1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 const struct qstr dotdot_name = QSTR_INIT("..", 2); 88 EXPORT_SYMBOL(dotdot_name); 89 90 /* 91 * This is the single most critical data structure when it comes 92 * to the dcache: the hashtable for lookups. Somebody should try 93 * to make this good - I've just made it work. 94 * 95 * This hash-function tries to avoid losing too many bits of hash 96 * information, yet avoid using a prime hash-size or similar. 97 */ 98 99 static unsigned int d_hash_shift __read_mostly; 100 101 static struct hlist_bl_head *dentry_hashtable __read_mostly; 102 103 static inline struct hlist_bl_head *d_hash(unsigned int hash) 104 { 105 return dentry_hashtable + (hash >> d_hash_shift); 106 } 107 108 #define IN_LOOKUP_SHIFT 10 109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 110 111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 112 unsigned int hash) 113 { 114 hash += (unsigned long) parent / L1_CACHE_BYTES; 115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 116 } 117 118 struct dentry_stat_t { 119 long nr_dentry; 120 long nr_unused; 121 long age_limit; /* age in seconds */ 122 long want_pages; /* pages requested by system */ 123 long nr_negative; /* # of unused negative dentries */ 124 long dummy; /* Reserved for future use */ 125 }; 126 127 static DEFINE_PER_CPU(long, nr_dentry); 128 static DEFINE_PER_CPU(long, nr_dentry_unused); 129 static DEFINE_PER_CPU(long, nr_dentry_negative); 130 131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 132 /* Statistics gathering. */ 133 static struct dentry_stat_t dentry_stat = { 134 .age_limit = 45, 135 }; 136 137 /* 138 * Here we resort to our own counters instead of using generic per-cpu counters 139 * for consistency with what the vfs inode code does. We are expected to harvest 140 * better code and performance by having our own specialized counters. 141 * 142 * Please note that the loop is done over all possible CPUs, not over all online 143 * CPUs. The reason for this is that we don't want to play games with CPUs going 144 * on and off. If one of them goes off, we will just keep their counters. 145 * 146 * glommer: See cffbc8a for details, and if you ever intend to change this, 147 * please update all vfs counters to match. 148 */ 149 static long get_nr_dentry(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_unused(void) 159 { 160 int i; 161 long sum = 0; 162 for_each_possible_cpu(i) 163 sum += per_cpu(nr_dentry_unused, i); 164 return sum < 0 ? 0 : sum; 165 } 166 167 static long get_nr_dentry_negative(void) 168 { 169 int i; 170 long sum = 0; 171 172 for_each_possible_cpu(i) 173 sum += per_cpu(nr_dentry_negative, i); 174 return sum < 0 ? 0 : sum; 175 } 176 177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 178 size_t *lenp, loff_t *ppos) 179 { 180 dentry_stat.nr_dentry = get_nr_dentry(); 181 dentry_stat.nr_unused = get_nr_dentry_unused(); 182 dentry_stat.nr_negative = get_nr_dentry_negative(); 183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 184 } 185 186 static struct ctl_table fs_dcache_sysctls[] = { 187 { 188 .procname = "dentry-state", 189 .data = &dentry_stat, 190 .maxlen = 6*sizeof(long), 191 .mode = 0444, 192 .proc_handler = proc_nr_dentry, 193 }, 194 { } 195 }; 196 197 static int __init init_fs_dcache_sysctls(void) 198 { 199 register_sysctl_init("fs", fs_dcache_sysctls); 200 return 0; 201 } 202 fs_initcall(init_fs_dcache_sysctls); 203 #endif 204 205 /* 206 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 207 * The strings are both count bytes long, and count is non-zero. 208 */ 209 #ifdef CONFIG_DCACHE_WORD_ACCESS 210 211 #include <asm/word-at-a-time.h> 212 /* 213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 214 * aligned allocation for this particular component. We don't 215 * strictly need the load_unaligned_zeropad() safety, but it 216 * doesn't hurt either. 217 * 218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 219 * need the careful unaligned handling. 220 */ 221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 222 { 223 unsigned long a,b,mask; 224 225 for (;;) { 226 a = read_word_at_a_time(cs); 227 b = load_unaligned_zeropad(ct); 228 if (tcount < sizeof(unsigned long)) 229 break; 230 if (unlikely(a != b)) 231 return 1; 232 cs += sizeof(unsigned long); 233 ct += sizeof(unsigned long); 234 tcount -= sizeof(unsigned long); 235 if (!tcount) 236 return 0; 237 } 238 mask = bytemask_from_count(tcount); 239 return unlikely(!!((a ^ b) & mask)); 240 } 241 242 #else 243 244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 245 { 246 do { 247 if (*cs != *ct) 248 return 1; 249 cs++; 250 ct++; 251 tcount--; 252 } while (tcount); 253 return 0; 254 } 255 256 #endif 257 258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 259 { 260 /* 261 * Be careful about RCU walk racing with rename: 262 * use 'READ_ONCE' to fetch the name pointer. 263 * 264 * NOTE! Even if a rename will mean that the length 265 * was not loaded atomically, we don't care. The 266 * RCU walk will check the sequence count eventually, 267 * and catch it. And we won't overrun the buffer, 268 * because we're reading the name pointer atomically, 269 * and a dentry name is guaranteed to be properly 270 * terminated with a NUL byte. 271 * 272 * End result: even if 'len' is wrong, we'll exit 273 * early because the data cannot match (there can 274 * be no NUL in the ct/tcount data) 275 */ 276 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 277 278 return dentry_string_cmp(cs, ct, tcount); 279 } 280 281 struct external_name { 282 union { 283 atomic_t count; 284 struct rcu_head head; 285 } u; 286 unsigned char name[]; 287 }; 288 289 static inline struct external_name *external_name(struct dentry *dentry) 290 { 291 return container_of(dentry->d_name.name, struct external_name, name[0]); 292 } 293 294 static void __d_free(struct rcu_head *head) 295 { 296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 297 298 kmem_cache_free(dentry_cache, dentry); 299 } 300 301 static void __d_free_external(struct rcu_head *head) 302 { 303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 304 kfree(external_name(dentry)); 305 kmem_cache_free(dentry_cache, dentry); 306 } 307 308 static inline int dname_external(const struct dentry *dentry) 309 { 310 return dentry->d_name.name != dentry->d_iname; 311 } 312 313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 314 { 315 spin_lock(&dentry->d_lock); 316 name->name = dentry->d_name; 317 if (unlikely(dname_external(dentry))) { 318 atomic_inc(&external_name(dentry)->u.count); 319 } else { 320 memcpy(name->inline_name, dentry->d_iname, 321 dentry->d_name.len + 1); 322 name->name.name = name->inline_name; 323 } 324 spin_unlock(&dentry->d_lock); 325 } 326 EXPORT_SYMBOL(take_dentry_name_snapshot); 327 328 void release_dentry_name_snapshot(struct name_snapshot *name) 329 { 330 if (unlikely(name->name.name != name->inline_name)) { 331 struct external_name *p; 332 p = container_of(name->name.name, struct external_name, name[0]); 333 if (unlikely(atomic_dec_and_test(&p->u.count))) 334 kfree_rcu(p, u.head); 335 } 336 } 337 EXPORT_SYMBOL(release_dentry_name_snapshot); 338 339 static inline void __d_set_inode_and_type(struct dentry *dentry, 340 struct inode *inode, 341 unsigned type_flags) 342 { 343 unsigned flags; 344 345 dentry->d_inode = inode; 346 flags = READ_ONCE(dentry->d_flags); 347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 348 flags |= type_flags; 349 smp_store_release(&dentry->d_flags, flags); 350 } 351 352 static inline void __d_clear_type_and_inode(struct dentry *dentry) 353 { 354 unsigned flags = READ_ONCE(dentry->d_flags); 355 356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 357 WRITE_ONCE(dentry->d_flags, flags); 358 dentry->d_inode = NULL; 359 if (dentry->d_flags & DCACHE_LRU_LIST) 360 this_cpu_inc(nr_dentry_negative); 361 } 362 363 static void dentry_free(struct dentry *dentry) 364 { 365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 366 if (unlikely(dname_external(dentry))) { 367 struct external_name *p = external_name(dentry); 368 if (likely(atomic_dec_and_test(&p->u.count))) { 369 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 370 return; 371 } 372 } 373 /* if dentry was never visible to RCU, immediate free is OK */ 374 if (dentry->d_flags & DCACHE_NORCU) 375 __d_free(&dentry->d_u.d_rcu); 376 else 377 call_rcu(&dentry->d_u.d_rcu, __d_free); 378 } 379 380 /* 381 * Release the dentry's inode, using the filesystem 382 * d_iput() operation if defined. 383 */ 384 static void dentry_unlink_inode(struct dentry * dentry) 385 __releases(dentry->d_lock) 386 __releases(dentry->d_inode->i_lock) 387 { 388 struct inode *inode = dentry->d_inode; 389 390 raw_write_seqcount_begin(&dentry->d_seq); 391 __d_clear_type_and_inode(dentry); 392 hlist_del_init(&dentry->d_u.d_alias); 393 raw_write_seqcount_end(&dentry->d_seq); 394 spin_unlock(&dentry->d_lock); 395 spin_unlock(&inode->i_lock); 396 if (!inode->i_nlink) 397 fsnotify_inoderemove(inode); 398 if (dentry->d_op && dentry->d_op->d_iput) 399 dentry->d_op->d_iput(dentry, inode); 400 else 401 iput(inode); 402 } 403 404 /* 405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 406 * is in use - which includes both the "real" per-superblock 407 * LRU list _and_ the DCACHE_SHRINK_LIST use. 408 * 409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 410 * on the shrink list (ie not on the superblock LRU list). 411 * 412 * The per-cpu "nr_dentry_unused" counters are updated with 413 * the DCACHE_LRU_LIST bit. 414 * 415 * The per-cpu "nr_dentry_negative" counters are only updated 416 * when deleted from or added to the per-superblock LRU list, not 417 * from/to the shrink list. That is to avoid an unneeded dec/inc 418 * pair when moving from LRU to shrink list in select_collect(). 419 * 420 * These helper functions make sure we always follow the 421 * rules. d_lock must be held by the caller. 422 */ 423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 424 static void d_lru_add(struct dentry *dentry) 425 { 426 D_FLAG_VERIFY(dentry, 0); 427 dentry->d_flags |= DCACHE_LRU_LIST; 428 this_cpu_inc(nr_dentry_unused); 429 if (d_is_negative(dentry)) 430 this_cpu_inc(nr_dentry_negative); 431 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 432 } 433 434 static void d_lru_del(struct dentry *dentry) 435 { 436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 437 dentry->d_flags &= ~DCACHE_LRU_LIST; 438 this_cpu_dec(nr_dentry_unused); 439 if (d_is_negative(dentry)) 440 this_cpu_dec(nr_dentry_negative); 441 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 442 } 443 444 static void d_shrink_del(struct dentry *dentry) 445 { 446 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 447 list_del_init(&dentry->d_lru); 448 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 449 this_cpu_dec(nr_dentry_unused); 450 } 451 452 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 453 { 454 D_FLAG_VERIFY(dentry, 0); 455 list_add(&dentry->d_lru, list); 456 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 457 this_cpu_inc(nr_dentry_unused); 458 } 459 460 /* 461 * These can only be called under the global LRU lock, ie during the 462 * callback for freeing the LRU list. "isolate" removes it from the 463 * LRU lists entirely, while shrink_move moves it to the indicated 464 * private list. 465 */ 466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 467 { 468 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 469 dentry->d_flags &= ~DCACHE_LRU_LIST; 470 this_cpu_dec(nr_dentry_unused); 471 if (d_is_negative(dentry)) 472 this_cpu_dec(nr_dentry_negative); 473 list_lru_isolate(lru, &dentry->d_lru); 474 } 475 476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 477 struct list_head *list) 478 { 479 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 480 dentry->d_flags |= DCACHE_SHRINK_LIST; 481 if (d_is_negative(dentry)) 482 this_cpu_dec(nr_dentry_negative); 483 list_lru_isolate_move(lru, &dentry->d_lru, list); 484 } 485 486 static void ___d_drop(struct dentry *dentry) 487 { 488 struct hlist_bl_head *b; 489 /* 490 * Hashed dentries are normally on the dentry hashtable, 491 * with the exception of those newly allocated by 492 * d_obtain_root, which are always IS_ROOT: 493 */ 494 if (unlikely(IS_ROOT(dentry))) 495 b = &dentry->d_sb->s_roots; 496 else 497 b = d_hash(dentry->d_name.hash); 498 499 hlist_bl_lock(b); 500 __hlist_bl_del(&dentry->d_hash); 501 hlist_bl_unlock(b); 502 } 503 504 void __d_drop(struct dentry *dentry) 505 { 506 if (!d_unhashed(dentry)) { 507 ___d_drop(dentry); 508 dentry->d_hash.pprev = NULL; 509 write_seqcount_invalidate(&dentry->d_seq); 510 } 511 } 512 EXPORT_SYMBOL(__d_drop); 513 514 /** 515 * d_drop - drop a dentry 516 * @dentry: dentry to drop 517 * 518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 519 * be found through a VFS lookup any more. Note that this is different from 520 * deleting the dentry - d_delete will try to mark the dentry negative if 521 * possible, giving a successful _negative_ lookup, while d_drop will 522 * just make the cache lookup fail. 523 * 524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 525 * reason (NFS timeouts or autofs deletes). 526 * 527 * __d_drop requires dentry->d_lock 528 * 529 * ___d_drop doesn't mark dentry as "unhashed" 530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 531 */ 532 void d_drop(struct dentry *dentry) 533 { 534 spin_lock(&dentry->d_lock); 535 __d_drop(dentry); 536 spin_unlock(&dentry->d_lock); 537 } 538 EXPORT_SYMBOL(d_drop); 539 540 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 541 { 542 struct dentry *next; 543 /* 544 * Inform d_walk() and shrink_dentry_list() that we are no longer 545 * attached to the dentry tree 546 */ 547 dentry->d_flags |= DCACHE_DENTRY_KILLED; 548 if (unlikely(list_empty(&dentry->d_child))) 549 return; 550 __list_del_entry(&dentry->d_child); 551 /* 552 * Cursors can move around the list of children. While we'd been 553 * a normal list member, it didn't matter - ->d_child.next would've 554 * been updated. However, from now on it won't be and for the 555 * things like d_walk() it might end up with a nasty surprise. 556 * Normally d_walk() doesn't care about cursors moving around - 557 * ->d_lock on parent prevents that and since a cursor has no children 558 * of its own, we get through it without ever unlocking the parent. 559 * There is one exception, though - if we ascend from a child that 560 * gets killed as soon as we unlock it, the next sibling is found 561 * using the value left in its ->d_child.next. And if _that_ 562 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 563 * before d_walk() regains parent->d_lock, we'll end up skipping 564 * everything the cursor had been moved past. 565 * 566 * Solution: make sure that the pointer left behind in ->d_child.next 567 * points to something that won't be moving around. I.e. skip the 568 * cursors. 569 */ 570 while (dentry->d_child.next != &parent->d_subdirs) { 571 next = list_entry(dentry->d_child.next, struct dentry, d_child); 572 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 573 break; 574 dentry->d_child.next = next->d_child.next; 575 } 576 } 577 578 static void __dentry_kill(struct dentry *dentry) 579 { 580 struct dentry *parent = NULL; 581 bool can_free = true; 582 if (!IS_ROOT(dentry)) 583 parent = dentry->d_parent; 584 585 /* 586 * The dentry is now unrecoverably dead to the world. 587 */ 588 lockref_mark_dead(&dentry->d_lockref); 589 590 /* 591 * inform the fs via d_prune that this dentry is about to be 592 * unhashed and destroyed. 593 */ 594 if (dentry->d_flags & DCACHE_OP_PRUNE) 595 dentry->d_op->d_prune(dentry); 596 597 if (dentry->d_flags & DCACHE_LRU_LIST) { 598 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 599 d_lru_del(dentry); 600 } 601 /* if it was on the hash then remove it */ 602 __d_drop(dentry); 603 dentry_unlist(dentry, parent); 604 if (parent) 605 spin_unlock(&parent->d_lock); 606 if (dentry->d_inode) 607 dentry_unlink_inode(dentry); 608 else 609 spin_unlock(&dentry->d_lock); 610 this_cpu_dec(nr_dentry); 611 if (dentry->d_op && dentry->d_op->d_release) 612 dentry->d_op->d_release(dentry); 613 614 spin_lock(&dentry->d_lock); 615 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 616 dentry->d_flags |= DCACHE_MAY_FREE; 617 can_free = false; 618 } 619 spin_unlock(&dentry->d_lock); 620 if (likely(can_free)) 621 dentry_free(dentry); 622 cond_resched(); 623 } 624 625 static struct dentry *__lock_parent(struct dentry *dentry) 626 { 627 struct dentry *parent; 628 rcu_read_lock(); 629 spin_unlock(&dentry->d_lock); 630 again: 631 parent = READ_ONCE(dentry->d_parent); 632 spin_lock(&parent->d_lock); 633 /* 634 * We can't blindly lock dentry until we are sure 635 * that we won't violate the locking order. 636 * Any changes of dentry->d_parent must have 637 * been done with parent->d_lock held, so 638 * spin_lock() above is enough of a barrier 639 * for checking if it's still our child. 640 */ 641 if (unlikely(parent != dentry->d_parent)) { 642 spin_unlock(&parent->d_lock); 643 goto again; 644 } 645 rcu_read_unlock(); 646 if (parent != dentry) 647 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 648 else 649 parent = NULL; 650 return parent; 651 } 652 653 static inline struct dentry *lock_parent(struct dentry *dentry) 654 { 655 struct dentry *parent = dentry->d_parent; 656 if (IS_ROOT(dentry)) 657 return NULL; 658 if (likely(spin_trylock(&parent->d_lock))) 659 return parent; 660 return __lock_parent(dentry); 661 } 662 663 static inline bool retain_dentry(struct dentry *dentry) 664 { 665 WARN_ON(d_in_lookup(dentry)); 666 667 /* Unreachable? Get rid of it */ 668 if (unlikely(d_unhashed(dentry))) 669 return false; 670 671 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 672 return false; 673 674 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 675 if (dentry->d_op->d_delete(dentry)) 676 return false; 677 } 678 679 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 680 return false; 681 682 /* retain; LRU fodder */ 683 dentry->d_lockref.count--; 684 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 685 d_lru_add(dentry); 686 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 687 dentry->d_flags |= DCACHE_REFERENCED; 688 return true; 689 } 690 691 void d_mark_dontcache(struct inode *inode) 692 { 693 struct dentry *de; 694 695 spin_lock(&inode->i_lock); 696 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 697 spin_lock(&de->d_lock); 698 de->d_flags |= DCACHE_DONTCACHE; 699 spin_unlock(&de->d_lock); 700 } 701 inode->i_state |= I_DONTCACHE; 702 spin_unlock(&inode->i_lock); 703 } 704 EXPORT_SYMBOL(d_mark_dontcache); 705 706 /* 707 * Finish off a dentry we've decided to kill. 708 * dentry->d_lock must be held, returns with it unlocked. 709 * Returns dentry requiring refcount drop, or NULL if we're done. 710 */ 711 static struct dentry *dentry_kill(struct dentry *dentry) 712 __releases(dentry->d_lock) 713 { 714 struct inode *inode = dentry->d_inode; 715 struct dentry *parent = NULL; 716 717 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 718 goto slow_positive; 719 720 if (!IS_ROOT(dentry)) { 721 parent = dentry->d_parent; 722 if (unlikely(!spin_trylock(&parent->d_lock))) { 723 parent = __lock_parent(dentry); 724 if (likely(inode || !dentry->d_inode)) 725 goto got_locks; 726 /* negative that became positive */ 727 if (parent) 728 spin_unlock(&parent->d_lock); 729 inode = dentry->d_inode; 730 goto slow_positive; 731 } 732 } 733 __dentry_kill(dentry); 734 return parent; 735 736 slow_positive: 737 spin_unlock(&dentry->d_lock); 738 spin_lock(&inode->i_lock); 739 spin_lock(&dentry->d_lock); 740 parent = lock_parent(dentry); 741 got_locks: 742 if (unlikely(dentry->d_lockref.count != 1)) { 743 dentry->d_lockref.count--; 744 } else if (likely(!retain_dentry(dentry))) { 745 __dentry_kill(dentry); 746 return parent; 747 } 748 /* we are keeping it, after all */ 749 if (inode) 750 spin_unlock(&inode->i_lock); 751 if (parent) 752 spin_unlock(&parent->d_lock); 753 spin_unlock(&dentry->d_lock); 754 return NULL; 755 } 756 757 /* 758 * Try to do a lockless dput(), and return whether that was successful. 759 * 760 * If unsuccessful, we return false, having already taken the dentry lock. 761 * 762 * The caller needs to hold the RCU read lock, so that the dentry is 763 * guaranteed to stay around even if the refcount goes down to zero! 764 */ 765 static inline bool fast_dput(struct dentry *dentry) 766 { 767 int ret; 768 unsigned int d_flags; 769 770 /* 771 * If we have a d_op->d_delete() operation, we sould not 772 * let the dentry count go to zero, so use "put_or_lock". 773 */ 774 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 775 return lockref_put_or_lock(&dentry->d_lockref); 776 777 /* 778 * .. otherwise, we can try to just decrement the 779 * lockref optimistically. 780 */ 781 ret = lockref_put_return(&dentry->d_lockref); 782 783 /* 784 * If the lockref_put_return() failed due to the lock being held 785 * by somebody else, the fast path has failed. We will need to 786 * get the lock, and then check the count again. 787 */ 788 if (unlikely(ret < 0)) { 789 spin_lock(&dentry->d_lock); 790 if (dentry->d_lockref.count > 1) { 791 dentry->d_lockref.count--; 792 spin_unlock(&dentry->d_lock); 793 return true; 794 } 795 return false; 796 } 797 798 /* 799 * If we weren't the last ref, we're done. 800 */ 801 if (ret) 802 return true; 803 804 /* 805 * Careful, careful. The reference count went down 806 * to zero, but we don't hold the dentry lock, so 807 * somebody else could get it again, and do another 808 * dput(), and we need to not race with that. 809 * 810 * However, there is a very special and common case 811 * where we don't care, because there is nothing to 812 * do: the dentry is still hashed, it does not have 813 * a 'delete' op, and it's referenced and already on 814 * the LRU list. 815 * 816 * NOTE! Since we aren't locked, these values are 817 * not "stable". However, it is sufficient that at 818 * some point after we dropped the reference the 819 * dentry was hashed and the flags had the proper 820 * value. Other dentry users may have re-gotten 821 * a reference to the dentry and change that, but 822 * our work is done - we can leave the dentry 823 * around with a zero refcount. 824 * 825 * Nevertheless, there are two cases that we should kill 826 * the dentry anyway. 827 * 1. free disconnected dentries as soon as their refcount 828 * reached zero. 829 * 2. free dentries if they should not be cached. 830 */ 831 smp_rmb(); 832 d_flags = READ_ONCE(dentry->d_flags); 833 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | 834 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; 835 836 /* Nothing to do? Dropping the reference was all we needed? */ 837 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 838 return true; 839 840 /* 841 * Not the fast normal case? Get the lock. We've already decremented 842 * the refcount, but we'll need to re-check the situation after 843 * getting the lock. 844 */ 845 spin_lock(&dentry->d_lock); 846 847 /* 848 * Did somebody else grab a reference to it in the meantime, and 849 * we're no longer the last user after all? Alternatively, somebody 850 * else could have killed it and marked it dead. Either way, we 851 * don't need to do anything else. 852 */ 853 if (dentry->d_lockref.count) { 854 spin_unlock(&dentry->d_lock); 855 return true; 856 } 857 858 /* 859 * Re-get the reference we optimistically dropped. We hold the 860 * lock, and we just tested that it was zero, so we can just 861 * set it to 1. 862 */ 863 dentry->d_lockref.count = 1; 864 return false; 865 } 866 867 868 /* 869 * This is dput 870 * 871 * This is complicated by the fact that we do not want to put 872 * dentries that are no longer on any hash chain on the unused 873 * list: we'd much rather just get rid of them immediately. 874 * 875 * However, that implies that we have to traverse the dentry 876 * tree upwards to the parents which might _also_ now be 877 * scheduled for deletion (it may have been only waiting for 878 * its last child to go away). 879 * 880 * This tail recursion is done by hand as we don't want to depend 881 * on the compiler to always get this right (gcc generally doesn't). 882 * Real recursion would eat up our stack space. 883 */ 884 885 /* 886 * dput - release a dentry 887 * @dentry: dentry to release 888 * 889 * Release a dentry. This will drop the usage count and if appropriate 890 * call the dentry unlink method as well as removing it from the queues and 891 * releasing its resources. If the parent dentries were scheduled for release 892 * they too may now get deleted. 893 */ 894 void dput(struct dentry *dentry) 895 { 896 while (dentry) { 897 might_sleep(); 898 899 rcu_read_lock(); 900 if (likely(fast_dput(dentry))) { 901 rcu_read_unlock(); 902 return; 903 } 904 905 /* Slow case: now with the dentry lock held */ 906 rcu_read_unlock(); 907 908 if (likely(retain_dentry(dentry))) { 909 spin_unlock(&dentry->d_lock); 910 return; 911 } 912 913 dentry = dentry_kill(dentry); 914 } 915 } 916 EXPORT_SYMBOL(dput); 917 918 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 919 __must_hold(&dentry->d_lock) 920 { 921 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 922 /* let the owner of the list it's on deal with it */ 923 --dentry->d_lockref.count; 924 } else { 925 if (dentry->d_flags & DCACHE_LRU_LIST) 926 d_lru_del(dentry); 927 if (!--dentry->d_lockref.count) 928 d_shrink_add(dentry, list); 929 } 930 } 931 932 void dput_to_list(struct dentry *dentry, struct list_head *list) 933 { 934 rcu_read_lock(); 935 if (likely(fast_dput(dentry))) { 936 rcu_read_unlock(); 937 return; 938 } 939 rcu_read_unlock(); 940 if (!retain_dentry(dentry)) 941 __dput_to_list(dentry, list); 942 spin_unlock(&dentry->d_lock); 943 } 944 945 /* This must be called with d_lock held */ 946 static inline void __dget_dlock(struct dentry *dentry) 947 { 948 dentry->d_lockref.count++; 949 } 950 951 static inline void __dget(struct dentry *dentry) 952 { 953 lockref_get(&dentry->d_lockref); 954 } 955 956 struct dentry *dget_parent(struct dentry *dentry) 957 { 958 int gotref; 959 struct dentry *ret; 960 unsigned seq; 961 962 /* 963 * Do optimistic parent lookup without any 964 * locking. 965 */ 966 rcu_read_lock(); 967 seq = raw_seqcount_begin(&dentry->d_seq); 968 ret = READ_ONCE(dentry->d_parent); 969 gotref = lockref_get_not_zero(&ret->d_lockref); 970 rcu_read_unlock(); 971 if (likely(gotref)) { 972 if (!read_seqcount_retry(&dentry->d_seq, seq)) 973 return ret; 974 dput(ret); 975 } 976 977 repeat: 978 /* 979 * Don't need rcu_dereference because we re-check it was correct under 980 * the lock. 981 */ 982 rcu_read_lock(); 983 ret = dentry->d_parent; 984 spin_lock(&ret->d_lock); 985 if (unlikely(ret != dentry->d_parent)) { 986 spin_unlock(&ret->d_lock); 987 rcu_read_unlock(); 988 goto repeat; 989 } 990 rcu_read_unlock(); 991 BUG_ON(!ret->d_lockref.count); 992 ret->d_lockref.count++; 993 spin_unlock(&ret->d_lock); 994 return ret; 995 } 996 EXPORT_SYMBOL(dget_parent); 997 998 static struct dentry * __d_find_any_alias(struct inode *inode) 999 { 1000 struct dentry *alias; 1001 1002 if (hlist_empty(&inode->i_dentry)) 1003 return NULL; 1004 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1005 __dget(alias); 1006 return alias; 1007 } 1008 1009 /** 1010 * d_find_any_alias - find any alias for a given inode 1011 * @inode: inode to find an alias for 1012 * 1013 * If any aliases exist for the given inode, take and return a 1014 * reference for one of them. If no aliases exist, return %NULL. 1015 */ 1016 struct dentry *d_find_any_alias(struct inode *inode) 1017 { 1018 struct dentry *de; 1019 1020 spin_lock(&inode->i_lock); 1021 de = __d_find_any_alias(inode); 1022 spin_unlock(&inode->i_lock); 1023 return de; 1024 } 1025 EXPORT_SYMBOL(d_find_any_alias); 1026 1027 static struct dentry *__d_find_alias(struct inode *inode) 1028 { 1029 struct dentry *alias; 1030 1031 if (S_ISDIR(inode->i_mode)) 1032 return __d_find_any_alias(inode); 1033 1034 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1035 spin_lock(&alias->d_lock); 1036 if (!d_unhashed(alias)) { 1037 __dget_dlock(alias); 1038 spin_unlock(&alias->d_lock); 1039 return alias; 1040 } 1041 spin_unlock(&alias->d_lock); 1042 } 1043 return NULL; 1044 } 1045 1046 /** 1047 * d_find_alias - grab a hashed alias of inode 1048 * @inode: inode in question 1049 * 1050 * If inode has a hashed alias, or is a directory and has any alias, 1051 * acquire the reference to alias and return it. Otherwise return NULL. 1052 * Notice that if inode is a directory there can be only one alias and 1053 * it can be unhashed only if it has no children, or if it is the root 1054 * of a filesystem, or if the directory was renamed and d_revalidate 1055 * was the first vfs operation to notice. 1056 * 1057 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1058 * any other hashed alias over that one. 1059 */ 1060 struct dentry *d_find_alias(struct inode *inode) 1061 { 1062 struct dentry *de = NULL; 1063 1064 if (!hlist_empty(&inode->i_dentry)) { 1065 spin_lock(&inode->i_lock); 1066 de = __d_find_alias(inode); 1067 spin_unlock(&inode->i_lock); 1068 } 1069 return de; 1070 } 1071 EXPORT_SYMBOL(d_find_alias); 1072 1073 /* 1074 * Caller MUST be holding rcu_read_lock() and be guaranteed 1075 * that inode won't get freed until rcu_read_unlock(). 1076 */ 1077 struct dentry *d_find_alias_rcu(struct inode *inode) 1078 { 1079 struct hlist_head *l = &inode->i_dentry; 1080 struct dentry *de = NULL; 1081 1082 spin_lock(&inode->i_lock); 1083 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1084 // used without having I_FREEING set, which means no aliases left 1085 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1086 if (S_ISDIR(inode->i_mode)) { 1087 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1088 } else { 1089 hlist_for_each_entry(de, l, d_u.d_alias) 1090 if (!d_unhashed(de)) 1091 break; 1092 } 1093 } 1094 spin_unlock(&inode->i_lock); 1095 return de; 1096 } 1097 1098 /* 1099 * Try to kill dentries associated with this inode. 1100 * WARNING: you must own a reference to inode. 1101 */ 1102 void d_prune_aliases(struct inode *inode) 1103 { 1104 struct dentry *dentry; 1105 restart: 1106 spin_lock(&inode->i_lock); 1107 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1108 spin_lock(&dentry->d_lock); 1109 if (!dentry->d_lockref.count) { 1110 struct dentry *parent = lock_parent(dentry); 1111 if (likely(!dentry->d_lockref.count)) { 1112 __dentry_kill(dentry); 1113 dput(parent); 1114 goto restart; 1115 } 1116 if (parent) 1117 spin_unlock(&parent->d_lock); 1118 } 1119 spin_unlock(&dentry->d_lock); 1120 } 1121 spin_unlock(&inode->i_lock); 1122 } 1123 EXPORT_SYMBOL(d_prune_aliases); 1124 1125 /* 1126 * Lock a dentry from shrink list. 1127 * Called under rcu_read_lock() and dentry->d_lock; the former 1128 * guarantees that nothing we access will be freed under us. 1129 * Note that dentry is *not* protected from concurrent dentry_kill(), 1130 * d_delete(), etc. 1131 * 1132 * Return false if dentry has been disrupted or grabbed, leaving 1133 * the caller to kick it off-list. Otherwise, return true and have 1134 * that dentry's inode and parent both locked. 1135 */ 1136 static bool shrink_lock_dentry(struct dentry *dentry) 1137 { 1138 struct inode *inode; 1139 struct dentry *parent; 1140 1141 if (dentry->d_lockref.count) 1142 return false; 1143 1144 inode = dentry->d_inode; 1145 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1146 spin_unlock(&dentry->d_lock); 1147 spin_lock(&inode->i_lock); 1148 spin_lock(&dentry->d_lock); 1149 if (unlikely(dentry->d_lockref.count)) 1150 goto out; 1151 /* changed inode means that somebody had grabbed it */ 1152 if (unlikely(inode != dentry->d_inode)) 1153 goto out; 1154 } 1155 1156 parent = dentry->d_parent; 1157 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1158 return true; 1159 1160 spin_unlock(&dentry->d_lock); 1161 spin_lock(&parent->d_lock); 1162 if (unlikely(parent != dentry->d_parent)) { 1163 spin_unlock(&parent->d_lock); 1164 spin_lock(&dentry->d_lock); 1165 goto out; 1166 } 1167 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1168 if (likely(!dentry->d_lockref.count)) 1169 return true; 1170 spin_unlock(&parent->d_lock); 1171 out: 1172 if (inode) 1173 spin_unlock(&inode->i_lock); 1174 return false; 1175 } 1176 1177 void shrink_dentry_list(struct list_head *list) 1178 { 1179 while (!list_empty(list)) { 1180 struct dentry *dentry, *parent; 1181 1182 dentry = list_entry(list->prev, struct dentry, d_lru); 1183 spin_lock(&dentry->d_lock); 1184 rcu_read_lock(); 1185 if (!shrink_lock_dentry(dentry)) { 1186 bool can_free = false; 1187 rcu_read_unlock(); 1188 d_shrink_del(dentry); 1189 if (dentry->d_lockref.count < 0) 1190 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1191 spin_unlock(&dentry->d_lock); 1192 if (can_free) 1193 dentry_free(dentry); 1194 continue; 1195 } 1196 rcu_read_unlock(); 1197 d_shrink_del(dentry); 1198 parent = dentry->d_parent; 1199 if (parent != dentry) 1200 __dput_to_list(parent, list); 1201 __dentry_kill(dentry); 1202 } 1203 } 1204 1205 static enum lru_status dentry_lru_isolate(struct list_head *item, 1206 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1207 { 1208 struct list_head *freeable = arg; 1209 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1210 1211 1212 /* 1213 * we are inverting the lru lock/dentry->d_lock here, 1214 * so use a trylock. If we fail to get the lock, just skip 1215 * it 1216 */ 1217 if (!spin_trylock(&dentry->d_lock)) 1218 return LRU_SKIP; 1219 1220 /* 1221 * Referenced dentries are still in use. If they have active 1222 * counts, just remove them from the LRU. Otherwise give them 1223 * another pass through the LRU. 1224 */ 1225 if (dentry->d_lockref.count) { 1226 d_lru_isolate(lru, dentry); 1227 spin_unlock(&dentry->d_lock); 1228 return LRU_REMOVED; 1229 } 1230 1231 if (dentry->d_flags & DCACHE_REFERENCED) { 1232 dentry->d_flags &= ~DCACHE_REFERENCED; 1233 spin_unlock(&dentry->d_lock); 1234 1235 /* 1236 * The list move itself will be made by the common LRU code. At 1237 * this point, we've dropped the dentry->d_lock but keep the 1238 * lru lock. This is safe to do, since every list movement is 1239 * protected by the lru lock even if both locks are held. 1240 * 1241 * This is guaranteed by the fact that all LRU management 1242 * functions are intermediated by the LRU API calls like 1243 * list_lru_add and list_lru_del. List movement in this file 1244 * only ever occur through this functions or through callbacks 1245 * like this one, that are called from the LRU API. 1246 * 1247 * The only exceptions to this are functions like 1248 * shrink_dentry_list, and code that first checks for the 1249 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1250 * operating only with stack provided lists after they are 1251 * properly isolated from the main list. It is thus, always a 1252 * local access. 1253 */ 1254 return LRU_ROTATE; 1255 } 1256 1257 d_lru_shrink_move(lru, dentry, freeable); 1258 spin_unlock(&dentry->d_lock); 1259 1260 return LRU_REMOVED; 1261 } 1262 1263 /** 1264 * prune_dcache_sb - shrink the dcache 1265 * @sb: superblock 1266 * @sc: shrink control, passed to list_lru_shrink_walk() 1267 * 1268 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1269 * is done when we need more memory and called from the superblock shrinker 1270 * function. 1271 * 1272 * This function may fail to free any resources if all the dentries are in 1273 * use. 1274 */ 1275 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1276 { 1277 LIST_HEAD(dispose); 1278 long freed; 1279 1280 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1281 dentry_lru_isolate, &dispose); 1282 shrink_dentry_list(&dispose); 1283 return freed; 1284 } 1285 1286 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1287 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1288 { 1289 struct list_head *freeable = arg; 1290 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1291 1292 /* 1293 * we are inverting the lru lock/dentry->d_lock here, 1294 * so use a trylock. If we fail to get the lock, just skip 1295 * it 1296 */ 1297 if (!spin_trylock(&dentry->d_lock)) 1298 return LRU_SKIP; 1299 1300 d_lru_shrink_move(lru, dentry, freeable); 1301 spin_unlock(&dentry->d_lock); 1302 1303 return LRU_REMOVED; 1304 } 1305 1306 1307 /** 1308 * shrink_dcache_sb - shrink dcache for a superblock 1309 * @sb: superblock 1310 * 1311 * Shrink the dcache for the specified super block. This is used to free 1312 * the dcache before unmounting a file system. 1313 */ 1314 void shrink_dcache_sb(struct super_block *sb) 1315 { 1316 do { 1317 LIST_HEAD(dispose); 1318 1319 list_lru_walk(&sb->s_dentry_lru, 1320 dentry_lru_isolate_shrink, &dispose, 1024); 1321 shrink_dentry_list(&dispose); 1322 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1323 } 1324 EXPORT_SYMBOL(shrink_dcache_sb); 1325 1326 /** 1327 * enum d_walk_ret - action to talke during tree walk 1328 * @D_WALK_CONTINUE: contrinue walk 1329 * @D_WALK_QUIT: quit walk 1330 * @D_WALK_NORETRY: quit when retry is needed 1331 * @D_WALK_SKIP: skip this dentry and its children 1332 */ 1333 enum d_walk_ret { 1334 D_WALK_CONTINUE, 1335 D_WALK_QUIT, 1336 D_WALK_NORETRY, 1337 D_WALK_SKIP, 1338 }; 1339 1340 /** 1341 * d_walk - walk the dentry tree 1342 * @parent: start of walk 1343 * @data: data passed to @enter() and @finish() 1344 * @enter: callback when first entering the dentry 1345 * 1346 * The @enter() callbacks are called with d_lock held. 1347 */ 1348 static void d_walk(struct dentry *parent, void *data, 1349 enum d_walk_ret (*enter)(void *, struct dentry *)) 1350 { 1351 struct dentry *this_parent; 1352 struct list_head *next; 1353 unsigned seq = 0; 1354 enum d_walk_ret ret; 1355 bool retry = true; 1356 1357 again: 1358 read_seqbegin_or_lock(&rename_lock, &seq); 1359 this_parent = parent; 1360 spin_lock(&this_parent->d_lock); 1361 1362 ret = enter(data, this_parent); 1363 switch (ret) { 1364 case D_WALK_CONTINUE: 1365 break; 1366 case D_WALK_QUIT: 1367 case D_WALK_SKIP: 1368 goto out_unlock; 1369 case D_WALK_NORETRY: 1370 retry = false; 1371 break; 1372 } 1373 repeat: 1374 next = this_parent->d_subdirs.next; 1375 resume: 1376 while (next != &this_parent->d_subdirs) { 1377 struct list_head *tmp = next; 1378 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1379 next = tmp->next; 1380 1381 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1382 continue; 1383 1384 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1385 1386 ret = enter(data, dentry); 1387 switch (ret) { 1388 case D_WALK_CONTINUE: 1389 break; 1390 case D_WALK_QUIT: 1391 spin_unlock(&dentry->d_lock); 1392 goto out_unlock; 1393 case D_WALK_NORETRY: 1394 retry = false; 1395 break; 1396 case D_WALK_SKIP: 1397 spin_unlock(&dentry->d_lock); 1398 continue; 1399 } 1400 1401 if (!list_empty(&dentry->d_subdirs)) { 1402 spin_unlock(&this_parent->d_lock); 1403 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1404 this_parent = dentry; 1405 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1406 goto repeat; 1407 } 1408 spin_unlock(&dentry->d_lock); 1409 } 1410 /* 1411 * All done at this level ... ascend and resume the search. 1412 */ 1413 rcu_read_lock(); 1414 ascend: 1415 if (this_parent != parent) { 1416 struct dentry *child = this_parent; 1417 this_parent = child->d_parent; 1418 1419 spin_unlock(&child->d_lock); 1420 spin_lock(&this_parent->d_lock); 1421 1422 /* might go back up the wrong parent if we have had a rename. */ 1423 if (need_seqretry(&rename_lock, seq)) 1424 goto rename_retry; 1425 /* go into the first sibling still alive */ 1426 do { 1427 next = child->d_child.next; 1428 if (next == &this_parent->d_subdirs) 1429 goto ascend; 1430 child = list_entry(next, struct dentry, d_child); 1431 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1432 rcu_read_unlock(); 1433 goto resume; 1434 } 1435 if (need_seqretry(&rename_lock, seq)) 1436 goto rename_retry; 1437 rcu_read_unlock(); 1438 1439 out_unlock: 1440 spin_unlock(&this_parent->d_lock); 1441 done_seqretry(&rename_lock, seq); 1442 return; 1443 1444 rename_retry: 1445 spin_unlock(&this_parent->d_lock); 1446 rcu_read_unlock(); 1447 BUG_ON(seq & 1); 1448 if (!retry) 1449 return; 1450 seq = 1; 1451 goto again; 1452 } 1453 1454 struct check_mount { 1455 struct vfsmount *mnt; 1456 unsigned int mounted; 1457 }; 1458 1459 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1460 { 1461 struct check_mount *info = data; 1462 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1463 1464 if (likely(!d_mountpoint(dentry))) 1465 return D_WALK_CONTINUE; 1466 if (__path_is_mountpoint(&path)) { 1467 info->mounted = 1; 1468 return D_WALK_QUIT; 1469 } 1470 return D_WALK_CONTINUE; 1471 } 1472 1473 /** 1474 * path_has_submounts - check for mounts over a dentry in the 1475 * current namespace. 1476 * @parent: path to check. 1477 * 1478 * Return true if the parent or its subdirectories contain 1479 * a mount point in the current namespace. 1480 */ 1481 int path_has_submounts(const struct path *parent) 1482 { 1483 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1484 1485 read_seqlock_excl(&mount_lock); 1486 d_walk(parent->dentry, &data, path_check_mount); 1487 read_sequnlock_excl(&mount_lock); 1488 1489 return data.mounted; 1490 } 1491 EXPORT_SYMBOL(path_has_submounts); 1492 1493 /* 1494 * Called by mount code to set a mountpoint and check if the mountpoint is 1495 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1496 * subtree can become unreachable). 1497 * 1498 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1499 * this reason take rename_lock and d_lock on dentry and ancestors. 1500 */ 1501 int d_set_mounted(struct dentry *dentry) 1502 { 1503 struct dentry *p; 1504 int ret = -ENOENT; 1505 write_seqlock(&rename_lock); 1506 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1507 /* Need exclusion wrt. d_invalidate() */ 1508 spin_lock(&p->d_lock); 1509 if (unlikely(d_unhashed(p))) { 1510 spin_unlock(&p->d_lock); 1511 goto out; 1512 } 1513 spin_unlock(&p->d_lock); 1514 } 1515 spin_lock(&dentry->d_lock); 1516 if (!d_unlinked(dentry)) { 1517 ret = -EBUSY; 1518 if (!d_mountpoint(dentry)) { 1519 dentry->d_flags |= DCACHE_MOUNTED; 1520 ret = 0; 1521 } 1522 } 1523 spin_unlock(&dentry->d_lock); 1524 out: 1525 write_sequnlock(&rename_lock); 1526 return ret; 1527 } 1528 1529 /* 1530 * Search the dentry child list of the specified parent, 1531 * and move any unused dentries to the end of the unused 1532 * list for prune_dcache(). We descend to the next level 1533 * whenever the d_subdirs list is non-empty and continue 1534 * searching. 1535 * 1536 * It returns zero iff there are no unused children, 1537 * otherwise it returns the number of children moved to 1538 * the end of the unused list. This may not be the total 1539 * number of unused children, because select_parent can 1540 * drop the lock and return early due to latency 1541 * constraints. 1542 */ 1543 1544 struct select_data { 1545 struct dentry *start; 1546 union { 1547 long found; 1548 struct dentry *victim; 1549 }; 1550 struct list_head dispose; 1551 }; 1552 1553 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1554 { 1555 struct select_data *data = _data; 1556 enum d_walk_ret ret = D_WALK_CONTINUE; 1557 1558 if (data->start == dentry) 1559 goto out; 1560 1561 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1562 data->found++; 1563 } else { 1564 if (dentry->d_flags & DCACHE_LRU_LIST) 1565 d_lru_del(dentry); 1566 if (!dentry->d_lockref.count) { 1567 d_shrink_add(dentry, &data->dispose); 1568 data->found++; 1569 } 1570 } 1571 /* 1572 * We can return to the caller if we have found some (this 1573 * ensures forward progress). We'll be coming back to find 1574 * the rest. 1575 */ 1576 if (!list_empty(&data->dispose)) 1577 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1578 out: 1579 return ret; 1580 } 1581 1582 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1583 { 1584 struct select_data *data = _data; 1585 enum d_walk_ret ret = D_WALK_CONTINUE; 1586 1587 if (data->start == dentry) 1588 goto out; 1589 1590 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1591 if (!dentry->d_lockref.count) { 1592 rcu_read_lock(); 1593 data->victim = dentry; 1594 return D_WALK_QUIT; 1595 } 1596 } else { 1597 if (dentry->d_flags & DCACHE_LRU_LIST) 1598 d_lru_del(dentry); 1599 if (!dentry->d_lockref.count) 1600 d_shrink_add(dentry, &data->dispose); 1601 } 1602 /* 1603 * We can return to the caller if we have found some (this 1604 * ensures forward progress). We'll be coming back to find 1605 * the rest. 1606 */ 1607 if (!list_empty(&data->dispose)) 1608 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1609 out: 1610 return ret; 1611 } 1612 1613 /** 1614 * shrink_dcache_parent - prune dcache 1615 * @parent: parent of entries to prune 1616 * 1617 * Prune the dcache to remove unused children of the parent dentry. 1618 */ 1619 void shrink_dcache_parent(struct dentry *parent) 1620 { 1621 for (;;) { 1622 struct select_data data = {.start = parent}; 1623 1624 INIT_LIST_HEAD(&data.dispose); 1625 d_walk(parent, &data, select_collect); 1626 1627 if (!list_empty(&data.dispose)) { 1628 shrink_dentry_list(&data.dispose); 1629 continue; 1630 } 1631 1632 cond_resched(); 1633 if (!data.found) 1634 break; 1635 data.victim = NULL; 1636 d_walk(parent, &data, select_collect2); 1637 if (data.victim) { 1638 struct dentry *parent; 1639 spin_lock(&data.victim->d_lock); 1640 if (!shrink_lock_dentry(data.victim)) { 1641 spin_unlock(&data.victim->d_lock); 1642 rcu_read_unlock(); 1643 } else { 1644 rcu_read_unlock(); 1645 parent = data.victim->d_parent; 1646 if (parent != data.victim) 1647 __dput_to_list(parent, &data.dispose); 1648 __dentry_kill(data.victim); 1649 } 1650 } 1651 if (!list_empty(&data.dispose)) 1652 shrink_dentry_list(&data.dispose); 1653 } 1654 } 1655 EXPORT_SYMBOL(shrink_dcache_parent); 1656 1657 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1658 { 1659 /* it has busy descendents; complain about those instead */ 1660 if (!list_empty(&dentry->d_subdirs)) 1661 return D_WALK_CONTINUE; 1662 1663 /* root with refcount 1 is fine */ 1664 if (dentry == _data && dentry->d_lockref.count == 1) 1665 return D_WALK_CONTINUE; 1666 1667 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1668 " still in use (%d) [unmount of %s %s]\n", 1669 dentry, 1670 dentry->d_inode ? 1671 dentry->d_inode->i_ino : 0UL, 1672 dentry, 1673 dentry->d_lockref.count, 1674 dentry->d_sb->s_type->name, 1675 dentry->d_sb->s_id); 1676 WARN_ON(1); 1677 return D_WALK_CONTINUE; 1678 } 1679 1680 static void do_one_tree(struct dentry *dentry) 1681 { 1682 shrink_dcache_parent(dentry); 1683 d_walk(dentry, dentry, umount_check); 1684 d_drop(dentry); 1685 dput(dentry); 1686 } 1687 1688 /* 1689 * destroy the dentries attached to a superblock on unmounting 1690 */ 1691 void shrink_dcache_for_umount(struct super_block *sb) 1692 { 1693 struct dentry *dentry; 1694 1695 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1696 1697 dentry = sb->s_root; 1698 sb->s_root = NULL; 1699 do_one_tree(dentry); 1700 1701 while (!hlist_bl_empty(&sb->s_roots)) { 1702 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1703 do_one_tree(dentry); 1704 } 1705 } 1706 1707 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1708 { 1709 struct dentry **victim = _data; 1710 if (d_mountpoint(dentry)) { 1711 __dget_dlock(dentry); 1712 *victim = dentry; 1713 return D_WALK_QUIT; 1714 } 1715 return D_WALK_CONTINUE; 1716 } 1717 1718 /** 1719 * d_invalidate - detach submounts, prune dcache, and drop 1720 * @dentry: dentry to invalidate (aka detach, prune and drop) 1721 */ 1722 void d_invalidate(struct dentry *dentry) 1723 { 1724 bool had_submounts = false; 1725 spin_lock(&dentry->d_lock); 1726 if (d_unhashed(dentry)) { 1727 spin_unlock(&dentry->d_lock); 1728 return; 1729 } 1730 __d_drop(dentry); 1731 spin_unlock(&dentry->d_lock); 1732 1733 /* Negative dentries can be dropped without further checks */ 1734 if (!dentry->d_inode) 1735 return; 1736 1737 shrink_dcache_parent(dentry); 1738 for (;;) { 1739 struct dentry *victim = NULL; 1740 d_walk(dentry, &victim, find_submount); 1741 if (!victim) { 1742 if (had_submounts) 1743 shrink_dcache_parent(dentry); 1744 return; 1745 } 1746 had_submounts = true; 1747 detach_mounts(victim); 1748 dput(victim); 1749 } 1750 } 1751 EXPORT_SYMBOL(d_invalidate); 1752 1753 /** 1754 * __d_alloc - allocate a dcache entry 1755 * @sb: filesystem it will belong to 1756 * @name: qstr of the name 1757 * 1758 * Allocates a dentry. It returns %NULL if there is insufficient memory 1759 * available. On a success the dentry is returned. The name passed in is 1760 * copied and the copy passed in may be reused after this call. 1761 */ 1762 1763 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1764 { 1765 struct dentry *dentry; 1766 char *dname; 1767 int err; 1768 1769 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1770 GFP_KERNEL); 1771 if (!dentry) 1772 return NULL; 1773 1774 /* 1775 * We guarantee that the inline name is always NUL-terminated. 1776 * This way the memcpy() done by the name switching in rename 1777 * will still always have a NUL at the end, even if we might 1778 * be overwriting an internal NUL character 1779 */ 1780 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1781 if (unlikely(!name)) { 1782 name = &slash_name; 1783 dname = dentry->d_iname; 1784 } else if (name->len > DNAME_INLINE_LEN-1) { 1785 size_t size = offsetof(struct external_name, name[1]); 1786 struct external_name *p = kmalloc(size + name->len, 1787 GFP_KERNEL_ACCOUNT | 1788 __GFP_RECLAIMABLE); 1789 if (!p) { 1790 kmem_cache_free(dentry_cache, dentry); 1791 return NULL; 1792 } 1793 atomic_set(&p->u.count, 1); 1794 dname = p->name; 1795 } else { 1796 dname = dentry->d_iname; 1797 } 1798 1799 dentry->d_name.len = name->len; 1800 dentry->d_name.hash = name->hash; 1801 memcpy(dname, name->name, name->len); 1802 dname[name->len] = 0; 1803 1804 /* Make sure we always see the terminating NUL character */ 1805 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1806 1807 dentry->d_lockref.count = 1; 1808 dentry->d_flags = 0; 1809 spin_lock_init(&dentry->d_lock); 1810 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1811 dentry->d_inode = NULL; 1812 dentry->d_parent = dentry; 1813 dentry->d_sb = sb; 1814 dentry->d_op = NULL; 1815 dentry->d_fsdata = NULL; 1816 INIT_HLIST_BL_NODE(&dentry->d_hash); 1817 INIT_LIST_HEAD(&dentry->d_lru); 1818 INIT_LIST_HEAD(&dentry->d_subdirs); 1819 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1820 INIT_LIST_HEAD(&dentry->d_child); 1821 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1822 1823 if (dentry->d_op && dentry->d_op->d_init) { 1824 err = dentry->d_op->d_init(dentry); 1825 if (err) { 1826 if (dname_external(dentry)) 1827 kfree(external_name(dentry)); 1828 kmem_cache_free(dentry_cache, dentry); 1829 return NULL; 1830 } 1831 } 1832 1833 this_cpu_inc(nr_dentry); 1834 1835 return dentry; 1836 } 1837 1838 /** 1839 * d_alloc - allocate a dcache entry 1840 * @parent: parent of entry to allocate 1841 * @name: qstr of the name 1842 * 1843 * Allocates a dentry. It returns %NULL if there is insufficient memory 1844 * available. On a success the dentry is returned. The name passed in is 1845 * copied and the copy passed in may be reused after this call. 1846 */ 1847 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1848 { 1849 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1850 if (!dentry) 1851 return NULL; 1852 spin_lock(&parent->d_lock); 1853 /* 1854 * don't need child lock because it is not subject 1855 * to concurrency here 1856 */ 1857 __dget_dlock(parent); 1858 dentry->d_parent = parent; 1859 list_add(&dentry->d_child, &parent->d_subdirs); 1860 spin_unlock(&parent->d_lock); 1861 1862 return dentry; 1863 } 1864 EXPORT_SYMBOL(d_alloc); 1865 1866 struct dentry *d_alloc_anon(struct super_block *sb) 1867 { 1868 return __d_alloc(sb, NULL); 1869 } 1870 EXPORT_SYMBOL(d_alloc_anon); 1871 1872 struct dentry *d_alloc_cursor(struct dentry * parent) 1873 { 1874 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1875 if (dentry) { 1876 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1877 dentry->d_parent = dget(parent); 1878 } 1879 return dentry; 1880 } 1881 1882 /** 1883 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1884 * @sb: the superblock 1885 * @name: qstr of the name 1886 * 1887 * For a filesystem that just pins its dentries in memory and never 1888 * performs lookups at all, return an unhashed IS_ROOT dentry. 1889 * This is used for pipes, sockets et.al. - the stuff that should 1890 * never be anyone's children or parents. Unlike all other 1891 * dentries, these will not have RCU delay between dropping the 1892 * last reference and freeing them. 1893 * 1894 * The only user is alloc_file_pseudo() and that's what should 1895 * be considered a public interface. Don't use directly. 1896 */ 1897 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1898 { 1899 struct dentry *dentry = __d_alloc(sb, name); 1900 if (likely(dentry)) 1901 dentry->d_flags |= DCACHE_NORCU; 1902 return dentry; 1903 } 1904 1905 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1906 { 1907 struct qstr q; 1908 1909 q.name = name; 1910 q.hash_len = hashlen_string(parent, name); 1911 return d_alloc(parent, &q); 1912 } 1913 EXPORT_SYMBOL(d_alloc_name); 1914 1915 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1916 { 1917 WARN_ON_ONCE(dentry->d_op); 1918 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1919 DCACHE_OP_COMPARE | 1920 DCACHE_OP_REVALIDATE | 1921 DCACHE_OP_WEAK_REVALIDATE | 1922 DCACHE_OP_DELETE | 1923 DCACHE_OP_REAL)); 1924 dentry->d_op = op; 1925 if (!op) 1926 return; 1927 if (op->d_hash) 1928 dentry->d_flags |= DCACHE_OP_HASH; 1929 if (op->d_compare) 1930 dentry->d_flags |= DCACHE_OP_COMPARE; 1931 if (op->d_revalidate) 1932 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1933 if (op->d_weak_revalidate) 1934 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1935 if (op->d_delete) 1936 dentry->d_flags |= DCACHE_OP_DELETE; 1937 if (op->d_prune) 1938 dentry->d_flags |= DCACHE_OP_PRUNE; 1939 if (op->d_real) 1940 dentry->d_flags |= DCACHE_OP_REAL; 1941 1942 } 1943 EXPORT_SYMBOL(d_set_d_op); 1944 1945 1946 /* 1947 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1948 * @dentry - The dentry to mark 1949 * 1950 * Mark a dentry as falling through to the lower layer (as set with 1951 * d_pin_lower()). This flag may be recorded on the medium. 1952 */ 1953 void d_set_fallthru(struct dentry *dentry) 1954 { 1955 spin_lock(&dentry->d_lock); 1956 dentry->d_flags |= DCACHE_FALLTHRU; 1957 spin_unlock(&dentry->d_lock); 1958 } 1959 EXPORT_SYMBOL(d_set_fallthru); 1960 1961 static unsigned d_flags_for_inode(struct inode *inode) 1962 { 1963 unsigned add_flags = DCACHE_REGULAR_TYPE; 1964 1965 if (!inode) 1966 return DCACHE_MISS_TYPE; 1967 1968 if (S_ISDIR(inode->i_mode)) { 1969 add_flags = DCACHE_DIRECTORY_TYPE; 1970 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1971 if (unlikely(!inode->i_op->lookup)) 1972 add_flags = DCACHE_AUTODIR_TYPE; 1973 else 1974 inode->i_opflags |= IOP_LOOKUP; 1975 } 1976 goto type_determined; 1977 } 1978 1979 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1980 if (unlikely(inode->i_op->get_link)) { 1981 add_flags = DCACHE_SYMLINK_TYPE; 1982 goto type_determined; 1983 } 1984 inode->i_opflags |= IOP_NOFOLLOW; 1985 } 1986 1987 if (unlikely(!S_ISREG(inode->i_mode))) 1988 add_flags = DCACHE_SPECIAL_TYPE; 1989 1990 type_determined: 1991 if (unlikely(IS_AUTOMOUNT(inode))) 1992 add_flags |= DCACHE_NEED_AUTOMOUNT; 1993 return add_flags; 1994 } 1995 1996 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1997 { 1998 unsigned add_flags = d_flags_for_inode(inode); 1999 WARN_ON(d_in_lookup(dentry)); 2000 2001 spin_lock(&dentry->d_lock); 2002 /* 2003 * Decrement negative dentry count if it was in the LRU list. 2004 */ 2005 if (dentry->d_flags & DCACHE_LRU_LIST) 2006 this_cpu_dec(nr_dentry_negative); 2007 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2008 raw_write_seqcount_begin(&dentry->d_seq); 2009 __d_set_inode_and_type(dentry, inode, add_flags); 2010 raw_write_seqcount_end(&dentry->d_seq); 2011 fsnotify_update_flags(dentry); 2012 spin_unlock(&dentry->d_lock); 2013 } 2014 2015 /** 2016 * d_instantiate - fill in inode information for a dentry 2017 * @entry: dentry to complete 2018 * @inode: inode to attach to this dentry 2019 * 2020 * Fill in inode information in the entry. 2021 * 2022 * This turns negative dentries into productive full members 2023 * of society. 2024 * 2025 * NOTE! This assumes that the inode count has been incremented 2026 * (or otherwise set) by the caller to indicate that it is now 2027 * in use by the dcache. 2028 */ 2029 2030 void d_instantiate(struct dentry *entry, struct inode * inode) 2031 { 2032 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2033 if (inode) { 2034 security_d_instantiate(entry, inode); 2035 spin_lock(&inode->i_lock); 2036 __d_instantiate(entry, inode); 2037 spin_unlock(&inode->i_lock); 2038 } 2039 } 2040 EXPORT_SYMBOL(d_instantiate); 2041 2042 /* 2043 * This should be equivalent to d_instantiate() + unlock_new_inode(), 2044 * with lockdep-related part of unlock_new_inode() done before 2045 * anything else. Use that instead of open-coding d_instantiate()/ 2046 * unlock_new_inode() combinations. 2047 */ 2048 void d_instantiate_new(struct dentry *entry, struct inode *inode) 2049 { 2050 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2051 BUG_ON(!inode); 2052 lockdep_annotate_inode_mutex_key(inode); 2053 security_d_instantiate(entry, inode); 2054 spin_lock(&inode->i_lock); 2055 __d_instantiate(entry, inode); 2056 WARN_ON(!(inode->i_state & I_NEW)); 2057 inode->i_state &= ~I_NEW & ~I_CREATING; 2058 smp_mb(); 2059 wake_up_bit(&inode->i_state, __I_NEW); 2060 spin_unlock(&inode->i_lock); 2061 } 2062 EXPORT_SYMBOL(d_instantiate_new); 2063 2064 struct dentry *d_make_root(struct inode *root_inode) 2065 { 2066 struct dentry *res = NULL; 2067 2068 if (root_inode) { 2069 res = d_alloc_anon(root_inode->i_sb); 2070 if (res) 2071 d_instantiate(res, root_inode); 2072 else 2073 iput(root_inode); 2074 } 2075 return res; 2076 } 2077 EXPORT_SYMBOL(d_make_root); 2078 2079 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2080 struct inode *inode, 2081 bool disconnected) 2082 { 2083 struct dentry *res; 2084 unsigned add_flags; 2085 2086 security_d_instantiate(dentry, inode); 2087 spin_lock(&inode->i_lock); 2088 res = __d_find_any_alias(inode); 2089 if (res) { 2090 spin_unlock(&inode->i_lock); 2091 dput(dentry); 2092 goto out_iput; 2093 } 2094 2095 /* attach a disconnected dentry */ 2096 add_flags = d_flags_for_inode(inode); 2097 2098 if (disconnected) 2099 add_flags |= DCACHE_DISCONNECTED; 2100 2101 spin_lock(&dentry->d_lock); 2102 __d_set_inode_and_type(dentry, inode, add_flags); 2103 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2104 if (!disconnected) { 2105 hlist_bl_lock(&dentry->d_sb->s_roots); 2106 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2107 hlist_bl_unlock(&dentry->d_sb->s_roots); 2108 } 2109 spin_unlock(&dentry->d_lock); 2110 spin_unlock(&inode->i_lock); 2111 2112 return dentry; 2113 2114 out_iput: 2115 iput(inode); 2116 return res; 2117 } 2118 2119 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2120 { 2121 return __d_instantiate_anon(dentry, inode, true); 2122 } 2123 EXPORT_SYMBOL(d_instantiate_anon); 2124 2125 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2126 { 2127 struct dentry *tmp; 2128 struct dentry *res; 2129 2130 if (!inode) 2131 return ERR_PTR(-ESTALE); 2132 if (IS_ERR(inode)) 2133 return ERR_CAST(inode); 2134 2135 res = d_find_any_alias(inode); 2136 if (res) 2137 goto out_iput; 2138 2139 tmp = d_alloc_anon(inode->i_sb); 2140 if (!tmp) { 2141 res = ERR_PTR(-ENOMEM); 2142 goto out_iput; 2143 } 2144 2145 return __d_instantiate_anon(tmp, inode, disconnected); 2146 2147 out_iput: 2148 iput(inode); 2149 return res; 2150 } 2151 2152 /** 2153 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2154 * @inode: inode to allocate the dentry for 2155 * 2156 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2157 * similar open by handle operations. The returned dentry may be anonymous, 2158 * or may have a full name (if the inode was already in the cache). 2159 * 2160 * When called on a directory inode, we must ensure that the inode only ever 2161 * has one dentry. If a dentry is found, that is returned instead of 2162 * allocating a new one. 2163 * 2164 * On successful return, the reference to the inode has been transferred 2165 * to the dentry. In case of an error the reference on the inode is released. 2166 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2167 * be passed in and the error will be propagated to the return value, 2168 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2169 */ 2170 struct dentry *d_obtain_alias(struct inode *inode) 2171 { 2172 return __d_obtain_alias(inode, true); 2173 } 2174 EXPORT_SYMBOL(d_obtain_alias); 2175 2176 /** 2177 * d_obtain_root - find or allocate a dentry for a given inode 2178 * @inode: inode to allocate the dentry for 2179 * 2180 * Obtain an IS_ROOT dentry for the root of a filesystem. 2181 * 2182 * We must ensure that directory inodes only ever have one dentry. If a 2183 * dentry is found, that is returned instead of allocating a new one. 2184 * 2185 * On successful return, the reference to the inode has been transferred 2186 * to the dentry. In case of an error the reference on the inode is 2187 * released. A %NULL or IS_ERR inode may be passed in and will be the 2188 * error will be propagate to the return value, with a %NULL @inode 2189 * replaced by ERR_PTR(-ESTALE). 2190 */ 2191 struct dentry *d_obtain_root(struct inode *inode) 2192 { 2193 return __d_obtain_alias(inode, false); 2194 } 2195 EXPORT_SYMBOL(d_obtain_root); 2196 2197 /** 2198 * d_add_ci - lookup or allocate new dentry with case-exact name 2199 * @inode: the inode case-insensitive lookup has found 2200 * @dentry: the negative dentry that was passed to the parent's lookup func 2201 * @name: the case-exact name to be associated with the returned dentry 2202 * 2203 * This is to avoid filling the dcache with case-insensitive names to the 2204 * same inode, only the actual correct case is stored in the dcache for 2205 * case-insensitive filesystems. 2206 * 2207 * For a case-insensitive lookup match and if the case-exact dentry 2208 * already exists in the dcache, use it and return it. 2209 * 2210 * If no entry exists with the exact case name, allocate new dentry with 2211 * the exact case, and return the spliced entry. 2212 */ 2213 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2214 struct qstr *name) 2215 { 2216 struct dentry *found, *res; 2217 2218 /* 2219 * First check if a dentry matching the name already exists, 2220 * if not go ahead and create it now. 2221 */ 2222 found = d_hash_and_lookup(dentry->d_parent, name); 2223 if (found) { 2224 iput(inode); 2225 return found; 2226 } 2227 if (d_in_lookup(dentry)) { 2228 found = d_alloc_parallel(dentry->d_parent, name, 2229 dentry->d_wait); 2230 if (IS_ERR(found) || !d_in_lookup(found)) { 2231 iput(inode); 2232 return found; 2233 } 2234 } else { 2235 found = d_alloc(dentry->d_parent, name); 2236 if (!found) { 2237 iput(inode); 2238 return ERR_PTR(-ENOMEM); 2239 } 2240 } 2241 res = d_splice_alias(inode, found); 2242 if (res) { 2243 d_lookup_done(found); 2244 dput(found); 2245 return res; 2246 } 2247 return found; 2248 } 2249 EXPORT_SYMBOL(d_add_ci); 2250 2251 /** 2252 * d_same_name - compare dentry name with case-exact name 2253 * @parent: parent dentry 2254 * @dentry: the negative dentry that was passed to the parent's lookup func 2255 * @name: the case-exact name to be associated with the returned dentry 2256 * 2257 * Return: true if names are same, or false 2258 */ 2259 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2260 const struct qstr *name) 2261 { 2262 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2263 if (dentry->d_name.len != name->len) 2264 return false; 2265 return dentry_cmp(dentry, name->name, name->len) == 0; 2266 } 2267 return parent->d_op->d_compare(dentry, 2268 dentry->d_name.len, dentry->d_name.name, 2269 name) == 0; 2270 } 2271 EXPORT_SYMBOL_GPL(d_same_name); 2272 2273 /* 2274 * This is __d_lookup_rcu() when the parent dentry has 2275 * DCACHE_OP_COMPARE, which makes things much nastier. 2276 */ 2277 static noinline struct dentry *__d_lookup_rcu_op_compare( 2278 const struct dentry *parent, 2279 const struct qstr *name, 2280 unsigned *seqp) 2281 { 2282 u64 hashlen = name->hash_len; 2283 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2284 struct hlist_bl_node *node; 2285 struct dentry *dentry; 2286 2287 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2288 int tlen; 2289 const char *tname; 2290 unsigned seq; 2291 2292 seqretry: 2293 seq = raw_seqcount_begin(&dentry->d_seq); 2294 if (dentry->d_parent != parent) 2295 continue; 2296 if (d_unhashed(dentry)) 2297 continue; 2298 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2299 continue; 2300 tlen = dentry->d_name.len; 2301 tname = dentry->d_name.name; 2302 /* we want a consistent (name,len) pair */ 2303 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2304 cpu_relax(); 2305 goto seqretry; 2306 } 2307 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2308 continue; 2309 *seqp = seq; 2310 return dentry; 2311 } 2312 return NULL; 2313 } 2314 2315 /** 2316 * __d_lookup_rcu - search for a dentry (racy, store-free) 2317 * @parent: parent dentry 2318 * @name: qstr of name we wish to find 2319 * @seqp: returns d_seq value at the point where the dentry was found 2320 * Returns: dentry, or NULL 2321 * 2322 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2323 * resolution (store-free path walking) design described in 2324 * Documentation/filesystems/path-lookup.txt. 2325 * 2326 * This is not to be used outside core vfs. 2327 * 2328 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2329 * held, and rcu_read_lock held. The returned dentry must not be stored into 2330 * without taking d_lock and checking d_seq sequence count against @seq 2331 * returned here. 2332 * 2333 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2334 * function. 2335 * 2336 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2337 * the returned dentry, so long as its parent's seqlock is checked after the 2338 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2339 * is formed, giving integrity down the path walk. 2340 * 2341 * NOTE! The caller *has* to check the resulting dentry against the sequence 2342 * number we've returned before using any of the resulting dentry state! 2343 */ 2344 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2345 const struct qstr *name, 2346 unsigned *seqp) 2347 { 2348 u64 hashlen = name->hash_len; 2349 const unsigned char *str = name->name; 2350 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2351 struct hlist_bl_node *node; 2352 struct dentry *dentry; 2353 2354 /* 2355 * Note: There is significant duplication with __d_lookup_rcu which is 2356 * required to prevent single threaded performance regressions 2357 * especially on architectures where smp_rmb (in seqcounts) are costly. 2358 * Keep the two functions in sync. 2359 */ 2360 2361 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2362 return __d_lookup_rcu_op_compare(parent, name, seqp); 2363 2364 /* 2365 * The hash list is protected using RCU. 2366 * 2367 * Carefully use d_seq when comparing a candidate dentry, to avoid 2368 * races with d_move(). 2369 * 2370 * It is possible that concurrent renames can mess up our list 2371 * walk here and result in missing our dentry, resulting in the 2372 * false-negative result. d_lookup() protects against concurrent 2373 * renames using rename_lock seqlock. 2374 * 2375 * See Documentation/filesystems/path-lookup.txt for more details. 2376 */ 2377 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2378 unsigned seq; 2379 2380 /* 2381 * The dentry sequence count protects us from concurrent 2382 * renames, and thus protects parent and name fields. 2383 * 2384 * The caller must perform a seqcount check in order 2385 * to do anything useful with the returned dentry. 2386 * 2387 * NOTE! We do a "raw" seqcount_begin here. That means that 2388 * we don't wait for the sequence count to stabilize if it 2389 * is in the middle of a sequence change. If we do the slow 2390 * dentry compare, we will do seqretries until it is stable, 2391 * and if we end up with a successful lookup, we actually 2392 * want to exit RCU lookup anyway. 2393 * 2394 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2395 * we are still guaranteed NUL-termination of ->d_name.name. 2396 */ 2397 seq = raw_seqcount_begin(&dentry->d_seq); 2398 if (dentry->d_parent != parent) 2399 continue; 2400 if (d_unhashed(dentry)) 2401 continue; 2402 if (dentry->d_name.hash_len != hashlen) 2403 continue; 2404 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2405 continue; 2406 *seqp = seq; 2407 return dentry; 2408 } 2409 return NULL; 2410 } 2411 2412 /** 2413 * d_lookup - search for a dentry 2414 * @parent: parent dentry 2415 * @name: qstr of name we wish to find 2416 * Returns: dentry, or NULL 2417 * 2418 * d_lookup searches the children of the parent dentry for the name in 2419 * question. If the dentry is found its reference count is incremented and the 2420 * dentry is returned. The caller must use dput to free the entry when it has 2421 * finished using it. %NULL is returned if the dentry does not exist. 2422 */ 2423 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2424 { 2425 struct dentry *dentry; 2426 unsigned seq; 2427 2428 do { 2429 seq = read_seqbegin(&rename_lock); 2430 dentry = __d_lookup(parent, name); 2431 if (dentry) 2432 break; 2433 } while (read_seqretry(&rename_lock, seq)); 2434 return dentry; 2435 } 2436 EXPORT_SYMBOL(d_lookup); 2437 2438 /** 2439 * __d_lookup - search for a dentry (racy) 2440 * @parent: parent dentry 2441 * @name: qstr of name we wish to find 2442 * Returns: dentry, or NULL 2443 * 2444 * __d_lookup is like d_lookup, however it may (rarely) return a 2445 * false-negative result due to unrelated rename activity. 2446 * 2447 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2448 * however it must be used carefully, eg. with a following d_lookup in 2449 * the case of failure. 2450 * 2451 * __d_lookup callers must be commented. 2452 */ 2453 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2454 { 2455 unsigned int hash = name->hash; 2456 struct hlist_bl_head *b = d_hash(hash); 2457 struct hlist_bl_node *node; 2458 struct dentry *found = NULL; 2459 struct dentry *dentry; 2460 2461 /* 2462 * Note: There is significant duplication with __d_lookup_rcu which is 2463 * required to prevent single threaded performance regressions 2464 * especially on architectures where smp_rmb (in seqcounts) are costly. 2465 * Keep the two functions in sync. 2466 */ 2467 2468 /* 2469 * The hash list is protected using RCU. 2470 * 2471 * Take d_lock when comparing a candidate dentry, to avoid races 2472 * with d_move(). 2473 * 2474 * It is possible that concurrent renames can mess up our list 2475 * walk here and result in missing our dentry, resulting in the 2476 * false-negative result. d_lookup() protects against concurrent 2477 * renames using rename_lock seqlock. 2478 * 2479 * See Documentation/filesystems/path-lookup.txt for more details. 2480 */ 2481 rcu_read_lock(); 2482 2483 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2484 2485 if (dentry->d_name.hash != hash) 2486 continue; 2487 2488 spin_lock(&dentry->d_lock); 2489 if (dentry->d_parent != parent) 2490 goto next; 2491 if (d_unhashed(dentry)) 2492 goto next; 2493 2494 if (!d_same_name(dentry, parent, name)) 2495 goto next; 2496 2497 dentry->d_lockref.count++; 2498 found = dentry; 2499 spin_unlock(&dentry->d_lock); 2500 break; 2501 next: 2502 spin_unlock(&dentry->d_lock); 2503 } 2504 rcu_read_unlock(); 2505 2506 return found; 2507 } 2508 2509 /** 2510 * d_hash_and_lookup - hash the qstr then search for a dentry 2511 * @dir: Directory to search in 2512 * @name: qstr of name we wish to find 2513 * 2514 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2515 */ 2516 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2517 { 2518 /* 2519 * Check for a fs-specific hash function. Note that we must 2520 * calculate the standard hash first, as the d_op->d_hash() 2521 * routine may choose to leave the hash value unchanged. 2522 */ 2523 name->hash = full_name_hash(dir, name->name, name->len); 2524 if (dir->d_flags & DCACHE_OP_HASH) { 2525 int err = dir->d_op->d_hash(dir, name); 2526 if (unlikely(err < 0)) 2527 return ERR_PTR(err); 2528 } 2529 return d_lookup(dir, name); 2530 } 2531 EXPORT_SYMBOL(d_hash_and_lookup); 2532 2533 /* 2534 * When a file is deleted, we have two options: 2535 * - turn this dentry into a negative dentry 2536 * - unhash this dentry and free it. 2537 * 2538 * Usually, we want to just turn this into 2539 * a negative dentry, but if anybody else is 2540 * currently using the dentry or the inode 2541 * we can't do that and we fall back on removing 2542 * it from the hash queues and waiting for 2543 * it to be deleted later when it has no users 2544 */ 2545 2546 /** 2547 * d_delete - delete a dentry 2548 * @dentry: The dentry to delete 2549 * 2550 * Turn the dentry into a negative dentry if possible, otherwise 2551 * remove it from the hash queues so it can be deleted later 2552 */ 2553 2554 void d_delete(struct dentry * dentry) 2555 { 2556 struct inode *inode = dentry->d_inode; 2557 2558 spin_lock(&inode->i_lock); 2559 spin_lock(&dentry->d_lock); 2560 /* 2561 * Are we the only user? 2562 */ 2563 if (dentry->d_lockref.count == 1) { 2564 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2565 dentry_unlink_inode(dentry); 2566 } else { 2567 __d_drop(dentry); 2568 spin_unlock(&dentry->d_lock); 2569 spin_unlock(&inode->i_lock); 2570 } 2571 } 2572 EXPORT_SYMBOL(d_delete); 2573 2574 static void __d_rehash(struct dentry *entry) 2575 { 2576 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2577 2578 hlist_bl_lock(b); 2579 hlist_bl_add_head_rcu(&entry->d_hash, b); 2580 hlist_bl_unlock(b); 2581 } 2582 2583 /** 2584 * d_rehash - add an entry back to the hash 2585 * @entry: dentry to add to the hash 2586 * 2587 * Adds a dentry to the hash according to its name. 2588 */ 2589 2590 void d_rehash(struct dentry * entry) 2591 { 2592 spin_lock(&entry->d_lock); 2593 __d_rehash(entry); 2594 spin_unlock(&entry->d_lock); 2595 } 2596 EXPORT_SYMBOL(d_rehash); 2597 2598 static inline unsigned start_dir_add(struct inode *dir) 2599 { 2600 /* 2601 * The caller holds a spinlock (dentry::d_lock). On !PREEMPT_RT 2602 * kernels spin_lock() implicitly disables preemption, but not on 2603 * PREEMPT_RT. So for RT it has to be done explicitly to protect 2604 * the sequence count write side critical section against a reader 2605 * or another writer preempting, which would result in a live lock. 2606 */ 2607 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 2608 preempt_disable(); 2609 for (;;) { 2610 unsigned n = dir->i_dir_seq; 2611 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2612 return n; 2613 cpu_relax(); 2614 } 2615 } 2616 2617 static inline void end_dir_add(struct inode *dir, unsigned int n, 2618 wait_queue_head_t *d_wait) 2619 { 2620 smp_store_release(&dir->i_dir_seq, n + 2); 2621 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 2622 preempt_enable(); 2623 wake_up_all(d_wait); 2624 } 2625 2626 static void d_wait_lookup(struct dentry *dentry) 2627 { 2628 if (d_in_lookup(dentry)) { 2629 DECLARE_WAITQUEUE(wait, current); 2630 add_wait_queue(dentry->d_wait, &wait); 2631 do { 2632 set_current_state(TASK_UNINTERRUPTIBLE); 2633 spin_unlock(&dentry->d_lock); 2634 schedule(); 2635 spin_lock(&dentry->d_lock); 2636 } while (d_in_lookup(dentry)); 2637 } 2638 } 2639 2640 struct dentry *d_alloc_parallel(struct dentry *parent, 2641 const struct qstr *name, 2642 wait_queue_head_t *wq) 2643 { 2644 unsigned int hash = name->hash; 2645 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2646 struct hlist_bl_node *node; 2647 struct dentry *new = d_alloc(parent, name); 2648 struct dentry *dentry; 2649 unsigned seq, r_seq, d_seq; 2650 2651 if (unlikely(!new)) 2652 return ERR_PTR(-ENOMEM); 2653 2654 retry: 2655 rcu_read_lock(); 2656 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2657 r_seq = read_seqbegin(&rename_lock); 2658 dentry = __d_lookup_rcu(parent, name, &d_seq); 2659 if (unlikely(dentry)) { 2660 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2661 rcu_read_unlock(); 2662 goto retry; 2663 } 2664 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2665 rcu_read_unlock(); 2666 dput(dentry); 2667 goto retry; 2668 } 2669 rcu_read_unlock(); 2670 dput(new); 2671 return dentry; 2672 } 2673 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2674 rcu_read_unlock(); 2675 goto retry; 2676 } 2677 2678 if (unlikely(seq & 1)) { 2679 rcu_read_unlock(); 2680 goto retry; 2681 } 2682 2683 hlist_bl_lock(b); 2684 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2685 hlist_bl_unlock(b); 2686 rcu_read_unlock(); 2687 goto retry; 2688 } 2689 /* 2690 * No changes for the parent since the beginning of d_lookup(). 2691 * Since all removals from the chain happen with hlist_bl_lock(), 2692 * any potential in-lookup matches are going to stay here until 2693 * we unlock the chain. All fields are stable in everything 2694 * we encounter. 2695 */ 2696 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2697 if (dentry->d_name.hash != hash) 2698 continue; 2699 if (dentry->d_parent != parent) 2700 continue; 2701 if (!d_same_name(dentry, parent, name)) 2702 continue; 2703 hlist_bl_unlock(b); 2704 /* now we can try to grab a reference */ 2705 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2706 rcu_read_unlock(); 2707 goto retry; 2708 } 2709 2710 rcu_read_unlock(); 2711 /* 2712 * somebody is likely to be still doing lookup for it; 2713 * wait for them to finish 2714 */ 2715 spin_lock(&dentry->d_lock); 2716 d_wait_lookup(dentry); 2717 /* 2718 * it's not in-lookup anymore; in principle we should repeat 2719 * everything from dcache lookup, but it's likely to be what 2720 * d_lookup() would've found anyway. If it is, just return it; 2721 * otherwise we really have to repeat the whole thing. 2722 */ 2723 if (unlikely(dentry->d_name.hash != hash)) 2724 goto mismatch; 2725 if (unlikely(dentry->d_parent != parent)) 2726 goto mismatch; 2727 if (unlikely(d_unhashed(dentry))) 2728 goto mismatch; 2729 if (unlikely(!d_same_name(dentry, parent, name))) 2730 goto mismatch; 2731 /* OK, it *is* a hashed match; return it */ 2732 spin_unlock(&dentry->d_lock); 2733 dput(new); 2734 return dentry; 2735 } 2736 rcu_read_unlock(); 2737 /* we can't take ->d_lock here; it's OK, though. */ 2738 new->d_flags |= DCACHE_PAR_LOOKUP; 2739 new->d_wait = wq; 2740 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2741 hlist_bl_unlock(b); 2742 return new; 2743 mismatch: 2744 spin_unlock(&dentry->d_lock); 2745 dput(dentry); 2746 goto retry; 2747 } 2748 EXPORT_SYMBOL(d_alloc_parallel); 2749 2750 /* 2751 * - Unhash the dentry 2752 * - Retrieve and clear the waitqueue head in dentry 2753 * - Return the waitqueue head 2754 */ 2755 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2756 { 2757 wait_queue_head_t *d_wait; 2758 struct hlist_bl_head *b; 2759 2760 lockdep_assert_held(&dentry->d_lock); 2761 2762 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2763 hlist_bl_lock(b); 2764 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2765 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2766 d_wait = dentry->d_wait; 2767 dentry->d_wait = NULL; 2768 hlist_bl_unlock(b); 2769 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2770 INIT_LIST_HEAD(&dentry->d_lru); 2771 return d_wait; 2772 } 2773 2774 void __d_lookup_unhash_wake(struct dentry *dentry) 2775 { 2776 spin_lock(&dentry->d_lock); 2777 wake_up_all(__d_lookup_unhash(dentry)); 2778 spin_unlock(&dentry->d_lock); 2779 } 2780 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2781 2782 /* inode->i_lock held if inode is non-NULL */ 2783 2784 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2785 { 2786 wait_queue_head_t *d_wait; 2787 struct inode *dir = NULL; 2788 unsigned n; 2789 spin_lock(&dentry->d_lock); 2790 if (unlikely(d_in_lookup(dentry))) { 2791 dir = dentry->d_parent->d_inode; 2792 n = start_dir_add(dir); 2793 d_wait = __d_lookup_unhash(dentry); 2794 } 2795 if (inode) { 2796 unsigned add_flags = d_flags_for_inode(inode); 2797 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2798 raw_write_seqcount_begin(&dentry->d_seq); 2799 __d_set_inode_and_type(dentry, inode, add_flags); 2800 raw_write_seqcount_end(&dentry->d_seq); 2801 fsnotify_update_flags(dentry); 2802 } 2803 __d_rehash(dentry); 2804 if (dir) 2805 end_dir_add(dir, n, d_wait); 2806 spin_unlock(&dentry->d_lock); 2807 if (inode) 2808 spin_unlock(&inode->i_lock); 2809 } 2810 2811 /** 2812 * d_add - add dentry to hash queues 2813 * @entry: dentry to add 2814 * @inode: The inode to attach to this dentry 2815 * 2816 * This adds the entry to the hash queues and initializes @inode. 2817 * The entry was actually filled in earlier during d_alloc(). 2818 */ 2819 2820 void d_add(struct dentry *entry, struct inode *inode) 2821 { 2822 if (inode) { 2823 security_d_instantiate(entry, inode); 2824 spin_lock(&inode->i_lock); 2825 } 2826 __d_add(entry, inode); 2827 } 2828 EXPORT_SYMBOL(d_add); 2829 2830 /** 2831 * d_exact_alias - find and hash an exact unhashed alias 2832 * @entry: dentry to add 2833 * @inode: The inode to go with this dentry 2834 * 2835 * If an unhashed dentry with the same name/parent and desired 2836 * inode already exists, hash and return it. Otherwise, return 2837 * NULL. 2838 * 2839 * Parent directory should be locked. 2840 */ 2841 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2842 { 2843 struct dentry *alias; 2844 unsigned int hash = entry->d_name.hash; 2845 2846 spin_lock(&inode->i_lock); 2847 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2848 /* 2849 * Don't need alias->d_lock here, because aliases with 2850 * d_parent == entry->d_parent are not subject to name or 2851 * parent changes, because the parent inode i_mutex is held. 2852 */ 2853 if (alias->d_name.hash != hash) 2854 continue; 2855 if (alias->d_parent != entry->d_parent) 2856 continue; 2857 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2858 continue; 2859 spin_lock(&alias->d_lock); 2860 if (!d_unhashed(alias)) { 2861 spin_unlock(&alias->d_lock); 2862 alias = NULL; 2863 } else { 2864 __dget_dlock(alias); 2865 __d_rehash(alias); 2866 spin_unlock(&alias->d_lock); 2867 } 2868 spin_unlock(&inode->i_lock); 2869 return alias; 2870 } 2871 spin_unlock(&inode->i_lock); 2872 return NULL; 2873 } 2874 EXPORT_SYMBOL(d_exact_alias); 2875 2876 static void swap_names(struct dentry *dentry, struct dentry *target) 2877 { 2878 if (unlikely(dname_external(target))) { 2879 if (unlikely(dname_external(dentry))) { 2880 /* 2881 * Both external: swap the pointers 2882 */ 2883 swap(target->d_name.name, dentry->d_name.name); 2884 } else { 2885 /* 2886 * dentry:internal, target:external. Steal target's 2887 * storage and make target internal. 2888 */ 2889 memcpy(target->d_iname, dentry->d_name.name, 2890 dentry->d_name.len + 1); 2891 dentry->d_name.name = target->d_name.name; 2892 target->d_name.name = target->d_iname; 2893 } 2894 } else { 2895 if (unlikely(dname_external(dentry))) { 2896 /* 2897 * dentry:external, target:internal. Give dentry's 2898 * storage to target and make dentry internal 2899 */ 2900 memcpy(dentry->d_iname, target->d_name.name, 2901 target->d_name.len + 1); 2902 target->d_name.name = dentry->d_name.name; 2903 dentry->d_name.name = dentry->d_iname; 2904 } else { 2905 /* 2906 * Both are internal. 2907 */ 2908 unsigned int i; 2909 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2910 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2911 swap(((long *) &dentry->d_iname)[i], 2912 ((long *) &target->d_iname)[i]); 2913 } 2914 } 2915 } 2916 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2917 } 2918 2919 static void copy_name(struct dentry *dentry, struct dentry *target) 2920 { 2921 struct external_name *old_name = NULL; 2922 if (unlikely(dname_external(dentry))) 2923 old_name = external_name(dentry); 2924 if (unlikely(dname_external(target))) { 2925 atomic_inc(&external_name(target)->u.count); 2926 dentry->d_name = target->d_name; 2927 } else { 2928 memcpy(dentry->d_iname, target->d_name.name, 2929 target->d_name.len + 1); 2930 dentry->d_name.name = dentry->d_iname; 2931 dentry->d_name.hash_len = target->d_name.hash_len; 2932 } 2933 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2934 kfree_rcu(old_name, u.head); 2935 } 2936 2937 /* 2938 * __d_move - move a dentry 2939 * @dentry: entry to move 2940 * @target: new dentry 2941 * @exchange: exchange the two dentries 2942 * 2943 * Update the dcache to reflect the move of a file name. Negative 2944 * dcache entries should not be moved in this way. Caller must hold 2945 * rename_lock, the i_mutex of the source and target directories, 2946 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2947 */ 2948 static void __d_move(struct dentry *dentry, struct dentry *target, 2949 bool exchange) 2950 { 2951 struct dentry *old_parent, *p; 2952 wait_queue_head_t *d_wait; 2953 struct inode *dir = NULL; 2954 unsigned n; 2955 2956 WARN_ON(!dentry->d_inode); 2957 if (WARN_ON(dentry == target)) 2958 return; 2959 2960 BUG_ON(d_ancestor(target, dentry)); 2961 old_parent = dentry->d_parent; 2962 p = d_ancestor(old_parent, target); 2963 if (IS_ROOT(dentry)) { 2964 BUG_ON(p); 2965 spin_lock(&target->d_parent->d_lock); 2966 } else if (!p) { 2967 /* target is not a descendent of dentry->d_parent */ 2968 spin_lock(&target->d_parent->d_lock); 2969 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2970 } else { 2971 BUG_ON(p == dentry); 2972 spin_lock(&old_parent->d_lock); 2973 if (p != target) 2974 spin_lock_nested(&target->d_parent->d_lock, 2975 DENTRY_D_LOCK_NESTED); 2976 } 2977 spin_lock_nested(&dentry->d_lock, 2); 2978 spin_lock_nested(&target->d_lock, 3); 2979 2980 if (unlikely(d_in_lookup(target))) { 2981 dir = target->d_parent->d_inode; 2982 n = start_dir_add(dir); 2983 d_wait = __d_lookup_unhash(target); 2984 } 2985 2986 write_seqcount_begin(&dentry->d_seq); 2987 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2988 2989 /* unhash both */ 2990 if (!d_unhashed(dentry)) 2991 ___d_drop(dentry); 2992 if (!d_unhashed(target)) 2993 ___d_drop(target); 2994 2995 /* ... and switch them in the tree */ 2996 dentry->d_parent = target->d_parent; 2997 if (!exchange) { 2998 copy_name(dentry, target); 2999 target->d_hash.pprev = NULL; 3000 dentry->d_parent->d_lockref.count++; 3001 if (dentry != old_parent) /* wasn't IS_ROOT */ 3002 WARN_ON(!--old_parent->d_lockref.count); 3003 } else { 3004 target->d_parent = old_parent; 3005 swap_names(dentry, target); 3006 list_move(&target->d_child, &target->d_parent->d_subdirs); 3007 __d_rehash(target); 3008 fsnotify_update_flags(target); 3009 } 3010 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 3011 __d_rehash(dentry); 3012 fsnotify_update_flags(dentry); 3013 fscrypt_handle_d_move(dentry); 3014 3015 write_seqcount_end(&target->d_seq); 3016 write_seqcount_end(&dentry->d_seq); 3017 3018 if (dir) 3019 end_dir_add(dir, n, d_wait); 3020 3021 if (dentry->d_parent != old_parent) 3022 spin_unlock(&dentry->d_parent->d_lock); 3023 if (dentry != old_parent) 3024 spin_unlock(&old_parent->d_lock); 3025 spin_unlock(&target->d_lock); 3026 spin_unlock(&dentry->d_lock); 3027 } 3028 3029 /* 3030 * d_move - move a dentry 3031 * @dentry: entry to move 3032 * @target: new dentry 3033 * 3034 * Update the dcache to reflect the move of a file name. Negative 3035 * dcache entries should not be moved in this way. See the locking 3036 * requirements for __d_move. 3037 */ 3038 void d_move(struct dentry *dentry, struct dentry *target) 3039 { 3040 write_seqlock(&rename_lock); 3041 __d_move(dentry, target, false); 3042 write_sequnlock(&rename_lock); 3043 } 3044 EXPORT_SYMBOL(d_move); 3045 3046 /* 3047 * d_exchange - exchange two dentries 3048 * @dentry1: first dentry 3049 * @dentry2: second dentry 3050 */ 3051 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 3052 { 3053 write_seqlock(&rename_lock); 3054 3055 WARN_ON(!dentry1->d_inode); 3056 WARN_ON(!dentry2->d_inode); 3057 WARN_ON(IS_ROOT(dentry1)); 3058 WARN_ON(IS_ROOT(dentry2)); 3059 3060 __d_move(dentry1, dentry2, true); 3061 3062 write_sequnlock(&rename_lock); 3063 } 3064 3065 /** 3066 * d_ancestor - search for an ancestor 3067 * @p1: ancestor dentry 3068 * @p2: child dentry 3069 * 3070 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 3071 * an ancestor of p2, else NULL. 3072 */ 3073 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 3074 { 3075 struct dentry *p; 3076 3077 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 3078 if (p->d_parent == p1) 3079 return p; 3080 } 3081 return NULL; 3082 } 3083 3084 /* 3085 * This helper attempts to cope with remotely renamed directories 3086 * 3087 * It assumes that the caller is already holding 3088 * dentry->d_parent->d_inode->i_mutex, and rename_lock 3089 * 3090 * Note: If ever the locking in lock_rename() changes, then please 3091 * remember to update this too... 3092 */ 3093 static int __d_unalias(struct inode *inode, 3094 struct dentry *dentry, struct dentry *alias) 3095 { 3096 struct mutex *m1 = NULL; 3097 struct rw_semaphore *m2 = NULL; 3098 int ret = -ESTALE; 3099 3100 /* If alias and dentry share a parent, then no extra locks required */ 3101 if (alias->d_parent == dentry->d_parent) 3102 goto out_unalias; 3103 3104 /* See lock_rename() */ 3105 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 3106 goto out_err; 3107 m1 = &dentry->d_sb->s_vfs_rename_mutex; 3108 if (!inode_trylock_shared(alias->d_parent->d_inode)) 3109 goto out_err; 3110 m2 = &alias->d_parent->d_inode->i_rwsem; 3111 out_unalias: 3112 __d_move(alias, dentry, false); 3113 ret = 0; 3114 out_err: 3115 if (m2) 3116 up_read(m2); 3117 if (m1) 3118 mutex_unlock(m1); 3119 return ret; 3120 } 3121 3122 /** 3123 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3124 * @inode: the inode which may have a disconnected dentry 3125 * @dentry: a negative dentry which we want to point to the inode. 3126 * 3127 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3128 * place of the given dentry and return it, else simply d_add the inode 3129 * to the dentry and return NULL. 3130 * 3131 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3132 * we should error out: directories can't have multiple aliases. 3133 * 3134 * This is needed in the lookup routine of any filesystem that is exportable 3135 * (via knfsd) so that we can build dcache paths to directories effectively. 3136 * 3137 * If a dentry was found and moved, then it is returned. Otherwise NULL 3138 * is returned. This matches the expected return value of ->lookup. 3139 * 3140 * Cluster filesystems may call this function with a negative, hashed dentry. 3141 * In that case, we know that the inode will be a regular file, and also this 3142 * will only occur during atomic_open. So we need to check for the dentry 3143 * being already hashed only in the final case. 3144 */ 3145 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3146 { 3147 if (IS_ERR(inode)) 3148 return ERR_CAST(inode); 3149 3150 BUG_ON(!d_unhashed(dentry)); 3151 3152 if (!inode) 3153 goto out; 3154 3155 security_d_instantiate(dentry, inode); 3156 spin_lock(&inode->i_lock); 3157 if (S_ISDIR(inode->i_mode)) { 3158 struct dentry *new = __d_find_any_alias(inode); 3159 if (unlikely(new)) { 3160 /* The reference to new ensures it remains an alias */ 3161 spin_unlock(&inode->i_lock); 3162 write_seqlock(&rename_lock); 3163 if (unlikely(d_ancestor(new, dentry))) { 3164 write_sequnlock(&rename_lock); 3165 dput(new); 3166 new = ERR_PTR(-ELOOP); 3167 pr_warn_ratelimited( 3168 "VFS: Lookup of '%s' in %s %s" 3169 " would have caused loop\n", 3170 dentry->d_name.name, 3171 inode->i_sb->s_type->name, 3172 inode->i_sb->s_id); 3173 } else if (!IS_ROOT(new)) { 3174 struct dentry *old_parent = dget(new->d_parent); 3175 int err = __d_unalias(inode, dentry, new); 3176 write_sequnlock(&rename_lock); 3177 if (err) { 3178 dput(new); 3179 new = ERR_PTR(err); 3180 } 3181 dput(old_parent); 3182 } else { 3183 __d_move(new, dentry, false); 3184 write_sequnlock(&rename_lock); 3185 } 3186 iput(inode); 3187 return new; 3188 } 3189 } 3190 out: 3191 __d_add(dentry, inode); 3192 return NULL; 3193 } 3194 EXPORT_SYMBOL(d_splice_alias); 3195 3196 /* 3197 * Test whether new_dentry is a subdirectory of old_dentry. 3198 * 3199 * Trivially implemented using the dcache structure 3200 */ 3201 3202 /** 3203 * is_subdir - is new dentry a subdirectory of old_dentry 3204 * @new_dentry: new dentry 3205 * @old_dentry: old dentry 3206 * 3207 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3208 * Returns false otherwise. 3209 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3210 */ 3211 3212 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3213 { 3214 bool result; 3215 unsigned seq; 3216 3217 if (new_dentry == old_dentry) 3218 return true; 3219 3220 do { 3221 /* for restarting inner loop in case of seq retry */ 3222 seq = read_seqbegin(&rename_lock); 3223 /* 3224 * Need rcu_readlock to protect against the d_parent trashing 3225 * due to d_move 3226 */ 3227 rcu_read_lock(); 3228 if (d_ancestor(old_dentry, new_dentry)) 3229 result = true; 3230 else 3231 result = false; 3232 rcu_read_unlock(); 3233 } while (read_seqretry(&rename_lock, seq)); 3234 3235 return result; 3236 } 3237 EXPORT_SYMBOL(is_subdir); 3238 3239 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3240 { 3241 struct dentry *root = data; 3242 if (dentry != root) { 3243 if (d_unhashed(dentry) || !dentry->d_inode) 3244 return D_WALK_SKIP; 3245 3246 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3247 dentry->d_flags |= DCACHE_GENOCIDE; 3248 dentry->d_lockref.count--; 3249 } 3250 } 3251 return D_WALK_CONTINUE; 3252 } 3253 3254 void d_genocide(struct dentry *parent) 3255 { 3256 d_walk(parent, parent, d_genocide_kill); 3257 } 3258 3259 EXPORT_SYMBOL(d_genocide); 3260 3261 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3262 { 3263 inode_dec_link_count(inode); 3264 BUG_ON(dentry->d_name.name != dentry->d_iname || 3265 !hlist_unhashed(&dentry->d_u.d_alias) || 3266 !d_unlinked(dentry)); 3267 spin_lock(&dentry->d_parent->d_lock); 3268 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3269 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3270 (unsigned long long)inode->i_ino); 3271 spin_unlock(&dentry->d_lock); 3272 spin_unlock(&dentry->d_parent->d_lock); 3273 d_instantiate(dentry, inode); 3274 } 3275 EXPORT_SYMBOL(d_tmpfile); 3276 3277 static __initdata unsigned long dhash_entries; 3278 static int __init set_dhash_entries(char *str) 3279 { 3280 if (!str) 3281 return 0; 3282 dhash_entries = simple_strtoul(str, &str, 0); 3283 return 1; 3284 } 3285 __setup("dhash_entries=", set_dhash_entries); 3286 3287 static void __init dcache_init_early(void) 3288 { 3289 /* If hashes are distributed across NUMA nodes, defer 3290 * hash allocation until vmalloc space is available. 3291 */ 3292 if (hashdist) 3293 return; 3294 3295 dentry_hashtable = 3296 alloc_large_system_hash("Dentry cache", 3297 sizeof(struct hlist_bl_head), 3298 dhash_entries, 3299 13, 3300 HASH_EARLY | HASH_ZERO, 3301 &d_hash_shift, 3302 NULL, 3303 0, 3304 0); 3305 d_hash_shift = 32 - d_hash_shift; 3306 } 3307 3308 static void __init dcache_init(void) 3309 { 3310 /* 3311 * A constructor could be added for stable state like the lists, 3312 * but it is probably not worth it because of the cache nature 3313 * of the dcache. 3314 */ 3315 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3316 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3317 d_iname); 3318 3319 /* Hash may have been set up in dcache_init_early */ 3320 if (!hashdist) 3321 return; 3322 3323 dentry_hashtable = 3324 alloc_large_system_hash("Dentry cache", 3325 sizeof(struct hlist_bl_head), 3326 dhash_entries, 3327 13, 3328 HASH_ZERO, 3329 &d_hash_shift, 3330 NULL, 3331 0, 3332 0); 3333 d_hash_shift = 32 - d_hash_shift; 3334 } 3335 3336 /* SLAB cache for __getname() consumers */ 3337 struct kmem_cache *names_cachep __read_mostly; 3338 EXPORT_SYMBOL(names_cachep); 3339 3340 void __init vfs_caches_init_early(void) 3341 { 3342 int i; 3343 3344 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3345 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3346 3347 dcache_init_early(); 3348 inode_init_early(); 3349 } 3350 3351 void __init vfs_caches_init(void) 3352 { 3353 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3354 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3355 3356 dcache_init(); 3357 inode_init(); 3358 files_init(); 3359 files_maxfiles_init(); 3360 mnt_init(); 3361 bdev_cache_init(); 3362 chrdev_init(); 3363 } 3364