __d_find_alias(inode, 0);
341 		spin_unlock(&dcache_lock);
342 	}
343 	return de;
344 }
345 
346 /*
347  *	Try to kill dentries associated with this inode.
348  * WARNING: you must own a reference to inode.
349  */
350 void d_prune_aliases(struct inode *inode)
351 {
352 	struct dentry *dentry;
353 restart:
354 	spin_lock(&dcache_lock);
355 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
356 		spin_lock(&dentry->d_lock);
357 		if (!atomic_read(&dentry->d_count)) {
358 			__dget_locked(dentry);
359 			__d_drop(dentry);
360 			spin_unlock(&dentry->d_lock);
361 			spin_unlock(&dcache_lock);
362 			dput(dentry);
363 			goto restart;
364 		}
365 		spin_unlock(&dentry->d_lock);
366 	}
367 	spin_unlock(&dcache_lock);
368 }
369 
370 /*
371  * Throw away a dentry - free the inode, dput the parent.  This requires that
372  * the LRU list has already been removed.
373  *
374  * Called with dcache_lock, drops it and then regains.
375  * Called with dentry->d_lock held, drops it.
376  */
377 static void prune_one_dentry(struct dentry * dentry)
378 {
379 	struct dentry * parent;
380 
381 	__d_drop(dentry);
382 	list_del(&dentry->d_u.d_child);
383 	dentry_stat.nr_dentry--;	/* For d_free, below */
384 	dentry_iput(dentry);
385 	parent = dentry->d_parent;
386 	d_free(dentry);
387 	if (parent != dentry)
388 		dput(parent);
389 	spin_lock(&dcache_lock);
390 }
391 
392 /**
393  * prune_dcache - shrink the dcache
394  * @count: number of entries to try and free
395  * @sb: if given, ignore dentries for other superblocks
396  *         which are being unmounted.
397  *
398  * Shrink the dcache. This is done when we need
399  * more memory, or simply when we need to unmount
400  * something (at which point we need to unuse
401  * all dentries).
402  *
403  * This function may fail to free any resources if
404  * all the dentries are in use.
405  */
406 
407 static void prune_dcache(int count, struct super_block *sb)
408 {
409 	spin_lock(&dcache_lock);
410 	for (; count ; count--) {
411 		struct dentry *dentry;
412 		struct list_head *tmp;
413 		struct rw_semaphore *s_umount;
414 
415 		cond_resched_lock(&dcache_lock);
416 
417 		tmp = dentry_unused.prev;
418 		if (sb) {
419 			/* Try to find a dentry for this sb, but don't try
420 			 * too hard, if they aren't near the tail they will
421 			 * be moved down again soon
422 			 */
423 			int skip = count;
424 			while (skip && tmp != &dentry_unused &&
425 			    list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
426 				skip--;
427 				tmp = tmp->prev;
428 			}
429 		}
430 		if (tmp == &dentry_unused)
431 			break;
432 		list_del_init(tmp);
433 		prefetch(dentry_unused.prev);
434  		dentry_stat.nr_unused--;
435 		dentry = list_entry(tmp, struct dentry, d_lru);
436 
437  		spin_lock(&dentry->d_lock);
438 		/*
439 		 * We found an inuse dentry which was not removed from
440 		 * dentry_unused because of laziness during lookup.  Do not free
441 		 * it - just keep it off the dentry_unused list.
442 		 */
443  		if (atomic_read(&dentry->d_count)) {
444  			spin_unlock(&dentry->d_lock);
445 			continue;
446 		}
447 		/* If the dentry was recently referenced, don't free it. */
448 		if (dentry->d_flags & DCACHE_REFERENCED) {
449 			dentry->d_flags &= ~DCACHE_REFERENCED;
450  			list_add(&dentry->d_lru, &dentry_unused);
451  			dentry_stat.nr_unused++;
452  			spin_unlock(&dentry->d_lock);
453 			continue;
454 		}
455 		/*
456 		 * If the dentry is not DCACHED_REFERENCED, it is time
457 		 * to remove it from the dcache, provided the super block is
458 		 * NULL (which means we are trying to reclaim memory)
459 		 * or this dentry belongs to the same super block that
460 		 * we want to shrink.
461 		 */
462 		/*
463 		 * If this dentry is for "my" filesystem, then I can prune it
464 		 * without taking the s_umount lock (I already hold it).
465 		 */
466 		if (sb && dentry->d_sb == sb) {
467 			prune_one_dentry(dentry);
468 			continue;
469 		}
470 		/*
471 		 * ...otherwise we need to be sure this filesystem isn't being
472 		 * unmounted, otherwise we could race with
473 		 * generic_shutdown_super(), and end up holding a reference to
474 		 * an inode while the filesystem is unmounted.
475 		 * So we try to get s_umount, and make sure s_root isn't NULL.
476 		 * (Take a local copy of s_umount to avoid a use-after-free of
477 		 * `dentry').
478 		 */
479 		s_umount = &dentry->d_sb->s_umount;
480 		if (down_read_trylock(s_umount)) {
481 			if (dentry->d_sb->s_root != NULL) {
482 				prune_one_dentry(dentry);
483 				up_read(s_umount);
484 				continue;
485 			}
486 			up_read(s_umount);
487 		}
488 		spin_unlock(&dentry->d_lock);
489 		/*
490 		 * Insert dentry at the head of the list as inserting at the
491 		 * tail leads to a cycle.
492 		 */
493  		list_add(&dentry->d_lru, &dentry_unused);
494 		dentry_stat.nr_unused++;
495 	}
496 	spin_unlock(&dcache_lock);
497 }
498 
499 /*
500  * Shrink the dcache for the specified super block.
501  * This allows us to unmount a device without disturbing
502  * the dcache for the other devices.
503  *
504  * This implementation makes just two traversals of the
505  * unused list.  On the first pass we move the selected
506  * dentries to the most recent end, and on the second
507  * pass we free them.  The second pass must restart after
508  * each dput(), but since the target dentries are all at
509  * the end, it's really just a single traversal.
510  */
511 
512 /**
513  * shrink_dcache_sb - shrink dcache for a superblock
514  * @sb: superblock
515  *
516  * Shrink the dcache for the specified super block. This
517  * is used to free the dcache before unmounting a file
518  * system
519  */
520 
521 void shrink_dcache_sb(struct super_block * sb)
522 {
523 	struct list_head *tmp, *next;
524 	struct dentry *dentry;
525 
526 	/*
527 	 * Pass one ... move the dentries for the specified
528 	 * superblock to the most recent end of the unused list.
529 	 */
530 	spin_lock(&dcache_lock);
531 	list_for_each_safe(tmp, next, &dentry_unused) {
532 		dentry = list_entry(tmp, struct dentry, d_lru);
533 		if (dentry->d_sb != sb)
534 			continue;
535 		list_move(tmp, &dentry_unused);
536 	}
537 
538 	/*
539 	 * Pass two ... free the dentries for this superblock.
540 	 */
541 repeat:
542 	list_for_each_safe(tmp, next, &dentry_unused) {
543 		dentry = list_entry(tmp, struct dentry, d_lru);
544 		if (dentry->d_sb != sb)
545 			continue;
546 		dentry_stat.nr_unused--;
547 		list_del_init(tmp);
548 		spin_lock(&dentry->d_lock);
549 		if (atomic_read(&dentry->d_count)) {
550 			spin_unlock(&dentry->d_lock);
551 			continue;
552 		}
553 		prune_one_dentry(dentry);
554 		cond_resched_lock(&dcache_lock);
555 		goto repeat;
556 	}
557 	spin_unlock(&dcache_lock);
558 }
559 
560 /*
561  * destroy a single subtree of dentries for unmount
562  * - see the comments on shrink_dcache_for_umount() for a description of the
563  *   locking
564  */
565 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
566 {
567 	struct dentry *parent;
568 	unsigned detached = 0;
569 
570 	BUG_ON(!IS_ROOT(dentry));
571 
572 	/* detach this root from the system */
573 	spin_lock(&dcache_lock);
574 	if (!list_empty(&dentry->d_lru)) {
575 		dentry_stat.nr_unused--;
576 		list_del_init(&dentry->d_lru);
577 	}
578 	__d_drop(dentry);
579 	spin_unlock(&dcache_lock);
580 
581 	for (;;) {
582 		/* descend to the first leaf in the current subtree */
583 		while (!list_empty(&dentry->d_subdirs)) {
584 			struct dentry *loop;
585 
586 			/* this is a branch with children - detach all of them
587 			 * from the system in one go */
588 			spin_lock(&dcache_lock);
589 			list_for_each_entry(loop, &dentry->d_subdirs,
590 					    d_u.d_child) {
591 				if (!list_empty(&loop->d_lru)) {
592 					dentry_stat.nr_unused--;
593 					list_del_init(&loop->d_lru);
594 				}
595 
596 				__d_drop(loop);
597 				cond_resched_lock(&dcache_lock);
598 			}
599 			spin_unlock(&dcache_lock);
600 
601 			/* move to the first child */
602 			dentry = list_entry(dentry->d_subdirs.next,
603 					    struct dentry, d_u.d_child);
604 		}
605 
606 		/* consume the dentries from this leaf up through its parents
607 		 * until we find one with children or run out altogether */
608 		do {
609 			struct inode *inode;
610 
611 			if (atomic_read(&dentry->d_count) != 0) {
612 				printk(KERN_ERR
613 				       "BUG: Dentry %p{i=%lx,n=%s}"
614 				       " still in use (%d)"
615 				       " [unmount of %s %s]\n",
616 				       dentry,
617 				       dentry->d_inode ?
618 				       dentry->d_inode->i_ino : 0UL,
619 				       dentry->d_name.name,
620 				       atomic_read(&dentry->d_count),
621 				       dentry->d_sb->s_type->name,
622 				       dentry->d_sb->s_id);
623 				BUG();
624 			}
625 
626 			parent = dentry->d_parent;
627 			if (parent == dentry)
628 				parent = NULL;
629 			else
630 				atomic_dec(&parent->d_count);
631 
632 			list_del(&dentry->d_u.d_child);
633 			detached++;
634 
635 			inode = dentry->d_inode;
636 			if (inode) {
637 				dentry->d_inode = NULL;
638 				list_del_init(&dentry->d_alias);
639 				if (dentry->d_op && dentry->d_op->d_iput)
640 					dentry->d_op->d_iput(dentry, inode);
641 				else
642 					iput(inode);
643 			}
644 
645 			d_free(dentry);
646 
647 			/* finished when we fall off the top of the tree,
648 			 * otherwise we ascend to the parent and move to the
649 			 * next sibling if there is one */
650 			if (!parent)
651 				goto out;
652 
653 			dentry = parent;
654 
655 		} while (list_empty(&dentry->d_subdirs));
656 
657 		dentry = list_entry(dentry->d_subdirs.next,
658 				    struct dentry, d_u.d_child);
659 	}
660 out:
661 	/* several dentries were freed, need to correct nr_dentry */
662 	spin_lock(&dcache_lock);
663 	dentry_stat.nr_dentry -= detached;
664 	spin_unlock(&dcache_lock);
665 }
666 
667 /*
668  * destroy the dentries attached to a superblock on unmounting
669  * - we don't need to use dentry->d_lock, and only need dcache_lock when
670  *   removing the dentry from the system lists and hashes because:
671  *   - the superblock is detached from all mountings and open files, so the
672  *     dentry trees will not be rearranged by the VFS
673  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
674  *     any dentries belonging to this superblock that it comes across
675  *   - the filesystem itself is no longer permitted to rearrange the dentries
676  *     in this superblock
677  */
678 void shrink_dcache_for_umount(struct super_block *sb)
679 {
680 	struct dentry *dentry;
681 
682 	if (down_read_trylock(&sb->s_umount))
683 		BUG();
684 
685 	dentry = sb->s_root;
686 	sb->s_root = NULL;
687 	atomic_dec(&dentry->d_count);
688 	shrink_dcache_for_umount_subtree(dentry);
689 
690 	while (!hlist_empty(&sb->s_anon)) {
691 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
692 		shrink_dcache_for_umount_subtree(dentry);
693 	}
694 }
695 
696 /*
697  * Search for at least 1 mount point in the dentry's subdirs.
698  * We descend to the next level whenever the d_subdirs
699  * list is non-empty and continue searching.
700  */
701 
702 /**
703  * have_submounts - check for mounts over a dentry
704  * @parent: dentry to check.
705  *
706  * Return true if the parent or its subdirectories contain
707  * a mount point
708  */
709 
710 int have_submounts(struct dentry *parent)
711 {
712 	struct dentry *this_parent = parent;
713 	struct list_head *next;
714 
715 	spin_lock(&dcache_lock);
716 	if (d_mountpoint(parent))
717 		goto positive;
718 repeat:
719 	next = this_parent->d_subdirs.next;
720 resume:
721 	while (next != &this_parent->d_subdirs) {
722 		struct list_head *tmp = next;
723 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
724 		next = tmp->next;
725 		/* Have we found a mount point ? */
726 		if (d_mountpoint(dentry))
727 			goto positive;
728 		if (!list_empty(&dentry->d_subdirs)) {
729 			this_parent = dentry;
730 			goto repeat;
731 		}
732 	}
733 	/*
734 	 * All done at this level ... ascend and resume the search.
735 	 */
736 	if (this_parent != parent) {
737 		next = this_parent->d_u.d_child.next;
738 		this_parent = this_parent->d_parent;
739 		goto resume;
740 	}
741 	spin_unlock(&dcache_lock);
742 	return 0; /* No mount points found in tree */
743 positive:
744 	spin_unlock(&dcache_lock);
745 	return 1;
746 }
747 
748 /*
749  * Search the dentry child list for the specified parent,
750  * and move any unused dentries to the end of the unused
751  * list for prune_dcache(). We descend to the next level
752  * whenever the d_subdirs list is non-empty and continue
753  * searching.
754  *
755  * It returns zero iff there are no unused children,
756  * otherwise  it returns the number of children moved to
757  * the end of the unused list. This may not be the total
758  * number of unused children, because select_parent can
759  * drop the lock and return early due to latency
760  * constraints.
761  */
762 static int select_parent(struct dentry * parent)
763 {
764 	struct dentry *this_parent = parent;
765 	struct list_head *next;
766 	int found = 0;
767 
768 	spin_lock(&dcache_lock);
769 repeat:
770 	next = this_parent->d_subdirs.next;
771 resume:
772 	while (next != &this_parent->d_subdirs) {
773 		struct list_head *tmp = next;
774 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
775 		next = tmp->next;
776 
777 		if (!list_empty(&dentry->d_lru)) {
778 			dentry_stat.nr_unused--;
779 			list_del_init(&dentry->d_lru);
780 		}
781 		/*
782 		 * move only zero ref count dentries to the end
783 		 * of the unused list for prune_dcache
784 		 */
785 		if (!atomic_read(&dentry->d_count)) {
786 			list_add_tail(&dentry->d_lru, &dentry_unused);
787 			dentry_stat.nr_unused++;
788 			found++;
789 		}
790 
791 		/*
792 		 * We can return to the caller if we have found some (this
793 		 * ensures forward progress). We'll be coming back to find
794 		 * the rest.
795 		 */
796 		if (found && need_resched())
797 			goto out;
798 
799 		/*
800 		 * Descend a level if the d_subdirs list is non-empty.
801 		 */
802 		if (!list_empty(&dentry->d_subdirs)) {
803 			this_parent = dentry;
804 			goto repeat;
805 		}
806 	}
807 	/*
808 	 * All done at this level ... ascend and resume the search.
809 	 */
810 	if (this_parent != parent) {
811 		next = this_parent->d_u.d_child.next;
812 		this_parent = this_parent->d_parent;
813 		goto resume;
814 	}
815 out:
816 	spin_unlock(&dcache_lock);
817 	return found;
818 }
819 
820 /**
821  * shrink_dcache_parent - prune dcache
822  * @parent: parent of entries to prune
823  *
824  * Prune the dcache to remove unused children of the parent dentry.
825  */
826 
827 void shrink_dcache_parent(struct dentry * parent)
828 {
829 	int found;
830 
831 	while ((found = select_parent(parent)) != 0)
832 		prune_dcache(found, parent->d_sb);
833 }
834 
835 /*
836  * Scan `nr' dentries and return the number which remain.
837  *
838  * We need to avoid reentering the filesystem if the caller is performing a
839  * GFP_NOFS allocation attempt.  One example deadlock is:
840  *
841  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
842  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
843  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
844  *
845  * In this case we return -1 to tell the caller that we baled.
846  */
847 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
848 {
849 	if (nr) {
850 		if (!(gfp_mask & __GFP_FS))
851 			return -1;
852 		prune_dcache(nr, NULL);
853 	}
854 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
855 }
856 
857 /**
858  * d_alloc	-	allocate a dcache entry
859  * @parent: parent of entry to allocate
860  * @name: qstr of the name
861  *
862  * Allocates a dentry. It returns %NULL if there is insufficient memory
863  * available. On a success the dentry is returned. The name passed in is
864  * copied and the copy passed in may be reused after this call.
865  */
866 
867 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
868 {
869 	struct dentry *dentry;
870 	char *dname;
871 
872 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
873 	if (!dentry)
874 		return NULL;
875 
876 	if (name->len > DNAME_INLINE_LEN-1) {
877 		dname = kmalloc(name->len + 1, GFP_KERNEL);
878 		if (!dname) {
879 			kmem_cache_free(dentry_cache, dentry);
880 			return NULL;
881 		}
882 	} else  {
883 		dname = dentry->d_iname;
884 	}
885 	dentry->d_name.name = dname;
886 
887 	dentry->d_name.len = name->len;
888 	dentry->d_name.hash = name->hash;
889 	memcpy(dname, name->name, name->len);
890 	dname[name->len] = 0;
891 
892 	atomic_set(&dentry->d_count, 1);
893 	dentry->d_flags = DCACHE_UNHASHED;
894 	spin_lock_init(&dentry->d_lock);
895 	dentry->d_inode = NULL;
896 	dentry->d_parent = NULL;
897 	dentry->d_sb = NULL;
898 	dentry->d_op = NULL;
899 	dentry->d_fsdata = NULL;
900 	dentry->d_mounted = 0;
901 #ifdef CONFIG_PROFILING
902 	dentry->d_cookie = NULL;
903 #endif
904 	INIT_HLIST_NODE(&dentry->d_hash);
905 	INIT_LIST_HEAD(&dentry->d_lru);
906 	INIT_LIST_HEAD(&dentry->d_subdirs);
907 	INIT_LIST_HEAD(&dentry->d_alias);
908 
909 	if (parent) {
910 		dentry->d_parent = dget(parent);
911 		dentry->d_sb = parent->d_sb;
912 	} else {
913 		INIT_LIST_HEAD(&dentry->d_u.d_child);
914 	}
915 
916 	spin_lock(&dcache_lock);
917 	if (parent)
918 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
919 	dentry_stat.nr_dentry++;
920 	spin_unlock(&dcache_lock);
921 
922 	return dentry;
923 }
924 
925 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
926 {
927 	struct qstr q;
928 
929 	q.name = name;
930 	q.len = strlen(name);
931 	q.hash = full_name_hash(q.name, q.len);
932 	return d_alloc(parent, &q);
933 }
934 
935 /**
936  * d_instantiate - fill in inode information for a dentry
937  * @entry: dentry to complete
938  * @inode: inode to attach to this dentry
939  *
940  * Fill in inode information in the entry.
941  *
942  * This turns negative dentries into productive full members
943  * of society.
944  *
945  * NOTE! This assumes that the inode count has been incremented
946  * (or otherwise set) by the caller to indicate that it is now
947  * in use by the dcache.
948  */
949 
950 void d_instantiate(struct dentry *entry, struct inode * inode)
951 {
952 	BUG_ON(!list_empty(&entry->d_alias));
953 	spin_lock(&dcache_lock);
954 	if (inode)
955 		list_add(&entry->d_alias, &inode->i_dentry);
956 	entry->d_inode = inode;
957 	fsnotify_d_instantiate(entry, inode);
958 	spin_unlock(&dcache_lock);
959 	security_d_instantiate(entry, inode);
960 }
961 
962 /**
963  * d_instantiate_unique - instantiate a non-aliased dentry
964  * @entry: dentry to instantiate
965  * @inode: inode to attach to this dentry
966  *
967  * Fill in inode information in the entry. On success, it returns NULL.
968  * If an unhashed alias of "entry" already exists, then we return the
969  * aliased dentry instead and drop one reference to inode.
970  *
971  * Note that in order to avoid conflicts with rename() etc, the caller
972  * had better be holding the parent directory semaphore.
973  *
974  * This also assumes that the inode count has been incremented
975  * (or otherwise set) by the caller to indicate that it is now
976  * in use by the dcache.
977  */
978 static struct dentry *__d_instantiate_unique(struct dentry *entry,
979 					     struct inode *inode)
980 {
981 	struct dentry *alias;
982 	int len = entry->d_name.len;
983 	const char *name = entry->d_name.name;
984 	unsigned int hash = entry->d_name.hash;
985 
986 	if (!inode) {
987 		entry->d_inode = NULL;
988 		return NULL;
989 	}
990 
991 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
992 		struct qstr *qstr = &alias->d_name;
993 
994 		if (qstr->hash != hash)
995 			continue;
996 		if (alias->d_parent != entry->d_parent)
997 			continue;
998 		if (qstr->len != len)
999 			continue;
1000 		if (memcmp(qstr->name, name, len))
1001 			continue;
1002 		dget_locked(alias);
1003 		return alias;
1004 	}
1005 
1006 	list_add(&entry->d_alias, &inode->i_dentry);
1007 	entry->d_inode = inode;
1008 	fsnotify_d_instantiate(entry, inode);
1009 	return NULL;
1010 }
1011 
1012 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1013 {
1014 	struct dentry *result;
1015 
1016 	BUG_ON(!list_empty(&entry->d_alias));
1017 
1018 	spin_lock(&dcache_lock);
1019 	result = __d_instantiate_unique(entry, inode);
1020 	spin_unlock(&dcache_lock);
1021 
1022 	if (!result) {
1023 		security_d_instantiate(entry, inode);
1024 		return NULL;
1025 	}
1026 
1027 	BUG_ON(!d_unhashed(result));
1028 	iput(inode);
1029 	return result;
1030 }
1031 
1032 EXPORT_SYMBOL(d_instantiate_unique);
1033 
1034 /**
1035  * d_alloc_root - allocate root dentry
1036  * @root_inode: inode to allocate the root for
1037  *
1038  * Allocate a root ("/") dentry for the inode given. The inode is
1039  * instantiated and returned. %NULL is returned if there is insufficient
1040  * memory or the inode passed is %NULL.
1041  */
1042 
1043 struct dentry * d_alloc_root(struct inode * root_inode)
1044 {
1045 	struct dentry *res = NULL;
1046 
1047 	if (root_inode) {
1048 		static const struct qstr name = { .name = "/", .len = 1 };
1049 
1050 		res = d_alloc(NULL, &name);
1051 		if (res) {
1052 			res->d_sb = root_inode->i_sb;
1053 			res->d_parent = res;
1054 			d_instantiate(res, root_inode);
1055 		}
1056 	}
1057 	return res;
1058 }
1059 
1060 static inline struct hlist_head *d_hash(struct dentry *parent,
1061 					unsigned long hash)
1062 {
1063 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1064 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1065 	return dentry_hashtable + (hash & D_HASHMASK);
1066 }
1067 
1068 /**
1069  * d_alloc_anon - allocate an anonymous dentry
1070  * @inode: inode to allocate the dentry for
1071  *
1072  * This is similar to d_alloc_root.  It is used by filesystems when
1073  * creating a dentry for a given inode, often in the process of
1074  * mapping a filehandle to a dentry.  The returned dentry may be
1075  * anonymous, or may have a full name (if the inode was already
1076  * in the cache).  The file system may need to make further
1077  * efforts to connect this dentry into the dcache properly.
1078  *
1079  * When called on a directory inode, we must ensure that
1080  * the inode only ever has one dentry.  If a dentry is
1081  * found, that is returned instead of allocating a new one.
1082  *
1083  * On successful return, the reference to the inode has been transferred
1084  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
1085  * the reference on the inode has not been released.
1086  */
1087 
1088 struct dentry * d_alloc_anon(struct inode *inode)
1089 {
1090 	static const struct qstr anonstring = { .name = "" };
1091 	struct dentry *tmp;
1092 	struct dentry *res;
1093 
1094 	if ((res = d_find_alias(inode))) {
1095 		iput(inode);
1096 		return res;
1097 	}
1098 
1099 	tmp = d_alloc(NULL, &anonstring);
1100 	if (!tmp)
1101 		return NULL;
1102 
1103 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1104 
1105 	spin_lock(&dcache_lock);
1106 	res = __d_find_alias(inode, 0);
1107 	if (!res) {
1108 		/* attach a disconnected dentry */
1109 		res = tmp;
1110 		tmp = NULL;
1111 		spin_lock(&res->d_lock);
1112 		res->d_sb = inode->i_sb;
1113 		res->d_parent = res;
1114 		res->d_inode = inode;
1115 		res->d_flags |= DCACHE_DISCONNECTED;
1116 		res->d_flags &= ~DCACHE_UNHASHED;
1117 		list_add(&res->d_alias, &inode->i_dentry);
1118 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1119 		spin_unlock(&res->d_lock);
1120 
1121 		inode = NULL; /* don't drop reference */
1122 	}
1123 	spin_unlock(&dcache_lock);
1124 
1125 	if (inode)
1126 		iput(inode);
1127 	if (tmp)
1128 		dput(tmp);
1129 	return res;
1130 }
1131 
1132 
1133 /**
1134  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1135  * @inode:  the inode which may have a disconnected dentry
1136  * @dentry: a negative dentry which we want to point to the inode.
1137  *
1138  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1139  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1140  * and return it, else simply d_add the inode to the dentry and return NULL.
1141  *
1142  * This is needed in the lookup routine of any filesystem that is exportable
1143  * (via knfsd) so that we can build dcache paths to directories effectively.
1144  *
1145  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1146  * is returned.  This matches the expected return value of ->lookup.
1147  *
1148  */
1149 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1150 {
1151 	struct dentry *new = NULL;
1152 
1153 	if (inode && S_ISDIR(inode->i_mode)) {
1154 		spin_lock(&dcache_lock);
1155 		new = __d_find_alias(inode, 1);
1156 		if (new) {
1157 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1158 			fsnotify_d_instantiate(new, inode);
1159 			spin_unlock(&dcache_lock);
1160 			security_d_instantiate(new, inode);
1161 			d_rehash(dentry);
1162 			d_move(new, dentry);
1163 			iput(inode);
1164 		} else {
1165 			/* d_instantiate takes dcache_lock, so we do it by hand */
1166 			list_add(&dentry->d_alias, &inode->i_dentry);
1167 			dentry->d_inode = inode;
1168 			fsnotify_d_instantiate(dentry, inode);
1169 			spin_unlock(&dcache_lock);
1170 			security_d_instantiate(dentry, inode);
1171 			d_rehash(dentry);
1172 		}
1173 	} else
1174 		d_add(dentry, inode);
1175 	return new;
1176 }
1177 
1178 
1179 /**
1180  * d_lookup - search for a dentry
1181  * @parent: parent dentry
1182  * @name: qstr of name we wish to find
1183  *
1184  * Searches the children of the parent dentry for the name in question. If
1185  * the dentry is found its reference count is incremented and the dentry
1186  * is returned. The caller must use d_put to free the entry when it has
1187  * finished using it. %NULL is returned on failure.
1188  *
1189  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1190  * Memory barriers are used while updating and doing lockless traversal.
1191  * To avoid races with d_move while rename is happening, d_lock is used.
1192  *
1193  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1194  * and name pointer in one structure pointed by d_qstr.
1195  *
1196  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1197  * lookup is going on.
1198  *
1199  * dentry_unused list is not updated even if lookup finds the required dentry
1200  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1201  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1202  * acquisition.
1203  *
1204  * d_lookup() is protected against the concurrent renames in some unrelated
1205  * directory using the seqlockt_t rename_lock.
1206  */
1207 
1208 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1209 {
1210 	struct dentry * dentry = NULL;
1211 	unsigned long seq;
1212 
1213         do {
1214                 seq = read_seqbegin(&rename_lock);
1215                 dentry = __d_lookup(parent, name);
1216                 if (dentry)
1217 			break;
1218 	} while (read_seqretry(&rename_lock, seq));
1219 	return dentry;
1220 }
1221 
1222 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1223 {
1224 	unsigned int len = name->len;
1225 	unsigned int hash = name->hash;
1226 	const unsigned char *str = name->name;
1227 	struct hlist_head *head = d_hash(parent,hash);
1228 	struct dentry *found = NULL;
1229 	struct hlist_node *node;
1230 	struct dentry *dentry;
1231 
1232 	rcu_read_lock();
1233 
1234 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1235 		struct qstr *qstr;
1236 
1237 		if (dentry->d_name.hash != hash)
1238 			continue;
1239 		if (dentry->d_parent != parent)
1240 			continue;
1241 
1242 		spin_lock(&dentry->d_lock);
1243 
1244 		/*
1245 		 * Recheck the dentry after taking the lock - d_move may have
1246 		 * changed things.  Don't bother checking the hash because we're
1247 		 * about to compare the whole name anyway.
1248 		 */
1249 		if (dentry->d_parent != parent)
1250 			goto next;
1251 
1252 		/*
1253 		 * It is safe to compare names since d_move() cannot
1254 		 * change the qstr (protected by d_lock).
1255 		 */
1256 		qstr = &dentry->d_name;
1257 		if (parent->d_op && parent->d_op->d_compare) {
1258 			if (parent->d_op->d_compare(parent, qstr, name))
1259 				goto next;
1260 		} else {
1261 			if (qstr->len != len)
1262 				goto next;
1263 			if (memcmp(qstr->name, str, len))
1264 				goto next;
1265 		}
1266 
1267 		if (!d_unhashed(dentry)) {
1268 			atomic_inc(&dentry->d_count);
1269 			found = dentry;
1270 		}
1271 		spin_unlock(&dentry->d_lock);
1272 		break;
1273 next:
1274 		spin_unlock(&dentry->d_lock);
1275  	}
1276  	rcu_read_unlock();
1277 
1278  	return found;
1279 }
1280 
1281 /**
1282  * d_hash_and_lookup - hash the qstr then search for a dentry
1283  * @dir: Directory to search in
1284  * @name: qstr of name we wish to find
1285  *
1286  * On hash failure or on lookup failure NULL is returned.
1287  */
1288 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1289 {
1290 	struct dentry *dentry = NULL;
1291 
1292 	/*
1293 	 * Check for a fs-specific hash function. Note that we must
1294 	 * calculate the standard hash first, as the d_op->d_hash()
1295 	 * routine may choose to leave the hash value unchanged.
1296 	 */
1297 	name->hash = full_name_hash(name->name, name->len);
1298 	if (dir->d_op && dir->d_op->d_hash) {
1299 		if (dir->d_op->d_hash(dir, name) < 0)
1300 			goto out;
1301 	}
1302 	dentry = d_lookup(dir, name);
1303 out:
1304 	return dentry;
1305 }
1306 
1307 /**
1308  * d_validate - verify dentry provided from insecure source
1309  * @dentry: The dentry alleged to be valid child of @dparent
1310  * @dparent: The parent dentry (known to be valid)
1311  * @hash: Hash of the dentry
1312  * @len: Length of the name
1313  *
1314  * An insecure source has sent us a dentry, here we verify it and dget() it.
1315  * This is used by ncpfs in its readdir implementation.
1316  * Zero is returned in the dentry is invalid.
1317  */
1318 
1319 int d_validate(struct dentry *dentry, struct dentry *dparent)
1320 {
1321 	struct hlist_head *base;
1322 	struct hlist_node *lhp;
1323 
1324 	/* Check whether the ptr might be valid at all.. */
1325 	if (!kmem_ptr_validate(dentry_cache, dentry))
1326 		goto out;
1327 
1328 	if (dentry->d_parent != dparent)
1329 		goto out;
1330 
1331 	spin_lock(&dcache_lock);
1332 	base = d_hash(dparent, dentry->d_name.hash);
1333 	hlist_for_each(lhp,base) {
1334 		/* hlist_for_each_entry_rcu() not required for d_hash list
1335 		 * as it is parsed under dcache_lock
1336 		 */
1337 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1338 			__dget_locked(dentry);
1339 			spin_unlock(&dcache_lock);
1340 			return 1;
1341 		}
1342 	}
1343 	spin_unlock(&dcache_lock);
1344 out:
1345 	return 0;
1346 }
1347 
1348 /*
1349  * When a file is deleted, we have two options:
1350  * - turn this dentry into a negative dentry
1351  * - unhash this dentry and free it.
1352  *
1353  * Usually, we want to just turn this into
1354  * a negative dentry, but if anybody else is
1355  * currently using the dentry or the inode
1356  * we can't do that and we fall back on removing
1357  * it from the hash queues and waiting for
1358  * it to be deleted later when it has no users
1359  */
1360 
1361 /**
1362  * d_delete - delete a dentry
1363  * @dentry: The dentry to delete
1364  *
1365  * Turn the dentry into a negative dentry if possible, otherwise
1366  * remove it from the hash queues so it can be deleted later
1367  */
1368 
1369 void d_delete(struct dentry * dentry)
1370 {
1371 	int isdir = 0;
1372 	/*
1373 	 * Are we the only user?
1374 	 */
1375 	spin_lock(&dcache_lock);
1376 	spin_lock(&dentry->d_lock);
1377 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1378 	if (atomic_read(&dentry->d_count) == 1) {
1379 		dentry_iput(dentry);
1380 		fsnotify_nameremove(dentry, isdir);
1381 
1382 		/* remove this and other inotify debug checks after 2.6.18 */
1383 		dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED;
1384 		return;
1385 	}
1386 
1387 	if (!d_unhashed(dentry))
1388 		__d_drop(dentry);
1389 
1390 	spin_unlock(&dentry->d_lock);
1391 	spin_unlock(&dcache_lock);
1392 
1393 	fsnotify_nameremove(dentry, isdir);
1394 }
1395 
1396 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1397 {
1398 
1399  	entry->d_flags &= ~DCACHE_UNHASHED;
1400  	hlist_add_head_rcu(&entry->d_hash, list);
1401 }
1402 
1403 static void _d_rehash(struct dentry * entry)
1404 {
1405 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1406 }
1407 
1408 /**
1409  * d_rehash	- add an entry back to the hash
1410  * @entry: dentry to add to the hash
1411  *
1412  * Adds a dentry to the hash according to its name.
1413  */
1414 
1415 void d_rehash(struct dentry * entry)
1416 {
1417 	spin_lock(&dcache_lock);
1418 	spin_lock(&entry->d_lock);
1419 	_d_rehash(entry);
1420 	spin_unlock(&entry->d_lock);
1421 	spin_unlock(&dcache_lock);
1422 }
1423 
1424 #define do_switch(x,y) do { \
1425 	__typeof__ (x) __tmp = x; \
1426 	x = y; y = __tmp; } while (0)
1427 
1428 /*
1429  * When switching names, the actual string doesn't strictly have to
1430  * be preserved in the target - because we're dropping the target
1431  * anyway. As such, we can just do a simple memcpy() to copy over
1432  * the new name before we switch.
1433  *
1434  * Note that we have to be a lot more careful about getting the hash
1435  * switched - we have to switch the hash value properly even if it
1436  * then no longer matches the actual (corrupted) string of the target.
1437  * The hash value has to match the hash queue that the dentry is on..
1438  */
1439 static void switch_names(struct dentry *dentry, struct dentry *target)
1440 {
1441 	if (dname_external(target)) {
1442 		if (dname_external(dentry)) {
1443 			/*
1444 			 * Both external: swap the pointers
1445 			 */
1446 			do_switch(target->d_name.name, dentry->d_name.name);
1447 		} else {
1448 			/*
1449 			 * dentry:internal, target:external.  Steal target's
1450 			 * storage and make target internal.
1451 			 */
1452 			dentry->d_name.name = target->d_name.name;
1453 			target->d_name.name = target->d_iname;
1454 		}
1455 	} else {
1456 		if (dname_external(dentry)) {
1457 			/*
1458 			 * dentry:external, target:internal.  Give dentry's
1459 			 * storage to target and make dentry internal
1460 			 */
1461 			memcpy(dentry->d_iname, target->d_name.name,
1462 					target->d_name.len + 1);
1463 			target->d_name.name = dentry->d_name.name;
1464 			dentry->d_name.name = dentry->d_iname;
1465 		} else {
1466 			/*
1467 			 * Both are internal.  Just copy target to dentry
1468 			 */
1469 			memcpy(dentry->d_iname, target->d_name.name,
1470 					target->d_name.len + 1);
1471 		}
1472 	}
1473 }
1474 
1475 /*
1476  * We cannibalize "target" when moving dentry on top of it,
1477  * because it's going to be thrown away anyway. We could be more
1478  * polite about it, though.
1479  *
1480  * This forceful removal will result in ugly /proc output if
1481  * somebody holds a file open that got deleted due to a rename.
1482  * We could be nicer about the deleted file, and let it show
1483  * up under the name it got deleted rather than the name that
1484  * deleted it.
1485  */
1486 
1487 /*
1488  * d_move_locked - move a dentry
1489  * @dentry: entry to move
1490  * @target: new dentry
1491  *
1492  * Update the dcache to reflect the move of a file name. Negative
1493  * dcache entries should not be moved in this way.
1494  */
1495 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1496 {
1497 	struct hlist_head *list;
1498 
1499 	if (!dentry->d_inode)
1500 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1501 
1502 	write_seqlock(&rename_lock);
1503 	/*
1504 	 * XXXX: do we really need to take target->d_lock?
1505 	 */
1506 	if (target < dentry) {
1507 		spin_lock(&target->d_lock);
1508 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1509 	} else {
1510 		spin_lock(&dentry->d_lock);
1511 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1512 	}
1513 
1514 	/* Move the dentry to the target hash queue, if on different bucket */
1515 	if (dentry->d_flags & DCACHE_UNHASHED)
1516 		goto already_unhashed;
1517 
1518 	hlist_del_rcu(&dentry->d_hash);
1519 
1520 already_unhashed:
1521 	list = d_hash(target->d_parent, target->d_name.hash);
1522 	__d_rehash(dentry, list);
1523 
1524 	/* Unhash the target: dput() will then get rid of it */
1525 	__d_drop(target);
1526 
1527 	list_del(&dentry->d_u.d_child);
1528 	list_del(&target->d_u.d_child);
1529 
1530 	/* Switch the names.. */
1531 	switch_names(dentry, target);
1532 	do_switch(dentry->d_name.len, target->d_name.len);
1533 	do_switch(dentry->d_name.hash, target->d_name.hash);
1534 
1535 	/* ... and switch the parents */
1536 	if (IS_ROOT(dentry)) {
1537 		dentry->d_parent = target->d_parent;
1538 		target->d_parent = target;
1539 		INIT_LIST_HEAD(&target->d_u.d_child);
1540 	} else {
1541 		do_switch(dentry->d_parent, target->d_parent);
1542 
1543 		/* And add them back to the (new) parent lists */
1544 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1545 	}
1546 
1547 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1548 	spin_unlock(&target->d_lock);
1549 	fsnotify_d_move(dentry);
1550 	spin_unlock(&dentry->d_lock);
1551 	write_sequnlock(&rename_lock);
1552 }
1553 
1554 /**
1555  * d_move - move a dentry
1556  * @dentry: entry to move
1557  * @target: new dentry
1558  *
1559  * Update the dcache to reflect the move of a file name. Negative
1560  * dcache entries should not be moved in this way.
1561  */
1562 
1563 void d_move(struct dentry * dentry, struct dentry * target)
1564 {
1565 	spin_lock(&dcache_lock);
1566 	d_move_locked(dentry, target);
1567 	spin_unlock(&dcache_lock);
1568 }
1569 
1570 /*
1571  * Helper that returns 1 if p1 is a parent of p2, else 0
1572  */
1573 static int d_isparent(struct dentry *p1, struct dentry *p2)
1574 {
1575 	struct dentry *p;
1576 
1577 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1578 		if (p->d_parent == p1)
1579 			return 1;
1580 	}
1581 	return 0;
1582 }
1583 
1584 /*
1585  * This helper attempts to cope with remotely renamed directories
1586  *
1587  * It assumes that the caller is already holding
1588  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1589  *
1590  * Note: If ever the locking in lock_rename() changes, then please
1591  * remember to update this too...
1592  *
1593  * On return, dcache_lock will have been unlocked.
1594  */
1595 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1596 {
1597 	struct mutex *m1 = NULL, *m2 = NULL;
1598 	struct dentry *ret;
1599 
1600 	/* If alias and dentry share a parent, then no extra locks required */
1601 	if (alias->d_parent == dentry->d_parent)
1602 		goto out_unalias;
1603 
1604 	/* Check for loops */
1605 	ret = ERR_PTR(-ELOOP);
1606 	if (d_isparent(alias, dentry))
1607 		goto out_err;
1608 
1609 	/* See lock_rename() */
1610 	ret = ERR_PTR(-EBUSY);
1611 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1612 		goto out_err;
1613 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1614 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1615 		goto out_err;
1616 	m2 = &alias->d_parent->d_inode->i_mutex;
1617 out_unalias:
1618 	d_move_locked(alias, dentry);
1619 	ret = alias;
1620 out_err:
1621 	spin_unlock(&dcache_lock);
1622 	if (m2)
1623 		mutex_unlock(m2);
1624 	if (m1)
1625 		mutex_unlock(m1);
1626 	return ret;
1627 }
1628 
1629 /*
1630  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1631  * named dentry in place of the dentry to be replaced.
1632  */
1633 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1634 {
1635 	struct dentry *dparent, *aparent;
1636 
1637 	switch_names(dentry, anon);
1638 	do_switch(dentry->d_name.len, anon->d_name.len);
1639 	do_switch(dentry->d_name.hash, anon->d_name.hash);
1640 
1641 	dparent = dentry->d_parent;
1642 	aparent = anon->d_parent;
1643 
1644 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1645 	list_del(&dentry->d_u.d_child);
1646 	if (!IS_ROOT(dentry))
1647 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1648 	else
1649 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1650 
1651 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1652 	list_del(&anon->d_u.d_child);
1653 	if (!IS_ROOT(anon))
1654 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1655 	else
1656 		INIT_LIST_HEAD(&anon->d_u.d_child);
1657 
1658 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1659 }
1660 
1661 /**
1662  * d_materialise_unique - introduce an inode into the tree
1663  * @dentry: candidate dentry
1664  * @inode: inode to bind to the dentry, to which aliases may be attached
1665  *
1666  * Introduces an dentry into the tree, substituting an extant disconnected
1667  * root directory alias in its place if there is one
1668  */
1669 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1670 {
1671 	struct dentry *actual;
1672 
1673 	BUG_ON(!d_unhashed(dentry));
1674 
1675 	spin_lock(&dcache_lock);
1676 
1677 	if (!inode) {
1678 		actual = dentry;
1679 		dentry->d_inode = NULL;
1680 		goto found_lock;
1681 	}
1682 
1683 	if (S_ISDIR(inode->i_mode)) {
1684 		struct dentry *alias;
1685 
1686 		/* Does an aliased dentry already exist? */
1687 		alias = __d_find_alias(inode, 0);
1688 		if (alias) {
1689 			actual = alias;
1690 			/* Is this an anonymous mountpoint that we could splice
1691 			 * into our tree? */
1692 			if (IS_ROOT(alias)) {
1693 				spin_lock(&alias->d_lock);
1694 				__d_materialise_dentry(dentry, alias);
1695 				__d_drop(alias);
1696 				goto found;
1697 			}
1698 			/* Nope, but we must(!) avoid directory aliasing */
1699 			actual = __d_unalias(dentry, alias);
1700 			if (IS_ERR(actual))
1701 				dput(alias);
1702 			goto out_nolock;
1703 		}
1704 	}
1705 
1706 	/* Add a unique reference */
1707 	actual = __d_instantiate_unique(dentry, inode);
1708 	if (!actual)
1709 		actual = dentry;
1710 	else if (unlikely(!d_unhashed(actual)))
1711 		goto shouldnt_be_hashed;
1712 
1713 found_lock:
1714 	spin_lock(&actual->d_lock);
1715 found:
1716 	_d_rehash(actual);
1717 	spin_unlock(&actual->d_lock);
1718 	spin_unlock(&dcache_lock);
1719 out_nolock:
1720 	if (actual == dentry) {
1721 		security_d_instantiate(dentry, inode);
1722 		return NULL;
1723 	}
1724 
1725 	iput(inode);
1726 	return actual;
1727 
1728 shouldnt_be_hashed:
1729 	spin_unlock(&dcache_lock);
1730 	BUG();
1731 	goto shouldnt_be_hashed;
1732 }
1733 
1734 /**
1735  * d_path - return the path of a dentry
1736  * @dentry: dentry to report
1737  * @vfsmnt: vfsmnt to which the dentry belongs
1738  * @root: root dentry
1739  * @rootmnt: vfsmnt to which the root dentry belongs
1740  * @buffer: buffer to return value in
1741  * @buflen: buffer length
1742  *
1743  * Convert a dentry into an ASCII path name. If the entry has been deleted
1744  * the string " (deleted)" is appended. Note that this is ambiguous.
1745  *
1746  * Returns the buffer or an error code if the path was too long.
1747  *
1748  * "buflen" should be positive. Caller holds the dcache_lock.
1749  */
1750 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1751 			struct dentry *root, struct vfsmount *rootmnt,
1752 			char *buffer, int buflen)
1753 {
1754 	char * end = buffer+buflen;
1755 	char * retval;
1756 	int namelen;
1757 
1758 	*--end = '\0';
1759 	buflen--;
1760 	if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1761 		buflen -= 10;
1762 		end -= 10;
1763 		if (buflen < 0)
1764 			goto Elong;
1765 		memcpy(end, " (deleted)", 10);
1766 	}
1767 
1768 	if (buflen < 1)
1769 		goto Elong;
1770 	/* Get '/' right */
1771 	retval = end-1;
1772 	*retval = '/';
1773 
1774 	for (;;) {
1775 		struct dentry * parent;
1776 
1777 		if (dentry == root && vfsmnt == rootmnt)
1778 			break;
1779 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1780 			/* Global root? */
1781 			spin_lock(&vfsmount_lock);
1782 			if (vfsmnt->mnt_parent == vfsmnt) {
1783 				spin_unlock(&vfsmount_lock);
1784 				goto global_root;
1785 			}
1786 			dentry = vfsmnt->mnt_mountpoint;
1787 			vfsmnt = vfsmnt->mnt_parent;
1788 			spin_unlock(&vfsmount_lock);
1789 			continue;
1790 		}
1791 		parent = dentry->d_parent;
1792 		prefetch(parent);
1793 		namelen = dentry->d_name.len;
1794 		buflen -= namelen + 1;
1795 		if (buflen < 0)
1796 			goto Elong;
1797 		end -= namelen;
1798 		memcpy(end, dentry->d_name.name, namelen);
1799 		*--end = '/';
1800 		retval = end;
1801 		dentry = parent;
1802 	}
1803 
1804 	return retval;
1805 
1806 global_root:
1807 	namelen = dentry->d_name.len;
1808 	buflen -= namelen;
1809 	if (buflen < 0)
1810 		goto Elong;
1811 	retval -= namelen-1;	/* hit the slash */
1812 	memcpy(retval, dentry->d_name.name, namelen);
1813 	return retval;
1814 Elong:
1815 	return ERR_PTR(-ENAMETOOLONG);
1816 }
1817 
1818 /* write full pathname into buffer and return start of pathname */
1819 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1820 				char *buf, int buflen)
1821 {
1822 	char *res;
1823 	struct vfsmount *rootmnt;
1824 	struct dentry *root;
1825 
1826 	read_lock(&current->fs->lock);
1827 	rootmnt = mntget(current->fs->rootmnt);
1828 	root = dget(current->fs->root);
1829 	read_unlock(&current->fs->lock);
1830 	spin_lock(&dcache_lock);
1831 	res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1832 	spin_unlock(&dcache_lock);
1833 	dput(root);
1834 	mntput(rootmnt);
1835 	return res;
1836 }
1837 
1838 /*
1839  * NOTE! The user-level library version returns a
1840  * character pointer. The kernel system call just
1841  * returns the length of the buffer filled (which
1842  * includes the ending '\0' character), or a negative
1843  * error value. So libc would do something like
1844  *
1845  *	char *getcwd(char * buf, size_t size)
1846  *	{
1847  *		int retval;
1848  *
1849  *		retval = sys_getcwd(buf, size);
1850  *		if (retval >= 0)
1851  *			return buf;
1852  *		errno = -retval;
1853  *		return NULL;
1854  *	}
1855  */
1856 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1857 {
1858 	int error;
1859 	struct vfsmount *pwdmnt, *rootmnt;
1860 	struct dentry *pwd, *root;
1861 	char *page = (char *) __get_free_page(GFP_USER);
1862 
1863 	if (!page)
1864 		return -ENOMEM;
1865 
1866 	read_lock(&current->fs->lock);
1867 	pwdmnt = mntget(current->fs->pwdmnt);
1868 	pwd = dget(current->fs->pwd);
1869 	rootmnt = mntget(current->fs->rootmnt);
1870 	root = dget(current->fs->root);
1871 	read_unlock(&current->fs->lock);
1872 
1873 	error = -ENOENT;
1874 	/* Has the current directory has been unlinked? */
1875 	spin_lock(&dcache_lock);
1876 	if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1877 		unsigned long len;
1878 		char * cwd;
1879 
1880 		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1881 		spin_unlock(&dcache_lock);
1882 
1883 		error = PTR_ERR(cwd);
1884 		if (IS_ERR(cwd))
1885 			goto out;
1886 
1887 		error = -ERANGE;
1888 		len = PAGE_SIZE + page - cwd;
1889 		if (len <= size) {
1890 			error = len;
1891 			if (copy_to_user(buf, cwd, len))
1892 				error = -EFAULT;
1893 		}
1894 	} else
1895 		spin_unlock(&dcache_lock);
1896 
1897 out:
1898 	dput(pwd);
1899 	mntput(pwdmnt);
1900 	dput(root);
1901 	mntput(rootmnt);
1902 	free_page((unsigned long) page);
1903 	return error;
1904 }
1905 
1906 /*
1907  * Test whether new_dentry is a subdirectory of old_dentry.
1908  *
1909  * Trivially implemented using the dcache structure
1910  */
1911 
1912 /**
1913  * is_subdir - is new dentry a subdirectory of old_dentry
1914  * @new_dentry: new dentry
1915  * @old_dentry: old dentry
1916  *
1917  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1918  * Returns 0 otherwise.
1919  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1920  */
1921 
1922 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1923 {
1924 	int result;
1925 	struct dentry * saved = new_dentry;
1926 	unsigned long seq;
1927 
1928 	/* need rcu_readlock to protect against the d_parent trashing due to
1929 	 * d_move
1930 	 */
1931 	rcu_read_lock();
1932         do {
1933 		/* for restarting inner loop in case of seq retry */
1934 		new_dentry = saved;
1935 		result = 0;
1936 		seq = read_seqbegin(&rename_lock);
1937 		for (;;) {
1938 			if (new_dentry != old_dentry) {
1939 				struct dentry * parent = new_dentry->d_parent;
1940 				if (parent == new_dentry)
1941 					break;
1942 				new_dentry = parent;
1943 				continue;
1944 			}
1945 			result = 1;
1946 			break;
1947 		}
1948 	} while (read_seqretry(&rename_lock, seq));
1949 	rcu_read_unlock();
1950 
1951 	return result;
1952 }
1953 
1954 void d_genocide(struct dentry *root)
1955 {
1956 	struct dentry *this_parent = root;
1957 	struct list_head *next;
1958 
1959 	spin_lock(&dcache_lock);
1960 repeat:
1961 	next = this_parent->d_subdirs.next;
1962 resume:
1963 	while (next != &this_parent->d_subdirs) {
1964 		struct list_head *tmp = next;
1965 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1966 		next = tmp->next;
1967 		if (d_unhashed(dentry)||!dentry->d_inode)
1968 			continue;
1969 		if (!list_empty(&dentry->d_subdirs)) {
1970 			this_parent = dentry;
1971 			goto repeat;
1972 		}
1973 		atomic_dec(&dentry->d_count);
1974 	}
1975 	if (this_parent != root) {
1976 		next = this_parent->d_u.d_child.next;
1977 		atomic_dec(&this_parent->d_count);
1978 		this_parent = this_parent->d_parent;
1979 		goto resume;
1980 	}
1981 	spin_unlock(&dcache_lock);
1982 }
1983 
1984 /**
1985  * find_inode_number - check for dentry with name
1986  * @dir: directory to check
1987  * @name: Name to find.
1988  *
1989  * Check whether a dentry already exists for the given name,
1990  * and return the inode number if it has an inode. Otherwise
1991  * 0 is returned.
1992  *
1993  * This routine is used to post-process directory listings for
1994  * filesystems using synthetic inode numbers, and is necessary
1995  * to keep getcwd() working.
1996  */
1997 
1998 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1999 {
2000 	struct dentry * dentry;
2001 	ino_t ino = 0;
2002 
2003 	dentry = d_hash_and_lookup(dir, name);
2004 	if (dentry) {
2005 		if (dentry->d_inode)
2006 			ino = dentry->d_inode->i_ino;
2007 		dput(dentry);
2008 	}
2009 	return ino;
2010 }
2011 
2012 static __initdata unsigned long dhash_entries;
2013 static int __init set_dhash_entries(char *str)
2014 {
2015 	if (!str)
2016 		return 0;
2017 	dhash_entries = simple_strtoul(str, &str, 0);
2018 	return 1;
2019 }
2020 __setup("dhash_entries=", set_dhash_entries);
2021 
2022 static void __init dcache_init_early(void)
2023 {
2024 	int loop;
2025 
2026 	/* If hashes are distributed across NUMA nodes, defer
2027 	 * hash allocation until vmalloc space is available.
2028 	 */
2029 	if (hashdist)
2030 		return;
2031 
2032 	dentry_hashtable =
2033 		alloc_large_system_hash("Dentry cache",
2034 					sizeof(struct hlist_head),
2035 					dhash_entries,
2036 					13,
2037 					HASH_EARLY,
2038 					&d_hash_shift,
2039 					&d_hash_mask,
2040 					0);
2041 
2042 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2043 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2044 }
2045 
2046 static void __init dcache_init(unsigned long mempages)
2047 {
2048 	int loop;
2049 
2050 	/*
2051 	 * A constructor could be added for stable state like the lists,
2052 	 * but it is probably not worth it because of the cache nature
2053 	 * of the dcache.
2054 	 */
2055 	dentry_cache = kmem_cache_create("dentry_cache",
2056 					 sizeof(struct dentry),
2057 					 0,
2058 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2059 					 SLAB_MEM_SPREAD),
2060 					 NULL, NULL);
2061 
2062 	set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
2063 
2064 	/* Hash may have been set up in dcache_init_early */
2065 	if (!hashdist)
2066 		return;
2067 
2068 	dentry_hashtable =
2069 		alloc_large_system_hash("Dentry cache",
2070 					sizeof(struct hlist_head),
2071 					dhash_entries,
2072 					13,
2073 					0,
2074 					&d_hash_shift,
2075 					&d_hash_mask,
2076 					0);
2077 
2078 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2079 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2080 }
2081 
2082 /* SLAB cache for __getname() consumers */
2083 struct kmem_cache *names_cachep __read_mostly;
2084 
2085 /* SLAB cache for file structures */
2086 struct kmem_cache *filp_cachep __read_mostly;
2087 
2088 EXPORT_SYMBOL(d_genocide);
2089 
2090 void __init vfs_caches_init_early(void)
2091 {
2092 	dcache_init_early();
2093 	inode_init_early();
2094 }
2095 
2096 void __init vfs_caches_init(unsigned long mempages)
2097 {
2098 	unsigned long reserve;
2099 
2100 	/* Base hash sizes on available memory, with a reserve equal to
2101            150% of current kernel size */
2102 
2103 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2104 	mempages -= reserve;
2105 
2106 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2107 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
2108 
2109 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2110 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
2111 
2112 	dcache_init(mempages);
2113 	inode_init(mempages);
2114 	files_init(mempages);
2115 	mnt_init(mempages);
2116 	bdev_cache_init();
2117 	chrdev_init();
2118 }
2119 
2120 EXPORT_SYMBOL(d_alloc);
2121 EXPORT_SYMBOL(d_alloc_anon);
2122 EXPORT_SYMBOL(d_alloc_root);
2123 EXPORT_SYMBOL(d_delete);
2124 EXPORT_SYMBOL(d_find_alias);
2125 EXPORT_SYMBOL(d_instantiate);
2126 EXPORT_SYMBOL(d_invalidate);
2127 EXPORT_SYMBOL(d_lookup);
2128 EXPORT_SYMBOL(d_move);
2129 EXPORT_SYMBOL_GPL(d_materialise_unique);
2130 EXPORT_SYMBOL(d_path);
2131 EXPORT_SYMBOL(d_prune_aliases);
2132 EXPORT_SYMBOL(d_rehash);
2133 EXPORT_SYMBOL(d_splice_alias);
2134 EXPORT_SYMBOL(d_validate);
2135 EXPORT_SYMBOL(dget_locked);
2136 EXPORT_SYMBOL(dput);
2137 EXPORT_SYMBOL(find_inode_number);
2138 EXPORT_SYMBOL(have_submounts);
2139 EXPORT_SYMBOL(names_cachep);
2140 EXPORT_SYMBOL(shrink_dcache_parent);
2141 EXPORT_SYMBOL(shrink_dcache_sb);
2142